
sANDIA REPORT H/fi~[[tti~
SAND92– 1460 . UC–405
Unlimited Release
Printed September 1992

.

SRNJ39~- 14<,(3
EMU1
LINCLRSS lF IEII

i39./92

An Improved Spectral Graph Partitioning 28P
ST fK

Algorithm for Mapping Parallel Computations

Bruce Hendrickson, Robert Leland

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

!l:lfl~’””’
,(i ,:li!l[~j j!’,[’

under Contract DE-AC04-76DPO07e9 ,J.!/’:~il..l:,(ltiJfi:l!l/ 1~t“’
l’l{l’l!l I:i’)(l’l: j!)lil~,,,

.!.ll,-”(.l;ll,!1[, -~--, ![, ,,,~[l,;;: ,:,,-, ,, ,,, ,,,,

SF2900Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus? product, or
process disclosed, or represents that its use would not infrnnge privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply ita endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
~MJi~ogf6!&ientific and Technical Information

Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

SAND92-1460

Unlimited Release
Printed Setember 1992

Distribution

Category UC-405

An Improved Spectral Graph Partitioning Algorithm
for Mapping Parallel Computations

Bruce Hendrickson and Robert Leland

Sandia National Laboratories
Albuquerque, NM 87185

Abstract

Efficient use of a distributed memory parallel computer requires that the com-
putational load be balanced across processors in a way that minimizes interprocessor

communication. We present a new domain mapping algorithm that extends recent work

in which ideas from spectral graph theory have been applied to this problem. Our gen-
eralization of spectral graph bisection involves a novel use of multiple eigenvectors to

allow for division of a computation into four or eight parts at each stage of a recursive

decomposition. The resulting method is suitable for scientific computations like irregu-
lar finite elements or differences performed on hypercube or mesh architecture machines.

Experimental results confirm that the new method provides better decompositions ar-
rived at more economically and robustly than with previous spectral methods. We have
also improved upon the known spectral lower bound for graph bisection.

This work was supported by the Applied Mathematical Sciences program, U.S. Department of
Energy, Office of Energy Research, and was performed at Sandia National Laboratories, operated for

the U.S. Department of Energy under contract No. DE-AC04-76DPO0789.

1

1. Introduction. Efficient use of a distributed memory parallel computer requires

that the computational load be balanced across processors in a way that minimizes in-
terprocessor communication. This mapping requirement can be abstracted to a graph

problem in which nodes represent computation, edges represent communication, and the
objective is to assign an equal number of vertices to each processor in a way that mini-

mizes the number of edges crossing between processors. Extensive practical experience
has shown that the quality of this mapping has a substantial impact on performance,

hence there is considerable interest in effective mapping algorithms.

Finding a mapping that actually minimizes communication between balanced sets

is an NP-hard problem [8], so it is unlikely that an efficient, general algorithm ex-
ists. The practical importance of this problem has, however, motivated a variety of

heuristic approaches. These range from very quick, linear time algorithms based on ge-

ometric assumptions or local graph information to very slow algorithms which approx-

imate a global search for the minimum using genetic operators or simulated annealing.
The faster heuristics generally do not provide mappings of adequate quality for bench-

marking purposes or for performance-critical codes which will be used many times, and

the more expensive mapping techniques are impractical for use on large problems. This

paper describes a method designed to provide near optimal partitionings at moderate
cost .

Most existing load balancing methods are based on recursive graph bisection - the

graph is broken in half, the halves are halved independently, and so on, until there
are as many pieces as processors in the parallel machine. Bisection techniques have

several inherent shortcomings. First, bisection algorithms are unable to accept a less

attractive initial cut which would allow net savings in later cuts, i.e. they have no look

ahead capability. In the VLSI community, for example, it is well known that recursive
quadrisection leads to better circuit layouts than twice as many steps of bisection [19].

Second, in bisection the task of splitting the graph into sets of vertices (the decomposi-

tion problem) is largely decoupled from that of assigning a set of vertices to a specific

processor (the assignment problem). The communication overhead of an application

program, however, depends on both the decomposition and the assignment, so it is
generally preferable to consider these aspects of the problem together. We might for

example choose to accept a higher volume of communication between two sets in order

to place them topologically closer on a given architecture.

Our approach to the graph partitioning problem addresses these shortcomings. It
is based upon results from spectral graph theory, in which eigenvectors of a matrix

are used to bisect a graph. The idea of using eigenvectors to partition graphs dates

back to work in the early 70’s by Donath and Hoffman [3, 4], and Fiedler [5, 6], but it
has recently generated renewed interest [2, 13, 15, 16, 17]. Simon and Williams have

applied spectral bisection to the load balancing problem and found it to have a number

of attractive features in this context [18, 21]. Unlike some other techniques, spectral

methods are invariant under geometric transformations of the computational domain,
as well as under renumbering of the computational graph. They also seem to generate

good partitions in practice, albeit at a fairly high cost compared with some weaker

2

heuristics.

Ourmethod generalims spectral graph bisection in several important ways. First,
through a novel use of multiple eigenvectors, we are able to divide a problem into four or

eight pieces at once instead of just two. This allows us to perform fewer recursive steps
while dividing a problem into a given number of pieces. By trading off the combined

effects of several cuts, we can reduce the look ahead problem associated with bisection.
In addition, by using multiple eigenvectors we achieve a substantial economy in the

net cost of the eigenvector calculations, the dominant expense. (Rendl and Wolkowicz

describe a quite different spectral graph partitioning algorithm which requires k eigen-

vectors to divide into k sets rather than the logz k eigenvectors we use [17].) Second, our

model allows for inhomogeneous computation and communication requirements of an
application, substantially broadening the class of problems for which it is appropriate.

Third, our method does not ignore machine architecture, but rather explicitly accounts

for hypercube topology in the communication cost. Recent empirical evidence confirms
that this should lead to significantly better partitions in practice [9]. Our method can
also be applied to meshes since d-dimensional meshes can be recursively decomposed

as d-dimensional hypercubes. Fourth, unlike other approaches, our method solves the

assignment problem simultaneously wit h the decomposition.

Our approach is designed for message passing multiprocessors, and is most appro-
priate for applications in which the computational requirements are static so that a good

decomposition can be determined a-priori. It is particularly well suited to problems in
which many different messages are simultaneously competing for use of the communi-
cation network. Many problems in scientific communication fit this description because
they involve alternate phases of computation and communication in which the same

calculation is repeated in each computation phase and many messages are transmitted
in the communication phase. Examples include typical unstructured finite difference

and finite element calculations.

