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A Time Stepping Algorithm for Parallel 
Computers * 

David E. Womble t 

Abstract 
Parabolic and hyperbolic differential equations are often solved 

numerically by time stepping algorithms. These algorithms have been 
regarded as sequential in time; that is, the solution on a time level must 
be known before the computation of the solution at subsequent time 
levels can start. While this remains true in principle, we demonstrate 
that it is possible for processors to perform useful work on many time 
levels simultaneously. Specifically, it is possible for processors assigned 
to "later" time levels to compute a very good initial guess for the 
solution based on partial solutions from previous time levels, thus 
reducing the time required for solution. The reduction in the solution 
time can be measured as parallel speedup. 

We demonstrate this algorithm for both linear and nonlinear prob­
lems. In addition, we discuss the convergence properties of the method 
based on the convergence properties of the underlying iterative method, 
and we present an accurate performance model from which the speedup 
and other quantities can be estimated. 

1 Introduction 

One route to achieving the computing power required by scientists and en­
gineers today is through the use of parallel computers. However, to use par-

'This work was supported by the Applied Mathematical Sciences program, U.S. De­
partment of Energy, Office of Energy Research, and was performed at Sandia National 
Laboratories, operated for the U.S. Department of Energy under contract No. DE-AC04-
76DP00789. 

tSandia National Laboratories, Albuquerque, NM 87185 

1 



aIlel computers effectively, existing algorithms must be reexamined to take 
advantage of inherent parallelism, and new algorithms must be developed 
and analyzed. 

Time stepping methods are commonly used to numerically solve parabolic 
and hyperbolic partial differential equations (PDE's). In these methods, the 
solution to a PDE is determined at a specified set of times tt < t2 < ., . < tN 
in sequence beginning with tt; the solution at one time level is completed 
before the solution at the next time level is started. The discretization in 
space can be, for example, by finite differences or by finite elements, and 
the discretization in time is by one-sided finite differences. The alterna­
tive approach of solving on all time levels simultaneously is not considered 
practical [9J. 

Time stepping algorithms can be either explicit or implicit [lJ. In explicit 
algorithms, the solution at each point in space depends only on the solu­
tions at previous time levels, which are known. A high degree of parallelism 
can be achieved because the solution at each point on a time level can be 
calculated independently; however, explicit methods often suffer from severe 
restrictions on the size of the time step. In implicit algorithms, the solution 
at a point depends on the solutions at other points on the same time level, 
which are unknown. Although implicit methods do not suffer the same step 
size restriction as explicit methods, the degree of parallelism that can be 
achieved is reduced by the communication and synchronization requirements 
of solving simultaneously for each unknown at a time level [6J. 

Another method for the solution of time dependent PDE's is waveform 
relaxation, which was originally introduced as a numerical method for cir­
cuit simulation [4]. In this method, the space variables are discretized, and 
the time variable remains continuous. The resulting system of initial value 
problems is then solved using a line relaxation technique, such as Jacobi, 
Gauss-Seidel, or SOR. The degree of parallelism that can be achieved de­
pends on the relaxation technique used; however, any relaxation technique 
requires a substantial amount of communication and memory [5J. 

Finally, we mention the windowed relaxation methods described in [7 ,8J. 
In these methods the spatial domain is divided among the processors, and 
within each subdomain, each processor computes iterates on several time 
levels (the window) before communicating the results to other processors. In 
a distributed memory machine, the effect of windowing is to decrease the 
number of messages and increase the size of the messages, thereby increasing 
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the processor efficiency. 
In this paper, we introduce a method of parallelization for implicit time 

stepping algorithms. It is applicable to a wide range of problems (linear 
and nonlinear) and can be coupled with a wide range of existing algorithms, 
including finite element and finite difference algorithms. Further, the par­
allelism in our method is independent of any parallelism of the algorithm 
with which it is coupled. In Section 2, we present the parallel time stepping 
method. The method is analyzed in Section 3, and a performance model is 
developed. In Section 4, the method is demonstrated for both linear and 
nonlinear problems, and the performance is compared with the predictions 
of the model. In Section 5, we summarize the paper. 

