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ABSTRACT 

We present exact solutions for the problems of radial motion of spherical and cylin­
drical bodies of an incompressible inviscid fluid, with an initial kinetic energy, and 
subjected to pressure on the outer (or equivalently, inner) boundary. These solutions 
have bearing on the inertial stability of ejecta in hypervelocity impact and of explosively 
compressed shells. 
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1 Introduction 

When a projectile traveling at high speed strikes a plate of solid material of com­
parable dimension, a cloud of debris consisting of both projectile and plate material 
is ejected from the far side. The evolution and state of this debris cloud is a ques­
tion of significance for a number of applications. The steps required to model it are 
believed to depend on the intensity and conditions of impact, as well as the equation­
of-state properties of the interacting materials, but in fact very little is known about 
this question. 

It is observed that when the intensity of such an impact becomes sufficiently large 
relative to the strength of the materials involved, breakup of the ejected debris is 
delayed. Rather than undergoing immediate fragmentation at breakout, the ejecta will 
swell and balloon, exhibiting How and plasticity to a degree which belies the limited 
ductility usually expected of the participating materials. This has been observed in 
high-speed photographs of lead projectiles impacting lead plates at speeds near one 
km/s [1] and is seen in the impact of higher strength materials at greater impact 
speeds. In the experiments on lead, the ejected debris is initially an expanding, thinning 
bubble of metal which achieves a diameter four to five times the initial dimension of 
the projectile before undergoing breakup through thinning instabilities in the bubble 
wall. 

It is only recently that we have started to achieve a degree of understanding of 
the underlying physics responsible for the enhanced ductility exhibited by solids un­
der certain impact-induced How situations. It is not a change in material properties 
associated with the very high deformation rates as has been suggested in other related 
applications. Rather, it is a consequence of the state of motion of the body brought 
about by the impulsive loading conditions. [2] The state of motion is such that small 
perturbations or instabilities in the How which might lead to breakup are opposed by 
inertial forces which counteract the growth of such instabilities. In short, inertial stabil­
ity is responsible for the enhanced ductility and delayed breakup observed in a number 
of impulsive loading applications. 

This is perhaps easiest to see by considering a plate of solid or liquid which is stretch­
ing biaxially in such a way that the thickness is decreasing with time, commensurate 
with incompressible How. Such How is prohibited by the motion from being stress free. 
Ignoring deviator stresses, it can be shown that such motion implies a compressive 
pressure within the body and a positive pressure gradient directed into the body from 
the stress-free surfaces. The magnitudes of the pressure and pressure gradient depends 
on the rate of deformation and the geometry of the body. 

This inertial pressure stabilizes the How in several ways: First, defects or pertur­
bations on the body surface are prevented from growing by the pressure gradient at 
the same surface. Stated differently, such surfaces are Rayleigh-Taylor stable to sur-
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face perturbations. Second, the inertial confining pressure prohibits breakup through 
internal cavitation. 

The inertial pressure brought about by the dynamics of the event is a transient 
effect. As the body flows and thins, the magnitude of this pressure decreases. Even­
tually, the destabilizing forces associated with strength, capillarity or cavitation will 
become dominant and failure will ensue. 

In this report we put aside the question offormal stability analysis and focus instead 
on the underlying motion. We perform this analysis to gain an understanding of the 
strength and behavior of the stabilizing inertial pressure. A spherical geometry is 
considered because it is a reasonable approximation to the initial behavior of ejecta 
produced in the projectile impact events discussed previously. In addition to the freely 
flowing body, we also consider the motion of a hollow sphere with arbitrary constant 
pressure applied to either the inner or outer surface. The problem in this form has 
broader applications for explosively loaded metal shells. We also analyze the motion 
of a hollow cylinder subjected to similar initial and boundary conditions. 