The structure of this paper is as follows. In ~2, we review hypercube multipro-

cessors, describe our graph model of computation and develop an associated metric of

communication cost. This allows us to construct a discrete optimization problem which
describes the optimal mapping in !j3. Since this optimization problem is NP-hard, we

derive a continuous problem approximating it in $4. In $5 and 56 we describe how the

solution to this continuous problem reduces to an cigenvector calculation, and how the

eigenvectors can be used to generate an approximate solution to the discrete optimiza-

tion problem. Some new a-posteriori lower bounds on partition quality are presented in

$7. Results of some sample calculations are given in 38, and conclusions are presented
in $9.

2. Preliminaries.

2.1. Hypercube multiprocessors. A d-dimensional hypercube multiprocessor
consists of a set of 2d processors, identified by distinct binary numbers from O to 2d – 1.

Information is transmitted between them by passing messages through a network in
which wires connect processors whose binary values differ in a single bit. We will

3

assume there is no global memory, and that wires can simultaneously transmit data in

either direction.
Hypercube multiprocessors enjoy wide popularity because they have attractive the-

oretical and practical properties. The network is very regular and can be described

elegant Iy in a recursive fashion. Each processor is connected to just d communication

wires, and a message can be routed between any two processors by traversing at most

c1wires. Furthermore, a message route can be devised simply; to travel between two

processors, a message merely uses one wire from each bit in which the two processor’s

numbers differ.

2.2. A graph model of computation. As mentioned in $1, our approach to

the partitioning problem is targeted mainly towards scientific computing applications.

Most of these problems involve repeated iterations of the same cycle of computations.
Although it is sometimes possible to achieve parallelism by effectively overlapping mul-
tiple iterations [22], the more common approach is to exploit parallelism within each

iteration. Within an iteration, a processor performs a set of computations followed

by a set of communication operations, and since each iteration involves the same set

of operations, it is sufficient to distribute the task among processors based upon the
requirements of a single iteration.

We represent a computation as an undirected, weighted graph G = (V, E), using n

to denote the size of the vertex set V, and m the size of the edge set E. Each vertex
vi c V corresponds to a computational task to be performed on a single processor, and

the time required to execute that task is represented by a positive weight ~V(~i). We

denote by W. the sum of the weights of all the vertices in the graph. An undirected
edge eij G E connects tvvo vertices vi and vj if the computational task represented by

one of the vertices requires input from the other. The edge has an associated positive

weight we(ei~) proportional to the amount of data that must be transmitted between
the tasks. If each task requires data from the other, then this weight is the sum of the

two amounts of information. The sum of the weights of all the edges is denoted by W,.

We will assume that G is connected.

Partitioning a computational task among the processors corresponds to assigning

each vertex of the graph to a processor. The sum of the weights of the vertices assigned
to a processor represents the amount of computational effort that processor must ex-

pend, and the sum of the weights of all the edges connecting vertices assigned to two
different processors represents the total amount of information that must be communi-

cated between the two.

2.3. A communication metric. Most modern parallel computers have some

form of hardware cut-through routing, so congestion aside, the time required to transmit

a single message is nearly independent of the number of wires traversed. For applica-
tions like those we are targeting in which most messages are lengthy, this implies a

model in which the communication cost of a message is proportional to the message

length, independent of the identity of the sending and receiving processors. The cost
of a set of messages can then be modeled as the sum of their individual costs. Within

4

the constructs of our graph model, we define the cut-weight of a partitioning scheme

to be the sum of the weights of all the edges whose vertices are assigned to different
processors. Most previous approaches to domain mapping for parallel computing have
tried to minimize this cut-weight communication measure.

However, since it treats messages in isolation, the cut-weight metric fails to consider

any effects of message congestion. The applications we are considering typically have a
communication phase in which there are many messages simultaneously competing for

wires. In this case, each wire a message uses is unavailable for other tasks, so the load

a message places on the network is proportional to the number of wires it consumes.

Consequently we define the hop-weight of a message to be the length of the message
multiplied by the number of wires it requires, and the hop-weight of a collection of

messages to be the sum of their individual hop-weights. We will use hop-weight as

our measure of the communication cost of a mapping. Recent experimental work has
indicated that this is the most accurate communication metric for the problems we are

targeting [9].
With the intent of making this discussion more formal, we let M : V + P be

an assignment scheme that maps vertices to processors. We denote by V(q) the’ set
of vertices assigned to a
indicate the processor to
wires between pi and ~j.

an assignment as

(1)

processor q, so V(q) = {v G V : M(v) = q}. We use pi to
which vertex VI is assigned, and hij to denote the number of

With this notation, we can formally define the hop-weight of

hop-weight(M) = ~ we(eij)~ij.

ei; EE

Next we map the binary digits designating a processor to +1 by

(2)
{

1 if thekihbitofq= 1,
Ck(q) =

–1 if the kth bit of q = O.

This transformation is convenient because the simple function (1 – ck(q)ck(r))/2 is zero

if processors q and r have the same kth bit and one if they differ, and therefore is
equal to h,~. Hence the total communication cost on a hypercube under an assignment

scheme M can be expressed as

(3) Cost(M) = hop-weight(M) = ~ ~ f ~e(eij)(l – Cock).

(3ij EE k=l

We would like to find an assignment that minimizes this communication cost, while

keeping the computational load balanced. We note that when d = 1, hop-weight reduces
to cut-weight, so in this case, the minimal cost is the bisection width of the graph.

3. A discrete optimization problem. When using a spectral method to solve a
combinatorial problem, the general strategy is to formulate the combinatorial problem
as a discrete optimization and then relax the discreteness constraint to obtain a contin-

uous optimization problcm. This continuous version may have some special structure
5

making it tractable, even if the original discrete problem is NP-hard. After the con-
tinuous problem is solved, the result is mapped back to a nearby discrete point, which
we hope provides a good approximation to the discrete optimum. A survey of results

obtained using this general approach is given by Mohar in [13].

To follow this strategy we need to express our problem as a discrete optimization.

The communication cost we wish to minimize is given in (3), but it will prove useful to
add an additional term and interchange the order of summation to obtain

Since ck(q) = +1, this last term is zero, and does not change the value of Cost(M).

However, when the discreteness constraint on c~ is relaxed in $4, this term will become

important. Appropriate values for ii will also be considered in $4.
Equation (4) describes the communication cost to be minimized, but it must be

constrained to ensure load balance. The computational load is balanced if the sums of

the weights of the vertices assigned to each processor are equal. Denote by W(q) the
sums of weights of all vertices assigned to processor q, so that W(q) = &v(g) w“(v).

The load balance constraint can then be expressed as

(5) w(q) = w“/2d, Vqc {o,..., 2d–1}.

It will prove convenient to use a different form of the balance constraint expressed in

terms of the Ck notation introduced in (2). In particular, the conditions

(6)
‘d–l

(a) ~ W(k)= WV

(b)

k=o
2d_l

~W(k)~#(k)=O, VS:O+SC{l,..., d}.

k=o j@

ensure balance, as demonstrated by Theorem 3.1.
THEOREM 3.1. Equations (6) and (5) are equi~alent.