2 The Parallel Time Stepping Method 

The parallel time stepping (PTS) method is a means by which parallelism can 
be introduced into a time stepping algorithm that uses an iterative method 
to find the solution at each time level. Specifically, while one or more proces­
sors are computing the solution on one time level, other processors can use 
intermediate solutions from this time level to improve the initial guesses for 
the solution on later time levels. The PTS method is very general in that it 
can be used with either linear or nonlinear PDE's, with any discretization of 
a PDE, and with any iterative method for the solution at a time level. The 
parallelism of the PTS method is independent of any parallelism available 
in the iterative method with which it is coupled; however, to simplify the 
presentation in this section, we assume that only one processor is assigned 
to each time line. An example including both space and time parallelism is 
included in Section 4. 

We introduce the PTS method by considering the numerical solution of a 
linear, parabolic PDE that has been approximated by the sequence of linear 
systems 

n = 1, ... ,N, (1) 

where Un and in are vectors in Rm, An and Bn are m X m matrices, and 
Uo is given. The subscript n denotes a time level, and the vector Un denotes 
the approximate solution to the PDE at a discrete set of points on that time 
level. We note that the vector Un-l must be known before we can compute 
the vector Un. 
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Iterative methods, such as SOR and multigrid, are often used effectively 
in the solution of (1). If we let u~k) = Qn (u~k-1),un_l) denote the update 
step of such an algorithm, a serial time stepping method for the solution 
of (1) can be stated as follows. 

Method 1 (serial time stepping) Serial time stepping (STS) for the so­
lution of (1) is given by 

for n = 1, ... ,N do 
set k = 0 
set u~O) = U n -1 (u~O) is the initial condition) 

until convergence do 
compute k = k + 1 
compute u(k) = Q (u(k-1) u 1) n n n ,n-

end until 
set Un = u~k) 

end for 

The number of iterations required for convergence at each time level is a 
function, in part, of the iteration function, Qn, and the initial guess, u~O). If 
we assume that Qn is the best iteration function available for the solution of 
this problem, the only improvement that can be made is the quality of the 
initial guess. To this end, let us suppose that the function Rn (u~O), Un-I) 

can be used to refine the initial guess at time level tn. Idle processors in a 
parallel computer might then use Rn to improve the initial guesses on time 
levels t n+1, ... , tN while the solution is being computed on time level tn. For 
example, suppose we use three processors to solve on three time levels. Pro­
cessor 1 solves the problem at the first time level by repeated evaluations of 
the iteration function Q17 and after each evaluation of Q1, sends the approx­
imate solution to processor 2. Processor 2 uses this approximate solution at 
time level 1 to generate a new initial guess using the function R2 • This initial 
guess is then sent to processor 3, which treats it as an approximate solution 
at time level 2 and generates a new initial guess for time level 3 using R3 . 

After processor 1 has solved the problem on time levell, processor 2 begins 
the solution process at time level 2 using its (improved) initial guess and the 
iteration function Q2 while processor 3 continues to improve its initial guess 
using R3 • Finally, after processor 2 has solved the problem at time level 2, 
processor 3 solves the problem at time level 3 using Q3. 

4 



'. 
Pseudocode for the PTS method is given below. The first loop in the 

pseudocode contains the evaluation of the function R.. and is executed until 
the solution on the previous time level has converged. The second loop 
corresponds to the loop in the serial time stepping method and is executed 
until the solution on the current time level has converged. 

