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ABSTRACT 

R 

We derive a model which describes the dynamics of a multiphase system consisting of a gas flame 

attached to a pyrolyzing solid or liquid propellant. We consider the case in which the multiphase 

flame, which includes the propellant interface, the preheat zone and the gas-phase reaction zone, 

is thin compared to some characteristic hydrodynamic length. An asymptotic analysis of the inner 

structure then yields jump conditions on the fluid and transport variables across the multiphase 

flame, which is treated as a surface of discontinuity separating the unburned condensed-phase 

propellant from the burned gas. The resulting model, which describes the evolution of this surface, 

is then used to investigate the hydrodynamic (Landau) stability of propellant deflagration. In 

particular, it is shown that this type of instability is completely suppressed for solid propellants, 

whereas for liquid propellants, a cellular instability arises which is similar to that which occurs in 

-premixed flame propagation. 
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HYDRODYNAMIC STABILITY OF SOLID AND LIQUID PROPELLANT COMBUSTION 

§1. Introduction 

The phenomenon of hydrodynamic instability in premixed combustion theory was first described 

by Landau (1944) and Darrieus (1945) for the case of a freely propagating gas flame, and by 

Landau (1944) for the case of a liquid propellant. In both cases, it was assumed that the reaction 

front, corresponding to the flame and the liquid/gas interface, respectively, was infinitely thin and 

propagated normal to itself with a prescribed constant velocity. Due to the density jump across the 

front, the fluid variables are also discontinuous there, and a stability analysis of the gas flame leads 

to the prediction that plane flames are absolutely unstable to steady, but nonplanar (cellular), 

disturbances. A similar prediction was also made for the case of liquid propellants, although it 

was shown that the combined effects of gravity and surface tension were capable of stabilizing the 

reaction front in that problem. 

Since plane flames are observable in the laboratory, it was clear that this simple phenomenolog- 

ical description of the reaction front as a hydrodynamic discontinuity was insufficient to completely 

characterize the nature of flame stability. Accordingly, this model of the gas flame was extended 

by Markstein (1951, 1964), who assumed a stabilizing phenomenological dependence of the propa¬ 

gation velocity on the curvature of the front. Further studies (c/, Einbinder, 1953; Eckhaus, 1961; 

Chu and Parlange 1962; Istratov and Librovich, 1966) accounted for the finite thickness of the 

flame to obtain, from a perturbation analysis, corrections due to diffusional transport effects. Still 

more recent analyses of hydrodynamic instability in flames have sought to completely avoid any 

heuristic or phenomenological assumptions and to treat the the dynamic interaction of the flame 

with the underlying flow field. These studies (c/. Sivashinsky, 1977; Pelceand Clavin, 1982; Frankel 

and Sivashinsky, 1982; Matalon and Matkowsky, 1982, 1983, 1984) treat the flame as an internal 

boundary layer on a hydro dynamical length scale, where the boundary layer is composed of a pre¬ 

heat zone and an even thinner reactive/diffusive zone. Formal asymptotic matching techniques 

are then used to derive jump conditions on the fluid variables across the flame structure. This 

type of analysis is consistent with the original notion of a flame as a hydrodynamic discontinuity, 

but does not require any a priori assumptions on the propagation velocity. For freely-propagating 

flames, it has been possible to obtain, for long-wave disturbances, an expression for the growth 

rate in the form of a power series expansion in the disturbance wavenumber. The first term in this 

expansion gives the classical result due to Landau (1944) and Darrieus (1945) that the growth rate 

is proportional to the wavenumber of the disturbance. However, the next term in this expansion 

can be stabilizing, suggesting that this type of hydrodynamic instability may be suppressed for all 

but very long wavelength disturbances. 



This treatment of the flame structure as an internal boundary layer in the hydrodynamic field 

has application to other premixed combustion systems as well. In particular, Kaper et al. (1985) 

have extended this type of analysis to a flame attached to a flameholder, the effects of which 

are capable of suppressing hydrodynamic instability for inflow velocities sufficiently less than the 

adiabatic flame speed. In the present work, we consider two types of multiphase systems consisting 

of a gas flame attached to a pyrolyzing solid or liquid propellant. If it is assumed that the multiphase 

flame, which includes the propellant interface, the multiphase preheat zone, and the gas-phase 

reaction zone, is thin compared to some characteristic length, then this multiphase flame can also 

be treated as an internal boundary layer separating the unburned condensed-phase propellant from 

the burned gas. Thus, in the appropriate limit, this boundary layer again becomes a surface of 

hydrodynamic discontinuity across which jump conditions on the fluid and transport variables may 

be derived. 

Before proceeding, we remark that there exists another source of non-acoustic (small Mach 

number) combustion instability which is not related to the jump, due to thermal expansion, in 

the fluid variables across the reaction front. Rather, it stems from a reactive/diffusive instability 

associated with the highly nonlinear temperature sensitivity (as measured by the activation en¬ 

ergy) of the reaction rate. Such instabilities, which can be either pulsating (nonsteady) or cellular 

(steady, but nonplanar) in nature, exist even in the limit of zero thermal expansion. Since these 

instabilities occur on diffusive time and spatial scales, they are effectively suppressed on the hy¬ 

drodynamic scales of interest here, just as hydrodynamic instabilities are suppressed in the limit 

of zero thermal expansion. The two types of analyses overlap in the limit of weak thermal ex¬ 

pansion and small wavenumber (long-wave) disturbances, in which case it is usually possible to 

derive a nonlinear evolution equation for the motion of the flame front (c/, Sivashinsky, 1983; 

Joulin and Sivashinsky, 1983; Margolis and Sivashinsky, 1984). There is a considerable literature 

on this non-hydrodynamic type of instability not only in gaseous combustion, where it is usually 

referred to as diffusional/thermal flame instability [see, for example, the review by Margolis and 

Matkowsky (1983) and the monograph by Buckmaster and Ludford (1983)], but also in condensed- 

phase combustion synthesis of refractory materials (c/. Merzhanov et al., 1973; Matkowsky and 

Sivashinsky, 1978; Margolis, 1983; Margolis et al., 1985; Booty et al., 1986). More recently, new 

reactive/diffusive instabilities have been found in solid propellant combustion (Margolis and Arm¬ 

strong, 1986; Margolis and Williams, 1988, 1989), and a generalization of the Landau model for 

liquid propellants to include a temperature and pressure dependence on the propagation rate shows 

that such instabilities can arise there as well (Armstrong and Margolis, 1989a,b). The present work 

thus complements these latter studies on propellant deflagration by investigating the role of hydro- 

dynamic instability in these systems. 



§2. The Mathematical Model 

The model which we employ to describe both solid and liquid propellant combustion is similar 

to that introduced in Margolis and Armstrong (1986) and Margolis and Williams (1988, 1989) for 

solid propellants, and is sketched in Figure 1. We assume that there is no reaction in the liquid 

(solid) phase and that there exists a surface 13 = %p[xi,x-t,t) separating the condensed and gas 

phases. At this surface, a specified fraction Q > 0 of the propellant vaporizes (sublimes) and burns 

in the gas phase, while the remaining fraction (1 — a) is pyrolyzed directly into gaseous products. 

Both the pyrolysis and the gas-phase reactions are assumed to be governed by overall Arrhenius 

processes with large activation energies which are of the same order of magnitude. 

We assume that within the gas and condensed phases separately, the heat capacity, thermal 

conductivity, mass diffusivity (assumed to be negligible in the condensed phase), and viscosity are 

constant, but we allow for jumps in these quantities across the phase boundary. In the previous 

studies of solid propellant combustion referred to above, the emphasis was on reactive/diffusive in¬ 

stabilities, and thus the density was also assumed to be constant in both phases. This assumption 

effectively decoupled the transport processes governing heat conduction and diffusion of chemical 

species from the underlying (unidirectional) velocity field, and permitted the analysis of diffu- 

sional/thermal influences on the overall intrinsic stability of solid propellant combustion. On the 

other hand, Armstrong and Margolis (l989a,b) allowed for such a coupling between the transport 

processes and the hydrodynamic field in their generalization of Landau's (1944) model of liquid 

propellant combustion with a nonreactive gas phase. This model was then used to study hydro- 

dynamic and reactive/diffusive instabilities in the pyrolysis of liquid propellants in the absence of 

gas-phase thermal expansion. Consequently, the present study extends both of these propellant 

models by allowing for thermal expansion in a reactive gas phase, where the gas flame is located at 

a finite distance from the propellant surface. The variation of density in the gas phase and across 

the propellant surface thus allows for the full interaction among the transport processes and the 

flow fields in both phases. For the most part, we treat the solid and liquid propellant problems 

simultaneously, since both models are governed by the same conservation equations and interface 

conditions. 