It is important to emphasize that the solutions obtained in this report mayor 
may not be stable solutions. They represent the symmetric solutions which would 
provide the baseline for a broader analysis of the stability of the flow to asymmetric 
perturbations. A treatment of the stability of flow has recently been performed for the 
cases of a plastic rod stretching along its axis. [3] Here, we consider the case which is 
simplest in terms of material models: an incompressible, inviscid fluid. This allows us 
to obtain exact, albeit somewhat complicated, solutions. 

2 The Spherical Body 

2.1 Kinematics 

Assume a hollow spherical body as shown in Figure 1. Let the origin of a spherical 
polar co-ordinate system be at the center of the body, and let the body have an outside 
radius of b, and an inside radius of a. Let the body be composed of an incompressible 
material, so that it must undergo isocboric deformation only, with volume V. Then we 
have 

(1) 

The body has a reference state at which a = 0, b = boo Whether this reference state is 
realized in a particular situation of interest it not important. Thus, 

V = 411"b~ 
3 

2 

(2) 



" .' 

and thus 
b~ = bS 

- a3 
• 

Since a and b may depend upon time, it follows that 

a2da = b2db 
dt dt ' 

and therefore 
da b2 

db = a2 • 

Later is this paper, it will be convenient to work with the quantity 

b 
(3 = - . 

a 

we record the following consequences of this definition: 

a 1 b (3 
-= 1 , 

bo ((33 - 1)3 
- = 1 , 

bo ((33 - 1)" 

so that 
1 db 1 
b d(3 = - (3 ((33 - 1) 

2.2 Dynamics - The General Case 

(3) 

(4) 

(5) 

(6) 

Generally, the solution of a problem in the hydrodynamics of an ideal fluid requires 
that the pressure p and the velocity tJ be specified as functions of spatial position x 
and time t, such that the equations of conservation of mass and balance of momentum 
be satisfied. In this particular class of problems, a parameterization in which time t 
is replaced by either the outside radius b or the inside radius a is convenient, in that 
it allows for exact solutions of boundary-value problems. It transpires that b(t) is 
governed by an ordinary differential equation which is sufficiently well-behaved so that 
it may be shown that b(t) is piecewise monotonic, but not such that it may be solved 
to give the function b(t) in a convenient analytic form. For the purpose of solution of 
the problem, we assume that b(t) is invertible with inverse t(b). We let 

b·()=db(t) 
t - dt ' 

and 
b(b) = b(t(b)) . 
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Consider the velocity field' 
b2 • 

v(r,b) = 2" b(b) . 
r 

(7) 

This field satisfies the equation of conservation of mass. For it to satisfy the equation 
of balance of momentum with no body force, there must be a pressure field p(r, b) such 
that 

!... (!!. + V2) = _ av 
arp 2 at' 

(8) 

where p is the density of the material. We have 

av av db 
at - ab dt ' 

avo 
- ab b . 

By Equation 7 

av 1 ( 2 db .) 
ab = r2 b db + 2bb , 

so that 

Thus, Equation 8 becomes 

a (p b· b2) 1 (b2 
d·2 .2) 

ar p + r."2 = - r2 "2 db (b ) + 2bb , (9) 

which may be integrated with respect to r, giving 

p b4 b2 
1 (b2 d·2 .2) P + r4 "2 =; "2 db (b ) + 2bb + /(b) , (10) 

where /(6) is to be determined from boundary conditions. We apply the boundary 
conditions 

p(a, 6) = 0, 

p(b, b) = Po • 

By Equation 12, we have from Equation 10, 

/(b) =~ - ~ (b:b(b
2
)+3b2

) , 

(11) 

(12) 

-Rayleigh haa considered the velocity-potential associated with this field. He considered only problems 
with infinite outer boundaries. These are considerably simpler analytically than the problems with two 
finite boundaries that we consider. 
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so that Equation 10 is 

(13) 

Substituting Equation 11 into the above gives 

With a(b) given by Equation 3, this becomes a nonlinear differential equation for b2 (b) 
which appears to be intractable. However, using Equation 5 reduces it to 

(15) 

which is easily solved, giving 

(16) 

where IIo = Pol p, and c is a constant of integration. Again using Equation 5 gives 

3cW - as) - 2asIIo 

3b3 (£ -1) 

·2 
b = 

3cb~ - 2aSIIo 

3b3 (£ ~ 1) 
(17) 

This completes the solution of the kinematics of this problem. 

