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ABSTRACT

An exact two-dimensional solution is derived for determining the fluid flow
rates into a borehole and to the surface from which the borehole was drilled.
The solution is for a single fluid phase in a disturbed rock zone (DRZ) that
surrounds the borehole with a radius specified to be either finite or
infinite. The solution is restricted to constant homogeneous rock and fluid
properties in the DRZ, and pressures in the borehole and at the surface of
the drift that are maintained constant at ambient conditions. A major
objective of the work is to provide a benchmark for more detailed numerical
calculations that include variable physical properties and an arbitrary DRZ
geometry. However, in addition, this work extends previous exact solutions
for one-dimensional flow by: (1) allowing for a DRZ of finite but arbitrary
extent, (2) accounting for depressurization due to mining the drift before
drilling the borehole, and (3) accounting for two-dimensional variations of
the fluid pressure caused by simultaneous fluid flow to the drift and to the
borehole.

An exact solution is also presented for the ratio of the borehole fluid
inflow rates determined by the two- and one-dimensional models. Sample
calculations show that for some cases, two-dimensional effects dominate. In
these cases the dominate flow path can be to the surface and not the
borehole, even for borehole depths much greater than the borehole radius.
This feature may be very important when interpreting borehole fluid
collection data to determine physical properties of the DRZ.



ACKNOWLEDGMENT

The author would like to thank three people who greatly influenced this
work. S. W. Webb (Department 6119) explained to the author brine inflow
modeling and the significance of different aspects of the problem. D. F,
McTigue (Department 1513) provided the author insight into different
mechanisms for brine inflow and developed the method for calculating the
brine inflow rate for the one-dimensional infinite-radius solution discussed
in Section 6.0 and in Appendix B. E. J. Nowak (Department 6345) provided
comments and suggestions that were very helpful to the author in writing and

organizing this work.

ii



CONTENTS

INTRODU G T ION . . .ttt ittt ittt ittt tiiiennnoeoeeseeeeeeeeeeeenneeeeeeens 1
PRESSURE PROFILE FOR THE TWO-DIMENSIONAL FINITE-RADIUS MODEL...... 11
2.1 Solution for Uniform Constant Initial Pressure in the DRZ.... 21
2.2 Solution for Depth-Dependent Initial Pressure in the DRZ..... 22
PRESSURE PROFILE FOR THE TWO-DIMENSIONAL INFINITE-RADIUS MODEL.... 25
3.1 Solution for Uniform Constant Initial Pressure in the DRZ.... 33
3.2 Solution for Depth-Dependent Initial Pressure in the DRZ..... 35
PRESSURE PROFILE FOR THE ONE-DIMENSIONAL FINITE-RADIUS MODEL ..... 37
PRESSURE PROFILE FOR THE ONE-DIMENSIONAL INFINITE-RADIUS MODEL ... 39
FLUID PRODUCTION INTO THE BOREHOLE AND INTO THE DRIFT............. 41
CUMULATIVE FLUID PRODUCTION. ... ..ttt it it it e et e e eeeeeeeaans 51
SAMPLE CALCULATIONS . .. ittt it ittt ettt ettt eeeeesseeeeeeenenennns 55

8.1 Sample Calculations of Two-Dimensional Contours of

the Dimensionless Pressure.............ceuuiierenneereennns 58

8.2 Sample Calculations of Borehole Brine Inflow Rates........... 66
8.2.1 Flow Rate as t = 0....... ...t iiiiiiiinninnnnnnineennns 66
8.2.2 Model with Maximum Flow Rate................ccveuenn.. 74

8.2.3 Flow Rate for Same Dimensionality but Varying DRZ
Outer Radius......... ...ttt 74
8.2.4 Effects of Penetration Depth Relative to Radial

Distance......... . i i e 74
8.2.5 Conditional Test for Using One-Dimensional Models..... 75
8.2.6 Percentage of Flow Rate to the Borehole............... 75

8.2.7 Effect of Drilling Borehole One Year After Mining

iii



9.0 CONCLUSIONS

10.0 REFERENCES

APPENDIX A: DETERMINING EIGENVALUES IN THE RADIAL DIRECTION

APPENDIX B: EVALUATING INTEGRAL FOR AN INFINITE RADIAL DOMAIN

......................................................

iv



Figures

Schematic diagram of one-dimensional infinite-radius model........
Schematic diagram of one-dimensional finite-radius model..........
Schematic diagram of two-dimensional finite-radius model..........
Schematic diagram of two-dimensional infinite-radius model........

Flow rate to the borehole for two-dimensional models divided by
the flow rate to the borehole for one-dimensional models, for the
same DRZ outer radius, as a function of the penetration depth

divided by the borehole length, for constant initial pressure in

First radial eigenvalue as a function of the DRZ inner radius a,
and the DRZ outer radius b. This plot is a solution of Equation
(2-20) for i = L. ... . e e e e e e

Dimensionless pressure contours of (Pf'Pa)/(Pm'Pa) at a penetration
depth of Dp = 0.2 m, for a borehole with DRZ inner and outer radii
of a=0.05mand b = 1.0 m, respectively, and a borehole length of

Dimensionless pressure contours of (Pf'Pa)/(Pm'Pa) at a penetration
depth of Dp = 1.0 m, for a borehole with DRZ inner and outer radii
of a=0.05mand b =1.0 m, respectively, and a borehole length of

Dimensionless pressure contours of (Pf'Pa)/(Pw'Pa) at a penetration

depth of Dp = 3.0 m, for a borehole with DRZ inner and outer radii

of a=0.05mand b =1.0 m, respectively, and a borehole length of

61

62



10.

11.

12.

13.

14,

15.

16.

17.

18.

Dimensionless pressure contours of (Pf'Pa)/(Pw'Pa) at a penetration
depth of Dp = 1.0 m, for a borehole with DRZ inner and outer radii
of a = 0.05 and 3.0 m, respectively, and a borehole length of

Dimensionless pressure contours of (Pf'Pa)/(Pw'Pa) at a penetration
depth of Dp = 3.0 m, for a borehole with DRZ inner and outer radii
of a=0.05mand b =3.0m, respectively, and a borehole length of

Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10720 2

Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 1072 w2 68

Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10722 mZ. . .. . ..o, 69

Percentage of flow rate to borehole for the two-dimensional model.

The solid, long dash, and short dash lines are for rock
permeabilities of k = 10-20 m2, 10721 m2, and 10722 mz,

respectively. The asymptote for long times is given by Equation
(6-15), and is independent of k...... ... ... ... .. . .. . i i, 70

Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10'20 m2. Time period between

mining the drift and drilling the borehole = 7 = 1 year........... 71

Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10'21 m2. Time period between

mining the drift and drilling the borehole = r = 1 year........... 72

Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10-22 m2. Time period between

mining the drift and drilling the borehole = 7 = 1 year........... 73

vi



2.

Tables

Comparison of Model Features............itiuiereeenenecaneennonnnas

Sample Calculations. .. ....... . .iiitiiiinnnin e e eteennnnonnns

vii



1D
2D

T

NOTATION

borehole radius which is equal to the DRZ inner radius (m)
arbitrary constant
outer radius of DRZ (m)

arbitrary constant
1

)

one-dimensional infinite-radius coefficient (Paem)

fluid compressibility (Pa”
1

)
rock compressibility (Pa”

two-dimensional infinite-radius coefficient (Pasm)

one-dimensional finite-radius coefficient (Pa)

two-dimensional finite-radius coefficient (Pa)

penetration depth = 2(at)1/2 (m)

value of Dp/L for which specified agreement is to be obtained
between one- and two-dimensional models for the brine inflow rate
2.718281828. ..

fluid flow rate to drift (m3/s)

cumulative fluid volume to drift (m3)

fluid flow rate to borehole (m3/s)

percentage of flow rate to borehole for two-dimensional finite-
radius model

fluid flow rate to borehole for a one-dimensional model (m3/s)

fluid flow rate to borehole for a two-dimensional model (m3/s)
cumulative fluid volume to borehole (m3)

implicit function, the zeros of which define the radial eigenvalue
depth to which DRZ extends from drift for determining initial
pressure profile (m)

symbol to represent integral of rR(v,r)R(A,r) fromr = a to r =+ «
integral for infinite-radius models from A = 0 to ¢

index for radial direction

index for vertical downward direction

zeroth-order Bessel function of the first kind

first-order Bessel function of the first kind
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k rock permeability (m2)

dummy index

L depth of borehole (m)

L1 shallowest depth of borehole interval (m)

L2 deepest depth of borehole interval (m)

m index for initial pressure profile

n order of Bessel function

P fluid pressure minus ambient pressure between the time the drift is

mined to when the borehole is drilled (Pa)
fluid pressure minus ambient pressure (Pa)

ambient pressure in borehole and in drift (Pa)

a

Pe fluid pressure in pore space (Pa)

P fluid pressure in undisturbed rock (Pa)

P0 initial fluid pressure minus ambient pressure just prior to drilling
borehole (Pa)

Q either J or Y

r radial coordinate (m)

R radial eigenfunction

R; i-th radial eigenfunction

t time (s)

ty starting time for cumulative flow rate (s)

t, ending time for cumulative flow rate (s)

thax maximum time for which one- and two-dimensional models agree to
specified tolerance for brine inflow rate (s)

T separated temporal function

u vertical upward fluid velocity to drift (m/s)

v radial fluid velocity to borehole (m/s)

\Y) pore volume in DRZ (m3)

W either J or Y

X dummy variable

Y, zeroth-order Bessel function of the second kind

Y1 first-order Bessel function of the second kind
vertical downward coordinate (m)

Y vertical downward eigenfunction

Zj j-th vertical downward eigenfunction
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diffusion coefficient (mz/s)

integration variable = Aa

Euler'’s constant (0.5772156649...)

1
)

incremental fluid volume produced outside DRZ (m3)

m-th eigenvalue for initial pressure profile (m~

very small value of X used to calculate integral to determine flow
rate for one-dimensional infinite-radius model (m'l)
1

)

j-th eigenvalue for downward direction (m~
1
)

approximate value of i-th eigenvalue for radial direction (m”
1
)

eigenvalue for downward direction (m~
b
eigenvalue for radial direction (m~
b
i-th eigenvalue for radial direction (m~
fluid viscosity (Pars)

1

dummy variable of integration = b(A-v)
3.141592654. ..
fluid density (kg/m>)

fluid density at ambient conditions (kg/m3)

dummy radial eigenvalue (m~

fluid density in undisturbed rock (kg/m3)
dummy index

time from mining drift (s)

porosity

dummy variable of integration = b(A+v)
natural logarithm

2

Laplacian operator (m~
infinity

equal to

not equal to

less than or equal to
greater than or equal to

less than

greater than
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approaches

times

summation
integral
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1.0 INTRODUCTION

A mathematical model is needed to estimate rock properties from data on
fluid flow rates into boreholes. One model that has been used for halite at
the Waste Isolation Pilot Plant (WIPP) assumes that the rock is a brine-
saturated porous medium of infinite extent perpendicular to the axis of the
borehole (Nowak and McTigue, 1987; Nowak et al., 1988). A schematic diagram
of this model is given in Figure 1. In this one-dimensional infinite-radius
model, a borehole is drilled into undisturbed rock that contains fluid under
constant pressure. In the borehole, the pressure is held constant at ambient
conditions, which is much lower than the fluid pressure in undisturbed rock.
Brine flow into the borehole is a result of brine and rock expansion due to
depressurization caused by the borehole being at this lower pressure. Darcy
flow is used to model brine flow in the porous medium. A major benefit of
using this model is that an exact solution is available for determining the
brine flow rate into the borehole for a constant initial pressure in the
region (Crank, 1975, p. 87). Furthermore, a direct method has been developed
to use the exact solution for data interpretation to estimate rock properties
(Nowak and McTigue, 1987; McTigue and Nowak, 1987; Nowak et al., 1988; Finley
et al., 1992; Webb, 1992).