Proof. Given a set S of size d, we can represent any subset of S as a binary string

in which 1 indicates the presence and O indicates the absence of the corresponding

set element. Hence there are 2d subsets corresponding to the possible bit patterns.
Condition (6b) excludes the null subset and so provides 2d – 1 constraint equations.
With the addition of (6a) we therefore have 2d linearly independent equations for the 2d

unknown values of W(k), so a unique solution exists. Since the solution to (5) is easily

seen, to be a solution to (6), the two formulations of constraint equations are equivalent.
n

A still more convenient formulation of the balance constraint involves the ~V(~i)

values and has the form

(7) bwv(vi)ll~(pi)=o, v~:O#S~{l,..., d}.
i=l j ES

6

Equation (6a) is automatically satisfied by the ~V(~i) values, and the equivalence of (7)

and (6) is a straightforward consequence of the definitions.

Combining (4) with (7) we obtain a formal statement of the problem of minimizing
communication subject to the load balance constraint.

(8) Minimize :5
k= I

Subject to :

(a) Ck(q) =
n

{ ~ ~e(eij)(l - Cock)+ ~ > ‘i(ck(Pi)’ - 1)}

CijEE i—l

+1, Vk~ {l,..., d}, Vqc {o,..., 2d–1}

(b) XWu(Vi)IIti(Pi)=O, vS:O#Sc{l,..,, d}.—
i=l j@

We will call this discrete optimization problem PI. It is NP-hard since it general-

izes the problem of graph bisection [8]. A general, efficient algorithm for

therefore unlikely to exist, and we are forced to resort to heuristics.

4. A continuous approximation. Since solving (PI) is difficult,

mate it by an easier problem. In particular, we relax the constraint that

solving it is

we approxi-

Cyq) = +1,

which changes the discrete problem into a tractable continuous optimization problem.

Unfortunately the solution to the continuous problem does not give us a valid parti-
tioning since the ck(q)’s will no longer have discrete values corresponding to the bit
patterns of the target processors. We can, however, use the solution of the continuous

optimization to find a nearby point satisfying the +1 condition. This nearby point will

not generally be the absolute minimizer of (PI), but the hope is that it will provide a
good answer in practice.

It will be convenient to reformulate (Pi) in matrix terms. For a fixed k, consider

the n values of c~(~i) Vi G {1 , rz} as an n-vector denoted by z~. Introduce the

weighted adjacency matrix A as follows.

(9)
{

?.LJe(eij) if f3ij C f?

A(i, j) = o
Otherwise.

Letting D = Diag(ti) and ~ = ~~=1 ii, the objective function
in matrix notation as

(lo)
Id

;d(we – ;) + ~ ~(zk)%k,
k=l

in (PI) can be rewritten

where (z~)* denotes the transpose of Xk, and f? = D – A. We note that the leading

constant term has no effect on the minimizer, just on the minimum value.
We set the diagonal values ii to make each row sum of B zero. There is no com-

pelling reason for this choice, but it is convenient for several reasons. First, since

~i = ZeijCE ~e(eij) implies that T = ‘2Wc, the initial term in the cost is identically zero.
Second, the matrix 1? is positive semidefinite, and if the graph is connected then 1? has
only a single null vector consisting of all 1‘s. Third, if the edge weights are all 1, then

7

B reduces to the familiar Laplacian matrix of the graph - our matrix is a weighted

Laplacian. We expect this to be advantageous because unweighed Laplacians have

proved useful in a number of combinatorial optimization problems [13]. In particular,
when used to partition graphs into two sets (a special case of what we will describe

below), the Laplacian facilitates several theoretical results [2, 5, 6]. Fourth, this choice

is convenient for solving the eigenvector problem arising below.
Now we relax the constraint that each of the elements of the Z& vectors must be

+1. Instead, we impose the norm constraint Ilz~l 12 = @. Combining this continu-
ous constraint with (8), (10) and the expression for ~ yields the following continuous

approximation to (PI).

d

(11) Minimize ~ ~(z~)~Bz~
k= 1

Subject to :

(al) Xk E IRn, Vke{l,..., d}

(a2) (Zk)%k=n, Vkc {1,..., d}

(b) ~~v(~i)~~j(~)=o v~:O#SC{lI...,~}.?
i=l j@

We call this problem (P2) and note that its solution provides a lower bound for the
solution of (PI). The advantage of approximating (PI) by (P2) is that the latter can

be solved efficiently, as the next section will demonstrate.

5. Solving the continuous approximation. To solve (P2) we begin by focusing
on a subset of the constraints. Instead of considering all of the terms of (11 b), we will

concentrate on only those terms involving 2 or fewer elements in the products. These
terms are

We note that if d = 1 (bisection), this second constraint is irrelevant, and if d = 2

(quadrisection) these are the only constraints in (llb).
To simplify, we change variables to a set of vectors yk 6 Ill” defined by yk(i) =

~=x~(i). Since the Zk values are relaxations of +1, the appropriate normalization

for the y vectors is (yk)~y~ = WV. Letting s, ii E Illn be vectors in which si = J=,

and ~i = 1/~_, (12) is transformed to

(13) (bl) s~yk=O, Vk~ {1,..., d}

(b2) (Yk)TY~=O, Vk, j~ {1,..., d} :k#j.

8

Combining (13) with (11), and letting C = Diag(G)T13 Diag(3), we can rewrite
(P2) as

(14)
Id

Minimize ~ X(Y’)TCY’
k= 1

Subject to :

(al) yk E IRn, vkE{l,..., d}

(a2) (y~)Ty~=wv, Vkc{l,..., d}

(bl) sTy’= (), VkE{l,..., d}

(b2) (Y’)TY; =O> v~!~~{l?”””?~}’~#~

(b3) ~ ~v(vi)HW2 ~ y~(i) = O> vs:s G{l,..., d}, [s[>2,
,=1 jES

which we denote by (P3). Next we collect a number of useful observations regarding

the matrix C.

THEOREM 5.1. The matrix C has the jolfowing properties.

(I) C is symmetric positive semidefinite.

(II) The eigenvectors oj C can always be chosen to be pairwise orthogonal.

(III) The vectors is an eigenvector oj C with eigenvalue zero.

(IV) Ij the graph is connected, s is the only eigenvector oj C with eigenvalue zero.
Prooj Orient each edge in the graph arbitrarily and define the standard incidence

matrix of a graph F c IRnxm such that

{

1 if i is the initial vertex of the lth edge,

(15) F(i, 1) = – 1 if i is the terminal vertex of the Ith edge,

O if i is not incident to the lth edge.

Now define a weighted incidence matrix G ● lRnx~ as G = Diag(3)F’ Diag(~zv.(cl)).