Method 2 (parallel time stepping) If N processors are available for the 
solution of (1), then the parallel time stepping (PTS) method for processor n 
is given by 

set k = 0 
set u~O) to the initial condition 
if n =I- 1 then 

until convergence on processor n - 1 do 
compute k = k + 1 
receive u~~-/) from processor n - 1 
compute u(k) = Q (u(k-1) u(k-1») 

n .Lton n 'n-l 

send u~k) to processor n + 1 
end until 

end if 
(k) 

set Un-l = U n -1 

set 1=0 
set u(O) = u(k) 

n n 

until convergence do 
compute I = I + 1 
compute u(l) = Q (u(l-l) u 1) n n n ,n-

send u~) to processor n + 1 
end until 
set Un = u~) 

There are many possible choices for the function R... For example, R.. 
might correspond to a multi grid algorithm in which a different combination 
of grids is used than for Qn. (This would be useful because iterative methods 
eliminate different frequencies at different rates and different frequencies can 
propagate forward in time at different speeds.) One practical choice for the 
iteration function R.. is to set it equal to Qn. There are several reasons for 
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this. First, we assume that Qn was chosen because of desirable convergence 
properties for the problem to be solved. Second, because the Rn+I, ... ,RN 
are used concurrently with Qn, setting Rn = Qn results in a load balanced 
algorithm. (Note that in many cases, the amount of work required for one 
application of the functions Qn and Rn does not depend on n.) Third, the 
task of implementing the algorithm is simplified. Throughout the remainder 
of the paper, we will take Rn = Qn. 

In practice, we have P « N) processors available for the solution of (1). 
In this case, processor p begins by computing the solution at time level tp. 
When work has been completed on this level, it begins refining the initial 
guess on time level tp+p and eventually computes the solution there. This 
process continues until the solution has been computed on each of the N 
time levels. 

We note from the pseudocode above that processor n cannot begin work 
until a message has been received from processor n - 1, which occurs after 
processor n - 1 has completed one iteration. To formalize this, we introduce 
the concept of the delay at time level n, dn , which we define to be the 
number of iterations that processor n -1 completes before processor n starts. 
For the pseudocode listed above, d1 = 0 and dn = 1, n = 2, ... , N. In 
the case of P « N) processors, the delays, dn , are unknown a priori for 
n = P+ 1, ... ,N. 

Even though we have developed the PTS method for a linear, parabolic 
PDE with a finite difference discretization, it is clear that the method can be 
used to parallelize any time stepping algorithm, including those for nonlin­
ear problems, those for hyperbolic PDE's, and those that use finite element 
discretizations. The PTS method is demonstrated for a variety of problems 
in Section 4. 

3 Analysis 

The parallel time stepping method is very general. We have not spec­
ified the type of equation, the method of discretization, or the iterative 
solution al90rithm. Thus, no one proof of convergence of the iteration 
u~k) = Qn \u~k-l),Un_l)' k = 1,2, ... , can be constructed. However, for 
a linear PDE, the convergence of the serial time stepping method (for a 
choice of discretization and iterative solution algorithm) implies the conver-
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gence of the parallel time stepping method because the iteration defined by 
On will converge for any initial guess. 

We can develop a model for the behavior of the parallel time stepping 
method for linear PDE's. (Models can also be developed for nonlinear prob­
lems, but are highly problem dependent.) We assume that a linear PDE has 
been reduced to the form 

n = 1, ... ,N, (2) 

where Un and in are vectors in Rm, An and Bn are m X m matrices, Uo is 
known, and An is nonsingular. We let 

U~ = A;;-l(fn + BnUn-l) 

be the solution to (2) at time level n and define an iterative method for 
obtaining u~ by 

u~k) = On (u~k-l), Un-I) . (3) 

To guarantee the convergence of u~k) to u~, we require that On satisfy the 
Lipschitz condition 

f3n < 1, 

for all u and v in Rm and some norm"'" on Rm. These definitions form the 
traditional framework for the study of the STS method. To study the PTS 
method, we adopt the convention that u~k) = Uo, k = 1, ... ,00, and define 

k = 1, ... ,In - 1 - dn 

k > In - 1 - dn 

where dn is the delay defined in the previous section, and In- 1 is the number 
of iterations required for convergence of the iteration (3) to the solution of (2) 
at time level n - 1. In the notation of Method 2, In is the number of times 
Rn is evaluated plus the number of times On is evaluated. The vector u~k),* is 
thus the solution to (2) with the true solution at time level n -1 replaced by 
the most recent iterate, and we note that u~k),* = On(U~k),*, ut~dn)). Finally, 
we define e~k) by 
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For k between 1 and In, e~k) is the norm of the difference between the iterate 
u!:') and the "apparent" true solution u!:')", which we refer to as the apparent 
error. For k > In, we set e~k) = 0 to simplify error bound on later time levels. 