We note that the constant c appears to remain undetermined. That is not the case. 
The obvious specification, for time = 0, {3 = 00, and the limiting case, time = 00, {3 = 1 
are unsuitable. However, for example, when b = 2a, so (3 = 2, we have 

A specification like this simply fixes the kinetic energy of the body when it is in a 
particular configuration. Note that each of b(2a) and ITo may be positive, negative, 
or zero, so that c may have either sign or may vanish. For example, if b(2a) > ° and 
ITo > 0, so that when b = 2a the body is expanding but with a pressure on its outer 
surface (or equivalently, a tension on its inner surface), then c > o. Consider Equation 
17. It implies that b will vanish, so that b(t) will have an extremum, when 

3c(bS 
- as) - 2a3IIo = 0 , 
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or 
(18) 

Thus, under these conditions, there will be a value of 13, and thus one value of time, 
such that a body which is initially expanding will stop doing so, and begin to contract. 
A similar argument holds when the body is contracting at a particular instant, but 
is pressurized on the inside (or equivalently, subjected to a tension on the outside). 
Here, of course, there is the possibility that the inside radius a will go to zero before 
Equation 18 is satisfied. We note that if at any instant the outside radius of the body 
is moving outward, and if there is a pressure on the inside; or if the outside radius is 
moving inward, and there is a pressure on the outside, no such extremum occurs. 

To solve for the pressure field, substitute Equation 17 into Equation 10. Use the 
notation 

The result is 

where 

I1=~ . 
p 

A = 2I1oa2(r - a)(3bSrS + ab2rs + a2brS + aSr3 - abSr2 
- a2b3r _ a3bS ) , 

(19) 

(20) 

B = c(b - a)(b2 + ab + a2 )(r - a)(b - r)(b2r2 + abr2 + a2r2 + ab2r + a2br + a2b2
) , 

and 

or, with 

where 

r e = - , 
b 

I1=D+E, 
F 

D = 2I1o(.8e - 1)(3.83 es +.82 es + f3es - .82 e - f3e - 1) , 

(21) 

(22) 

E = 3c(f3 -1)(.82 +.8 + 1)(1 "'7 e)(f3e - 1)(f32e + .8e' + e2 +.8e + e + 1) , 

and 
F = 6f3Se4 (.8 -1) . 

In general, we have no assurance that the pressure will have an extremum inside (a, b). 
H it does, it is found by differentiating Equation 20 with respect to r, or equivalently 
by differentiating Equation 22 with respect to e, and setting the derivative equal to 
zero. The result is a cubic with one real root, having the value' 

3 SI1oa6b3 - 12ca3bS(b3 - as) 
r_z = 2I1oa3(4b3 + ab2 + a2b + as) _ 3c(b4 _ a4)(b2 + ab + a2) , (23) 

"The notations rmaz and em<U. imply that an extremum, which may be a maximum, may exist, but not 
that it does exist. 

6 
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or 
3 8IIo - 12c(,83 - 1) 

e ....... = 2IIo(,83 + ,82 + ,8 + 1) - 3C(,84 - 1)(,82 + ,8 + 1) 
(24) 

If extrema of pressure exist, they may be found by substituting Equation 23 into 
Equation 20, or the equivalent equations for the dimensionless forms. The results are 
rather too complicated to be written down here explicitly, but they have the form 

II ....... = (AlIIo + A2C)(AsIIo + A4C)i + (A5 IIO;- A6C)(A7IIO + Asc)i, (25) 
Ag(AlOIIo + AllC)i 

where the At, i = 1, ... , 11, are polynomial functions of p. 