However, the one-dimensional infinite-radius model needs to be extended

to remove the following four limitations:

» The permeable interconnected pore space cannot be finite and must be of

infinite extent,.

e The initial vertical pressure profile before drilling the borehole

cannot be a function of depth.

e There is no upwards flow to the drift.

+ There is no upwards flow to the borehole or drift from depths greater

than the depth of the borehole.

These points are summarized in Table 1. The first limitation, assuming
the medium is permeable for an infinite distance away from the borehole,
conflicts with the observed apparent impermeability of halite. However, halite
cannot be completely impermeable because brine inflow to boreholes is observed.
These two conflicting observations can be resolved by postulating that drilling
induces disruptions in the halite that result in the local formation of a

permeable interconnected pore space. In this work, the localized region around

the borehole that allows for flow will be called a disturbed rock zone (DRZ).

1
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Figure 1. Schematic diagram of one-dimensional infinite-radius model.



Table 1.

Comparison of Model Features

Model Arbitrary Arbitrary Initial Vertical Flow Vertical Flow
Outer DRZ Vertical Pressure To Drift Up From Below
Radius Borehole Depth

One-Dimensional

Infinite-Radius No No No No

(Figure 1)

One-Dimensional

Finite-Radius Yes No No No

(Figure 2)

Two-Dimensional

Finite-Radius Yes Yes Yes No

(Figure 3)

Two-Dimensional

Infinite-Radius No Yes Yes No

(Figure 4)




Beyond the DRZ, the rock is assumed to be impermeable. In contrast to the
infinite-radius model, a finite-radius model (shown in Figure 2) more
accurately represents the concept of a finite DRZ. The finite-radius model
provides much more flexibility because it can be made to approach an
infinite-radius DRZ model by assigning a very large value to the outer radius
of the DRZ. Although the finite-radius model is more versatile, it
introduces an additional unknown because the extent of the DRZ is not

determined by the model, but must be specified independently.

The second limitation of the one-dimensional infinite-radius model is
the inability to account for pressures that vary with depth prior to drilling
the borehole. Because boreholes are drilled from mined drifts, there are
actually two steps involved in analyzing borehole brine inflow rates. The
first step of mining the drift begins the depressurization process by
allowing brine to escape through the floor of the drift. This fluid loss
lowers the pressure adjacent to the floor of the drift relative to that at
greater depths below the drift. 1In the second step, the borehole is drilled
into this partially depressurized region, and the initial condition for the
second step is the depth-dependent pressure profile created in the region by
mining the drift. In this work, the term "initial condition" refers to the
state just prior to drilling the borehole. The time to drill the borehole is
assumed to be negligible compared to the time between completing the borehole

and measuring the brine inflow rate.

To remove the second limitation, the one-dimensional finite-radius model
must be extended to a two-dimensional model, as shown in Figure 3. A two-
dimensional finite-radius model can account for pressure variations with
depth and radial distance from the borehole. Thus, it is possible to include
a depth-dependent pressure profile formed by mining the drift. This vertical
pressure profile can be used as the initial condition for determining the
flow rate to a borehole. As given in Table 1, no such depth-dependent
initial pressure profile can be included in-either of the one-dimensional

models.

The two-dimensional finite-radius model does not constrain the flow to
only the borehole and thus also addresses the third limitation. Brine loss
to the drift both prior to and after drilling the borehole is included in the

two-dimensional model. By including the process of brine escaping into the

4



No Flow Boundary

Drift Floor
DRZ

§ g

bt

o n

L &33 g
3 g

2 2

No Flow Boundary
TRI-6119-11-0

Figure 2. Schematic diagram of one-dimensional finite-radius model.



Constant Ambient Pressure Boundary

Drift Floor

DRZ

Arepunog moj4 ON

No Flow Boundary

No Flow Boundary

TRIf-6119-12-0

Figure 3. Schematic diagram of two-dimensional finite-radius model.



drift, the brine flow rate into the borehole is depth-dependent, even if
mining the drift resulted in no significant depressurization prior to
drilling the borehole. As shown in the sample calculations given in Sections
8.1 and 8.2, two-dimensional effects can be important even if the ratio of
the borehole length to the borehole radius is much greater than 1. In the

sample calculations, this ratio L/a, is equal to 60.

In the limit as the DRZ extends radially to infinity, the two-
dimensional finite-radius model reduces to the two-dimensional infinite-
radius model shown in Figure 4. As given in Table 1, because the two-
dimensional infinite-radius model is restricted to a DRZ that is radially
infinite, this model is less versatile than the two-dimensional finite-radius
model. However, this limiting case may be appropriate if the borehole is

drilled in the middle of a very large drift.

Although the two-dimensional finite-radius model derived in this work
addresses the first three limitations given in Table 1, the model does not
address the fourth limitation of fluid moving up from below the depth of the
borehole. By this mechanism, fluid enters the borehole through the bottom
surface of the borehole and through the cylindrical surface of the borehole.
Further work is planned to incorporate this upward flow into the two-

dimensional model.

The two-dimensional models can be used for any cylindrical hole drilled
perpendicular to a flat surface, such as the floor of a drift. The surface
orientation of the models is arbitrary; the models can be applied to vertical
boreholes such as those in Room D at the WIPP, to horizontal boreholes such
as in Room L4, and even to Room Q. However, for convenience, the models are
discussed for a borehole drilled vertically down from the floor of a drift as

shown in Figure 3.

The problem of two-dimensional Darcy flow caused by depressurization of
a single-phase fluid in a porous medium is governed by the Diffusion Equation
(Freeze and Cherry, 1979). Solutions to the Diffusion Equation for many
different geometries and boundary conditions are well known (Carslaw and
Jaeger, 1959; Crank, 1975). In particular, solutions applicable to problems
similar to those in this work have been reported (Nicholson, 1921; Goldstein,

1932). However, no solution was found in standard texts on diffusive
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transport (Carslaw and Jaeger, 1959; Crank, 1975), for two-dimensional flow
to a borehole with the initial condition of an arbitrary depth-dependent

pressure in the medium.

Therefore, in Section 2.0 of this report, a detailed derivation of a
two-dimensional finite-radius solution is presented for an arbitrary depth-
dependent initial pressure at the time the borehole is drilled. 1In Section
2.1, the solution is determined explicitly for the special case of constant
initial pressure in the DRZ. 1In Section 2.2 the solution is given for the
second special case of a depth-dependent initial pressure that results from
mining the drift an arbitrary amount of time before drilling the borehole.
The model for the limiting case of a two-dimensional DRZ extending radially
to infinity is derived in Section 3.0 for an arbitrary depth-dependent
pressure profile. Solutions for the special cases of a constant initial
pressure and an initial pressure resulting from mining a drift are derived in
Sections 3.1 and 3.2, respectively. The solutions given in Sections 2.1 and

3.1 form the basis for deriving solutions to the one-dimensional models.

The one-dimensional finite-radius solution is developed in Section 4.0
from the two-dimensional finite-radius solution. For comparison, the
limiting case of flow in a one-dimensional infinite-radius domain is given in
Section 5.0. 1In Section 6.0, the results of Sections 2.1, 2.2, 3.1, and 3.2
are used to derive expressions for the flow rate into the borehole and to the
drift for two-dimensional flow. Also in Section 6.0, the results of Sections
4.0 and 5.0 for one-dimensional flows are used to obtain expressions for the
brine inflow rates for the finite-radius and the infinite-radius one-
dimensional models, respectively. From the analyses for two- and one-
dimensional flow, a quantitative conditional test is developed for
determining when two-dimensional effects are important. This test provides a
very simple but exact expression for the ratio of flow rates to the borehole
for the two- and one-dimensional models. Using this test, it is shown that
for the same DRZ outer radius, one-dimensional models always overestimate the
brine inflow rate when compared to two-dimensional models. In Section 7.0
expressions are derived for the cumulative fluid volume produced in the
borehole and into the drift. 1In Section 8.0, general features of the sample
calculations are discussed for the range of parameters typically expected at
the WIPP. Due to the large number of parameters required to model brine

inflow, the concept of a penetration depth is introduced to provide a single

9



scaling parameter. In Sections 8.1 and 8.2, the penetration depth is shown

to provide a measure of the extent to which depressurization has occurred in

the DRZ. Two-dimensional contour plots of the pressure are discussed in

In Section 8.2 calculation results are compared for the four
the dominant flow

Section 8.1.
models given in Table 1. It is shown that in some cases,

path can be to the drift floor and not into the borehole. The effects of

mining the drift a significant amount of time before drilling the borehole
are also shown in Section 8.2. Important conclusions of this work are given

in Section 9.0.

10



2.0 PRESSURE PROFILE FOR THE TWO-DIMENSIONAL FINITE-RADIUS MODEL

The governing equation for fluid pressure minus ambient pressure in a
saturated, homogeneous, isotropic porous medium with constant permeability
and porosity, for a slightly compressible liquid with constant viscosity, is

given by the Diffusion Equation (Freeze and Cherry, 1979)
vip -2 28 (2-1)

where
P =P - P (Pa)
Pf = fluid pressure in pore space (Pa)
Pa = ambient pressure adjacent to porous medium, assumed constant (Pa)
t = time (s)

v 2

)

a = diffusion coefficient (m%/s)

= Laplacian operator (m~

The diffusion coefficient is given by (Webb, 1992, p. 13)

k. (2-2)
”[¢°f + cr]

a =

where
k = rock permeability (mz)
p = fluid viscosity (Paes)

1

= fluid compressibility (Pa )

Cg :
)

c, = rock compressibility (Pa”

¢ = porosity.

In this work, a is assumed constant, and gravitational effects are

neglected. For a vertical borehole drilled from a mined horizontal surface,

11



the fluid pressure is a function of radial distance, depth, and time. Thus,

in this case, Equation (2-1) reduces to

Q
-]

z<L and a<r=<b (2-3)

+
"=
QJ|Q>
~ir

+

B
Q:IQ:
ctiro

o

IA

@
N
RIr
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where r is the radial distance measured from the axis of the borehole, and z
is the vertical distance measured downward from the floor of the drift, as

shown in Figure 3.

In this analysis, the size of the region that is disturbed by drilling
is arbitrary but finite. Thus, to a first approximation, this region will be
uniform in physical properties and will extend from the borehole out to a
radius b for the entire length of the borehole, as shown in Figure 3. It is
assumed that there is no fluid flow beyond this DRZ. Ambient prassure
variations are assumed to be small compared to the pressure changes in the
porous medium, and thus the pressure at z = 0, the surface of the medium, is
held constant. For these conditions, the initial and boundary conditions on

Equation (2-3) are given by

P = Po(r,z) att =0, 0=<z=<L, a<r=<b (2-4)
P=20 att >0, 0=<z=<L, r=a (2-5)
ap

Frde 0 at t >0, 0<z=<L, r=0D1 (2-6)
P=20 at t >0, z=0, a<r=<b (2-7)
aP

32 = 0 at t >0, z=L, a<r=<b (2-8)

where L = length of the borehole (m)

a = borehole radius which is equal to DRZ inner radius (m)

12



b = outer radius of DRZ (m)

Po = fluid pressure minus the ambient pressure at time zero (Pa).