Property (I) follows from the observation that C can be written as G@. Property (11)

is a consequence of the symmetry of C and acknowledges that C may have multiple

eigenvalues. The observation that the vector of all ones is a zero eigenvector of 1? yields

(III). Property (IV) follows from Theorem 2.lc of [13]. Cl

We now define one further minimization problem, denoted by (P4), to be the

same as (P3) but with constraint (b3) removed. This is useful because (P4) can be

solved easily, and its solution can then be used to solve (P3). (In fact, (P3) and (P4)

are equivalent if d < 2). We define u i to be the normalized eigenvectors of C with
corresponding non decreasing eigenvalues Ai. The solution to (P4) is easily expressed in

terms of these eigenvectors as the following lemmas and theorem demonstrate.
LEMMA 5.2. Let y’,..., yd be a set oj vectors that solves (P4), and denote the

span oj the yk vectors by Y. Then any set oj orthogonal vectors z’ that spans y and
satisfies Ilzkllz = ~, Vk G {1, d} also solves (P4).

Proof The objective function in (P4) can be written as trace(YTCY), where Y

is the n x d matrix whose kth column is the vector y ‘. Any orthogonal basis Z for
9

Ythat satisfies the normalization constraint can rewritten as Z = YE, where l?is

an orthonormal matrix. We now observe that trace(Z~CZ) = trace(RTYTCYR) =
trace(Y~CY), and the lemma follows, o

LEMMA 5.3. ljY1 yd so/ves (P4), then there is another set of vectors 21,.. ., ~d
in which (2~)Tui = O, if k ~ i that also sofves (P4)

Proof Theorem 5.1 (HI) coupled with constraint (bl) ensures that (y~)ul = O, for
all k. Starting with the yk vectors, we can apply rotations to satisfy the remaining
orthogonality constraints. Lemma 5.2 ensures that the value of the objective function
is invariant with respect to these rotations. II

THEOREM 5.4. Any set of orthogonal vectors yl,..., yd that spans {U2,..., Ud+l}

and satisfies llykl[2 = ~, Vk E {1 ,..., d} S0ht3S (P4). hrtheT’7TZo71?, if ~d+l < ~d+zj

then these

Proof

Since C is
~~=1 CY:ui.

(16)

Constraint

are the only solutions to (P4).

By Lemma 5.3, there is a solution ~~ to (P4) in which (2~)Tui = O, if k > i.

symmetric, we can rewrite Zk as a linear sum of eigenvectors of C: ,Zk =
Now the objective function can be written as

d dn

4 COSi! = ~(~k)TC2k = ~ ~(0~)2Ai.
k= 1 k=l i=l

(a2) implies ~~=1(cr$)2 = WV for all k, and the construction of the ~k vectors

guarantees that @ = O, if k > i. Using these identities we can rewrite the cost function

as follows.

(17) 4 COSi? = fi ~ (Q’f)2Ai

k=l i=k+l

Al

It is easy to verify that this lower bound can be achieved by letting -Zk = ~uk+l.

By applying Lemma 5.2, we conclude that all orthogonal bases yl,..., yd for the space
spanned by {U2, ud+l} in which l[ykl[2 = ~ solve (P4).

To see that these are the only solutions to (P4) it is sufficient to observe that if

~d+~ < ~d+z, the inequality between (17) and (18) is strict unless cr~ = O, when i > d+l.
But this implies the .Zk vectors lie in the space spanned by {U2,. . . . ud+l }, and the

theorem follows. o
Theorem 5.4 indicates that if d >1, there is a space of solutions to (P4) of dimen-

sion ()~ . This multiplicity of solutions is quite convenient since the continuous solution

is only an approximation to the the discrete problem (PI). If the continuous optimiza-

tion had only a single minimizer and that minimizer was far from any of the discrete
points then the continuous problem could be a poor model of the discrete one. Since

we have a d-dimensional subspace of minimizers, we have a better chance of finding a
good discrete solution. These degrees of freedom also allow us to satisfy the additional

constraints of (P3).
10

5.1. Spectral bisection. If we wish to divide our graph into two pieces, then

(P4) reduces to (P3) since constraints (b2) and (b3) have no effect. We therefore

take yl to be &u2, and let xl(i) = yl(i)/~w”. The vector Z1 is the continuous

approximation to +1 values, so we need to map it to a nearby discrete point with an
equal weight of +1 and —1 values. We do this by finding the median weighted value

among all the Z1(i)’s and mapping values above the median to +1 and values below to

– 1. This gives a balanced decomposition with, hopefully, a low cut-weight.

Once the graph is divided into two pieces, each piece can be divided again by apPlY-
ing this technique recursively. For unweighed graphs, this is the partitioning procedure

described by Pothen, Simon and Lieu in [15] and first applied to the load balancing

problem by Simon [18]. Simon found this approach to produce better partitions than
several other popular methods.

5.2. Spectral quadrisection. Dividing the graph into four pieces requires two

eigenvectors. With two eigenvectors the constraint (14b3) is unnecessary, so (P4) is
again equivalent to (P3). The solutions of (P4) are any appropriately normalized

orthogonal basis for the space spanned by yl = ~u2 and y2 = ~u3. This multi-

plicity of solutions allows us a single rotational degree of freedom, which yields vectors

of the form ~1 = yl COSO+ y2sin0, and ~2 = –yl sin O+ y2 cos 0. From the v vectors we

generate z vectors whose values approximate +1 by z~(i) = @(i)/~m. Ideally, we
would like to find v vectors in which the corresponding z values are near to points with
values +1 to help ensure that the cost of the discrete solution is not too different from

the continuous optimum.

The distance from z~(i) to +1 can be expressed as (1 – zk(z)2)2. Summing over
each element of both k vectors, we find that we must solve

(19) Minimize ~ ~(1 – Z~(i)2)2.
i=l k=l

Expanding ~~(i) in terms of 0, (19) reduces to minimizing a constant coefficient quartic

equation in sines and cosines of 0. The construction of the coefficients in this equation

requires O(n) work, but the cost of the resulting minimization problem is independent

of n. Although this is a global optimization problem, in our experience the number of

local minimizers is small, so a solution can be found by a sequence of local minimizations

from random starting points [1 1].

Once Z1 and Z2 have been determined, a nearby discrete point must be found that
balances the partition sizes. Our solution to this problem is described in ~6.

5.3. Spectral octasection. Dividing the graph into eight pieces requires three

eigenvectors. In this case, the constraints (14bl) and (14b2) are insufficient, since
(14b3) generates an additional cubic constraint of the form

(20) (b3) iY’(%2(0Y’(i)/Jm = o.
i=]

11

As before, the solutions of (P4) are any appropriately normalized orthogonal basis for

the space spanned by y‘ = ~u’, y’ = mu’ and y’ = mu’, but these are not

necessarily solutions of (P3). The additional constraint (14b3) removes one degree of
freedom from the three-dimensional solution space for (P3), leaving a two-dimensional

parameter space to explore.