We now derive a bound for e~k). Applying the Lipschitz condition on Qn 
for n = 1 yields 

and for n > 1, 

(k) < 13k (0) el _ 1 el , 

e~k) < f3nllu~k-l) _ u~k)"11 
< f3n (lIu~k-l) _ u~k-l)'*11 + lIu~k-l),. _ u~k)'*II) 

< f3n (e~k-l) + IIA~lBnllllu~~-ll+dn) _ u~~dn)ll) _ 
< f3n (e~k-l) + (1 + f3n_l)IIA~l Bnllllu~~-;.l+dn) - ui~~dn)"II) . 

Applying the above calculations recursively yields 

e~) :5 f3n (e~k-l) + ~ (ei(k-l+I:~:ildj+l) 'fi (1 + f3j) IIAjJ1BH11I)) . (4) 

We note from (4) and the definition of e~k) that if dn = In-I, then we 
recover the traditional error bounds for the STS method. Using induction, 
we can also conclude from (4) that the PTS method converges (for linear 
problems). 

We also note from (4) that the effect of the error on one time level can 
be magnified at all later time levels on which the computation is proceeding 
simultaneously. For many practical problems, this magnification factor is 
greater than one. Hence, our upper bound on the error allows the possibility 
that the PTS method on N processors requires more time to solve a problem 
than does the STS method on one processor. 

The upper bound on the error (4) is not tight; however, the error can be 
approximated. Because, the iterates, Ui~l' asymptotically approach U~_l 
along a vector lying in the subspace spanned by the eigenvectors corre­
sponding to the largest eigenvalue, the distance between consecutive iterates 
asymptotically approaches 1- f3n-l. Replacing the term 1 + f3n-l in the upper 
bound with 1 - f3n-l yields 

e~k) < f3n (e~k-l) + IIA~lBnllllu~k_-;.l+dn) _ u~k!rdn)lI) 

~ f3n (e~k-l) + (1- f3n_l)IIA~lBnllei~-;.l+dn»). 
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Thus, e~k} is approximated by (J'~k), the solution to the recursion 

(k-l+dn) > 
(J'n-l _ f 

otherwise 

for k = 1,2, ... and n = 1,2, ... with the initial conditions 

where 

(J' (k) - 0 o - , k = 0,1, ... , 

(J'(O) = Ilu* - u* II + "V (J'(dn-l) n n n-l In n-l , n = 1,2, ... , 

an = t1n(l - t1n_l)IIA;;-l Enll, 
In = 1 + IIA;;-l En I!' 

(5) 

and f corresponds to the convergence criterion. This recursion can be solved 
in closed form; however, the this form does not yield additional information. 
Instead, we will evaluate the recursion relation numerically for specific cases. 
The approximations for the error will be used to predict speedups, which will 
be compared with experimental results in the next section. 

The delays can be used to generalize the model to the case of P « N) 
processors. For example, to model the one processor case (STS method), we 
can set dn equal to In, the minimum k such that (J'~k) = O. To model the P 
processor case, the delays on the first P time levels are arbitrary, and the 
delay at time n (> P) is chosen so that computation does not start until 
the solution on line n - P has been completed. We note that the maximum 
number of processors that can be used without at least one processor being 
idle at all times must satisfy 

(6) 

for all n between 1 and N - P. This relation states that the processor assigned 
to time level n cannot complete its calculations before each of the remaining 
processors is assigned a time level and begins iterating. 