2.3 The Case of No External Pressure 

The situation where Po = 0 is of special interest. Here, the appropriate results may 
be read off from those in the preceding section. In particular, we have 

(26) 

Thus b never changes sign; the body always either expands or contracts.· For the 
pressure, we have 

or 
II = C(P2 +,8 + 1)(1 - e)(,8e - 1)(,82e +,8e + e +,8e + e + 1) 

2,8se4 

Furthermore, 
s 4 e ....... = ,83 + ,82 + ,8 + 1 

(28) 

(29) 

It is intuitively obvious that e~", is always within the spherical shell. To prove this, 
we need only note that ,8 > 1. Then ,83 + ,82 + ,8 + 1 > 4, so 

4 
2 <1. p3+,8 +P+l 

Moreover, since ,8 > 1, we have ,83 > 1, and ,82 > p, so ,83 > ,82 >,8. Thus, 
4,83 > ,83 + ,82 + P + 1, so 

• An alternative derivation of Equation 26 is given in Appendix A. 
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and 

(30) 

which is the required result. The value of the nondimensional pressure IT = IT/c at the 
point e ..... z is 

_ (132 + P + 1) [3(P + 1)~(P2 + 1)~ - 4~P(P2 + P + 1)] . 
IT ..... z = 2 4~p3 (31) 

It is possible to prove that IT ..... z > 0 for all values of p. 

It is illustrative to plot the results of these computations. Equation 26 is not 
integrable for b(t) in terms of elementary functions, however, numerical integration of 
that equation is elementary. Here note by Equation 3 that a depends upon band bo, 
thus Equation 26 appears to depend upon an initial condition, say b(O), and the two 
parameters bo and c. However, the substitutions 

(32) 

give 

(
d71) 2 

(1/3-1)* 
dT = 1/3[71-(1/3-1)*]' 

(33) 

a single equation with no parameters, so the only dependence is upon 1/(0). Note that 
by Equation 32 only 1/(0) ~ 1 is allowed. Furthermore 1/(0) = 1 gives 1/(T) = 1 for 
all T, so that only 71(0) > 1 need be investigated. Moreover, the right-hand side of 
Equation 33 is strictly positive, so 1/(t) is a strictly monotonic function. Graphs of that 
function for 1/(0) = 1.01,1.1,1.2, and 1.5 are given in Figure 2. Note that the function 
71(·) is almost linear, so that essentially, b may be treated as if it were proportional to 
time. 

For the balance of the relations, it is helpful to understand the purely kinematic 
result implied by Equation 3. In dimensionless form, this is 

s 
.Bs = T'f 

1/3 - 1 
(34) 

This relation is plotted in Figure 3. Here, p is a decreasing function of T'f, but the 
decrease is highly nonlinear. Here note that bo is a constant, so 1/ is a linear function 
of b.Furthermore, b is essentially a linear function of t, so essentially, 1/ is a linear 
function of t. The quantity P may be interpreted as the "thickness ratio" of the shell, 
with 13 -+ 00 representing the thickest possible shell, while P -+ 1 represents a very 
thin shell. Here we see that because of the incompressibility of the material, P initially 
decreases very quickly and almost linearly with time. In the region 1.2.:sP~1.5, there 
is a nonlinear transition to a very slow linear decrease of 13 with time. 
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We consider the pressure distribution given by Equation 28. Again with 

Equation 28 becomes 

- II 
II=-, 

c 
(35) 

fI = (!32 + (3 + 1)(1 - e)((3e - 1)«(32e + (3e + e + (3e + e + 1) (36) 
2(33e4 

In terms of representative phenomena, we show plots of fI ....., e for (3 = 1.05,1.1,1.3,1.5, 
2.0,3.0 and 5.0 in Figures 4-6. We also plot ema., ....., (3 (Equation 29) in Figure 7 and 
fIma., ....., (3 in Figure 8, where 