As in $5.2, we use these remaining degrees of freedom to look for ~ vectors that

generate z values as near as possible to +1. The bases for the eigenspace ~ can be
described in terms of three rotational parameters. The ~~ vectors are mapped to Xk

vectors by Z&(i) = fi(i) /~-. This generates a constrained optimization problem

(21) Minimize ~ $(1 – Sk(i)’)’
i=l k=l

Subject to :

i=l

in which the objective function is a constant coefficient polynomial in sines and cosines
of three angular parameters. The coefficients can be generated in O(n) time, after

which the cost of the optimization problem is independent of n. As before this is a

global optimization problem, but in our experience the number of local minimizers is

small, so a solution can be found by a sequence of constrained local minimizations from

random starting points [7].
As in $5.2, once xl, x’ and x’ have been determined, a nearby discrete point must

be found that balances the partition sizes. Our method for solving this problem is
described in $6.

5.4. Higher order partitionings. When d > 3 the partitioning problem be-

comes more difficult. The subspace defined by the set of eigenvectors of C will allow

()~ degrees of rotational freedom. However, there will be a set of ~ + . . .() + ($ con-

straints due to (14b3). When d >4, there are more constraints than degrem of freedom,

so it will not generally be possible to construct a balanced solution from the d + 1 lowest
eigenvectors of C’. When d = 4 there are six variables and five constraints, so it should
be possible to satisfy all the balance conditions. However, these constraints consist of

three cubic equations and one quartic, so the computational complexity of satisfying

them is daunting. For this reason we have chosen not to implement any partitioning

above oct asection, and we suggest recursive application of one of the above schemes to

divide a problem across a larger number of processors.

6. Generating a partition from real values. The procedures described in $5.2

and $5.3 generate a point in Illd for each vertex in the graph. These continuous points

need to be mapped to points with coordinates +1 to determine a partition. This

mapping must ensure that equal weights of vertices are assigned to each partition, and
each continuous value should be mapped to a nearby discrete point.

It is useful to describe this mapping problem in terms of a complete, weighted
bipartite graph 23 = {Vi, V2, S}. The first set of vertices VI consists of the n vertices

12

of our original graph, while the second set V2 corresponds to the 2* sets. A weighted
edge e 6 t? connects each vertex z 6 V1 to each vertex y 6 V2, with weight equal to
the distance between the continuous point corresponding to z and the discrete point

associated with the set y. Any distance function can be used, but we chose the square

of the Euclidean distance for computational convenience. There is also a vertex weight

associated with each vertex z c V1, equal to the weight of the corresponding vertex in
the original graph.

The optimal mapping can now be described in terms of a minimum cost assignment

from V1 to V2 with the constraint that the sums of the vertex weights of the elements

of V1 mapped to each element of V2 are equal. This is a generalization of a class
of assignment problems considered by Tokuyama and Nakano [20], who develop an

assortment of algorithms that generalize in a straightforward manner to our problem.

Their best algorithm is randomized and requires 0(2dn) time. We chose instead to
implement one of their simpler, deterministic algorithms that runs in 0(2 ‘d–l n log n)
time. By exploiting the geometric structure of our particular application it is possible

to reduce this time bound to O(3dn log n).

7. Lower bounds on partitions. A known bound on the edge count for bisection

of an unweighed graph is ~nA2, where J2 is the second lowest eigenvalueof the Laplacian
matrix of the graph (see for example [13]). A simple consequence of the results in 55 is

a generalization of this bound with respect to both weighting and dimensionality.
THEOREM 7.1. The communication cost induced by cutting a graph into % pieces

is always at least $ WV ~~~~ ~i.

Proof. Since (P4) is derived from (PI) by relaxing constraints, the minimum of

(P4) will never be larger than that of (PI). Substitution of the solution in Theorem

5.4 into the cost function of (14) leads to the result. o
A better bisection bound can be determined by considering the difference between

the continuous and discrete solution vectors.
yl = ~u2 from $.5.1. We let b c Ill.” be the

all vectors such that yl(i) + h(i) = * J=,
consequently /3) is easy to compute using

The continuous solution is the vector
vector with the smallest 2-norm among

and let ~ = l[bl[~. We note that b (and

(22) 6(i) = min{yl(i) – J’W~(~l), yl(i) + @~(’Ui)}.

THEOREM 7.2. The bisection width oj a graph is bounded by

(23)

Proof. If c c {+1}’ is the discrete solution to (PI), define z to be its weighted

counterpart, z(i) = J-c(i). We note that if z defines a partition, then —z defines

the same partition, so without loss of generality we can assume that zTyl 20. We define
a c Ill.n to be the difference between z and y*, so a(i) = z(i) —yl(i). We can expand a in

terms of the eigenvectors of C’ so that a = ~~=z ~j~j, where this expansion begins at 2

13

since a is orthogonal to U1. It follows from the definition of ~ that ~ s a=a = ~~=z CY~.

Now

(24) w. = ZTZ = (Y’ + a)T(y’ + a)

= (yl)~yl + 2aTy1 + aTa

= WV + 2JWVa~ + aTa,

so a2 = —aTa/(2~). Since O ~ zTyl = (Yl + a)Tyl = w“ + WCYZ, it follows that
cw 2 –~, which implies that aTa s 2WV.

The bisection width of the graph can be expressed as

(25) 4 cost = ZTCZ

= (yl + a)TC(yl + a)

= (yl)~Cyl + 2a~Cy’ + aTCa

= W.A~ + 2fiA*~~ + ~ Aj~$

j=?.

The sum in the second term of (26) is minimized when ~j = O for all j >3, in which

case C&= aTa – al = aTa(l – aTa/(4Wv)). This implies that

(27) 4 Cost > Wv~z + (As – Az)aTa(l – aTa/(4WU)).

This last term comprises a concave function in aTa, so its minimum value occurs when

aTa is either maximized or minimized. Using the above observations that /3 < aTa s

2WV, we obtain

But since /?(1 – @/(4WV)) has a maximum value of WV, the second term of (28) always
dominates and the theorem follows. 0

Although the bound in Theorem 7.2 is better than previously known spectral
bounds, it is still rather loose in practice and its practical value is therefore not clear.

It may help in identifying classes of graphs for which the spectral method achieves near

optimal results, or for proving that some particular graphs have large bisection widths.

8. Results. We have compared the quality of partitions produced by our algo-

rithm with those generated by several other graph partitioning methods which are in
common use or have been recently advocated. Our conclusion is that the improved

spectral partitioning algorithm we have proposed generates significantly better parti-

tions than these other methods, which are themselves considered to be quite good. This
14

is based on direct experimental comparison using a variety of meshes. We have selected

one representative test for this paper, a finite element meshing of a multi-element airfoil

provided by Barth [1]. A more comprehensive reporting of our experimental results is
contained in the follow on paper [10].