Py can be a function of depth because the borehole may be drilled after
considerable changes in pressure occur after mining the drift. For
generality, the following analysis in this section allows for Py to be an
arbitrary function of radial distance and depth, but for the applications

used in this work, Py will not vary with radial distance.
Equation (2-3) may be solved by the method of Separation of Variables by
assuming P(r,z,t) is given by

P(r,z,t) = R(x)Z(z)T(t) (2-9)

where R is a function only of r, Z is a function only of z, and T is a
function only of t. Substituting Equation (2-9) into Equation (2-3) and
dividing by P results in

1dR 1 dR 1 4T 1472 2
R _2V"rRdr "aTd z .2 72 (2-10)
dr dz
where -Az has been chosen as the separation constant. The equation for R

reduces to the zeroth-order Bessel’s Equation given by (Abramowitz and
Stegun, 1970, p. 358, Eq. 9.1.1; Watson, 1958)

+ AR =0 -- forrasr=<b . (2-11)

From Equations (2-5) and (2-6), the boundary conditions on R are given by

13



R=20 at r = a (2-12)
dR
i 0 atr=>b . (2-13)

The general solution to Equation (2-11) is given by

R = AJO(Ar) + BYO(Ar) (2-14)

where JO = zeroth-order Bessel function of the first kind
YO = zeroth-order Bessel function of the second kind
A = constant

B = constant.

From Equation (2-12),

0= AJO(Aa) + BYO(Aa) . (2-15)

Using the identities (Abramowitz and Stegun, 1970, p. 361, Eq. 9.1.28)

dJO(Ar)
dr - A, () (2-16)
and
dYo(kr)
—— = - Ay, 00, (2-17)

Equation (2-13) reduces to

0= - AAJl(Ab) - BAYl(Ab) (2-18)

14



where J1 and Yl are the first-order Bessel functions of the first and second

kind, respectively.

From Equations (2-15) and (2-18), R is determined within a

multiplicative constant and is given by

Ri = YO(Aia)JO(Air) - JO(Aia)YO(Air) i=1,2,3, ... (2-19)

where A; is the i-th eigenvalue given by the roots of the equation

0 = YO(Aia)Jl(Aib) - Yl(Aib)JO(Aia) i=1,2,3, ... (2-20)

An efficient numerical method for determining the eigenvalues A; is given in

Appendix A.

Equation (2-10) may be separated further to give

d2

dz

N
a.|o.
o3

N

2 1
= AL+ Iz g = (2-21)

NI
N

where -n2 has been chosen as the separation constant. The equation for Z

reduces to

4z, 220 (2-22)

dz

subject to the boundary conditions obtained from Equations (2-7) and (2-8).

Thus, the boundary conditions on Z are given by
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Z=0 at z = 0 (2-23)

dz
i - 0 atz=1L . (2-24)

The solution to Equations (2-22) to (2-24) is given within a mult:iplicative

constant by

Zj = sin[njz] j=1,2,3, ... (2-25)

where the eigenvalues "5 are given by

;- 2j-D= j=1,2,3, ... (2-26)
oL

From Equation (2-21), T is governed by

dT 2 2
3t - - e+ nj)T (2-27)

and therefore given within a multiplicative constant by

T = exp[- at(Ai + q?)] . (2-28)

P may be determined by combining Equations (2-19), (2-25), and (2-28) to give

P = }:: }:: Cini(r)Zj(z)exp[-at(Xi + ﬁ?)] . (2-29)
i=-1  j=1
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The constants Cij are determined from Equation (2-4) at t = 0, which is given

by

<0

Po(r,z) - E:: }:: CiJRi(r)Zj(z) . (2-30)
i=1

=1

(SN

The functions R; and Zj have the following orthogonality properties:

b
J rRi(r)Rz(r) dr = 0 for i » 2 (2-31)

a
L
J Zj(z)Za(z) dz = 0 for j o . (2-32)

0

With these orthogonality properties, Cij may be determined by multiplying
both sides of Equation (2-30) by rRyZ and integrating over r from a to b,

and over z from O to L. This results in

L b
J J rRi(r)Zj(z)Po(r,z) drdz

C., = . 2-33
1] N N ( )

J Z§(z) dz J rRi(r) dr

0 a

-For the applications in this work, Po is only a function of z, and therefore

Equation (2-33) simplifies to

17



L b

.

J PO(Z)Zj(Z) dz rRi(r) dr

c.. = 2 a . (2-34)

1] L b

J Z?(z) dz rRi(r) dr

0 a

Three of the integrals in Equation (2-34) are independent of Py and thus can

be determined regardless of the initial depth-dependent pressure profile.

The square of the norm of Zj is given by

L

J z§<z> dz - % . (2-35)
0

Using the identities (Abramowitz and Stegun, 1970, p. 361, Eq. 9.1.30)

xJO(x) dx = le(x) (2-36)

xYO(x) dx = xYl(x) , (2-37)

the first moment of R; is given by

18



b B
I rRi(r) dr = N _Yo(Aia)Jl(Aib) - JO(Aia)Yl(Aib)J

(2-38)

- i— -YO(/\ia)Jl(,\ia) - Jo(,\ia)Yl(,\ia)J

The first term in square brackets on the right-hand-side of Equation (2-38)

is zero from Equation (2-20). Therefore,

b
a
J rRi(r) dr = - K; [YO(Aia)Jl(Aia) - JO(Aia)Yl(Aia)] . (2-39)

a

Because the Wronskian of the Bessel functions is given by (Abramowitz and

Stegun, 1970, p. 360, Eq. 9.1.16)

Y (03 (0 - J oY (k) = (2-40)

Equation (2-39) reduces to

b
rR.(r) dr = - 2 . : (2-41)
i 2
A,
i
a

Using an identity for the integral of a product of Bessel functions

(Abramowitz and Stegun, 1970, p. 484, Eq. 11’3'31)n
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W dx = 53 W + Q, (X)W, ( )] (Q = J or ¥) (2-42)
X 0(x)QO(x) X =3 QO(X) o(x) Ql X)W, (x W=JorY

we have that

b
2

2 b
J rRi(r) dr = 5

a

2
[[Yo(xia)Jo(Aib) - Jo(Aia)Yo(Aib)]

' 2
+ (Yo @) (Ab) - Iy @)Y, (Ab)] } (2-43)

2
2
- %— [Yo(xia)Jl(Aia) - Jo(Aia)Yl(Xia)]

Using Equation (2-20) to eliminate the second cross product of Bessel
functions in Equation (2-43) and Equation (2-40) for the third cross product,

we have that

b
2

2 b
J rRi(r) dr = IR

a

2
[YO(Aia)Jo(Xib)-Jo(Aia)Yo(Aib)] -3 (2-44)

2
>
R

Equation (2-44) may be further simplified by solving Equation (Z-20) for
Yo(Aia), substituting it into Equation (2-44) and reapplying Equation (2-40) to

give

2
J- (A,a)
R? dr = -2 L SR X (2-45)
i 2.2 J2(A b)
i 171
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Combining Equations (2-34), (2-35), (2-41), and (2-45) results in

2n Ji(xib) -
Cij =1 3 2 J Po(z)Zj(z) dz . (2-46)
Jl(Aib) - Jo(Aia)

0

The pressure at any point in the domain at any time can be calculated
using Equations (2-29) and (2-46). This solution is for an arbitrary initial
fluid pressure that varies with depth. For this work, there are two initial
fluid pressures of interest. In the first case, the borehole is drilled very
soon after mining the drift such that Py is essentially a constant throughout
the DRZ. 1In the second case, there is a considerable time period from when
the drift is mined until the borehole is drilled. In this second case, the
initial fluid pressure is more complicated, but the integral given in
Equation (2-46) can still be evaluated analytically. The solutions for both

cases are presented below in Sections 2.1 and 2.2, respectively.

2.1 Solutionfor Uniform-Constant Initial Pressure in the DRZ

For Po equal to a constant, P,-P., vhere P_ is the pressure in

undisturbed rock, Equation (2-46) reduces to

, 2
lt(P°° - Pa) Jl(xib)

c (2-47)

1] (25 - D J%(Aib) - Jg(xia)

Substituting Equations (2-19), (2-25), and (2-47) into Equation (2-29)

results in the solution for uniform initial pressure, which is given by
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}f: }f: A(Pw-Pa)Ji(Aib)sin[njz](YO(Aia)JO(Air)-Jo(Aia)YO(Ajr))
P = : X
(25-1) 32 (a0 -35 (A 2))

i=1  j=1

(2-48)

exp[-at(ki + ﬂ?)]

where Ai is given by Equation (2-20), and nj is given by Equation (2-26).

The expression given in Equation (2-48) may be factored into two parts,
one completely determined by the index i, and the other completely determined
by the index j. Thus, instead of evaluating a double summation, it is
computationally faster to evaluate Equation (2-48) as a product of two
summations, one on i and the other on j. By performing this factorization,

Equation (2-48) can be evaluated as

2 2
© Q(Pw-Pa)Jl(Aib)[YO(Aia)JO(Air)-JO(Aia)YO(Air)]exp[-atAi]

- 2 2
i=1 Jl(Aib) - JO(Aia)

(2-49)

sin[njz]]exp[-atnﬁ]

2.2 Solution for Depth-Dependent Initial Pressure in the DRZ

For a mined horizontal surface, the fluid pressure adjacent to the
surface is assumed to vary only with depth and time. In this case Equation

(2-1) reduces to the classical one-dimensional Diffusion Equation given by

dp _1l3dp 0<z<H - (2-50)
a dr
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where p is the fluid pressure minus the ambient pressure, 7 is the time from
when the floor of the drift is mined and is not equal to t, the time from
when the borehole is drilled. In the process of mining a drift, the rock is
assumed to be altered to allow fluid flow up to an arbitrary but finite depth
H. At depths greater than H, no flow is assumed. The value of H is not
determined in this work and must be specified independently. Because the
depth of the DRZ may be only several meters, the fluid pressure just prior to
mining the drift is assumed independent of depth and is taken as a constant

Pm-P for 0 < z < H.
a

With these modeling assumptions, the conditions on Equation (2-50) are

given by

P = Pco - Pa at r =0, 0 <z<H (2-51)
p=20 at r >0, z =0 (2-52)
% .

3z = at r >0, z=H (2-53)

The solution to Equations (2-50) to (2-53) may be obtained by the method of

Separation of Variables, and is given by

- 4(P_-P ) )
P = E:: —ziajiy; sin[ymz]exp[- arym] (2-54)

m=1

where the eigenvalues are given by

(2m-1)n
Yo = "o (2-55)
From Equation (2-54), p/(Pw-Pa) is a function only of two dimensionless
groups, a dimensionless distance z/H, and a dimensionless time ar/Hz. For
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long times as af/H2 -+ o, the fluid drains to the surface z = 0 until the

pressure throughout the DRZ goes to the ambient pressure.

If the borehole is drilled at time r, then Po(z) = p(z,r), and
substituting Equation (2-54) into Equation (2-46) results in

-, -
2J7(A:b)(P_-P ) cos(n . H) 48, (H)
s 1'71i a j + _J—m exp [-ar’yz] for H < L
L JZ(A b)-Jz(A a) nj (2m-1)~» m
11 0717 m=1
[ 2auey e -e)]|
. o 4
C.. = 4 1 4 a 73 D exp[-a‘rng] for H =L (2-56)

1] Ji(xib)-Jg(Aia)

1r

[, .2
2J7(Ab)(P_-P )

2 46, (L)
Z ?—27}]'?1—)” exp[-ar‘yi] for H> L

[ m=1

A

2 2
_Jl(Aib)-JO(Aia)j

where ejm (x) is given by

.
sin[x(nj - ym)] sin[x(nj + 7m)]
ITMEE S R ICREE for ny 7 My
8 ip(x) = - (2-57)
x sin(2n.x)
7" ___Z;;l__ for "j =Ty

The complete solution for this case is given by Equation (2-29) with Cij

determined from Equation (2-56) with 7 equal to the time between mining the
drift and drilling the borehole.