The full system of governing equations in the gas phase are given by 

^ + V . (^V) = 0 (2.1) 

{^^'^""^^{^^i^'^} ^ 

R°pt = P (2.3) 

r f)v '1 / v \ 

p{-^r+v•vyJ=^v2y-Aynexp(,-io^,) (2-4) 



^I^^^h2^^'7^"^^) ^ 

V = 0, f = Ta = ^(7u + 3) at is = oo. (2.6) 
^ 

Here p, V, P, Y, and T represent the density, velocity field, pressure, unreacted mass fraction, and 

temperature respectively of the gas phase. In these equations, p,g,\g,Cg are the viscosity, thermal 

conductivity, and heat capacity in the gas phase, Cp is the heat capacity of the propellant, D is the 

mass diffusivity of the gas, 7 is the heat of vaporization(sublimation) of the propellant, and J3 is 

the overall heat of reaction. These last two quantities are given in units of temperature through 

division by Cp. The constant Ty is the temperature far into the propellant (at 23 = -oo), A and E 

are the rate coefficient and activation energy of the gas phase reaction, and R° is the gas constant. 

In the condensed phase, Xs < $p, 

^=1, P=Pp (2.7) 

V.V=0 (2.8) 

pp { 9^ + v ' vv} = -vp + ^ {V2V + t^ ' v)} ^ 

(Q/n ^ \ 

p --+V•V^^=^PV2T (2.10) 
8t J Cp 

T = Tu at 23 = -oo, , (2.11) 

where the subscript "p" is used to denote quantities in the propellant. For the case in which the 

propellant is a solid, there can be no motion in the condensed phase and thus 

V = 0 for is < $p. (2.12) 

This system of equations must be solved subject to appropriate boundary conditions at the pro¬ 

pellant interface where the velocity Vp in the 23 direction and the unit normal ftp to the interface 

are given by 
/ /)$ \ 

Vp = ID, 0, -^\ , (2.13) 

—1/2 
f Q^> B^> \ IQ^ \2 I8^ \2 

--(-^•-t'1)1'^)+(^). • (2•14) 

We require that the temperature be continuous across this surface, and, due to the action of 

viscosity, a no-slip condition is imposed. In addition, the mass flux normal to the interface must 

be continuous. Hence, 

T_ = f+ (2.15) 

rip x V- = ftp x V+, ppAp • (V- - Vp) = p+np . (V+ - Vp), (2.16) 



where a subscript ± signifies evaluation at 13 = $±. The mass burning rate is given by the pyrolysis 

law 

ppAp • (V_ - Vp) = Apexp (-Ep/R°f) , (2.17) 

and conservation of flux of normal momentum across the interface determines the jump in the 

pressure field, 

P--P+ = pp[np.(V.-Vp)]np.(V+-V_)+rV-np 
-^,np.(E+np)+/ipnp.(E-np), (2.18) 

where 7* is the coefficient of surface tension for the liquid propellant or the coefficient of surface 

energy for the solid propellant. Here, the components e,,j of the rate of strain tensor E are given 

in terms of the components v^ of the velocity vector V by e,,j 
= 9vi/8ij + Qvj/Qxi. The curvature 

— V • Ap of the interface is given in terms of $p by 

^iz fi -L 
f^}2} 

j- €^ [1 + ^Yl o^^^p ~^\l+[•^) \ +-ffif \1 + [^ ) \~2~9^~9^'9^ 
- V • ftp = ———L—————-J————L——————-L,—————————. (2.19) 

^^r [ \9X^ \9^} \ 

The conservation of flux of the tangential components of momentum gives 

/2gfip x (E+rip)=^np x (E_Ap), (2.20) 

and in addition there is conservation of heat flux 

np • (AgVr+ - ApVT-) = cgp+fip • (V+ - Vp)T+ - c-pppfip . (V- - Vp)T- 

+ Cp^rip • (Vp - V_)[-a7 + (1 - a)0] (2.21) 

and conservation of unreacted mass flux 

p+Dhp • Vr+ = p+hp . (V+ - Vp)V+ + appfip • Vp. (2.22) 

We nondimensionalize temperature, velocities and pressure with respect to To, U and Poo, which 

denote the flame temperature, propagation velocity of the propellant surface, and the pressure in 

the burned gas, respectively, for the case of planar, adiabatic combustion. In addition, pp serves as 

a unit for the density. The diffusion process introduces the length and time scales 

^=^ ^-^ (2.23) 
PpCp(7 U 

but since our focus here is on hydrodynamic instability, we follow the same approach as that ofMat- 

alon and Matkowsky (1982) and scale distances on a characteristic length L of the hydrodynamic 

field, such as the wavelength of a disturbance, and time on L/U. The ratio 

6 . ^ (2.24) 



thus represents the relative thickness of the multiphase flame, which includes the propellant in¬ 

terface, the multiphase preheat zone, and the gas-phase reaction zone. The gas-phase activation 

energy is scaled on R°fa and this gives rise to the nondimensional parameter 

N = J5—. (2.25) 
R°Ta 

When N is large, the reaction rate is strongly temperature dependent and the reaction is confined 

to a thin region (relative to the preheat zone) which is referred to as the gas-phase reaction zone. In 

the following section we will exploit this limit, which will allow this thin layer to be approximated 

by a surface Xs = $r separating burned from unburned gases. It is thus convenient to adopt a 

coordinate system moving with the reaction zone 

x = a-i, y=xy, z = X3 - $,.(2:1,2:2,*) (2.26) 

so that the propellant interface is located at the position 

zo(a;i,a;2,<) = $p(a;i,a;2,<) - $r(a;i,a;2,0 < 0. (2.27) 

Employing these nondimensionalizations and the moving coordinate system (2.26), we obtain 

the nondimensional gas-phase equations 

^^V.(pv)=0 (2.28) 

^+M£+PV•VV=-VP+V$^1?+^{AV+KV-V^)(^+V•V)} (2-29) 

9w ..9w _ 9p 
,_ f, 1 9 (9s _ \\ , , 

^+M^7+pv•vw=-^+^ff{AW+3^^^+v•v)} ^ 

PT = poo (2.31) 

f)V f)V \ 

p—+M—+pv^Y-6——^Y=-6Sl (2.32) 
at 9z c Le 

p^+M^+pv-^T-f^AT^ftSfl (2.33) 
at 9z c 

Y = 0 for z > $,., (2.34) 

while in the condensed phase, 

p = Y = 1 (2.35) 

^-+V.v=0 (2.36) 

^.M^.v.Vv=-V^V^.^{Av.|(v-V^)(^.V.v)} (2.3T) 

^,M^.v.V.=4^^{A..^(^.V.v)} (2.3S) 
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Q/Tt S^T 

—+M—+v.VT-^AT=0 (2.39) 
OT 02 

T = (T, V = 0 at 2 = -oo (2.40) 

(for the case of a solid propellant, V = 0 in the solid phase). In these equations, we have introduced 

the two-dimensional transverse gradient V = (9/9x; 9/9y), in terms of which the Laplacian A in 

this coordinate system is given by 

A = [l + (V$,)2] ̂  + V2 - V2^ - 2^(V$,. V). (2.41) 

In addition, we have decomposed the velocity field according to V = v + wk, where k is the unit 

vector normal to the gas-phase reaction front 23 = $r and v • k = 0, and have introduced the 

notation 
r g^ 1 

ps= M = p<w -v- V$r - —— f • (2.42) 
I vt ) 

The reaction rate term fl appearing in the transport equations is given by 

n=AA(r)y"exp^v(i-^)] (2.43) 

where 

A(T) = A(r)/ACr»), A = 
XPAW 

exp(-Tv). (2.44) 
62Cpp^U'i 

Finally, the non dimensional parameters appearing in these equations include 

-TU poo \ -^s 
. 