The airfoil mesh is shown in Figure 1 and its dual is shown in Figure 2. The dual

has a vertex representing each element in the mesh (triangular faces in this case) and
an edge connecting vertices representing elements which share an edge in the mesh.
There are 8034 vertices and 11513 edges in this dual graph. The dual is relevant

because in many parallel finite element codes, data is organized by assigning collections

of individual elements to each processor. The iterative solution of the resulting equations
then involves some computation associated with each element and some communication

between elements sharing an edge or vertex. The dual graph therefore provides a better

model for the iterative solution than the original mesh does. For ease of comparison

with other methods, we chose to partition an instance of the dual in which all vertex
and edge weights are equal to 1,

Fig. 1. Multi-element airfoil mesh.

Table 8 shows the results obtained by applying various partitioning methods to
the dual of the multi-element airfoil graph. The methods are listed in rank order

by hop-weight, which has been shown to closely correlate with the overhead due to

15

Fig. 2. Dual of multi-element airfoil mesh.

communication for the applications we are targeting [9]. A brief discussion of some
important aspects of the partitioning algorithms follows

K L refers to a recursive application of a version of the classic graph bisection heuris-

tic devised by Kernighan and Lin [12]. KL must be supplied with an initial partition

which is then improved by a greedy local strategy. We used an x-coordinate bisection

of the vertices of the dual as an initial guess since this produced better partitions than

any of the random initial guesses we tried. KL is a quick, linear time algorithm but is
sensitive to the numbering of the vertices, and tends to do poorly on large problems

because it only considers very local information about the graph. As with all bisection

algorithms, one bit in the final processor assignment of a given vertex is determined

at a time, so this algorithm makes no effort to minimize hops. It is clearly possible
to add a phase to a bisection algorithm or any recursive partitioning algorithm which

does try to further minimize hops by choosing an advantageous permutation of the set

assignments of subgraphs. One such pivoting algorithm was detailed by Hammond [9].

We have used any pivoting strategy in our experiments.

The inertial method recently proposed by Nour-Omid [18] is also a recursive bisec-

tion method. It treats the mesh as a rigid structure and makes cuts orthogonal to the

principle axis of the structure. This is also a fast algorithm which can be implemented
to run in linear time, but requires geometric information which may be unavailable and,

16

8 Processors 64 Processors

Method cuts hops cuts hops

KIA 300 458 1158 2183

Inertial 317 396 1166 1855

R.S13 212 286 997 1661

RSQ 1030 1626

IWO 221 224 1018 1463

RSOKL4 197 200 911 1287L
Tablel. Performance ofdifferent partitioning algorithms ondual of the

multi-element airfoil mesh.

as the table indicates, it produces partitions of only moderate quality.
Recursive Spectral Bisection (RSB) is the name given by Simon to the d = 1

spectral partitioning algorithm studied by him and others [18]. It requires no geometric
information, is order insensitive and makes more sophisticated use of global information

than the inertial method or KL. It produces much better partitions of large graphs than
KL or inertial, but has an O(n@) runtime dominated by the Lanczos iteration used

to find the bisecting eigenvectors. Simon [18] and Williams [21] have both concluded
that RSB is preferable to several partitioning strategies not considered here.

Recursive Spectral Quadrisection (RSQ) is our d = 2 spectral partitioning algo-

rithm. Here two bits in the final processor assignment are determined concurrently to
approximately minimize hops in the corresponding two hypercube dimensions. This can
beat the expense of a slight increase in the cut-weight, as the table indicates. Generally

only a marginal number of additional I,anczos iterations are required to compute the

second eigenvector, so RSQ is actually cheaper than two levels of RSB. In fact, if we

assume that the cost of the eigenvector calculation is proportional to nfi (which is

appropriate for the Lanczos procedure [14]), then a single step of RSQ is faster than two

steps of RSB by a factor of 1 + fi/2. There is no 8 processor entry for RSQ because it

is not possible to partition into 8 sets with an integral number of quadrisection steps.

Recursive Spectral Octasection (RSO) is our d = 3 spectral partitioning algorithm

which approximately minimize-s hops in three hypercube dimensions at a time. In
general it produces partitionings with fewer hops and perhaps slightly more cuts than

RSQ and RSB, although it happens to do better on cuts than RSQ in this case. It is also
cheaper than both RSQ and RSB. Assuming again that the eigenvector calculations cost

O(n@), one step of RSO is faster than three steps of RSB by a factor of (3 + ti)/2.
The last algorithm, RSOKL, is a composite algorithm in which the output of RSO

at each stage of recursion is fed into a generalized KL algorithm capable of minimizing
hops over an 8 way initial partitioning. The motivation for this strategy was to combine
the global strength of RSO with the local finesse of KL. The resulting partition is clearly

the best with respect to both cuts and hops. The KL phase of the algorithm accounts

for only a small portion of the run time, so the net cost of RSOKL is substantially less
than that of RSB. Notice that for the 8 processor case the cut and hop totals are nearly

equal, indicating that almost all communication occurs between adjacent processors.

17

KL can be appended to the other algorithms as well, but we have found RSOKL to be

the best combination given our communication metric. RSOKL is discussed in more
detail in [10].

RSO and RSQ can also be more robust than RSB when the graph exhibits sym-

metry. For example, the three-fold symmetry of the cubic grid-graph causes A~ of

its Laplacian to have a multiplicity of three, and the corresponding eigenspace to be
three-dimensional. Since RSB chooses a single vector from this subspace essentially at

random, it may fail badly. It will, for example, make a diagonal cut through the grid
for some Lanczos starting vectors. In contrast, RSO works within the entire subspace,

rotating the basis vectors in such a way that it returns a gray-coding of blocks of the

grid. This is the optimal result in which cuts and hops are as small as possible and all
communication is between adj scent processors.

To demonstrate that this discrepancy does arise in practice, we ran both methods on

a simple 4 x 4 x 4 grid graph. In RSB we used the Lanczos starting vector recommended
by Pothen, Simon and Lieu [15], namely ri = i —(n+ 1)/2, and iterated until the eigen-
residual Au – Au was below 10–6. The resulting decomposition had 72 cuts and 78

hops. In RSO we solved to the same accuracy for this starting vector and several
random starting vectors. In each case we obtained 48 cuts and 48 hops, the optimal

partitioning. Similar results may be observed with other symmetric graphs.

9. Conclusions. We have presented a method for mapping large problems onto
the nodes of a hypercube multiprocessor in such a way that the computational load

is balanced and the communication overhead is kept small. For the problems we have

investigated, this approach generates mappings that have lower communication require-
ments than other partitioning techniques. Because the 2nd and 3rd eigenvcctors are

relatively inexpensive to calculate, the net cost of spectral quadrisection or octasection

is significantly less than that of spectral bisection. In addition, our method yields com-

putable lower bounds for the communication cost of any balanced partitioning scheme
which are tighter than those previously known.

