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Abstract 

Computed vorticity-flame interactions in two dimensions suggest that a wrinkled flame 

is a common occurrence in reacting turbulent flow and that these wrinkles are formed in 

a small fraction of an eddy turn-over time. An experiment in which the Tsuji porous- 

cylinder burner is spinning may be a way to achieve a steady, wrinkled diffusion flame under 

laboratory conditions. The wrinkled flame differs from the previously studied stagnation, 

counterflow flame in that the former has a large spatial variation in diffusive gradients near 

the wrinkle. These gradient variations may explain the extinction observed in unsteady, 

pulsed jets by Lewis et al. 
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A Tsuji-burner has been a popular experimental/computational device to simulate 

strained diffusion flames with the intent to obtain information that is appropriate for 

turbulent combustion. Fuel pumped through the porous cylinder reacts with the approach 

air flow. Near the stagnation streamline the flow field is characterized by the strain rate, 

and there are no diffusive fluxes along the flame surface. Thus, one-dimensional detailed 

and reduced kinetic calculations have been done (c/. Peters and Kee, 1987). 

An aspect of turbulent flow which is not simulated is a wrinkled flame. Wrinkling 

is a ubiquitous feature of an interface in turbulent flow and the cause can be illustrated 

by convection of a non-diffusive scalar in a swirling flow. Consider two point vortices, 

separated a distance L in the y direction - a configuration typical of vortex structures in 

mixing layers. Start with scalar isolines parallel to the line joining the vortices, but offset 

from their x location. The offset is used to mimic flow past a splitter plate which generates 

a scalar interface between two vortical layers. In Figure 1, we show the scalar isolines after 

a small time period from these initial conditions, small with respect to the vortex turn-over 

time, ty, = l/v = (27^r)2/^. We see that a wrinkle quickly forms and that the scalar gradient 

is larger on one side of the wrinkle (isolines closer together means larger scalar gradient). 

The isolines which are adjacent to the wrinkle and nearest to the vortex center have the 

highest gradient. Diffusive calculations indicate that the amount of wrinkling, or rotation 

around the vortex, is dependent on the Peclet number (Ashurst, 1989). Simulations with 

the flame-sheet model imply that the wrinkle is a local temperature maximum because 

the mixture fraction gradient is minimum at the wrinkle. This minimum is a result of the 

compressive strain-rate being parallel to the flame rather than normal, as in the counterflow 

case. Away from the wrinkle, the orientation of strain rate changes to being nearly normal, 

and so the scalar gradient is larger. 

Examination of OH measurements of an unsteady diffusion flame near a vortex ring 

suggests, perhaps, that the wrinkle is burning hotter, while the flame near the vortex core 

has extinguished, and the other section of flame is still reacting (Figure 3c and 3d in Lewis 

et al., 1988). These features would correspond to the gradient minimum, maximum and 

in-between value, see Figure 1. However, one needs to be cautious in the interpretation of 

OH measurements because the change in OH concentration with strain rate is small, only 
a one-third decrease as the strain rate is increased from near zero to near the extinction 

limit for methane (Chen, 1989). 

So, it is suggested that a steady flow with a wrinkled flame can be created if the Tsuji- 

burner is spinning at a rate which moves the stagnation point from the front to the side 

of the cylinder. Based on potential flow, a circulation greater than ^irUoRc is sufficient, 



which corresponds to 955 RPM when the cylinder radius Re is 3 cm, as in the work of 

Tsuji and Yamaoka (1971), and the freestream velocity Uo is 150 cm/sec. (The zero-spin 

stagnation strain-rate is 2Uo/Rc and the critical spin-rate is (2?7o/-Rc)/(27r) in revolutions 

per time units, cf. Batchelor, 1967.) Potential streamlines are shown in Figure 2 for the 

value of r/(47r!7o.Rc) == 1.05, which creates a small recirculation region on one side of the 

cylinder. The fuel flow rate is so small that its effect can not be seen in Figure 2, and so 

is not included. 

We assume a constant-density flame and solve for the convection and diffusion of the 

mixture fraction Z in this steady potential-flow, but now include the fuel velocity, Vv,all 

= 0.05 Uo- The Peclet number is 400 (= UoRc/a, where a is the diffusivity). Mixture 

fraction isolines are shown in Figure 3 and contour values of 0.2> Z >0.02 are of interest 

for hydrocarbon combustion; the pure fuel value of Z is unity. We see that the gradient of 

Z is almost constant on the front side of the recirculation region, and it is on the back side 

of the recirculation region where a curved "flame" may exist. Increasing the rotation rate 

reduces the scalar gradient in the curved region; T/{4.TrUoRc) = 1.05 and 1.2 are shown in 

Figures 3a and 3b. 

It may be possible to set the strain rate so that the flame is quenched on the front 

or bottom-front of the cylinder, and thus only the curved flame would exist. This may 

require a continuous ignition source located somewhere in the flow, for example in some 

out-of-plane location. There also could be an optimum approach flow angle with respect 

to gravity so that buoyancy effects would be minimum (or heat the approach air flow). 

Close confinement with walls which are shaped like the potential streamlines (Fig. 2) may 

suppress boundary layer separation. 

Another interesting configuration would be two spinning burners, with opposite rota¬ 

tion, arranged so that the recirculation regions are almost merged. Dilution of fuel in one 

burner may give a flame strip with a gradient of fuel/oxidizer boundary conditions. This 

would represent partial premixing that occurs in reeling flows that have some quenching, 

that is a flame sheet with holes which allow mixing without reaction. 

Thus, it may be possible to measure these steady-state flows and reaction profiles in 

curved flames. How these extra parameters are to be incorporated into reacting turbulence 

models is an area for future work. 
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Figure 1. Distortion of scalar isolines in the region between two point vortices. The 

initially vertical lines were spaced 0.05 units apart in the x direction and show the wrinkle 

development. The elapsed times, in units of the turn-over time appropriate for each starting 

radius, are: 0.25, 0.22, 0.20, 0.18 and 0.16; from left-to-right. The vortices are at (0,1) 

and (0,-3) with clockwise rotation. The dotted lines connect points which started with the 

same y coordinate. 



Figure 2. Potential streamlines about a spinning cylinder with the spin large enough to 

move the stagnation point off the cylinder surface. The circulation in units of A-jrUoRc, 

is 1.05. The cylinder rotation is clockwise for left-to-right approach flow, Uo. Equal 

increments in the stream function are shown with three additional contours drawn to 

reveal the stagnation-point region. 
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Figure 3a. Mixture fraction iso-lines in potential flow with r/{4:TrUoRc) = 1.05 and fuel 

wall velocity of 0.05 Vo- At the cylinder, dotted line, the mixture fraction is unity and 

the drawn iso-lines are Z = 0.5, 0.4, 0.3, 0.2, 0.1 and 0.01. A polar coordinate system has 

been used between the radii of J?c and 4-Rc (401 radial grid points with 2.5 degree angular 

increment); the iso-line wiggles at large radii are artifacts of poor numerical resolution 

(the grid mesh ratio RA0 : Ait becomes very large and in the wiggle region the convection 

velocity is diagonal with respect to the local grid axes.) 
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Figure 3b. Mixture fraction iso-lines in potential flow with r/(47r?7o-Rc) = 1-20 and fuel 

wall velocity of 0.05 Vo- Notice that on the back-side of the recirculation region, the 

scalar gradient is smaller with this faster spin rate. The cylinder rotation is clockwise for 

left-to-right approach flow, Uy 
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