3.0 PRESSURE PROFILE FOR THE TWO-DIMENSIONAL INFINITE-RADIUS MODEL

The governing equation for a two-dimensional infinite-radius model is
the same as that given by Equation (2-3), except that as shown in Figure 4,
the domain of the problem is over the region a < r < @. Therefore, the

equation and boundary conditions to be solved are given by

2 2
gp,10P 2P 14P 0<z=<L and a<r<ew (3-1)
2 r dr 2 a Jdt
ar 8z
P = Po(z) att =0, 0<z=<L,a<r«<owo (3-2)
P=20 at t >0, 0<z=<L, r=a (3-3)
P » P(z,t) att >0, 0<z=<1L, r -+ (3-4)
P=20 at t >0, z=0, a<r<w (3-95)
aP
3z = 0 att >0, z=L, a<r<ow (3-6)

Equation (3-4) states that as r + «, P is independent of r. This condition
therefore requires that as r + =, the partial derivative of P with respect to

r is zero.

The system given by Equations (3-1) to (3-6) is solved by the method of
Separation of Variables, using the same notation as in Equation (2-9). The
vertical eigenfunction Z(z) is the same as that for the two-dimensional

finite-radius model given by Equations (2-25) and (2-26). The radial

eigenfunction R(\,r) is governed by

S . (3-7)

From Equations (3-3) and (3-4), the boundary conditions on R are given by
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R=20 at r = a (3-8)

R = constant as r + o (3-9)

The general solution to Equation (3-7) is given by

R(A,r) = AJO(Ar) + BYO(Ar) . (3-10)

Equation (3-8) can be used to determine the constant A, and thus to within a

multiplicative constant, R(XA,r) is given by

<o | (3-11)

IA
~

R(A,xr) = Yo(Aa)Jo(Ar) - JO(Aa)YO(Ar) for a

Equation (3-9) is automatically satisfied for A > 0, because both JO(Ar) and
YO(Ar) approach zero as r + «». Therefore, instead of discrete eigenvalues,

R(A,r) will satisfy Equation (3-7) for all values of X between 0 and ». 1In

addition, from Equations (2-16), (2-17), (3-9), and (3-11),

dR(),r)

ar 0 (3-12)

= - AMYy(Xa)J; (Ar) - Jg(Aa)Y; (Ar)]

Y + o r + o

The governing equation for T is similar to Equation (2-27), and is given by

dT 2 2
-0t AT (3-13)

The solution to Equation (3-13) is given within a multiplicative constant by

T = exp[-at(A2 + n?)] . (3-14)
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P may be determined by combining Equations (3-11), (2-25), and (3-14) to give

L]
-]

P(r,z,t) = }:: J Cj(A)R(A,r)Zj(z)exp[- at(A2 + n?)] dx (3-15)

j=1 0

where Cj(A) are constants that are determined from the initial condition

given by Equation (3-2).

The solution given by Equation (3-15) for a two-dimensional infinite-
radius model is the limit of the solution given by Equation (2-29) as the
outer limit of the DRZ extends to infinity. The primary difference is that
for the infinite-radius model, in the limit as b » «, the summation over
discrete radial eigenvalues becomes an integral over continuous radial

eigenvalues.

The method for extracting Cj(A) from Equation (3-15) at t = 0 is similar
to that used in Section 2.0. However, there are several subtle steps because
the domain is infinite. For the infinite-radius model, start with a radial
domain from r = a to r = b, and then take the limit as b -+ «, _This is
similar to the method used to obtain the Fourier Integral over an infinite

domain (Arpaci, 1966; Hildebrand, 1962; Gray et al., 1952).

At t = 0, Equation (3-15) reduces to

-]

Po(z) = E:: J Cj(A)R(A,r)Zj(z) dx . (3-16)

j'='l 0

Multiplying both sides of Equation (3-16) by rR(v)r)ZU(z), integrating over r
from a to b, and over z from O to L, interchanging the order of integration

and summation, and using Equation (2-32) results in

27



L b L w b

JZJ(Z)PO(Z) dz JrR(v,r) dr = [Z?(z) dz JCJ(A) JrR(v,r)R(X,r) drdi (3-17)

0 a 0 0 a

where v is a dummy radial eigenvalue. The first integral on the right-hand
side of Equation (3-17) has already been determined by Equation (2-35) and is
equal to L/2. The second integral on the left-hand side of Equation (3-17)
is similar to that given by Equation (2-38), but for a continuous eigenvalue

v,

b
I rR{v,r) dr = %[Yo(va)Jl(vb) - Jo(va)Yl(vb)]
a
(3-18)
- %[Yo(va)Jl(va) - Jo(va)Yl(va)]

As given by Equation (3-12), the first term in brackets on the right-hand
side of Equation (3-18) goes to zero as b goes to infinity. By using
Equation (2-40), Equation (3-18) reduces to

b

j fR(v,r) dr = - —35 . (3-19)

v
a

Continuing with simplifying Equation (3-17), let

b
I = I rR(v,r)R(A,r) dr . (3-20)

a
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Substituting Equation (3-11) into Equation (3-20) and using the identity
(Abramowitz and Stegun, 1970, p. 484, Eq. 11.3.29)

2

(w2 - AZ)IrQO(vr)WO(Ar) dr = r[le(vr)Wo(Ar) ] AQo(vr)wl(Ar)] (3-21)

where Q = J or Y, and W =J or Y, results in

AJO(vb)Jl(Xb)

I(v® - A%)

Yo(va)Yo(Aa):le(vb)Jo(Ab)

Jo(va)Jo(Aa)thl(vb)YO(Ab) - AYo(vb)Yl(Ab)

+

J

(3-22)

Yo(ua)Jo(Aa)-le(vb)Yo(Ab) - AJO(vb)Yl(Ab)_

Jo(va)Yo(Aa)Lle(vb)Jo(Ab)

AYo(vb)J1 (Ab)]

Using the trigonometric identities (Abramowitz and Stegun, 1970, p. 72)

sin[x - %] = - cos(x) (3-23)
cos[x - %] = sin(x), (3-24)

the asymptotic expansions (Abramowitz and Stegun, 1970, p. 364, Egs. 9.2.1
and 9.2.2)

| 2 n
Jo(Ab) -+ b COS[Ab - Z] Ab -+ « (3-25)
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J;(Ob) - 2 sin[,\b - 1] Ab - @ (3-26)

J7Ab 4
Y.(0b) - |-% sin|ib - ¥ Ab - @ (3-27)
0 J7mAb 4
Y. (b)) ~+ - |2 cos|{ab - X Ab + ® (3-28)
1 b 4

can be obtained and used to reduce Equation (3-22) for vb and Ab approaching

infinity to

(v2 - A2)WI _
2
f_ _ _ h'
v o, 7 [ 7 A [ x|l . [ ﬂ
Yo(va)Yo(Aa)L~A 51nhvb - adcoshAb - 4] - 13 cos_vb - A-SthAb - 4] |
r_ _ _ _ _ _ _ - N _\
v T . S A, .o b
- Jo(va)Jo(Aa)k~A cos-vb - ZJSlnhAb - 4] 1% 51n_vb - a_cos_kb - 4] |
(3-29)
4 . 3
- Yo ( )J(,\)E in[ub - ®|sin[rb - T A b - 7] b - T
0 va 0 a u}‘ 51n-v - 4_51n_ - Z_ +q; cos-v - Z_cos- - Z_J
r " _ _ - r _ _ _ )
v o T A, T . Lo
+ JO(Ua)YO(Aa)~\X cos_vb - Z_COSLAb - Z_ + 15 81n_vb - Z_sln_kb - Z_J

Using Equations (3-23) and (3-24) and the identities (Abramowitz and Stegun,
1970, p. 72, Eqs. 4.3.31 to 4.3.33)

2cos(x1)sin(x2) = sin(x1 + x2) - sin(x1 - x2) (3-30)
25in(x1)sin(x2) = cos(x1 - x2) - cos(x1 + x2) (3-31)
ZCos(xl)cos(xz) = cos(x1 - x2) + cos(x1 + x2) , (3-32)
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Equation (3-29) reduces to

Y, (va)Y,(2ra) )
I = - 0 ) 0 2 (Jg sin[b(x - v)] + J% sin{b(x - v)]
n(v. - A7) L J
J~(va)J,(ra) ( ]
- 0 2 0 3 J% sin(b(x - v)] + Jz sin[b()x - v)]
n(v" - 2% { v )
(3-33)
Yn(va)J,(ra) [ EY ]
.20 a 0 - E cos[b(A - v)] + |2 cos[b(r - v)]
"(v - A ) \ v J
Ja(va)Y,(ra) | \
+ 0 5 0 3 JE cos[b(Ar - v)] + [= cos[b(x - v)]
r(v? - 2% | ! J
+ Terms containing cos[b(A+v)] or sin[b(A+v)]
Substituting Equations (2-35), (3-19), and (3-20) into Equation (3-17)
results in
L © b
4
- Z.(z)Pn(z) dz = 1lim C.(A) |I drdx (3-34)
nva J J 0 b+« J ] J
0 0 a

where I is given by Equation (3-33). Notice that I is composed of térms
containing either cos[b(x-v)] and sin[{b(A-v)], or cos[b(A+v)] and
sin[b(X+v)]. The trigonometric terms with a difference of eigenvalues are

given explicitly in Equation (3-33). For these terms let

£ =b( - v) , (3-35)

and for trigonometric terms with a sum of eigenvalues let
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¥ =b\ +v) . (3-36)

With these changes in variables, for fixed values of § and ¢, as b + », A

approaches respectively,

A = % + v as b -+ (3-37)

A = % c v -y as b - @ . (3-38)

Substituting Equations (3-35) and (3-36) into Equation (3-33), taking the
limit of Equation (3-33) as b » «, and using Equations (3-37) and (3-38) on
the expressions YO(Aa), Jo(Aa), (v/A)l/z, and (A/v)l/z, reduces Equation
(3-34) to

L 2
2Y0(va) sin(¢)

.4 5 [25@)P0(2) dz = 1lin Cj[% + v] ; %5
«Lv b + » -l gﬁi ] §E
0 b .2
-bv

2
2J,(va) sin(§)
¢, v] " S (3-39)

2

b
[
b b

+ lim Cj[2 - v][trigonometric terms of (¥)] gﬁ
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where the third and fourth terms on the right-hand side of Equation (3-33)
cancel in the limit as b + w. Also, as b + =, the lower limit of integration
approaches the upper limit of integration for the last term on the right-hand

side of Equation (3-39). Therefore, this term is zero, and Equation (3-39)

reduces to

L 2 2
. Cj(v)[Yo(va) + Jo(va)]
2

nLv

sin(€) 4 (3-40)

U 13

Zj(z)PO(z) dz =

0 -

The integral on the right-hand side of Equation (3-40) is equal to =«
(Abramowitz and Stegun, 1970, p. 78, Eq. 4.3.142). Therefore, replacing v
with A in Equation (3-40) results in

L
4

Cj(x) = - Zj(z)Po(z) dz . (3-41)

WLA[YS(Aa) + Jg(Aa)]

The pressure at any point in the domain and at any time can be
calculated using Equations (3-15) and (3-41) for an arbitrary initial
pressure profile given by Po(z). Two cases for P,y are of interest and are
presented in Sections 3.1 and 3.2, for P0 constant and PO determined for the
case of significant depressurization caused by mining the drift,

respectively.