Although our method was developed with a hypercube communication network in

mind, this approach should work well for other machine topologies. For example, a

t we-dimensional mesh can be defined as a collection of t we-dimensional hypercubes, so
a recursive application of our quadrisection approach is immediately applicable. Sim-

ilarly, a three-dimensional mesh is composed of three-dimensional hypercubes, so our

octasection algorithm can be applied. For other architectures we expect our approach

to be useful as a heuristic. Although the method tries to minimize a communication

function that counts hypercube hops, in practice the spectral quadrisection and oc-
tasection algorithms divide a domain into pieces that require a small communication

volume. This should lead to low communication overhead on most parallel machines.

Graph partitioning also finds application in network design, circuit layout, sparse
matrix computations and a number of other disciplines. Consequently, the partitioning
algorithm we have described may find uses far afield from parallel computing. More

broadly, the way we have made use of multiple eigenvectors is, to our knowledge, unlike

any previous work in spectral graph theory. It is our hope that these ideas can be

18

applied to other spectral graph theoretic problems.

Acknowledgements. The ideas in this paper have evolved through discussions
with many people including Horst Simon, Alex Pothen, Louis Romero, Ray Tuminaro,

John Shadid and Steve Plimpton.

REFERENCES

[1] T. BARTH. Personal Communication, December 1991.

[2] R. BOPANA, Eigenvalues and graph bisection: An average case analysis, in Proc. 28th Annual
Symposium on Foundations of Computer Science, IEEE, 1987, pp. 280-285.

[3] W. DONATH AND A. HOFFMAN, Algorithms for partitioning of graphs and computer logic based
on eigenuectors o~connection makices, IBM Technical Disclosure Bulletin, 15 (1972), pp. 938–
944.

[4] —, Lower bounds for the partitioning of graphs, IBM J. Res. Develop., 17 (1973), pp. 420-425.
[5] M. FIEDLER, Algebmic connectivity of graphs, Czechoslovak Math. J., 23 (1973), pp. 298-305.
[6] — A property of eigenvectors of nonnegative symmetric matrices and its application to graph

th’eory, Czechoslovak Math. J., 25 (1975), pp. 619-633.
[7] R. FLETCHER, Practicai Methods OJ Optimization, Volume 2, Constrained Optimization, John

Wiley & Sons, New York, 1986.
[8] M. GAREY, D. JOHNSON, AND L. STOCKMEYER, Some simplified NP-complete graph problems,

Theoretical Computer Science, 1 (1976), pp. 237-267.
[9] S. HAMMOND, Mapping unstructured grid computations to massively parallel computers, PhD

thesis, Rensselear Polytechnic Institute, Dept. of Computer Science, Renssealear, NY, 1992.
[10] B. HENDRICKSON AND R. LELAND, Domain mapping of parallel scientific computations, Tech.

Rep. SAND 92-1461, Sandia National Laboratories, Albuquerque, NM, 1992.

[11] J. J. DENNIS AND R. SCHNABEL, Numerical methods for unconstrained optimization and non-
linear equations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.

[12] B. KERNIGHAN AND S. LIN, An eficient heuristic procedure for partitioning graphs, Bell System
Technical Journal, 29 (1970), pp. 291-307.

[13] B. MOHAR, The Laplacian spectrum of graphs, in 6th International Conference on Theory and
Applications of Graphs, Kalamazoo, Ml, 1988.

[14] B. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Clif7s, NJ, 1980.
[15] A. POTHEN, H. SIMON, AND K. LIOU, Partitioning sparse matrices with eigenuectors oj graphs,

SIAM J. Matrix Anal., 11 (1990), pp. 430-452.
[16] D. POWERS, Graph partitioning by eigenvectors, Lin. Alg. Appl., 101 (1988), pp. 121-133.
[17] F. RENDL AND H. WOLKOWICZ, A projection technique for partitioning the nodes of a graph,

Tech. Rep. CORR 90-20, University of Waterloo, Faculty of Mathematics, Waterloo, Ontario,
November 1990.

[18] H. SIMON, Partitioning of unstructured problems for parallel processing, in Proc. Conference on
Parallel Methods on Large Scale Structural Analysis and Physics Applications, Pergammon
Press, 1991.

[19] P. SUARIS AND G. KEDEM, An algorithm for quadrisection and its application to standard cell
placement, IEEE Trans. Circuits and Systems, 35 (1988), pp. 294-303.

[20] T. TOKUYAMA AND J. NAKANO, Geometric algorithms fora minimum cost assignment problem,
in Proc. 7th Annual Symposium on Computational Geometry, ACM, 1991, pp. 262–271.

[21] R. WILLIAMS, Performance of dynamic load balancing algorithms for unstructured mesh calcu-
lations, Concurrency, 3 (1991), pp. 457-481.

[22] D. WOMBLE, A time-stepping algorithm for parallel computers, SIAM J. Sci. Stat. Comput., 11
(1990), pp. 824-837.

19

, DISTRIBUTION:
Scott Baden
University of California, San Diego
Dept. of Computer Science
9500 Gilman Drive
Engineering 0114
La Jolla, CA 92091-0014

Steve Barnard
NAS Systems Division
Applied Research Branch
NASA Ames Research Center
Mail Stop T045-1
Moffett Field, CA 94035

Edward Barragy
Dept. ASE/EM
University of Texas
Austine, TX 78712

M. Berzins
Stool of Computer Studies
The University of Leeds
Leeds, LS290T
United Kingdom

Rob Bisseling
Shell Research B.V.
Postbus 3003
1003 AA Amsterdam
The Netherlands

Ravi Boppana
Department of Computer Science
NYU
251 Mercer Street
New York, NY 10012

J. Browne
University of Texas
Dept. of Computer Science
Taylor Hall 5.126
Austin, TX 78712

Tony Chan
Department of Computer Science
The Chinese University of Hong Kong
Shatin, NT
Hong Kong

Ted Charrette
MIT Bldg. E3 554
42 Carleton St.
Cambridge, MA 02142

Siddartha Chatterjee
RIACS, NASA Ames Research Center
Mail Stop T045-1
Moffett Field, CA 94035-1OOO

Tom Coleman
Dept . of Computer Science
Upson Hall
Cornell University
Ithacar NY 14853

-20-

Sean Dolan
nCUBE
919 E. Hillsdale Blvd.
Foster City, CA 94404

Alan Edelman
University of California, Berkeley
Dept . of Mathematics
Berkeley, CA 94720

Salvatore Filippone
IBM ECSEC
Viale Oceano Pacifico 171/173
00144 Roma, Italy

John Gilbert
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

Bashkar Ghosh
Department of Computer Science
Yale University
POB 2158, Yale Station
New Haven, CT 06520