- lIma., 
lIma., = - . (37) 

c 

Here, of course, by the boundary conditions, the pressure vanishes at e = 1/(3 (the 
inside surface) and at e = 1 (the outside surface). The quantity of interest is the 
pressure gradient, which for small times is very steep near the inside surface, so that 
the pressure is a maximum closer to the inside surface than to the outside surface. After 
that, the pressure decreases slowly to its boundary value at the outside surface. With 
the evolution of time, the pressure gradient profile becomes more symmetric, with the 
location of the maximum pressure moving asymptotically toward the midpoint of the 
shell. We note from Figure 2, and as intuitively obvious, that (3 decreases monotonically 
to 1 as time increases. In Figure 7, we see that for large (3 (and thus small time) em .. ", 
is close to the inside edge of the shell, while as (3 -+ 1, it approaches the center. The 
maximum pressure fIma., as given by Equation 37 is shown in Figure 8 for values of (3 
between 10.0 and 1.0. Here, the high pressure at small times is seen, and the precipitous 
drop with time is illustrated. 
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Figure 1: Geometry and Loading of the Spherical Body, 
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Figure 2: Growth of the Nondimensional Outside Radius '7 of the Sphere with Nondi­
mensional Time T for '7(0) = 1.01,1.1,1.2,1.5. 
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Figure 3: Change of Thickness with Growth of Radius for the Sphere. 
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Figure 4: Pressure Distribution in the Spherical Shell for /3 = 5.00,3.00,2.00. 
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Figure 5: Pressure Distribution in the Spherical Shell for fJ = 2.00, 1.50, 1.30. 
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It::: 0.1 

Figure 6: Pressure Distribution in the Spherical Shell for {3 = 1.30,1.10,1.05. 
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Figure 7: Location of the Maximum Pressure in the Spherical Shell as a Function of (3. 
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Figure 8: Evolution of the Maximum Pressure in the Spherical Shell as a Function of {3. 
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3 The Cylindrical Body 

The arguments for the cylindrical body are much like that for the spherical body, 
thus there is no particular purpose in repeating either the computations or the com­
ments. Here, we simply present the equations corresponding to Section 1 for the cylin­
drical solution. We work in plane polar co-ordinates and consider the body as infinite 
in extent, but consider only a section of unit length. 

3.1 Kinematics 

Here, the volume of the body is 

so 

and thus 

Again, letting 

we have 

and 

v = lI'W - a2
) , 

b 
{3 = - , 

a 

'1 a 1 
{3 - be = ({32 - 1) 4 ' 

b 
'1 = - , 

be 

b {3 
'1 = be = ({32 - 1)4 

1 db 1 --=-......,.--.,-
b d{3 {3({32 - 1) 

3.2 Dynamics - The General Case 

Here, we let r be a plane polar co-ordinate, and consider 

The dynamical equation is 

b . 
v(r, b) = - b(b) . 

r 

18 

av 
- at ' 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 



We integrate this equation and apply the boundary conditions 

p(a, b) = 0, 

p(b, b) = Po • 

The appropriate pressure field is 

IT = c [J32e In (J3e2)] + ITo InJ3 
2J32e2(lnJ3)2 ' 

or 
IT _ cr2 In (~) + IToa2ln (l) 

- 2r21n (l) , 
while 

(J32 - 1) (c _ fIo ) 
'2 J3 - 1 
b = J321n J3 ' 

or 
b2 _ cb~ - a2ITo 

- b2in (l) , 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

with, as before, IT = pip, ITo = Pol p. Also as before, there exists the possibility that 
a body which is initially expanding, reaches an extremum and then contracts due to 
the action of an external pressure. Likewise, a body which is initially contracting may 
stop and then expand due to an internal pressure. 