3.1 Solution for Uniform Constant Initial Pressure in the DRZ

For P0 equal to a constant, P, - Pa, Equation (3-41) reduces to
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8(P_ - P)
a (3-42)

Ci(A) = -
] 2. .. 2 2
i A(ZJ-I)[YO(Aa) + Jo(Aa)]

Substituting Equations (2-25), (3-11), and (3-42) into Equation (3-15)
results in the solution for the two-dimensional infinite-radius model for

uniform initial pressure, which is given by

-]

© 8(Pm-Pa)[YO(Aa)J0(Ar) - JO(Aa)YO(Ar)]sin(njz)
P = - X
3=1 wzk(Zj-l)[Yg(Aa) + JS(Aa)]
0
(3-43)
exp[-at(x2+n§)] dx
For computational efficiency, Equation (3-43) may be factored into
4 ®© 3
8(Pm-Pa)[YO(Aa)JO(Ar) : Jo(Aa)YO(Ar)]exp(-atAZ)
P = - di X
WZA[Yg(Aa) + Jg(xa)]
\ 0 J
(3-44)
r i [sin( z)]ex [-at 2]
- 2j -1
L =1 )

Equation (3-44) eliminates the need to evaluate repeatedly the integral in

Equation (3-43).
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3.2 Solution for Depth-Dependent Initial Pressure in the DRZ

For Po(z) given by Equation (2-54), the integral in Equation (3-41) may

be evaluated to give

48 (H)

2 2
nLA_YO(Aa)-JO(Aa)

(

(2m-1)~

C.(A) = 9 . fa’l 4 exP[ a 2]
i )= 2 2 2j-1 Ty
y - Yo (h) 35 00a) | L( 3-L J
o  po-p I = 4.
a’Fo Z “Om ™ exp-ar+7]
2 2 2m-1 i
"LA|Yo(ha) -3 (a) || £ (Zm-1)m "
L i d
where ij (x) is given by

r

sin[x(qj - 7m)] sin[x(r]j + 7m)]

2(n )

J
Gjm(x) =

MM

2('7j + 'Ym)

sin(2njx)

4y .

J

exp[-aryi] for H <L
for H =1 (3-45)

for H> L

for "j * T
(3-46)

for "j = Ty

The complete solution for this case is given by Equation (3-15) with Cj(A)

determined by Equation (3-45).
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4.0 PRESSURE PROFILE FOR THE ONE-DIMENSIONAL FINITE-RADIUS MODEL

A schematic diagram of one-dimensional radial flow for a finite DRZ is
shown in Figure 2. 1In comparing Figures 2 and 3, notice that for the one-
dimensional model, flow to the drift is neglected. The governing equation

for one-dimensional radial flow in a finite DRZ is given by

+- =2 a<r<b . (4-1)

The conditions on Equation (4-1) for a DRZ of finite radius may be obtained

from Equations (2-4) to (2-6), and are given by

P=-Po att =0, a<r=<»b (4-2)
P=20 ) at t >0, r =a (4-3)
apP

a.,o at t >0, r=>b . (4-4)

From Equations (2-19) and (2-28), the solution to Equations (4-1) to (4-4) is
given by

P = E:: Ci[Yo(Aia)Jo(Air) - Jo(Aia)Yo(Air)]exp[-atAi] (4-5)
i=1

where Ai is determined from Equation (2-20), and Ci are constants.
To determine Ci’ evaluate Equation (4-5) at t = 0, substitute Equation

(4-2), multiply both side by rRl(r), integrate from r = a to r = b, and use
Equation (2-31) to obtain
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b
P0 J rRi(r) dr

C. = a . (4-6)
b

J rRi(r) dr

a

Substituting Equations (2-41) and (2-45) into Equation (4-6) results in

2
wPoJl(Aib)
C. = . (4-7)
2 2
Jl(Aib) - JO(Aia)

Substituting Equation (4-7) into Equation (4-5) results in the solution to

Equations (4-1) to (4-4), which is given by

P =

wPoJl(Aib)exp[-acxg]
[YO(Xia)JO(Air) - JO(Aia)YO(Air)] . (4-8)

2 2
i=1 [ Jl(Aib) - JO(Aia)

For one-dimensional radial flow, vertical variations in the DRZ due to
mining the drift prior to drilling the borehole cannot be incluced.
Therefore, only the case of constant Py is determined for one-dimensional

radial flow.
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5.0 PRESSURE PROFILE FOR THE ONE-DIMENSIONAL INFINITE-RADIUS MODEL

In the limit as the outer radius of the DRZ approaches infinity, the
finite domain shown in Figure 2 reduces to the infinite domain shown in

Figure 1. For the infinite domain, the governing equations are given by

2
gp 18P 120P Aa<r<w (5-1)
r Jdr a dt
ar
P = P0 att =0, asr<ow (5-2)
P=20 at t >0, r = a (5-3)
P =P, at t >0, r > o . (5-4)

Using the method of Separation of Variables, assume that the solution to

Equations (5-1) to (5-4) is given by
P = R(r)T(t) (5-5)

where R and T are the radial and temporal eigenfunctions, respectively.
Substituting Equation (5-5) into Equation (5-1) results in Equations (3-7) to

(3-12) for R(r). However, T(t) is given within a multiplicative constant by
2
T = exp[-atA®™] . (5-6)
Combining Equations (3-11) and (5-6) results in

P(r,t) = f COOR(A, r)exp[-atr’] di (5-7)
0
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where C()) is determined at t = 0. Substituting Equation (5-2) into Equation
(5-7), multiplying both sides by rR(v,r), and integrating over r from a to b

results in

b © b
P0 J rR(v,r) dr = I C(\) I rR(v,r)R(A,xr) drdx . (5-8)
a 0 a

In the limit as b approaches infinity, Equation (3-19) can be substituted for
the integral on the left-hand side of Equation (5-8). The right-hand side of
Equation (5-8) can be determined from the right-hand sides of Equations (3-
34), (3-39), and (3-40) in the limit as b approaches infinity. Therefore,

Equation (5-8) reduces to

2 2
2PO C(A)[YO(Aa) + Jo(Aa)]

. = . (5-9)
wAz A

Solving Equation (5-9) for C(A), and substituting C()A) into Equation (5-7)
results in the solution to Equations (5-1) to (5-4), which is given by

2p J. (Ar)Y.(Aa) - Y.(Ar)J.()a)
P - - —;9 exp(-ar’e] |2 0 0 0 a . (5-10)

x[Jg(xa) + Yg(Aa)]

This solution agrees with that reported previously (Crank, 1975, p. 87) and
has been used to interpret brine inflow data (Nowak and McTigue, 1987;
McTigue and Nowak, 1987; Nowak et al., 1988; Finley et al., 1992).
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6.0 FLUID PRODUCTION INTO THE BOREHOLE AND INTO THE DRIFT

The previous analyses determine the fluid pressure throughout the DRZ.
However, it is the fluid collected in the borehole that is more readily
measured, and not the fluid pressure throughout the domain. Because it may
be possible to isolate intervals of the borehole for fluid collection, in
this section expressions are derived for the fluid collected over an
arbitrary interval in the borehole and over an arbitrary time period. From
these expressions, an exact solution can be obtained for the brine inflow
rate for the two-dimensional model divided by that for the one-dimensional
model. This ratio is a function of only a single dimensionless group that
can be easily evaluated. This dimensionless group can be used as a
conditional test for determining when two-dimensional effects are important,

without requiring any computations of fluid pressures or flow rates.

To determine the importance of fluid loss to the drift, an expression is
also derived for the fluid-flow rate escaping to the drift as a function of
time for the two-dimensional finite-radius model. For long times, the
percentage of the flow rate to the borehole approaches a value independent of
time or the rock permeability. This asymptote can also be evaluated without

solving for the pressure field or the brine inflow rate.

The fluid velocity into the borehole is a function of depth and time.

For a homogeneous porous medium, this velocity is given by Darcy’s Law,

(6-1)

T ix
mlc»
"o

Notice in Equation (6-1) that the flow velocity is in the negative r-
direction, and therefore the velocity into the borehole is proportional to
the pressure gradient, and not the negative of the gradient. The derivative
of Ri(r) with respect to r is needed to determine the gradient of P at r = a.

Using Equations (2-16), (2-17), (2-19), and (2-40), this derivative is given
by
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- Yo(Aia)Jl(Aia))

0
}:: C..sinfn.z)ex [-at[A2 + 2]]
S R E i

i
ar = Ai(JO(Aia)Yl(Aia)
r=a
Therefore,
( ©
_ 2k
mua
i=1 j=1
=]
S 2k C.exp[-atk?]
wpua i i
i=1
vV = 9
(-]
(-]
2 2 2
- ;;; }:: J Cj(A)Zj(z)exp[-at(A + nj)] dx
j=1 0
@
4kPO e-akzt
dx
apn’ 2 2
H ,\[Jo()‘a) + YO(,\a)]
L 0

(two-dimensional)
(finite-radius)

(one-dimensional)
(finite-radius)

(two-dimensional)
(infinite-radius)

(one-dimensional)
(infinite-radius)

(6-2)

(6-3)

where Cij is given either by Equation (2-47) for Py constant, or Equation

(2-56) for P, varying with depth, C, is given by Equation (4-7) for one-
0 ying P i g y

dimensional flow with a finite DRZ, and Cj(A) is given by either Equation

(3- 42) or (3-45). The fluid velocity for the one-dimensional infinite-

radius model is obtained from Equations (5-10), (6-1), and (6-2) and agrees

with the solution reported in the literature (Crank, 1975, p. 87).

The flow rate into the borehole over the depth interval L1 to L2 can be

determined by integrating the velocity over the cylindrical surface of the

interval in the borehole, and is given by
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IA
=

F= 2na v dz for 0 < L, <L (6-4)

F can be determined by substituting Equation (6-3) into Equation (6-4) to

obtain

0 o
C..[cos(n.L,)-cos(n,L.)]
4k }:: L) 12 it exp[-at[A?+q?]]
i 7. 1]
i=1 j=1 J
(two-dimensional)
(finite-radius)
4k(L, - L =
1 2) C exol - t:>‘2 (one-dimensional)
o §OFPL MYy (finite-radius)
i=1
F = 4 (6-95)
o0
0
C.(A)[cos(n.L,)-cos(n.L,)]
4k J j2 il exp[-at(k2+n?)]] dx
kL 5 J
=1 0 (two-dimensional)
(infinite-radius)
o
8kP. (L, - L.) -aAzt
0'72 1 e dx (one-dimensional)
7. 9 2 (infinite-radius)
A[JO(Aa) + YO(Aa)]
L 0

The integrands for an infinite domain given in Equation (6-5) are
singular for A = 0. Therefore, for numerical computation of the integral, D.
McTigue (Sandia National Laboratories, Department 1513) has developed a
scheme that splits the integral into two parts. The first part of the
integral is evaluated analytically over the domain A = 0 to A = ¢, as ¢ » 0.
The second part of the integral is evaluated numerically from A = € to A + =,
The upper limit of the second part of the integral is determined by

increasing this limit until the value of the integral converges. A
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derviation of McTigue’s method for analytical integration of the first part

of the integral is given in Appendix B.