Anne Greenbaum
New York University
Courant Institute
251 Mercer Street
New York, NY 10012-1185

Steve Hammond
CERFACS
42 Ave Gustave Coriolis
31057 Toulouse Cedex
France

Mike Heath
University of Illinois
4157 Beckman Institute
405 N. Mathews Ave.
Urbana, IL 61801

Greg Heileman
EECE Department
University of New Mexico
Albuquerque, NM 87131

A.J. Hey
University of Southampton
Dept . of Electronics and Computer Science
Mountbatten Bldg., Highfield
Southampton, S09 5NH
United Kingdom

Adolfy Hoisie
Cornell University
Cornell Theory Center
631 E&TC Bldg
Ithacar NY 14853

Graham Horton
Universitat Erlangen-Nurnberg
IMMD III
Martensstrase 3 -21-

8520 Erlangen, FRG

Kapil Mathur
Th;nking Machines Corporation
245 First Street
Cambridge, MA 02142-1214

William McCO1l
Oxford University
8-11 Keble Road
Oxford, OX1 3QD
United Kingdom

Robert McLay

Computing Laboratory

University of Texas at Austin
Dept . ASE-EM
Austin, TX 78712

Jill Mesirov
Thinking Machines Corporation
245 First Street
Cambridge, MA 02142-1214

Bojan Mohar
Department of Mathematics
University of Ljubljana
Jadranska 19, 61111 Ljublajana
Slovenia

Can Ozturan
Department of Computer Science
Rensselaer Polytechnic Institute
Troy, NY 12180

Glauscio Paulino
Civil Engineering
Cornell University
Hollister Hall 413
Ithaca, NY 14853

Paul Plassman
Math and Computer Science Division
Argonne National Lab
Argonne, IL 60439

Alex Pothen
Computer Science Department
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada

Mike Quayle
Cadence Design Systems
2 Lowell Research Center Drive
Lowell, MA 01857

Sanjay Ranka
School of Computer and Information
Suite 4-116
Center for Science and Technology
Syracuse, NY 13244-4100

Science

Satish Rao
NEC Research Institute,
4 Independence Wayr
Princeton, NJ, 08540 -22-

Franz Rendl
Technische Universitat Graz
Institute fur Mathematik
Kopernikusgasse 24, A-901O Graz, Austria

John Richardson
Thinking Machines Corporation
245 First Street
Cambridge, MA 02142-1214

John Rollett
Oxford University Computing Laboratory
8-11 Keble Road
Oxford, OX1 3QD
United Kingdom

Diane Rover
Michigan State University
Dept . of Electrical Engineering
260 Eng. Bldg.
East Lansing, MI 48824

Margaret St, Pierre
Thinking Machines Corporation
245 First Street
Cambridge, MA 02142-1214

Joel Saltz
Computer Science Department
A.V. Williams Building
University of Maryland
College Park, MD 20742

Rob Schreiber
RIACS
NASA Ames Research Center
Mail Stop T045-1
Moffett Field, CA 94035-1OOO

Horst Simon
NAS Systems Division
Applied Research Branch
NASA Ames Research Center
Mail Stop T045-1
Moffett Field, CA 94035

Richard Sincovec
Oak Ridge National Laboratory
P.O. BOX 2008, Bldg 6012
Bethel Valley Road
Oak Ridge, TN 37831-6367

Anthony Skjellum
Lawrence Livermore National Laboratory
7000 East Ave.r Mail Code L-316
Livermorer CA 94550

Burton Smith
Tera Computer Co
400 N. 34th St., Suite 300
Seattle, WA 98103

Mike Stevens
nCUBE
919 E. Hillsdale Blvd.
Foster City, CA 94404

.

-23-

Judy Sturtevant
Mission Research Corporation
1720 Randolph Rd. SE
Albuquerque, NM 87106-4245

Shari Trewin
Edinburgh Parallel Computing Centre
The University of Edinburgh
Janes Clerk Maxwell Bldg.
The King’s Buildings
Mayfield Road
Edinburgh, EH9 3JZ
United Kingdom

Ray Tuminaro
CERFACS
42 Ave Gustave Coriolis
31057 Toulouse Cedex
France

Stefan Van de Wane
Katholieke Universiteit Leuven
Dept. of Computer Science
Celestjnenlaan 200A
B-3001 Leuven, Belgium

John Van Rosendale
ICASE, NASA Langley Research Center
MS 132C
Hampton, VA 23665

Steve Vavasis
Dept . of Computer Science
Upson Hall
Cornell University
Ithacar NY 14853

C. Walshaw
School of Computer Studies
University of Leeds
Leeds LS2 9JT
United Kingdom

Robert Weaver
University of Colorado at Boulder
Dept . of Computer Science
Campus Box 430
Boulder, CO 80309

Roy Williams
California Institute of Technology
206-49
Pasadena, CA 91104

Henry Wolkowicz
Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario, N2L 3G1
Canada

Paul Fleury
Ed Barsis

1000
1400

-24-

Sudip Dosanjh
Bill Canp
Doug Cline
David Gardner
Grant Heffelfinger
Scott Hutchinson
Martin Lewitt
Steve Plimpton
Mark Sears
John Shadid
Julie Swisshelm
Dick Allen
Bruce Hendrickson (15)
David Womble
Ernie Brickell
Robert Benner
Carl Diegert
Art Hale
Rob Leland (15)
Courtenay Vaughan
Steve Attaway
Johnny Biffle
Mark Blanford
Jim Schutt
Michael McGlaun
Allen Robinson
Paul Barrington
David Martinez
Dona Crawford
William Mason
Technical Library (5)
Technical Publications
Document Processing for
DOE/OSTI (10)
Central Technical File
Charles Tong

1402
1421
1421
1421
1421
1421
1421
1421
1421
1421
1421
1422
1422
1422
1423
1424
1424
1424
1424
1424
1425
1425
1425
1425
1431
1431
1432
1434
1900
1952
7141
7151

7613-2
8523-2
8117

-25-

	ABSTRACT
	1. INTRODUCTION
	2. PRELIMINARIES
	2.1 HYPERCUBE MULTIPROCESSORS
	2.2 A GRAPH MODEL OF COMPUTATION
	2.3 A COMMUNICATION METRIC

	3. A DISCRETE OPTIMIZATION PROBLEM
	4. A CONTINUOUS APPROXIMATION
	5. SOLVING THE CONTINUOUS APPROXIMATION
	5.1 SPECTRAL BISECTION
	5.2 SPECTRAL QUADRISECTION
	5.3 SPECTRAL OCTASECTION
	5.4 HIGHER ORDER PARTITIONINGS

	6. GENERATING A PARTITION FROM REAL VALUES
	7. LOWER BOUNDS ON PARTITIONS
	8. RESULTS
	9. CONCLUSIONS
	REFERENCES