^s 

^T: p!'=-p;• '=y ^T. 

^——S——, ^(^"f, ^(^KllW) p.45) 
Poo^ooCg Ag C 

where the Lewis number Ie is the measure of thermal to mass diffusivity of the gas, and the Prandtl 

number Pr is the ratio of viscous to thermal effects. We remark here that an additional parameter, 

namely the Mach number, Ma = U-^poo /Poo, appears during the course of nondimensionalization. 

However, we will assume that the combustion front propagates at speeds much smaller than the 

speed of sound (Ma < 1) so that the total nondimensional pressure P = 1 -)- Ma2? can be approxi¬ 

mated as a constant in Eq. (2.3), resulting in the simplified equation of state (2.31). On the other 

hand, the gradient of pressure cannot be neglected, and thus appears in the momentum equations 

(2.29) - (2.30), (2.37) - (2.38). 

Before writing down the boundary conditions at the propellant surface we introduce the addi¬ 

tional nondimensional parameters 

^ -IP N - 

Ep A - 

Ap(f) 
uV —— - , -'D —— —=———=—1 -•^D 

— —=————^—— V m ' r rtflm 
' r . irn \ 

T, 
- 

OTp 
" 

Ap(Tp)' 

A^^exp^), ^ (2.46) 
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where fp is the propellant surface temperature for steady, planar combustion. This quantity, as well 

as the burning velocity U, are determined as part of the steady, planar analysis to be considered 

in the next section. It is also convenient to introduce the notation 

{Q& 
~\ 

M^p w-v.V$p--^, (2.47) 

for the longitudinal mass flux relative to the propellant surface. The boundary conditions at this 

surface are thus given by 

T_ = T+ (2.48) 

^rip • (V+ - V,) = rip . (V- - Vp) (2.49) 

rip x V+ = Ap x V- (2.50) 

ftp . (V- - Vp) = Ap(r)Apexp [7Vp(l - ^)] (2.51) 

P--P+ =Mp l+|V<t>p|^ np --p, =M, {l + V^}-172 np . (V, - V.) - ^V . 

^ ^ ^^ 
-^-np-(PrgE+np-P7-(E_np) (2.52) 

np X (PrgE+rip - Pr(E_np) = 0 (2.53) 

-Mp[(l - c)T+ - a + c(l - a/3)] =6 {A[(l + V$p . V$,)T, - V$p • VT]+ 

- [(1 + V$p • V^)T, - V$p • VT]-} (2.54) 

Mp(V+ -a)=6->- {(1 + V$p . V^)V, - V$p . VF} . (2.55) 
cLe ' 

We note that for the case of a solid propellant, V_ = E_ == 0 in these conditions. 

§3. The Gas-Phase Reaction Zone 

In general, we consider the limit N » 1/6, although we do not as yet make any assumptions 

on the magnitude of f, which is simply regarded as an 0(1) parameter in this section. In this limit 

the reaction rate, n, becomes negligible except in a very thin region near z = 0. The analysis 

consists of stretching this region by introducing a new variable ^ = Nz, and seeking expansions of 

the form 

r=ro+^ri+^T2+---, Y =Vo+ ^+^+.... (3.1) 

and similarly for the remaining variables. The resulting systems of equations are solved recursively 

in powers of 1/N, and the solutions are matched to the regions on either side of z = 0 where the 

reaction rate is negligible. The net result is to replace the nonlinear reaction term n by jump 

12 



conditions relating the transport and fluid variables across the surface z = 0. We will omit the 

details of this analysis since it is a synthesis of the analyses of Matkowsky and Sivashinsky (1979) 

and Matalon and Matkowsky (1982) for a gaseous flame, and that ofMargolis and Williams (1988) 

for the transport variables in solid propellant combustion. This procedure results in a set of jump 

conditions across z = 0 which are given by 

[T] = [V] = [w] = [V] = 0, (3.2) 

\9T] (3 \9Y} , . 

[ad'-lekj (3-3) 

r i ^M\'il't\9T^ (2c\|3^-rlI£nn\\ll'l f7v._ ,1 aftc (N. .} {l+|V^|2} [-^\=-[ ^ ) exp{^(r,-l)}———^exp{^-l)} 
(3.4) 

[£.V^]=0, (3.3) 

[p]=^{l.|V^}[^]. (3.6) 

where [<f>(z)} = </>(z = 0+) - (f>(z = 0~), and the second equality in Eq. (3.4) is obtained from the 

expression for the steady, planar burning rate eigenvalue A (Section 4). 

We observe that the parameter N appears in the jump condition (3.4), which is a consequence 

of truncating our expansion for T according to 

f To z < 0 

\ 1+Ti/N z>0, 

and replacing Ti by N(T^. - 1) in (3.4); the remaining variables are truncated after the first term in 

their respective expnasions (e.g., Y = Vo). This truncation procedure, which has also been applied 

in studies involving certain kinds of burner flames (Sivashinsky, 1975; Margolis, 1980), condensed 

phase combustion (Sivashinsky, 1981; Margolis, 1983, 1985) and solid propellant deflagration (Mar¬ 

golis and Armstrong, 1986; Margolis and Williams, 1988), results in a closed model for the transport 

variables. 

In what follows, we will eventually exploit the limit 6 < 1 (Section 5), in which case the width 

of the multiphase preheat zone, though 0(6) on the hydrodynamic scale, is still large compared to 

the width of the gas-phase reaction zone. Consequently, the latter zone will always be regarded as 

a surface across which the variables satisfy the jump conditions (3.2) - (3.6). 

§4. Steady Planar Deflagration 

There exists a steady, one-dimensional solution of the governing equations (2.28)-(2.40) which 

satisfies the boundary conditions (2.48)-(2.55) and the jump conditions (3.2)-(3.6). This solution, 

13 



which is obtained for arbitrary values of 6 and is valid for both solid and liquid propellant combus¬ 

tion, is given by 

$? = -(, $?=-(+ 20°, (4.1) 

f 1 Z < 2S Z<Z°Q 
yC 

/TU 

_a^cI£z/{>-1} z§<2<0 
0 2 > 0 

(T+^p-^-W z<z\ 
1 + Q/3(e"/^ - 1) 2§<. 
1 z > 0 

^<4 
z° < z <0 

z<z°o 

(4.2) 

(4.3) 

P" p»[l + Q/3(e"/^ - I)]-1 zg < z < 0 (4.4) 
Poo z> 0 

z<4 
w p^ - 1 + ate^e"/^ - 1) 2g < 2 < 0 (4.5) 

Poo1-! 2> 0 

Poo1-! 2<2g 

^aftp^PTge"!^ 2g<2<0 J' (4.6) 

0 2 > 0, 

where the superscript "0" is used to denote the steady, planar solution. The distance z^ of the 

flame sheet from the propellant/gas interface is given in terms of the surface temperature Op, which 

is to be determined, by 

^{"^}- ^ 

Since positive values of2§ are unphysical, it is clear from (4.7) that Op must be restricted to lie 

in the range 1 — aft < dp < 1 in order for a steady, planar deflagration to exist. In the limit that 

the surface temperature approaches the burned gas temperature (a? —> 1), the gas phase reaction 

zone approaches the propellant interface (2^ —» 0), and the gaseous preheat zone disappears. In 

this intrusive limit, the present analysis does not apply and a separate analysis is required (c/. 