If the initial pressure profile is depth-dependent, such as in the case
when there is much time between mining the drift and drilling the borehole,
then a two-dimensional model is appropriate. However, for a constant initial
pressure, the one-dimensional flow rates may be comparable to those
calculated with the two-dimensional model. A quantitative conditional test
for determining if two-dimensional effects are important can be developed
from Equation (6-5), for constant P0 = P - Pa' In this case, the ratio of
the fluid production rates over the entire borehole for the two-dimensional

model divided by that for the one-dimensional model is given by

2 16

2 2
exp[_ 4at (2§-1) w]
F L
F22=8_ZZ 5 L =0, L, =L . (6-6)
1D =« (2j-1)

Equation (6-6) is valid regardless of the DRZ outer radius, as long as
the same outer radius is used in determining F,p and Fy.  For at/L2 = 0, the
summation in Equation (6-6) reduces to n2/8. Thus in this limit, the
production rates for one- and two-dimensional models are identical. As
expected, as L + =, the two-dimensional brine inflow rate approaches the
inflow rate for the one-dimensional model. However, for a positive value of
at/Lz, the summation is less than 32/8. Therefore, compared to the two-
dimensional model with the same DRZ outer radius, the one-dimensional model

always overestimates the flow rate to the borehole.

In Equation (6-6) the term 4at is defined in this work to be equal to
the square of the penetration depth, Dp' The penetration depth is a measure
of how far significant depressurization has traveled into the DRZ away from
the borehole, or from the drift. This concept will be explained in much

greater detail in Section 8.1. From the definition

2
D° = 4at, 6-7
b a (6-7)
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Equation (6-6) can be expressed as

p2 2 2
exp|- P (21-1)°x
F2D g o L2 16
F_—=_ZZ 7 L1=0,L2=L . (6-8)
1D g (2j-1)

j=1

A plot of Equation (6-8) is given in Figure 5.

From this analysis, Dp/L is the important criterion, not L/a, for
determining if two-dimensional effects are important. The larger Dp/L, the
greater the importance of two-dimensional effects. The test for the one-
dimensional solution for the brine inflow rate, to be within 5 or 50% of that
for the two-dimensional solution, requires Dp/L to be less than 0.0886 or
0.887, respectively. By rearranging Equation (6-7) and substituting Equation
(2-2), this test sets an upper bound on the time over which the one-
dimensional solution may be used for a specified percentage agreement with
the two-dimensional solution. Thus, the conditional test can be expressed as

a maximum time that one- and two-dimensional models agree, and is given by

(D /Llguideg + c 1L

thax ~ An (6-9)

where [Dp/L]* given in Equation (6-9) may be, for example, either 0.0886 or
0.887 for 5 or 50% agreement, respectively, between the two- and one-

dimensional flow rates.

The fluid velocity into the drift depends on r and is given by

(6-10)

=4

]
®Iw
2%
a~}

2=0

From Equations (2-29) and (3-15), this velocity is given respectively by
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Figure 5.
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Flow rate to the borehole for two-dimensional models divided by the
flow rate to the borehole for one-dimensional models, for the same
DRZ outer radius, as a function of the penetration depth divided by

the borehole length, for constant initial pressure in the DRZ.
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( 0 (-]
k 2 2
; }:: }:: Cijani exp[-at[Ai + nj]]
i=1 j=1
(two-dimensional)
U = 4 (finite-radius) . (6-11)
k 2 2 ]
- C.(A)n.R(A,r)expj-at[r™ + dx
" zz: J J( )nJ (A, r) p[ at| nj]
J=1 0
(two-dimensional)
(infinite-radius)

The flow rate into the drift can be determined by integrating the
velocity over the surface area of the DRZ that is bounded by the drift and is

given by

f= 2r I ru dr . (6-12)

Substituting Equation (6-11) into Equation (6-12) for the two-dimensional

finite-radius model and using Equation (2-41) results in

C..n. ] )
_ . 4k ) ) 2 2 (two-dimensional) )
f = 73 Z Z Az eXP[ at[Ai + 'Ij ]] (finite_radius) . (6 13)
i=1  j=1 i

The percentage of the flow rate to the borehole is given by

100F
$ F+f (6-14)
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where F and f are given by Equations (6-5) and (6-13), respectively. For the

two-dimensional finite-radius model, F% must be close to 100 for flow to the

drift to be unimportant.

A simple expression for F, may be obtained for long times, such that

%
only the first term is required in the eigenfunction expansions for F and f.

In this limit, Fg is given by

IOOAi 2 9
F, = —/——— for atAy >> 1, and atn, >> 1 (6-15)
% 2 2 1 1
Al + "y

where A, and n, are given by Equations (2-20) and (2-26), respectively. A
major advantage of using Equation (6-15) is that Fy reduces to a function of
only three geometric parameters (a, b, and L). F% will be close to 100, and
thus flow to the drift will be unimportant if the following condition is

satisfied:

n% << xi for atki >> 1, and atni > 1 . (6-16)

As is shown in Section 8.2 for parameters typical of the WIPP, even for short
time scales on the order of days, Equation (6-16) provides a good upper

estimate of the percentage of the flow rate to the borehole.

For checking the condition given in Equation (6-16), n] can be
determined from Equation (2-26) and is given by n/(2L). The first radial
eigenvalue, Al’ is the solution to Equation (2-20) for i = 1 and can be
determined numerically using the method given in Appendix A. For
convenience, X, is given in Figure 6 for a range of inner and outer DRZ
radii. Notice that 7 is inversely proportional to L. Therefore, flow to
the drift becomes less important as the borehole depth increases. This
observation agrees with what one would expect; however, Equations (6-14) and
(6-16) provide a quantitative basis for determining the length of the

borehole required to neglect flow to the drift.
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Figure 6. First radial eigenvalue as a function of the DRZ inner radius a,
and the DRZ outer radius b. This plot is a solution of Equation
(2-20) for i = 1.
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7.0 CUMULATIVE FLUID PRODUCTION

The cumulative fluid volume collected in the borehole from time tl to t2

from depths L, to L, is given by

F = F dt for 0 < t, < t, . (7-1)

Substituting Equation (6-5) into Equation (7-1) for finite DRZs results in

4k Cij[cos(nle) - cos(njLZ)] y
au ; ; 2 2
- (AT + o,
'IJ( i nJ)

[exp[-atz(xi+n§)] - exp[-atl(xi+n§)]]

_ (two-dimensional) (7-2)
(finite-radius)

o]
4k(L, - L) C.
2 1 ; i 2 2
———~?;r———~— ;5 [exp[-atzxi] - exp[-atlxi]]
i

(one-dimensional)
(finite-radius)

The cumulative fluid volume produced over the entire borehole up to time

t, may be determined directly from Equation (7-2) and is given by
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.
4k < © C.. 2- 2 (two-dimensional)
;; __—_ill_—ﬁ— exp[-atz(xi+nj)] - 1| (finite-radius)
=1 =1 qj(xi + nj) (Ll-O, L2=L, t1=0)
F = { (7-3)
4KL 2 C. 9 (one-dimensional)
;;— }:: —% exp[-atzAi] -1 (finite-radius)
) Ai (Ll=0, L2-L, t1=0)

The cumulative fluid volume escaping into the drift from time t; to t,

is given by

f = f dt for 0 < t, <t, . (7-4)

Substituting Equation (6-13) into Equation (7-4) results in

-] ]

C

—l;_k 'l.i. 2 9 ) 2 9 -

f = ap }i: }Z: ;§z;%—:l—§; [exp[-atz(ki+nj)] - exp[ atl(Ai+qj)]] . (7-5)
i=1 =1 i1 "

For one-dimensional radial flow, u, f, and f are zero because there is
no flow in the vertical direction. As will be shown in Section 8.2, even for
values of b/L < 1, the one-dimensional approximation can neglect the dominant

fluid flow path out of the DRZ.
For a finite DRZ, the total fluid volume that will be produced is given

by the sum £ + F in the limit as t, » ©. From Equations (7-3) and (7-5) this

limit is given by
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| 4k Z Z _ G5
op 22 4 gl 3 22

=1 j=1 i 7 "j i
_ (two-dimensional, finite-radius)
F+ f = 1 (L; =0, Ly =L, t; =0, t, > ) (7-6)
-] C _
) 4KkL i (one-dimensional, finite-radius, f = 0)
ap § z2 (L; =0, L, =L, £, =0, t, +=)
i=1 i

I1f the rock compressibility is neglected (i.e., c, - 0), for constant Po(z) =

«©

P - Pa’ this limiting total fluid volume produced from the DRZ can also be
determined directly from the definition of fluid compressibility, which is

given by

e =2 3P 7-7)

where p is the fluid density. Integrating Equation (7-7) from ambient
conditions (which are denoted by the subscript a) to far-field conditions
(which are denoted by the subscript =), the fluid density at ambient conditions

is given by

Py = pwexp[cf(Pa-Pw)] . (7-8)
The total pore space in the DRZ is given by

V = gLa(b - a%) | (7-9)

This is the space occupied by the fluid initially. In the limit as t, - =,

all the fluid will be at pressure Pa and thus have a density pPy- In this
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limit, the total space occupied by the fluid is A + V, where A is the
incremental space the fluid occupies due to depressurization to ambient
conditions. Because the fluid mass is the same before and after

depressurization, Equation (7-8) can be expressed as

1 1
Via ~ V exP[Cf“a - Pq)] : (7-10)

From Equation (7-10) the incremental fluid space can be determined, and is
equal to the total fluid volume produced into the borehole plus the fluid

volume escaping into the drift. Thus,

(F + ) = A= ¢nL[b2 - az][exp[cf[Pm - P ]] - 1] . (7-11)
t -+ o a
2
t, =0
L, =0
L, =L
Py =P, - P
c =20
r

Equation (7-11) provides a convenient independent check on Equation (7-6).
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8.0 SAMPLE CALCULATIONS

The solutions given previously are in terms of infinite series
eigenfunction expansions. Although these are exact solutions, from the
equations it is very difficult to gain an appreciation of the behavior of the
solutions. Therefore, several sample calculations are presented in Sections
8.1 and 8.2. To present a manageable number of cases for comparison, the

following parameters are held constant for all the sample calculations:

¢ = rock porosity = 0.01

cg = fluid compressibility [from Rechard et al., 1991) = 2.5 x 10710 pa”l

c,. = rock compressibility = 4.8 x 10712 pa-1

L = borehole length = 3.0 m

a = borehole radius = DRZ inner radius = 0.05 m

P, = fluid pressure in undisturbed rock = 11 X 106 Pa

6

Pa = ambient pressure in borehole and in drift = 0.1 x 10" Pa

p = fluid viscosity = 0.0016 Pa-s.

The values chosen correspond to conditions in halite at the WIPP Site.
It had been anticipated that if the ratio L/a >> 1, the flow would be
predominantly one-dimensional. However, as shown in Section 6.0, this ratio
is not the appropriate one to use for assessing the importance of two-
dimensional effects. Further, the results in Sections 8.1 and 8.2 show that

even with L/a = 60, there are still significant two-dimensional effects.