The most common performance measure is speedup. It is normally de­
fined as the time required for one processor to solve a problem divided by the 
time required for P processors to solve the same problem. The time to solve a 
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problem using either Method 1 or Method 2 is proportional to the "effective" 
number of evaluations of Qn, that is, the number of evaluations of Qn that 
are not overlapped with computations on previous time levels. The effective 
number of evaluations of Qn is given by L:;;=1 En, where En = In - In-1 + dn. 
If we denote by In(P) the number of iterations and by En(P) the effective 
number of iterations required for convergence at time level n and by dn(P) 
the delay at time level n in the P processor case, S(P), the speedup on P 
processors, is given by 

S(P) = (~In(1») / (~En(P») (7) 

- (~ln(1)) / (IN (P) + ~dn(P»). 
For some problems, 1(1) = 11(1) = ... = IN(I) are constant. In this case, 
there is a "steady state" solution of (5) in which l(P) = 11(P) = ... = IN (P) 
are constant, and d(P) = l(P)/ P, and the "steady state" speedup is given 
by 

SS(P) = lim S(P) = P x l(I)/l(P). 
N-+oo 

(8) 

The steady state speedup is an asymptotic value for the speedup (as the 
number of time levels at which the solution is desired increases). The "tran­
sient" nature of the speedup for a small number of time levels is due to the 
fact that none of the iterations at the first time level can be overlapped with 
iterations at previous time levels. 

We now look at the effect of the parameters in the model on the per­
formance of the PTS method. The delays, the terms IIA;lBn II , and the 
convergence factors, i3n, have the largest effect, while the effect of the other 
parameters is minimal. The results presented in the remainder of this sec­
tion are obtained by numerically evaluating the recursion relation, (5). The 
values of the parameters used in the evaluation of (5) are close to values seen 
in many applications, and the effects shown in the remainder of this section 
are observed over a range of values for the parameters. 

The delay is a function of both hardware and software. It depends on the 
number of processors, the number of iterations that each processor requires 
for convergence, and the time to "start up" a processor on a new time level. 
In almost all cases, we want the minimum delay possible; nevertheless, it is 
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instructive to consider the effect of the delay on the number of iterations. As 
the delay, dn , is decreased, the error introduced as the result of error at the 
previous time level is increased, and we expect that the number of iterations 
required for convergence, In, will increase. However, the numerical evaluation 
of (5) indicates that the "effective number of iterations," En = In - In-I + dn , 

will be reduced. This is shown in Figure 1. 

120 
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90 
fIl 
~ 
0 ..... 

...... 70 
(\j 
1-1 60 Q) 

...... - 50 

+0 

30 

20 

10 

Figure 1: The effect of the delay, d2 , on the number of iterations, 12, and 
the effective number of iterations, E2 • ((32 = .9, 0'2 = .09, lIu; - uill = .1, 
f = .00001.) Note that II = 88. 

The terms II~I En II are determined by the PDE and the method of dis­
cretization. We see from (5) that increasing the value of IIA;I En II magnifies 
the effect of the error at the previous time level. The result is that the num­
ber of iterations required at each time level increases, the delays, dn (n > P), 
increase, and the speedup decreases. Noting equation (8) and the effect of 
the delays on the number of iterations shown in Figure 1, we expect the de­
crease in speedup to be much more severe for a large number of processors. 
This effect is shown in Figure 2. There is a slight "staircase" nature to the 
curves, which is due to the fact that dn and In are integers. 
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Figure 2: The effect of IIA;;l Bn II on the steady state speedup. (f3n = .9, 
Ilu~ - u~_lll = .1, f = .00001, P = 16.) 
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The convergence factors f3n are determined by the iterative method cho­
sen and affects both the number of iterations required for convergence and 
the magnification of the error on the previous time level. As the f3n ap­
proach one, errors from previous time levels are introduced faster than they 
can be eliminated. Thus, the effective number of iterations increases, and 
we expect the speedup to decrease. On the other hand, as f3n approaches 
zero, the number of iterations required for convergence decreases, and we see 
from equation (6) that the number of processors that can be used effectively 
decreases. Thus, we expect a decrease in the speedup. The overall effect of 
changing f3n on the steady state speedup is shown in Figure 3. We note that 
the speedup achieves its maximum on the interior of the interval (0,1), and 
that the PTS method performs best with relatively good iterative algorithms. 
As before, the staircase nature of the curves is due to the fact that dn and 
In are integers. 