Margolis and Armstrong, 1986). Also, on physical grounds, one certainly expects the condensed 

propellant to be more dense than the gas. The result (4.4) reveals that the gas-phase density 

decreases monotonically from its value at the interface, p° = poo/Op, to its constant value pas in 

the burned gas. Consequently, in the following, we will only consider parameter values lying in the 

range poo < Poo/Op < 1- Finally, the steady, planar analysis provides us with expressions for the 

burning rate eigenvalue A, from which Eq. (2.44) gives the dimensional burning velocity U, and 

the dimensional surface temperature Tp. In particular, we obtain 

1/2 
2n\LenA{T^ 1 

./, u = (4.8) 
CgPp7V"+lQ2/3"+l J 
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p r J)OT /A2? ?vn+l/>2/^"+l\ i 
1 

T/T^2EP\1+R^^{APC9N ap | 
. (4.9) 

p r fio'i 
T IT - 9 P 1 J- 

Jt la (Tp = rp/7o - 2- 1+--— 
•"ff L —S \ /l^a;A"l•/'g-' 

p/ ° 

£;, [ £, V A(r»)2n!A^ ^ ^ / 

In writing (4.9) as an explicit expression determining a-p, we have assumed that the rate coefficient 

Ap is independent of temperature, so that Ap in the pyrolysis law (2.51) will be taken to be unity. 

We recall that the above steady, planar solution was obtained without making any assumptions 

on the magnitude of 6. However, in the following sections we will consider the more general case 

of nonsteady, nonplanar combustion, and exploit the limit 6 <S 1, in which case we obtain from 

Eq. (4.7) that 2§ = 0(6). Thus on a hydrodynamic scale, the propellant surface, the multiphase 

preheat zone, and the very thin gas-phase reaction zone (surface) all lie within the same narrow 

region. 

§5. The Multiphase Flame 

We now consider the limit 6 < 1. Thus viscous dissipation, heat conduction, and species 

diffusion, as well as the gas-phase reaction zone and propellant/gas interface are all confined to a 

thin 0(6) region which we call the multiphase flame. In the limit 6 —> 0, the flame shrinks to the 

surface 2=0, and on both sides of the flame we seek outer solutions to our system of the form 

r = To + 6Ti + • • 

•, p = Ro + 6Ri + • • 

•, 

w = Wo + 6Wi + ..., v = Vo + ^Vi + • • 

•, 

p = Po + 6Pi + . • 

•, $, = $,,o + <!i$r,i + • • 

•, 

M = Mo + <5Mi + • • 

•, Mp = Mp,o + 6Mp,-i + • • 

•, 

$p=$,,o+^j,,i+..., 2o=<!>/i+---=^p,i-$r,i)+---> (5.1) 

with 

y=P Z<0 (52} Y 
- \ 0 z > 0. 

(3•2> 

In order to relate these variables across the surface z = 0 as well as to obtain an equation describing 

the dynamics of the front itself, it is necessary to examine the multiphase flame structure. Analyses 

of this kind have been performed previously for the case of freely propagating gas flames (Matalon 

and Matkowsky, 1982) and for gas flames attached to a flameholder (Kaper, et.al.,1985) in order 

to derive conditions relating the fluid variables across the flame. 

To study the structure, we introduce the stretched variable z = 6( and seek inner solutions of 

the form 

T = 0o + 69^ + • • 

•, p = po + 6 pi + • • 

•, 

u; = WQ + 6w-i + •••, v = vo + 6-vi + • • 

•, 
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M = mo + Sm-i + •••, Mp = 
mp,o + ^"ip,i + • • 

•, 

p=po+6pi+---, Y =Yo+6Yi+--'. (5.3) 

These expansions are now inserted into the governing equations, the boundary conditions at the 

interface ( = f\ + • • 

•, and the jump conditions at the reaction zone C = 0 to yield a system of 

equations to be solved recursively for the coefficients in the expansions (5.3). Upon solving for 

these coefficients, they are then evaluated as ^ —> ±00 to obtain matching conditions for the outer 

variables (5.1). In the remainder of this section, we consider the leading-order structure problem, 

deferring consideration of higher-order terms until later (Sections 6.2 and 7). 

§5.1. Structure Analysis to Leading Order 

As a result of our scaling for ZQ) which implied that $p,o = $r,0i we obtain to leading order the 

gas-phase equations (/i < ( < 0, 0 < ( < oo), 

Po^o = Poo (5.4) 

^=0 (5-5) 

-o^-^^2)^-0 (5-6) 
900 \1 i K7<B ^92eo 
^-,(l+V^,o )^ 

"^-^(l+IV^ol2)^^, yo=OforC>0 (5.7) 

9WQ X f \2\92w01t92wo T7A ^oj ^PO 
,.„. ^-^ - 

c 
s V + ' '••ol ^W + ^W ~ 

r-0' ^J = 

~~9C 
( ) 

5VO ^P Li^lv7a iz^'vol/^wo _. ^vo.l 9po 
mo-9<^ "' c^0 V1 + lv^01 ^ + ^"^ - 

lt)' ^C2"^ = 

'0"^ ' ( ) 

and the condensed phase equations (—00 < ^ < /i), 

Po = Io = 1 (5.10) 

^° = 0 (5.11) 
9'mo 

~^ 

mo^-d+V^^o^^^O (5.12) 

^0 ^U \l. , IT7.., 
|2^^2U70 

, 1/^Wo _, ^Vo.l BPO 

-^ 
- -^ Ul + ]V^,o| )-^ + ^(-^ - V$,o . ^-)^ = 

-^ 
OWQ A \. 2.0 Wo 

, 1,0 WO 

„, C'V0^1 OPO /c:i,\ mo——--Pn (l+]V$,,o|2) -^-+,(^72--V$,,o 
• ^2-) = 

—^ (S-IS) 

3V" -^D J/1 i IT7A ,2^^VO , l/^WQ -, 
^VOxl „, 

5po 
/,,,, mo~^~ C^ i^ + '^-"l ^ + B^ 

- v$r-0 • -^); = v$r-0^ ' ^-^ 
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where vo = WQ = 0 for the solid propellant. In addition, the jump conditions across the gas-phase 

reaction front at ( = 0 are obtained from Eqs. (3.2) - (3.6) as 

[<?o] = [Yo] = [wo] = [Vo] = 0, 

ft W1 '99^ 

.9(. Le [9<: 

{l+ V^ol2}172 [^] =-^cA-exp{^o(0^)-l)}, 
5vo 

_-. 
9wo1 

^+ ̂ r•o-^\ =0' 

4- A 

bo]=^{l.|V^}[^], 
and the boundary conditions at the interface ( = fi are 

Imp,ol = M = [0o] - 0 

^P,O 1^ = (l + V^ol^^exp {7Vp(l - ^)} 

{(c-l)^+<r-c(l-a/3)}mp,o|c^ = (1 + V$,,o|2) ^ - ^- 

(^ - a) m,,o |c=A = ^(1 + IV^.o 2)^ 
IVQ + V$,,owol = 0 

-.(^-'.^)+-r-(^——^ 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

-hoi = {1 + IV^.ol2}-1 Iwo - V^,o • vo]mp,o |c=A - ^ [P^ (^ - V^,o • ^) ^(^ 
.iC ^ \ 01, t/S / 

/5wo 9vo' 

^^-V^,o.^- (5.26) 

where I^(C)I = ^(C = /i^) - ^(C = /F) an(^ a superscript ± signifies evaluation at ( = f^. 

Thus, the chosen length and time scales reduce the original system of partial differential equations 

to a system of ordinary differential equations within the structure. The matching conditions for 

( —> ±00 then serve to completely determine these solutions, which are given by 

M2 
= "ip,o = (l + V$,,o|2) (5.27) mo = trip o = 

f l C < A 
YQ = <{ -c^e'^C/Amo _ l) /i < ^ < 0 

o c> o 

(5.28) 
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' 

<7+(<Tp-o-)e(C-^) C<A 
ffo = < 1 + (^(e^/^o - 1) /i < C < 0 (5.29) 

.1 C> 0 

1 C < fi 

Po = ( Poo[l + Q/^e^/^o - I)]-1 A < C < 0 (5.30) 

.Poo C > 0 

' 

^(O+^mo1^1-! C<A 
wo = < lVo(0+) + a/^mo^e0^"10 - 1) A < C < 0 (5.31) 

. 