Extrema in the pressure, if they exist, are found in the usual way. The resulting 
equation is a quadratic with one negative root, and a positive root of 

2 21nJ3 [ITo + c(1- J32)] 
emaz = ITo (2J32InJ3 + J32 - 1) - C (/32 - 1)2 

(53) 

Again, the expression for the maximum pressure is complicated. 

3.3 The Case of No External Pressure 

Here we have 
b2 _ cb~ 

- b2 1n (l) , (54) 

or 
'2 c (J32 - 1) 
b = J321n J3 ' (55) 
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so that b never changes sign. The pressure is 

II = cln (.8 e) 
2 (In,8)2 , 

(56) 

or 

cln (~) 
II= ( ) , 

2ln ~ 
(57) 

with 
2 21n,8 

em .. " = ,82 - 1 ' (58) 

or 

(59) 

Here also, it is possible to prove that 1/,8 < e ..... " < 1. The general expression for the 
pressure is complicated, so we do not write it out. 

Again, for the case of no external pressure, it is possible to solve the equation for 
the outer radius of the body as a function of time numerically. With Equations 32, 
Equation 54 becomes 

(60) 

Graphs of the solution for 1}(0) = 1.01, 1.1, 1.2, and 1.5 are given in Figure 9. Again, 
they are monotone, and nearly linear. 

The kinematical relation for a cylinder which corresponds to Equation 34 for a 
sphere, is 

1}2 
,82 --."...;.­

- 1}2 -1 ' 

and is plotted in Figure 10. For the pressure distribution, we have 

Ii = In (,8e) 
2( In ,8)2 ' 

(61) 

(62) 

which is plotted for ,8 = 1.05, 1.1, 1.3, 1.5, 2.0, 3.0 and 5.0 in Figures 11 - 13. There are 
two points to note here. First, the vertical scales are different than for the corresponding 
figures for the spherical shell; that is because the non dimensional pressure is less in this 
case than in the former. Second, there is still the significant pressure asymmetry at 
early times, with a large pressure gradient near the inside boundary, a maximum in 
pressure nearer the inside than the outside, and a relatively gentle gradient to zero 
pressure at the inside boundary. This asymmetry decreases asymptotically with time. 
The magnitude of the maximum pressure is shown in Figure 14, and the location em .. " 
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of that maximum pressure is shown in Figure 15. It is interesting to note that, although 
the analytical expressions for these last two quantities are radically different for the 
sphere and the cylinder, their values are quite similar. 
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Figure 9: Growth of the Nondimensional Outside Radius,., of the Cylinder with Nondi­
mensional Time T for ,.,(0) = 1.01, 1.1, 1.2, 1.5. 
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Figure 10: Change of Thickness with Growth of Radius for the Cylinder. 
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Figure 11: Pressure Distribution in the Cylindrical Shell for P = 5.00, 3.00, 2.00. 
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Figure 12: Pressure Distribution in the Cylindrical Shell for (3 = 2.00, 1.50, 1.30. 
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Figure 13: Pressure Distribution in the Cylindrical Shell for {J = 1.30, 1.10, 1.05. 
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Figure 14: Evolution of the Maximum Pressure in the Cylindrical Shell as a Function 
of {j. 
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Figure 15: Location of the Maximum Pressure in the Spherical Shell as a Function 
of {3. 
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4 Incompressible Elastic Cylinders and Spheres 

Though the results in the previous sections hold only for incompressible fluids with 
no viscosity, they may be generalized to incompressible finitely elastic materials·. Both 
of the motions considered are circulation-preserving in the sense that, given the accel­
eration vector Y, that vector satisfies 

curly = 0 . (63) 

The deformation field of a body is given by x = x(X, t), where X are reference ("La­
grangian") co-ordinates, and x are spatial ("Eulerian") co-ordinates. Then the defor­
mation gradient is given by F = inc. I ax. A material is said to be incompressible and 
elastic if the Cauchy stress T is given by 

T = -grad pI + 9(F) . (64) 

Assuming no body force, then, the appropriate dynamical equation is 

- gradp + div 9(F) = pY . (65) 

Temporarily consider t not to be the time, but rather a parameter of the motion x(X, t). 
The motion x is quasi-equilibrated if each of the deformations X(X, t) satisfies the 
equations of equilibrium for the body. Then there must be a pressure field Po = Po(x, t) 
such that for each value of t 

-grad Po + div 9(F) = 0 . 