P=4 

Figure 3: The effect of f3n on the steady state speedup. (11.4;1 Bnll - 1, 
lIu~ - u~_111 = .1, t = .00001, P = 16.) 
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4 Experimental Results 

In this section, we present three examples of the PTS method. The first ex­
ample is a parabolic PDE and an iterative method for which the parameters 
in the model, equation (5), can be calculated analytically. This allows direct 
comparison of the performance of the PTS method with the predictions of 
the model. The second example is a nonlinear, parabolic PDE with multi­
grid as the underlying iterative method. This example demonstrates that 
the PTS method is applicable to a wide variety of problems. In the third 
example, we demonstrate that the PTS method can be effectively coupled 
with a parallel implementation of an iterative algorithm at each time level. 
All numerical results were obtained on the NCUBE/ten hypercube. For ease 
of programming, we assume that the number of processors to be used is a 
power of two, although this is not a requirement for the PTS method. 
Example 1 The first example is the PDE 

fPu au 
- ox2 + at = 3, (x, t) E (0,1) x (0,5), (9) 

u(x,O) = 0, x E (0,1), 

u(O, t) = 3t = u(l, t), t E (0,5). 

We let .6.x = 1/64 and .6.t = 5/200 and replace (9) with the finite difference 
approximation 

-Ui+l,n + 2Ui,n - Ui-l,n + Ui,n - Ui,n-l _ 3 
.6. x 2 .6.t 

z 1, ... ,63, n = 1, ... ,200, 

Ui,O = 0, i = 1, ... ,63, 

UO,n = 3n.6.t = UM,n, n = 1, ... ,200. 

This yields a linear system of the form (1), which we solve with SSOR iter­
ation with the near optimal relaxation parameter, w = 1.8. The parameters 
needed to evaluate equation (5) can be calculated analytically. They are 

n = 1, ... ,200. 

For the convergence criterion, we let f = 1 X 10-6 • Convergence can be 
checked explicitly because the true solution to (9) is known. 
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The problem was solved numerically using different numbers of proces­
sors. The results and the predictions of the model are shown in Table l. 
Note that problem (9) satisfies the requirements necessary to compute the 
steady state speedup. As was stated in the previous section, the steady state 
speedup is an asymptotic value for the speedup as the number of time levels 
on which the solution is desired increases. 

P E~~lEn S(P) SS(P) 
1 12,000 (12,200) 1.00 (1.00) 1.00 (1.00) 
2 6,118 (6,121) 1.96 (1.99) 2.00 (2.00) 
4 3,168 (3,201) 3.79 (3.81 ) 3.90 (3.87) 
8 1,847 (1,915) 6.49 (6.37) 6.53 (6.78) 

16 1,234 (1,319) 9.72 (9.25) 9.50 (10.8) 
32 872 (1,137) 13.7 (10.7) 13.9 (15.2) 
64 634 (1,137) 18.7 (10.7) 19.1 (20.0) 

128 489 (1,137) 24.5 (10.7) 27.6 (23.6) 

Table 1: Comparison of the performance of the PTS method for Example 1 
with the predictions of the model. The predictions are in parentheses. 

We make two observations based on Table 1. The first is that with only 
200 time steps, we cannot use more than 200 processors. The second observa­
tion is that the model is most accurate for P ~ N = 200. One reason is that 
the delays are larger, and small errors in modeling the delay have a smaller 
effect. (We recall that the delays are dependent, in part, on the hardware 
and must be modeled.) Another reason is that we used the approximation 

f3n < 1, 

which is most accurate for a large number of iterations (with f3n equal to the 
spectral radius of Qn). For P = 128, there is a average of less than three 
effective iterations per timestep. 
Example 2 As a second example, we choose Burgers' equation: 

cPu ou ou 
/1- - u- - - = 0, ax2 ax at (x, t) E (0,1) x (0,5) (10) 
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u( x, 0) = sin( 1rx), 

u(O, t) = 0 = u(l, t), 

x E (0,1), 

t E (0,5). 