Wo(0+) C > 0 

Vo(0+)+V^,o(p^-l)mo-1 C<A 
vo = • Vo(0+) - V^oQ/^mo^/^ - 1) A < C < 0 (5.32) 

Vo(0+) C > 0 

W+) + p^ - i C < A 

Po = • Po(0+) + a/3^1 + a/S^e'C/^dPrp - 1) A < C < 0 (5.33) 

Po(0+) C>0. 
In order that the pyrolysis law (5.21) be satisfied, the temperature at any point along the interface 

must be identical to the surface temperature Op for steady, planar combustion. The expression 

for (?o given by Eq. (5.29) then determines the position of the propellant interface relative to the 

gas-phase reaction zone as 
, 

A 
, 

f cr- - 1 + Q/31 

^=m^[-p-^——}• (5-34) 

The asymptotic behavior of the inner solutions (5.27) - (5.33) for ^ —> ±00 yields conditions 

relating the leading-order outer variables in Eq. (5.1) across the surface z = 0, which we summarize 

as 

TO-Mo-^-l) (5.35) 

[Vo + WoV$,,o] = 0 (5.36) 

W = -(Poo1 - 1) (5.37) 

MO- = {^o - Vo • V$,,o - 

9^-0} 
= (1 + V$,,o 

2)1/2. (5.38) 
I at ) ^=o- 

In addition, the temperature and density fields are fully determined on either side of z = 0 as 

Tn= 

RO= 

| <T Z < 0 

[ 1 2>0 

1 z < 0 

Poo 2 > 0 

(5.39) 

(5.40) 
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which implies that to leading order in 6 the burned gas is incompressible. These leading order 

results (5.35)-(5.38) are identical to those prescribed by Landau (1944) in his treatment of a gas 

flame as a surface of density discontinuity. We also remark that our results are valid for both liquid 

and solid propellant combustion. However, when investigating the case of the solid propellant, the 

velocity field in the solid-phase must be taken to be zero. In that case, Eqs. (5.35)- (5.37) are then 

interpreted as boundary conditions for WQ^}, Vo(0"1') and Po(0'1'), and the flame speed equation 

(5.38)reduces to 

M^-^^l+IV^ol2)1/2. (5.41) 

Since the flow field on either side of z •=- 0 is incompressible to leading order, the problem has 

been reduced to solving the fluid-dynamic equations in the gas phase, 

9Mp 
9z +PocV.Vo=0 (5.42) 

Poo^° + Mo^° + ^Vo • Wo = -VPo + V^r.o^ (5.43) 

Poo^+Mo^+^Vo.VlVo——^, (5.44) 

and in either the liquid phase (for liquid propellants), 

9Mo 
+ V • Vo = 0 (5.45) 

9z 

^ + Mo^? + Vo • Wo = -VPo + V^o^ (5.46) 
at dz dz 

•^^°——————o=-t. (-) 
or the solid phase (for solid propellants), 

Wo = Vo = 0 
, (5.48) 

subject to the conditions (5.35)-(5.38). The steady, one-dimensional solution of this system is given 

by 

$;,o = -t (5.49) 

^f^-1^ (-) 

Po-{^-1^ (-) 
/^Inp ^ 

1 
c [ af. ^-^{ap^}- ^ 

This solution, which can also be obtained easily from Eqs. (4.1), (4.5)-(4.7) by setting z^ = 6f^ 

and letting 6 —> 0, represents a steady, planar mode of combustion. 
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§6. Linear Stability Analysis 

In order to determine the response of steady, planar burning to small disturbances, we introduce 

the spatially periodic perturbations 

$,=$;+ exp(ai( + ikix + ikyy) 

w = W + W'{z) exp(o^ + ikix + ik^y} 

v = V* + V'(2) exp(u}t + ikix + ik^y} 

p = P* + P'(z) exp(h?f + ik-ix + ik-^y) 

(6.1) 

where o> is the growth rate whose sign will determine stability, and primes are used to denote 

perturbed variables. Here the dimensionless wavenumbers are given by fci = k-i/K, ky = k-i/K 

where K = \fk\ + Jbj. This introduces the hydrodynamic length scale L = K~1 which was used 

to nondimensionalize distances in Section 2. The expansions (6.1) are inserted into the governing 

equations, which to leading order are given by Eqs. (5.35) - (5.38), (5.42) - (5.47), and nonlinear 

terms are neglected. This results in a system of linear equations for the perturbed variables and 

the growth rate, for which solutions are sought as power series in 6 {e.g., w ~ WQ + 6uji +•••). 

§6.1. Leading Order Linear Stability of Liquid Propellants 

For liquid propellants, the leading order linear stability analysis is identical to that for a gas 

flame, and indeed we obtain Landau's (1944) result for the growth rate o'o, 2'.e., 

——— {-1+\/1 - Poo + Poo11 
. (6.2) ^o = ——— 1 -1 + V1 - Px + P^ 

Poo + 

Thus, we conclude that a deflagration propagating through a liquid propellant is unstable due to 

the density change across the flame. This hydrodynamic instability is suppressed only as poo —> 

1, a limit that can in fact be approached at high pressures. In addition, it is known that the 

result (6.2) can be modified by incorporating additional stabilizing effects into the model, such as 

gravity (Landau, 1944; Levich, 1956), or a phenomenological dependence of the burning rate on the 

curvature of the flame front (Markstein, 1951,1964). Also, as has been done for gaseous combustion 

(c/. Peice and Clavin, 1982; Matalon and Matkowsky, 1982), one can study the influence of other 

parameters on stability by reconsidering the multiphase flame structure and including the 0(6) 

terms in our analysis. In this way, one can obtain corrections to the conditions (5.35)-(5.38) which 

contain effects due to viscosity, surface tension, diffusion, chemical reaction, and pyrolysis. While 

these higher-order terms are regarded in the context of the present analysis as perturbations too 

small in magnitude to suppress the leading-order hydrodynamic instability, they at least suggest 

how these additional contributions to the multiphase flame structure can affect this instability. 
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Before continuing with this investigation, however, we first address the question of stability for the 

case of solid propellants. 

§6.2. Linear Stability of Solid Propellants 

Proceeding as before, we linearize our system (5.35) - (5.37), (5.42) - (5.44) about the basic 

state (5.49) - (5.52). It is clear from Eq. (5.41) that the linearization will result in only the trivial 

solution for the perturbed variables. Therefore, perturbations can be at most 0(6) and the leading- 

order solution is given exactly by (5.49)-(5.52). Thus, it appears that the solid propellant offers 

more resistance to deformations than does the liquid propellant. Perturbations of this magnitude 

were also considered by Kaper et.al. (1985), in which case a rigid, planar flameholder was situated 

within the flame structure. As in that study, in order to determine the leading-order growth rate 

o»o of the disturbance, we must obtain the 0(6) jump conditions for the outer variables. Hence, 

we continue our analysis of the inner structure for the 0(6) variables in the expansions (5.3). In 

particular, these quantities must satisfy the equations 

Poffi = -Pi^o 

^=0 
QOi \92el 

_ 

9Go 
~9C ~ ~c~9C2 ~ ~ml 9C 

9YT. \ 92Y^. 
_ 

9Yo 
~9C. 

~ 

Lec~9C2' ~ ~ml~9(~ 

9wi 4A 92w•i 
_ 

9pi 9wQ 
~9(~ 

~ 

Tc1^"^ =~~9C~ ml~9(~ 

^ 
_ ^pr 92V! 

- V$ J^ - Ap, 
a2w^ 

9(i c9 9<:2 
~ 

r'1 [ 9C 30° 9C2 j ' 

where A = c = 1 and Vi = vi = wi = 0 for ( < /i, and 

"ii = 

mp,i 
= po (wi - 

—— ) + pi (wo - 1) 
. 