Thus it follows that 
grad (Po - p) = pY , 

or 
y=-grad~, P~=P-Po. (66) 

Equation 66 is equivalent to Equation 63. 

The following result is true under the conditions of zero body force·: Given a quasi­
equilibrated motion of a particular body, this motion is dynamically possible, if and 
only if the motion is circulation-preserving with a single-valued acceleration potential ~. 
Then the stress is given by the formula 

T = -p~l+To, 

where To is the most general stress corresponding to equilibrium at time t. 

·The arguments given here are those of Truesdell and Noll [4]. 

"Truesdell and Noll [4], page 208. 
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The essence of the above result in that a quasi-equilibrated motion is dynamically 
possible for an incompressible elastic material if and only if it is a possible motion for 
an incompressible, inviscid fluid. In the preceding two sections of this paper, we have 
found the pressure and velocity fields in two boundary-value problems for such fluids. 
For each, the streamlines are rectilinear, and thus the motion is circulation-preserving. 
In each case, the potential ~ may be found by an elementary integration of Equation 661• 

In our solutions, we have found the pressure fields P in Equation 662• That suffices for 
the material of interest to us. H, in addition, one wanted to consider elastic materials 
undergoing the same motions, one would have to find the static pressure fields Po in 
these motions, and that would require the solutions of static problems in finite elasticity. 
It so happens that these exact problems have been solved.· Analysis of the resulting 
equations has been concentrated on consideration of the case where either the bodies 
are thin (5), or on finding sufficient conditions that the motion of the body be periodic 
[6), [7), [8), [9), [10). 

5 Recommendations and Closure 

In this report we have provided analytic solutions which allow a quantitative evalu­
ation of the stabilizing inertial forces brought about in the motion of symmetric hollow 
bodies. Although not explicity done here, it is straightforward to demonstrate that 
inertial pressures can significantly exceed characteristic destabilizing pressures, such 
as a plastic flow stress for example, for motions commensurate with applications of 
interest. 

The geometries considered in the present study are good approximations to the 
motions in two applications which should provide the basis for continued analysis of 
this problem. First is the symmetric implosion and rebound of an explosively-loaded 
metal shell. Of interest here is stability of both the inward and outward motion and 
evaluation of the degree of distention corresponding to stability and breakup. Second 
is the ejecta resulting from a hypervelocity impact event - the regime of stable motion 
and the point of instability. The present analysis provides the framework for useful 
calculations concerning the physics of stability and fragmentation in both applications. 

-Truesdell and Noll [41, pages 212-214. 
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Appendix A. Kinetic Energy for the Spherical Body 

Consider a hollow spherical body, as described in 1, and assume zero pressure on 
the inside and outside boundaries. By Equation 7 the velocity field is 

b2 • 
v(r,6) = 2"6(6) . 

r 
(68) 

Here, we will find b(6) by an energy argument. Since the material model we use does 
not allow for dissipation, and there is no pressure on the outer boundaries, the total 
kinetic energy, T of the body, 8, is a constant. This energy is calculated by: 

Since the body is symmetric 

so by Equation 68 

This leads to 

2 
T = r pv dV. 

1s 2 

'2 T 
b = (b) , 

21f'pb3 a-I 

which is identical to Equation 26, with the identification 

T 
c--­

- 21f'pb~ . 
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