Two-dimensional effects can influence the solution through a depth-
dependent initial condition resulting from mining the drift and through fluid
escaping to the floor of the drift after drilling the borehole. One-
dimensional models cannot incorporate a depth-dependent initial condition.
Therefore, in the first two sets of sample calculations, the initial fluid
pressure is constant so that one- and two-dimensional models may be compared
for the same initial conditions. Thus, the two-dimensional effect discussed
in these sample calculations is a result of only neglecting flow to the drift
during brine flow to the borehole. A summary of the sets of sample

calculations is given in Table 2.
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Table 2. Sample Calculations
Figure Plot Type* Parameters

7 Two-Dimensional Contours of Penetration Depth = 2(o:t)1/2 = 0.2
(Pf - Pa)/(Pw - Pa) DRZ outer radius = b = 1.0 m

8 Two-Dimensional Contours of Penetration Depth = 2(ozt:)l/2 =1.0
(Pf - Pa)/(Pm - Pa) DRZ outer radius = b = 1.0 m

9 Two-Dimensional Contours of Penetration Depth = 2(at)l/2 =3.0
(Pf - Pa)/(Po0 - Pa) DRZ outer radius = b =1.0m

10 Two-Dimensional Contours of Penetration Depth = 2(at)1/2 =1.0
(Pf - Pa)/(P°° - Pa) DRZ outer radius = b = 3.0 m

11 Two-Dimensional Contours of Penetration Depth = 2(ozt)1/2 = 3.0
(Pf - Pa)/(Pw - Pa) DRZ outer radius = b = 3.0 m

12 Brine Inflow Rates Rock Permeability = k = 10'20 m2
For All Four Models

13 Brine Inflow Rates Rock Permeability = k = 10721 2
For All Four Models

14 Brine Inflow Rates Rock Permeability = k = 10722 n?
For All Four Models

15 Percentage of Flow to
Borehole for Two-Dimensional
Finite-Radius Model

16 Brine Inflow Rates Rock Permeability = k = 10729 p?

For All Four Models

DRZ depth = H = 3.0 m
Time period between mining drift

and drilling borehole = 7 = 1 year
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Table 2. Sample Calculations (continued)

Figure Plot Type* Parameters
17 Brine Inflow Rates Rock Permeability = k = 10721 2
For All Four Models DRZ depth = H=3.0m

Time period between mining drift
and drilling borehole = 7 = 1 year
18 Brine Inflow Rates Rock Permeability = k = 10722 p?
For All Four Models DRZ depth = H = 3.0 m
Time period between mining drift

and drilling borehole = 7 = 1 year

*
Notation
Pp = fluid pressure

s
I

ambient pressure in borehole and in drift

la-]
i

fluid pressure in undisturbed rock far from drift or borehole

In the first set of sample calculations, contours of (Pf'Pa)/(Pm'Pa)’ a
dimensionless pressure as determined from Equation (2-49) are given for
different values of b, the outer radius of the DRZ. The objective of these
calculations is to display depressurization of the region due to brine

escaping into the drift and flowing into the borehole.

The second set of solutions presents borehole brine inflow rates for all
four models (i.e., one-dimensional infinite-radius, one-dimensional finite-
radius, two-dimensional finite-radius models, and two-dimensional infinite-
radius), for different values of k, the permeability, and b, the outer radius
of the DRZ. By comparing results from different models, the effects of
neglecting flow to the drift are highlighted. To further display these
effects, a plot showing the percentage of the flow to the borehole for the

two-dimensional finite-radius model is given.
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The two-dimensional effect of mining the drift one year before drilling
the borehole is presented in the third set of sample calculations. In these
calculations, except for 7, all the parameters are identical to those used in
the second set of calculations. Thus, by comparing the second and third sets
of calculations, the effect of prior depressurization can be displayed. This

effect is not included in one-dimensional models.

For the calculations, the functions JO, YO’ Jl' and Y1 are determined
using polynomial approximations (Abramowitz and Stegun, 1970, pp. 369-370,
Eqs. 9.4.1-9.4.6). These are the only Bessel functions required to compute
the solutions for the pressure contours and the brine inflow rates. All
infinite series are summed until the partial sums converge to within three
significant figures. As noted after Equation (2-48), double summations can
be avoided because they factor into a product of two summations as given by
Equation (2-49). This simplification greatly reduces computer time and is
also used for evaluating the double summation in Equation (6-5). The
integrals for the infinite-radius models are calculated using the method
discussed after Equation (6-5) and in Appendix B. For this calculation, ¢ is
T

Gauss-Legendre quadrature technique.

and the second part of the integral is computed using an adaptive

8.1 Sample Calculations of Two-Dimensional Contours of

the Dimensionless Pressure

The two-dimensional finite-radius solution for constant initial pressure
in the DRZ is given by Equation (2-49). For this case, the fluid pressure
throughout the DRZ is initially P_, and at time just greater than zero, the
drift is mined and a borehole drilled such that at both of these locations
the pressure is at P,. Under these conditions, the fluid pressure is

determined by the following 13 parameters, collected into four sets:

« The DRZ geometry: a, b, and L
+ The physical properties of the halite: Cr $, and k
= The physical properties of the brine: cg and p

« The spatial position, time, and pressures: r, z, t, Pa’ and P_.
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From Equation (2-49) this list of 13 parameters can be grouped to only
seven parameters: r, z, L, at, a, b, and (Pf - Pa)/(Po° - Pa)' where a is
defined in Equation (2-2). Because the DRZ inner radius a, and the borehole
length L, are held constant in the sample calculations, there are five free
parameters given by r, z, at, b, and (Pf - Pa)/(P°° - Pa). Thus, a contour
plot of the dimensionless pressure, given by (Pf - Pa)/(Pao - Pa)’ as a
function of r and z, is determined by specifying the two parameters, at and

b. This reduction in complexity is used in the following analysis.

Instead of discussing the solution for the fluid pressure minus the
ambient pressure, given by P, based on the above analysis, it is more
convenient to cast the problem in terms of the dimensionless pressure,

(Pf - Pa)/(Pco - Pa). Initially, the dimensionless pressure is 1 throughout
the DRZ. The system is abruptly disturbed by instantaneously dropping the
dimensionless pressure in the drift and in the borehole to 0. (In reality of
course, mining the drift and drilling a borehole cannot be performed
instantaneously. Rather, these conditions are applied when the time to
perform these operations is much shorter than the time between completing
both operations and measuring the brine inflow rate.) For a fixed DRZ outer
radius b, a contour plot of the dimensionless pressure will evolve determined
only by the parameter group at. For convenience, this group can be used to

define a penetration depth given by,

D = 2Jat - |—2kt (8-1)

The penetration depth is a measure of how far a disturbance in pressure will
propagate into the region. 1In the sample calculations, the disturbance is the
drop in pressure created in the borehole and in the drift. If at a location
in the DRZ, the distance to either the borehole or the drift floor is much
less than the penetration depth, then significant depressurization can be
expected at this location. Similarly, if the location is much farther from
the drift or the borehole than the penetration depth, then to a good
approximation the pressure at this location will not have yet been affected by

depressurization. Because the penetration depth increases with time, all
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locations in the DRZ a finite distance from the borehole or the drift floor

will eventually be affected by depressurization.

To demonstrate the utility of the penetration depth concept, contours of
the dimensionless pressure in the DRZ determined from Equation (2-49) are
shown in Figure 7 for a DRZ with an outer radius of 1.0 m and a penetration
depth of 0.2 m. Using Equation (8-1), and the parameters pu, Ceyr Cpo and ¢
specified in Section 8.0, this penetration depth corresponds to a value of kt
1.2 x 10716 p?.5. Thus, if the DRZ permeability is 10 2! m?, then a
penetration depth of 0.2 m corresponds to a time of 1.2 x 10° s, or 32 hours.

Similarly, for a permeability of 10'20 m2, the penetration depth would

correspond to a time of 1.2 X 104 s, or 3.2 hours. Notice that since Dp <<
b-a, and Dp << L, there are hardly any pressure changes in the region that is
near the outer radius and the bottom of the DRZ. Nearly all the changes in
pressure are confined to a small region adjacent to the borehole and the
drift. As the penetration depth increases to 1.0 m (as shown in Figure 8),
much of the DRZ, which extends to a radius of 1.0 m, is now affected. For a
permeability of 10'21 m2, this greater penetration depth corresponds to a
time of 34 days. Figure 9 shows that for much longer times, corresponding to
a penetration depth of 3.0 m, which is much greater than the outer radius of
the DRZ, the pressure throughout the DRZ decays to a very small percentage of

-21 m?

the original pressure. For a permeability of 10 , this penetration

depth would correspond to a time of 304 days.

For larger DRZ outer radii, the penetration depth needs to be longer, so
that the effects of depressurizing the borehole reach the outer radius of the
DRZ. If the outer radius of the DRZ had been 3.0 m, instead of 1.0 m as in
Figure 8, then much less of the region would have been depressurized. This
is shown in Figure 10, where the outer radius of the DRZ is 3.0 m and the
penetration depth is 1.0 m. Comparing Figures 8 and 10, in Figure 10 with
the larger DRZ outer radius, pressure changes have not yet significantly
reached the outer boundaries of the DRZ. However, for longer times, as shown

in Figure 11 for a penetration depth of 3.0 m, much of the DRZ is affected.
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Figure 7.
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Dimensionless pressure contours of (Pf'Pa)/(Pw'Pa) at a penetration

depth of Dp = 0.2 m, for a borehole with DRZ inner and outer radii of

a=0.05mand b = 1.0 m, respectively, and a borehole length of L =
3.0 m.
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Figure 8.
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Dimensionless pressure contours of (Pf-Pa)/(Pw-Pa) at a penetration
depth of Dp = 1.0 m, for a borehole with DRZ inner and outer radii of

a=0.05mandb=1.0m, respectively, and a borehole length of L =

3.0 m.
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Figure 9. Dimensionless pressure contours of (Pf'Pa)/(Pw'Pa) at a penetration
depth of Dp = 3.0 m, for a borehole with DRZ inner and outer radii of

a=20.05mandb=1.0m respectively, and a borehole length of L =
3.0 m.
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Figure 11. Dimensionless pressure contours of (Pf-Pa)/(Pw-Pa) at a
penetration depth of Dp = 3.0 m, for a borehole with DRZ inner and
outer radii of a = 0.05 m and b = 3.0 m, respectively, and a

borehole length of L = 3.0 m.
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8.2 Sample Calculations of Borehole Brine Inflow Rates

The flow rate into the borehole is of greater importance than the fluid
pressure in the DRZ. This rate is a readily measured quantity that can be
used to estimate physical properties of the DRZ. As given in Table 2, in
Figures 12, 13, and 14, brine flow rates into a borehole are shown for rock
permeabilities of 10'20, 10'21, and 10'22 m2 , respectively. Figures 16, 17,
and 18 are for the same permeabilities, respectively, but for a one-year
hiatus between mining the drift and drilling the borehole. The curves in
these figures are calculated from Equation (6-5). To differentizte the
curves, filled and unfilled symbols are used to indicate two- and one-
dimensional results, respectively. The notation on the figures of 2D and 1D
corresponds to two-dimensional and one-dimensional, respectively. The same
symbol shape is used for results with the same DRZ outer radius. 1In
particular, circles, squares, and triangles are used for DRZ outer radii of

infinity, 2 m, and 1 m, respectively. To accommodate the wide range of flow

rates, the y-axis scales in the figures are different for each figure.

Instead of analyzing individually Figures 12 to 18, to gain an
understanding of the different model predictions over the range of parameters
selected, it is better to discuss all four figures simultaneously. This can
be accomplished by making the following seven observations given in Sections

8.2.1 to 8.2.7.