\ (71 / 

In addition, the jump conditions at ^ = 0 are given by 

[<?i] = [Yi] = [wi] = [Vi] = 0 

[W ^ _j3_ \9Y^\ 
[9C\ Le[9(\ 

[^.-^-^ 
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(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 



[^V^]=0 (.„) 

b,] = |P^ [^] , (.14) 

and the boundary conditions at (, = /i are 

.^o. ^i]=-I^-]/2 (6.15) 

-•--^(t^ (-) 
{(c - l)(?o- + <r - c(l - Q/3)} m,,i |^ = 

f\9^- -9^-}+ ̂ - < (6.17) 

(^ - a) m,,, \^ =^9^--Y,+ 
: 

(6.18) 

vi + WoV$,,i = 0 
. (6.19) 

The problem for the transport variables Y-y and 6-y is seen to decouple from the problem for the 

remaining variables. By applying the conditions (6.10) and (6.18), Y\ is completely determined as 

f o C < A 

Y^={ -^miCexp^C) /i<C<0 , (6.20) 
[ 0 C > 0. 

and 0i is given by 

f ^miC+miC(<^-^)exp(C-/i)+5exp(C) C < fi 

e,=^ _^miCexp(^)+^mi /i < C < 0 (6.21) 

[ ^"ii C>o 

where 

=mJ^(l-c)l+(mi+/2) [^exp^A/^-tTp+al 
, (6.22) 

and /a is determined completely by the pyrolysis law (6.16). We observe that 0i does not decay to 

zero as ( —» —oo. Consequently, it is necessary to consider a far-field expansion in order to describe 

the decay of the 0(6) temperature perturbation to zero. However, since the far-field behavior does 

not affect the growth rate i^o, we do not pursue this point further. Solutions for the velocity field 

are now readily obtained, and by matching to ^ —+ oo we obtain the following boundary conditions 

for the outer variables 
as, 

W,(0+) = -^-{l - p^(l + 2/N)} (6.23) 

Vi^) = -V$,,i(^1 - 1) (6.24) 

a<B , 

Pi(0+) = -2-^{1 - p^(l + 1/N)}. (6.25) 
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Finally, in contrast to the gas flame problem (Matalon and Matkowsky, 1982), temperature and 

density variations in the burned gas cannot be discarded as higher order effects, and the compress¬ 

ibility of the burned gasses must be taken into account. Hence, when solving for the outer variables 

(5.1) at 0(6), we must consider the coupling of the equation for Ti to the hydrodynamic equations. 

Thus, in addition to Eqns. (6.23) - (6.25), a boundary condition for T^ is needed which is given 

by the asymptotic behavior of the inner solution (6.21) as ^ —> oo, namely 

'r^=-^9-^-• (6.26) 

The governing equations in the gas phase for the 0(6) variables in (5.1) are given by 

^v.v,^=. („) 

^^=0 (6.8) 

Hi = -/»ooTi (6.29) 

"""^T^ f6-3" 

9Wi 9Wi 9Pz 

... p-^-+-9^=-^- ^ 

where 
g& - 

Ml=^(^l--^l)+Al(^o+l), (6.32) 

and the steady, planar solution of these equations which satisfies the boundary conditions (6.23) - 

(6.26) is the trivial one. The linear stability analysis at this order is straightforward and the growth 

rate uy is found to satisfy the dispersion relation 

poo^(l- v)+^o(2- v)+ 1 = 0, (6.33) 

where v is given by 

v = 2/[N(p^ - 1)]. (6.34) 

Both roots of Eq. (6.33) are seen to be negative for poo < 1 and all values of the activation 

energy N'. Consequently, despite the existence of a deformable interface of density discontinuity, 

we conclude that the planar combustion front is absolutely stable to hydrodynamic disturbances. 

Thus, for the case of the solid propellant, a perturbed flow field in the gas phase is not sufficient 

to render the deflagration unstable. For a liquid propellant, however, hydrodynamic perturbations 

can exist in the liquid as well as the gas phases, and thus, as we have seen, Landau instability is 

not suppressed. We note that this result is obtained though the use of a long-wave theory, and so 

non-acoustic instabilities observed during solid propellant combustion (cf. Hightower and Price, 

1967) must be attributed to other types of (short-wave) disturbances, such as the reactive-diffusive 

instabilities that occur on the diffusional length scale ID (Margolis and Williams, 1988, 1989). 
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§7. Effects of Flame Structure on Liquid Propellant Stability 

We now return to the liquid propellant problem and obtain the O(^) correction (<^i) to the 

growth rate (6.2). Thus, we now consider the next order flame structure problem, the details 

of which are contained in the Appendix. As was the case for the solid propellant, the burned 

gas is compressible and the hydrodynamic equations do not decouple from the thermal transport 

equation. Thus when deriving corrections to the jump conditions (5.35)-(5.38) we will also obtain 

a condition on Ti. We summarize these results as 

^(O+^^+^AI+AB) 
^l(0-)=^+A2 
[Vi] = -V$,,i[Wi] + As 

(7J) 

[-Pi] = -TO + A4 - ^(Pr, - Pn) {V . Vo(0+) + V2^,oWo(0+)} 

Ti(0+) = As 

where the A;'s, which are given in the Appendix, depend on the various physical parameters in 

the problem. An expression for the correction fy to the distance between the propellant surface 

and the reaction zone is found in terms of $rj by applying the pyrolysis law. Thus the separation 

distance is fully determined by the structure analysis and neither /a no1 the pyrolysis activation 

energy Np will play a role in the solution of the outer problem. 

The only steady, planar solution at this order is the trivial one, and so our entire basic state 

is comprised of the leading order expressions (5.49)-(5.52) together with (5.39) -(5.40). In order 

to carry out the linear stability analysis at this order we must, in addition to introducing the 

perturbations to the hydrodynamic field (6.1), also allow for perturbations to the temperature and 

density as 
T = T" + T'(z) exp(o»( + ik-^x + ik-iy), T' ~ 6T{ + • • • 

(7.2) 
p = R" + R'(z} exp(o?f + ikix + ik-^y) 

, 
R' ~ 6R\ + • • • 

. 

Thus, we obtain the system of linearized equations 

R[ = -P^T[ 
dT' 

P^T[ + ^ = 0 

M[ = p^(w[ - ^) + R\W + 1) 

„ ., , ., , dM[ 
?• -I- n ifc,ii' -I- n.-ifc^n' -I- ———'- 

. 

.1 / •i ; UlVli 
WoR-^ + Poo^l"! + Pool«2"l + ,—— 

= 0 

i dw\ . dp\ 
_ A. d2 

, , 

P^ow, +-^= p^w, - 

-^ 
+ Pr,^ - l)^o 

, dtii , 

.i» i-i",d ,, P^ou\ + —— = Poc^itio - ifcipi + Prg-(—, - l)uo 
dz c dz~ 
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(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 



Poo^ov'i + —— = Poo"iVo - ikyp[ + Prg-{—— - l)v'o (7.9) 
dz c dz~ 

for 2 > 0, and 

-R'l = 0 (7.10) 

jrni 

p^T[ + -^ = 0 (7.11) 

M[ = w[ - w-i (7.12) 

-P- + ikiu\ + iktV' = 0, (7.13) 
dz 

and Eqs. (7.7) - (7.9) with poo = 1 and Pry replaced by Pri, for z < 0. Upon solving these 

equations subject to the appropriate linearized form of the jump conditions (7.1) we obtain a 

solvability condition for o>i as 

2[.o(poo+lKl^ = -,-2P^(^-l)+^^-l-^ 
+{N + IK/^O + 1)("0 + 1)} + -POC^^F - 1) 

- (^ + Poo-^o + 1) [{N + I)(<T, - a)/c + ^°^ [-Lei, 

+^(1 - exp(cle A/A))(map - Ie-1)] [a^N + 1) - 2]l 

+ /i {(^o + 1) f-1 + 7-^—) Poo-l(-2pocyo - 1 - ^o) 
I \ 1 - QR/ 

-^--l)2+,^))• t7-14) 

where 

Ji = 

/" 
ec•l£^Aln(l-Q/3+Q/3ec^A)dC• (7.15) 

•'/i 
The expression (7.14) reveals a dependence on all the physical parameters in the problem (i.e., 

Poo, P^gi Le, 7, Q/3, A, c), suggesting that each plays a comparable role in determining the stability 

of liquid propellant combustion. It is easilt seen that surface tension and viscous effects are always 

stabilizing for this problem. Also, we observe that while a>i depends on Prg, it is independent of 

Pri, suggesting that the gas phase viscosity has a larger influence on hydrodynamic stability than 

the viscosity of the liquid propellant. In addition, we note that the coefficient multiplying PTg is 

proportional to the density jump across the propellant surface. If this jump is eliminated {i.e., if 

Poo/Op = I); then u>i becomes independent of Prg and viscosity becomes a secondary effect, just 

as in the case of a freely propagating gas flame (cf. Frankel and Sivashinsky, 1982, Matalon and 

Matkowsky, 1982). In fact, if the gas-phase reaction zone is far away from the propellant surface 

(i.e., /i —> —oo), then by setting cr-p = a = pooi A=c=l, £e=l+ I IN, and letting N —> oo, 

Eq. (7.14) reduces to 

(Poo-1 - 1) + (Poo - I)'1 [2a>o + (1 + poc-1)] lnp«, - llp^o + l)^o + !/?«,] ^=———————————————————2[o,o(l 
+ Poo) + 1]———————————————————' ^ 
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where 

1=1 m[l+(poo-l-l)exp(a!)]d^;, (7.17) 
J—00 

and the gas flame result is recovered. 

The dependence of w-i on Ze, a/3, and N is more complex and will now be investigated. In 

what follows, we will simplify matters by setting 7 = Prg = 0 (since these effects have already been 

shown to be stabilizing) and A = c = 1. First, in the intrusive limit that /i —> 0 {i.e., Op -+ 1), Eq. 

(7.14) collapses to 

-(u,o+l)(a,o+l/p^)(JV+l)(l-^) 
"1 - 

——————2[.o(l+poo)+l]—————— 
< °- ^ 

This expression, since it is always negative, indicates a tendency to stabilize the flame, independent 

of the Lewis number. This feature can be seen in Figs. 2 and 3, in which wi is plotted as a 

function of/i according to (7.14) for various values of the Lewis number. Also illustrated in these 

figures is the sensitivity of the growth rate correction to Ie for nonzero values of the distance —fi 

between the propellant surface and the gas-phase reaction front. In particular, as in the case of 

freely propagating flames, an increase in Lewis number is seen to have a stabilizing influence on 

the leading-order hydrodynamic (cellular) instability. As -fi becomes large, the curves in Fig. 2 

asymptote to a constant value. In that figure, we have chosen poo = 1 - Q/3 so that as TV —> oo with 

N(I£ — 1) —> / ~ 0(l)» these curves approach the gas flame result (7.16) for large —fi. In Fig. 3, 

we have chosen poo < 1 — Q/3 to insure that the liquid is more dense than the gas even in the limit 

that the separation distance is large (/i —» —oo, a? —> 1 - Q/3). We note that the slope ofo'i(-/i) 
is negative in that limit, which implies a tendency toward stabilization for -fi sufficiently large. 

In order to determine how the gas-phase activation energy modifies the behavior ofo»i, Fig. 4 

was plotted with the same parameter values as Fig. 2 with the exception of N, which was decreased 

from 100 to 50. From Eq. (7.18) we expect the correction u>i to the growth rate to be proportional 

to the value of N in the intrusive limit that fi —+ 0. Indeed, by comparing these figures, this is 

observed to be the case, and in particular, an increase in N is seen to have a stabilizing effect. For 

nonzero fi, the curves in each figure exhibit the same qualitative behavior, and as the separation 

distance -fi is increased, the effect of the gas-phase activation energy becomes less significant, 

especially for values of Le near unity. As N is increased, then (as in the case of freely propagating 

flames) o>i is seen to decrease (increase) for larger values of —fi if the thermal diffusivity of the gas 

is greater (less) than the mass diffusivity [i.e., Le > (<) 1]. 

We now consider the effect of poo and a/3 on Wi. As pointed out earlier, the leading-order 

hydrodynamic instability is only suppressed in the limit that poo -+ 1, in which case the liquid does 

not expand upon pyrolyzing and/or vaporizing at the propellant surface. To be consistent, when 

considering this limit we must simultaneouly consider the limit Op —> 1, which can occur either as 

fi —> 0 or as a/3 —> 0. The former (intrusive) limit was explored earlier, resulting in the simplified 

expression (7.18) for wi, which exhibits no dependence on pyrolysis. This expression is reduced 
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further by setting poo = 1 and WQ = 0 to give 

U,I=J(JV+I)((T-I). (7.19) 

In the alternative limit that a/3 approaches 0, most of the propellant is pyrolyzed directly into 

gaseous products, leaving only a vanishingly small fraction to burn in the gas phase. By concurrently 

taking the limits poo —^ 1 and a/3 —> 0, Eq. (7.14) reduces to 

a»i = ^{N + l)(<r - 1) - Zc-1 (l - e^) < 0. (7.20) 

Thus, as the reaction zone moves further away from the pyrolyzing interface, an increase in Lewis 

number results in increased values of w\. This trend is observed by comparing Figs. 5 and 6 in 

which plots were made with poo near unity and a/3 < 1 for two different values of Lewis number. 

Also illustrated in these figures is the dependence of the growth rate correction on density change 

and fraction of vaporization. In particular, o?i is seen to increase with either poo or a/3. 

In Figs. 7 and 8, plots were made for the same two values of Lewis number (Le = .8, 1.3) used 

in Figs. 5 and 6, respectively, but poo and a/3 were taken to be nearly equal to one another. In 

these graphs, o?i is seen to increase with poo and Q/3 in the same way as before, but here an increase 

in Le is accompanied by a decrease in u/i. Finally, the curves in Figs. 9 and 10 were generated for 

the case in which poo •€ 1 and a/3 % 1. As the separation distance —/i is increased from 0, where 

it follows from Eq. (7.18) that o»i = 0(poo~1), the curves become extremely sensitive to the values 

of poo, Q/3) and Le. In particular, we observe that an increase in Le or a decrease in either poo or 

Q/3 can result in negative values of o>i, thus implying that the multiphase flame structure has a 

stabilizing effect on the leading-order hydrodynamic instability. 

§8. Summary 

The present work has considered the hydrodynamic stability of solid and liquid propellant 

combustion. Under the assumption that the thickness of the multiphase flame structure is small 

compared to the characteristic length scale of a hydrodynamic disturbance, the method of matched 

asymptotic expansions was used to derive jump conditions on the outer fluid and temperature 

variables across this structure. Our results for the case of a solid propellant differ radically from 

those for a freely propagating gas flame, for it is shown that the absence of fluid perturbations in 

the solid phase completely suppresses Landau instability. Thus, it appears that the only type of 

non-acoustic instability that is possible for this problem is reactive/diffusive in nature, in which 

either pulsating or cellular perturbations to steady, planar burning occur on diffusive, rather than 

hydrodynamic, length and time scales (Margolis and Armstrong, 1986; Margolis and Williams, 

1988,1989). 
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For the liquid propellant, however, perturbations of the fluid variables in the liquid phase 

must be taken into account, and to leading order, Landau's (1944) result is recovered. However, 

the leading order growth rate can become small when the ratio poo of the burned gas density 

to that of the liquid propellant is close to unity, a regime which can be achieved at very high 

pressures. Consequently, it has been shown that the next-order correction to the growth rate 

can be stabilizing, and in an appropriate limiting case which includes a large separation distance 

between the propellant surface and the gas-phase reaction zone, the results corresponding to a freely 

propagating gas flame (c/. Matalon and Matkowsky, 1982) are recovered. More generally, however, 

it was determined that this separation distance, along with other parameters in the problem, can 

significantly influence both the sign and the magnitude of the growth rate. For example, for small 

values of the separation distance, it was found that the liquid propellant is more likely to experience 

hydrodynamic instability than the freely propagating gas flame when the density ratio poo is close 

to unity and most of the reaction occurs through pyrolysis at the propellant surface (cf. Figs. 5-6), 

whereas the opposite is true when poo is smaller and a more significant fraction of the propellant 

vaporizes and burns in the gas phase (c/. Figs. 7-8). 