8.2.1. Flow Rateast - 0O

At time just greater than zero, the fluid pressure at the borehole
surface, r = a, is Pa’ and is P_ for r > a. This discontinuity results in an
infinite flow rate at time just greater than zero. To avoid this
mathematical problem, the flow rates are plotted beginning with short, but

nonzero times.
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Figure 12. Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10720 2,
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Figure 13. Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10
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Figure 14. Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 10722 2,
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(6-15), and is independent of k.
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mining the drift and drilling the borehole = r = 1 year.
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Figure 17. Brine inflow rates calculated for one- and two-dimensional models

for a rock permeability of k = 1072 n?.  Time period between

mining the drift and drilling the borehole = r = 1 year.
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Figure 18. Brine inflow rates calculated for one- and two-dimensional models
for a rock permeability of k = 10'22 m2. Time period between

mining the drift and drilling the borehole = r = 1 year.
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8.2.2. Model with Maximum Flow Rate

For the same permeability (i.e., for the same figure) and for the same
DRZ outer radius, the one-dimensional solutions always have the greater flow
rate. This is because flow to the drift is neglected in the one-dimensional
models. Furthermore, the one-dimensional infinite-radius model always has a
flow rate greater than that for the one-dimensional finite-radius model
because the former has no barrier to flow at any radial distance from the

borehole.
8.2.3. Flow Rate for Same Dimensionality but Varying DRZ Outer Radius

For the same dimensionality, the flow rates for the infinite-radius and
finite-radius models are comparable when the penetration depth is less than
the borehole length and less than the distance given by the difference in
outer and inner radii of the DRZ. In this case, the finite boundary has not
yet had the opportunity to affect the flow. This may be achieved by
increasing the outer radius of the DRZ, and/or decreasing the permeability.
Notice in Figures 12 and 13 that as the outer radius of the DRZ increases
the finite-radius model flow rates are closer to the flow rates for the
infinite-radius models. In Figure 14, with the lowest permeability, the
finite-radius solutions with b = 2 m are essentially indistinguishable from

solutions with the same dimensionality, but with b - «.
8.2.4. Effects of Penetration Depth Relative to Radial Distance

As mentioned in Section 8.2.3, the penetration depth can also be
decreased by decreasing the permeability. Because penetration depth varies
as the square root of the permeability, the sequence of Figures 12, 13, and
14 have penetrations depths that decrease by factors of 10172 - 3.16 for the
same time given on the x-axis of the figures. For example, at 1000 days, the
penetration depths in Figures 12, 13, and 14 are 17.2, 5.44, and 1.72 m,
respectively. Thus, the penetration depths in Figures 12 and 13 at 1000 days
are greater than the outer radius minus the inner radius of the DRZ (i.e., Dp
>b - a=0.95m for b =1.0 m, and Dp >b -a=1.95m for b =2.0 m).

Because the penetration depths are greater than the difference in radii, for
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the same dimensionality the effects of a finite-radius DRZ will reduce the
flow rate below that for an infinite-radius DRZ. Therefore, in Figures 12
and 13, for the same dimensionality the finite-radius model flow rates are
significantly less than those of the infinite-radius model flow rates.
However, in Figure 14 at 1000 days, for the same dimensionality the infinite-
radius solutions are virtually indistinguishable from the finite-radius
solutions with b = 2.0 m. In this case, the difference in DRZ radii of 1.95
m is greater than the penetration depth of 1.72 m, so the effect of a finite-
radius DRZ has not yet affected the flow.

8.2.5. Conditional Test for Using One-Dimensional Models

The conditional test given by Equation (6-9) requires [Dp/L]* < 0.0886
for the two-dimensional brine inflow rate to be within 5% of that for the

one-dimensional model. From Equation (6-9), for permeabilities of k = 10'20,

10'21, and 10'22 m2, the times for which this conditional test are satisfied
are 0.239, 2.39, and 23.9 days, respectively. However, if agreement between
one- and two-dimensional models need only be within 50%, then the conditional
test in Equation (6-9) is satisfied for times less than 23.9, 239, and 2390
days for the same set of permeabilities, respectively. This analysis agrees
with the inflow rates shown in Figures 12 to 14. In particular, note from
Figure 14 that the two-dimensional brine inflow rate is always within 50% of
the one-dimensional brine inflow rate. This is expected because the time

period shown is less than 2390 days, as required by the conditional test

given by Equation (6-9).
8.2.6. Percentage of Flow Rate to the Borehole

Because the two-dimensional model includes flow to the borehole and to
the drift, it is of interest to determine F%, the percentage of the flow rate
to the borehole. As given by Equation (6-14), this percentage varies with
time, permeability, and DRZ outer radius. A plot of F% for permeabilities of
k =10729 10721, and 10722 n? is given in Figure 15. As shown in Figure 15,
the results for long times are insensitive to the permeability and time.

This agrees with Equation (6-15), in which the only parameters that determine
the long-time behavior of F% are a, b, and L. To use Equation (6-15), Al

and 7y must be calculated. For example, for b = 1.0 m, Xl can be estimated
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from Figure 6, or from using the technique in Appendix A to obtain a more

1. In the sample calculations L = 3.0 m, and

1

accurate value of ) = 0.930 m
thus according to Equation (2-26), n = 0.524 m~ Substituting these values
into Equation (6-15) provides the long-time solution for F% - 75.9% as given
in Figure 15. Thus, for b = 1.0 m, approximately 24% of the flow rate is to

the drift for long times.

A physical explanation for the results shown in Figure 15 can be
obtained by noting that the surface area of the drift floor available for
fluid to escape increases quadratically with an increasing DRZ outer radius.
However, the surface area of the borehole is independent of the DRZ outer
radius. Therefore, as shown in Figure 15, the percentage of flow to the
borehole decreases dramatically as the DRZ outer radius increases. Notice
from Figure 15 that even for a DRZ outer radius of 2.0 m, which is less than
the borehole length of 3.0 m, the dominant flow path is to the drift and not

to the borehole.

8.2.7. Eftect of Drilling Borehole One Year After Mining Drift

To demonstrate the effect of prior depressurization, in Figures 16 to 18
the brine inflow rates are shown for the condition that the time between
mining the drift and drilling the borehole is one year. For convenience, in
these calculations H = 3.0 m. Prior depressurization is not included in the
one-dimensional solutions, and therefore the one-dimensional inflow rates in
Figures 16 to 18 are identical to those in Figures 12 to 14. However, for
the two-dimensional models, in making the same comparisons among Figures 12
to 14 and 16 to 18, respectively, there are significant decreases in the
inflow rates if prior depressurization is included. This is due to the
reduction in pressure gradient and in the available fluid caused by fluid
previously escaping into the drift. 1In comparing Figures 16 to 18, this
effect decreases as the permeability decreases because less fluid has had the

opportunity to escape for the same time period of one year.
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9.0 CONCLUSIONS

This work presented a detailed derivation of the solutions to the
Diffusion Equation in cylindrical coordinates that are applicable to modeling
flow in a DRZ. The solutions apply to DRZs of arbitrary radial extent from a
borehole drilled from a drift, and are useful for determining fluid pressures
and borehole fluid inflow rates. The solution domain is restricted to
constant homogeneous rock and fluid properties in the DRZ and pressures in
the borehole and at the surface of the drift that are maintained constant at
ambient conditions. These solutions remove the modeling constraints of one-
dimensional radial flow for a DRZ of infinite extent, and thus provide a
basis for assessing the significance of neglecting flow to the drift, both
before and after drilling the borehole, and for assessing the effects of a
finite DRZ. The solutions are also useful for providing benchmark test cases

for more detailed numerical calculations.

Based on the solutions presented, an exact quantitative criterion was
developed for assessing the importance of two-dimensional effects on the
borehole brine inflow rate. This criterion provides a conditional test to
determine for a specified tolerance on the agreement between the one- and
two-dimensional solutions, up to what time two-dimensional effects are not
important. For this initial period, the one-dimensional model may be used.
For convenience, Equation (6-9) and the plot given in Figure 5 can be used to
determine the maximum time that the two- and one-dimensional solutions will
be comparable. This analysis assumes that the initial pressure is uniform.
If the initial pressure is not uniform, such as in the case that there was
much time between mining the drift and drilling the borehole, the two-
dimensional model is appropriate because it includes depth-dependent
variations. In this case, for long times, the ratio of the flow rate to the
borehole and to the drift may be determined from Equation (6-15) and Figure
6.

Although, as given in Table 1, the two-dimensional finite-radius model
presented in this work removes three of the limitations of the one-
dimensional infinite-radius model, the extent of the DRZ is not determined
from the model and must be specified independently. In addition, the model

neglects flow up from below the DRZ.
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Further work is needed to extend the two-dimensional model to include
flow up from below the DRZ. For two-dimensional modeling to be practical, a
direct method for estimating physical properties from fluid inflow rates is
also needed. Such a method has been developed for the one-dimensional
infinite-radius model (Nowak and McTigue, 1987; Nowak et al., 1988) and

should be developed for two-dimensional models.
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APPENDIX A: DETERMINING EIGENVALUES IN THE RADIAL DIRECTION






Appendix A: Determining Eigenvalues in the Radial Direction

The eigenvalues Ai are determined from Equation (2-20) and are
calculated numerically. In this Appendix, a simple but highly efficient

Newton iteration method is presented for determining the eigenvalues.

To begin the iteration, a first guess for the eigenvalues may be
obtained by using asymptotic expansions for the Bessel functions for large
values of their arguments given by (Abramowitz and Stegun, 1970, p. 364, Eqgs.
9.2.1 and 9.2.2)

2 nn n
Jn(x) - |;§ cos[x S5t Z] as X & o (A-1)
Y()-*‘z—' - r as X + o (A-2)
o (X ax Sin|x 5 4 .

Using Equations (A-1) and (A-2), Equation (2-20) for the first guess of

*
eigenvalue i, Ai’ reduces to

* 3x]| . * T * | . * 3x
0= cos[Aib - Z—]51n[kia - Z] - cos[Aia - 2]51n[Aib - Z_] . (A-3)

*
Solving Equation (A-3) for Ai results in
* n(2i-1)

i=1,2,3, ... (A-4)

With this initial guess, the next iterate for A; is given by



*
g(Xx.)
R (A-5)
i i dg
di *
A=A,
i
where
*y o Y * J *b A*b J A* A-6

Using Equations (2-16), (2-17), and the following identities (Abramowitz and
Stegun, 1970, p. 361, Eq. 9.1.30),

dJl(x) Jl(x)
ax " Yo - % (A-7)
le(x) Ly Yl(x) .
&= " Yo - T (A-8)
we have that
dg _ .
T a[Yl(Ab)Jl(Aa)-Jl(Ab)Yl(Aa)] + b[JO(Ab)YO(Aa) JO(Aa)YO(hb)]
(A-9)

+ % [JO(Aa)Yl(Ab)-YO(Aa)Jl(Ab)]

The next iterate can now be determined by substituting Equations (A-6) and
(A-9) into Equation (A-5), and repeatedly using Equation (A-5) to converge to

the eigenvalue.
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Appendix B: Evaluating Integral for an Infinite Radial Domain

Approximations of the integral obtained for infinite-domain problems
have been reported (Jaeger, 1942; Jaeger and Clarke, 1942). A convenient
method developed by D.F. McTigue (Sandia National Laboratories, Department
1513) to evaluate the first part of the integrals in Equation (6-5) may be

derived by substituting 8 = aX so that

2
-al t
1(0,¢) = & dx as ¢ » 0 (B-1)
,\[Jg()\a) + Yé(xa)]
0
becomes
£a
-aﬂzt/a2
I1(0,¢e) = & daB as £ » 0 . (B-2)
2 2
B[Jo(ﬂ) + Yo(ﬂ)]
0

As § - 0, the asymptotics (Abramowitz and Stegun, 1970, p. 360, Eqs. 9.1.12
and 9.1.13)

5
Jo(ﬁ) -1 - 4 + ... as § » 0 (B-3)
Y (8) - 2|tn &Y]]J 8) + as § » 0 (B-4)
0 n 2 |70

can be used to simplify the denominator of the integrand in Equation (B-2) so

that



£a

das as ga - 0 . (B-5)

Integrating Equation (B-5) by parts results in

”2 L t

1(0,¢) = - + higher order terms as ea » 0 . (B-6)
v
En[eie ]

The second part of the infinite-domain integral is given by

-aAzt
I(e,©) = ° dx e >0 | (B-7)

A[Jg(ka) + Yg(Aa)]

which may be evaluated numerically because there are no singularities in the

integrand for £ > 0.

B-4
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