Appendix 

When considering the 0(S) flame structure problem, we must solve an inhomogeneous system of 

equations of the form shown in Eqs. (5.4) - (5.26). At this order, the equations in the gas phase 

are 

PlOo = -PoO-i (A.21) 

^=-^-V.(POVO) (A.22) 

90i \ a^i 90o (90o \ \ f Q^o 

"^-c^ 
= -ml^-^("^+vo•v00)+ct2v^o•^l^ 

-V^,o^-2V$,o.V^} (A.23) 

9Yi \ z^Fi 9Yo f9Yo \ X f ^YO 

^-cLe^W 
= -^-^[-m^0'^0)^^^'0-^1-^ 

f)V f)V 1 

-V^o^^V^o.V—? , yo=OforC>0 (A.24) 
oC "C -I 

9wi \ C z^wi l^wi a'vi 1 9pi 9wo 
mo~9C~ ~ ^PT9[mo^+^~9C2~~^r10•~9C2~}f ~^^=ml~^ 
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- "0 (^ -0 • ^o) ̂  {^'.' • ^ - ^ 

-—^^1^—^]} , <-) 

.5vi _, 5wi. A_ , /^vi __ ^wi^ _ 
- 

5po mo(-^ + V^.o-^1) - -^ml ̂  + V^,o-^-^ = -Vpo + ^ 9C. 
' r'" QC ' c 

" "Vac2 ^C 

-Po 
f^o „ , 

/'9wo _ 

M APrg f 
2_, ^wo ^ + vo . Vvo + $,o [-^ + vo . Vwo) } + ^ l-^^i-^ o,_. ... ,. /-o,_. __M , ^ _^^^ 

+4^°moVmo+mgV(^°)], (A.26) 

while in the condensed phase, 

pi = Vi = 0 (A.27) 

^-V.vo (A.28) 

^i 2^1 90o f90o ^^lor7.^. * ^o 
mo~^c~moW 

= -ml^ 
- po ^ vo' 0^+ r'0' ^W 

-V^,o^-2V^,o.V^, (A.29) 

and Eqs. (A.5) - (A.6) with po = 1 ,/?i = 0 and Prg replaced by PT[. In addition, the jump 

conditions at ( = 0 are given by 

[ffi] = [Vi] = [wi] = [Vi] = 0, (A.30) 

r^ii 0 \9Y^ 
[lK\=~Le[-W\ (A-31) 

[^] = -Q/3CA-lmol {^l(o+) + ^'V^o • V$^ 
, (A.32) 

[^.V^]=V.,[^], (A.33) 

^=3P^(^[%1]+2V^•V^[%^])' (A-34) b.]=^^ 
and the boundary conditions at the interface C, = f\ are 

Ir"p,i] = 0 

m = -1^1/2 

^.i C=/i 
= "lo^ (^/z + 0i) + m^^o . V$p,i 
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(A.37) 



(Qn+ Afl~ \ 
{(c - 1)^ + (T - c(l - Q/3)}mp,i |^ = ml \-^- - -^\ + m,{6, - <) 

(Qn+ !)fi~ \ 

+(V$,,o • V$,,i + V$,,o • V$p,i) A—— - ——j - V$,,o • V(A(?o- - 6,) (A.38) 

(^+ - ") -p,i IC=/, = ^^ - rn^ + ^ ^(V^,o . V^, + V^.o . V^)^ 
-V^^o-Vro-^} (A.39) 

[vi + wiV$,,oI = -V$,,i[wo] , (A.40) 

pr9{^^-+v^8^- + 2V$p,l^^-V$,,^+r7^o-2Vu;o-2mo-2V$,,oVvo 

- -0-^,0^,0 . V.o) .^(^ ̂ )(^ ; ^ 
= Pn {^ + V^,o^ + 2V^^° - V^,^ + mo-Vwo 

- 2mo;^V$,.,oVvo - mo2V$,,o(V$r,o • Vwo) 

, _-2^0 , ^Oyg$r,0 .g^r,0^~ / . ^ +mo (-^y-+-^)(-^y-'-^)J ^-^ 

-llpo] = [wi - V$,,o-vi - V^i.vollm^+m^Iwo-V^o-voIrnp,!!^ 
V$ 

- 2mo3V$p,l . V<&,,o[wo - V$,,o • Vol - 7V • ——rfl 
7710 

- ^Pr, [ \{9-^ - V$.,o • ^) + (4/3 + m^V^ . V$,,o - 27^-^,0 • Vwo 

2 1 
- _V • vo + 2mo2V$,,o • V(vo • V^,o) - mo'vo • V(mg) \ 

" ) 

. 
+ ^Pri {l(^l - V$r,o • %1) + (4/3 + mo2)^,,! . V$,,o - 2mo2V$r,o • Vwo 

c 1.3 d(, d(, 

- JV • vo + Zmo'V^^o • V(vo • V$,,o) - m^vo • V(mo)l 
. (A.42) 

To solve this system, we first integrate Eqs. (A.2) and (A.8) to obtain an expression for mi in each 

region, after which Eqs. (A.3), (A.4) and (A.9) yield solutions for the transport variables O-i and 

Y-i. Finally, the remaining equations are solved for the hydrodynamic variables. The asymptotic 

behavior of these solutions as ( —> ±00 is then matched to the outer solutions (5.1) expanded in a 

Taylor series about 2=0. Thus, for example, the matching condition at this order for the velocity 

field in the 2-direction is given by 

Urn wi^.^t^W^O^+C^z^). (A.43) 
C-»±oo "2 

This matching procedure results in conditions (7.1) and lengthy expressions for the -4,'s. In this 

study, we only require the linearized forms of these expressions, which are given by 
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Al = 2(T^{^v•vo("+)+v2^°}{-^^[Q^C/l/'-ecwl^ 

- (1 - a/3)^ + ^,lna, + (a/3 - ^) [l.A + ^(1 - e-^^)] } (A.44) 

Aa = Ai + (p»V • Vo(0+) + V^oKl - a^)-1 {/i [^-'(l - "/3) - l] + ^ln<7p} (A-45) 

A3=(A;,AJ) = -{^^^(0+)+^^^}(l-a/3)-^A[^-l(l-a^)-l]+^^} 
+ ^(Pr-p - Pr,)[VWo(0+) - VPo(0+)] - ^Pr^W 
,|^[^£(0.)+(^ -1)^(0.)] (A.46) 

A4 = A2(l - poo-1) + 7V2$.,o + {V . Vo(0+) - P^W] {/l [^oo-1 - (1 - °/3)-1] 

^^}.V^{A^-l-l)2-,^^[l-.^^])(A.4T) 

As - 2/^T{ecJ[£/l/A(A2-/l[v.Vo(0+)+(^-l-l)V2^,o]) 

+ (1 - ^^/^(As + ^V2^^) + Le AV2^ 
c Le 

+ r^ [poov •vo(o+) + "^M [71 + c^ + ec^l/'(/l - ^} •(AA6) 
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FIGURE CAPTIONS 

1. Model geometry; the interface 23 = ^p(x^,x^,t) denotes the propellant surface. 

2. Growth rate o»i plotted as a function of the separation distance f\ for various values of the Lewis 

number Ze, with N = 100, o = .5 and poo = 1 - Q/3 = .5. 

3. Growth rate o»i plotted as a function of the separation distance /i for various values of the Lewis 

number Ze, with N = 100, o- = .5 and .3 = 
pgy < 1 - o/3 = .5. 

4. Growth rate a>i plotted as a function of the separation distance f\ for various values of the Lewis 

number Ze, with N = 50, o- = .5 and poo = 1 - Q/3 = -5- 

5. Growth rate u>i(/i) for p^ ^ 1 - aft w 1, with -?V = 40, a = .95 and Ie = .8. 

6. Growth rate c*;i(/i) for poo ^ 1 - a/3 » 1, with N = 40, cr = .95 and £e = 1.3. 

7. Growth rate o>i(/i) for poo ^ 1 - o/3 » .5, with TV = 40, o- = .45 and £e = .8. 

8. Growth rate o>i(/i) for poo ^ 1 - Q/3 K •5, with ^V = 40, a = .45 and Le = 1.3. 

9. Growth rate o»i(/i) for poo ^ 1 - o/3 < 1, with N = 40, o- = .05 and Ie = .8. 

10. Growth rate ^i(/i) for poo ^ 1 - af3 < 1, with TV = 40, o- = .05 and Ze = 1.3. 
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