We let ~x = 1/128 and ~t = 5/200 and replace (10) with the finite difference 
approximation to get 

Ui," - ui,n-l _ +. 
~t - ;',n, (11) 

Z - 1, ... ,127, n = 1, ... ,200, 

Ui,O = sin(i1r~x), i = 0, ... ,128 

UO,n = 0 = U128,n, n = 1, ... ,200. 

We note that upwind differencing has been used for the term au/ax. 
As an iterative method for the solution of (11), we choose multigrid it­

eration with a weighted Jacobi smoothing step and a weighting factor of 
w = .95. Because multigrid iteration requires a linear equation, we delay 
Ui,n in the nonlinear term by one cycle. We consider the iterations to have 
converged if the residual is less than 1.0 x 10-5

. Table 2 shows the results 
obtained by running the PTS algorithm for this problem with v = .01 on 
different numbers of processors. There are no predicted results because the 
problem is nonlinear. 

P L,~~l En S(P) 
1 5,346 1.00 
2 2,732 1.96 
4 1,341 3.99 
8 765 7.00 

16 570 9.38 
32 505 10.6 
64 487 11.0 

128 487 11.0 

Table 2: The performance of the PTS algorithm for Example 2 with v = .01. 

We note that the performance of the PTS algorithm for Example 2 is 
somewhat worse than that for Example 1. The reason for this is that fewer 
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iterations are required at each time step in Example 2. Thus, fewer proces­
sors can be used effectively. In general, for problems that have steady state 
solutions, the number of iterations decreases as n increases (as in Example 
2), and as a result, fewer processors can be used effectively at later time 
levels. 
Example 3 The third example is a linear, parabolic PDE that arises in 
the study of grain-boundary diffusion [3]. The dimensionless equation with 
parameters approximating the diffusion of chromium in gold is 

1 
(x,y,t) E (0,1) X (0'2) X (0,1), (12) 

with boundary conditions 

au a2u au 
at (x,O,t) = ax2 (x,0,t)+0.l ay (x,0,t), xE(O,l), tE(O,l), 

au 1 
ox (x, 2' t) = 0, xE(O,l), tE(O,l), 

u(O, y, t) = 1, 
1 

YE(0'2)' tE(O,l), 

u(l, y, t) = 0, 
1 

YE(0'2)' t E (0,1), 

and initial conditions 

u(x,y,O) = 0, x E (0,1], 
1 

y E (0, 2]' 

u(O, y, 0) = 1, 

u(x,O,O) = I-x, x E (0,1). 

We let ~x = 1/32, ~y = 1/64, and ~t = 1/32, and replace (12) with 
an implicit finite difference approximation (implicit Euler difference in time, 
central differences in space where possible, one-sided differences otherwise) 
to get a system of linear equations of the form (1). As a parallel iterative 
algorithm for the solution at each time level, we choose Jacobi iteration 
because of its inherent parallel nature and consider the iterations to have 
converged when the residual is less than 1.0 X 10-3• Table 3 shows the run 
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Pt 

Px X Py 1 2 4 8 16 
1 x 1 467. (1.00) 264. (1.77) 178. (2.62) 145. (3.22) 124. (3.77) 
2 x 2 135. (3.46) 76.1 (6.13) 52.0 (8.98) 42.6 (11.0) 35.9 (13.0) 
4x4 47.3 (9.87) 26.6 (17.6) 18.4 (25.4) 15.0 (31.1) 12.6 (37.1) 
8x8 24.1 (19.4) 13.8 (33.8) 9.44 (49.5) 7.73 (60.4) 6.64 (70.3) 

Table 3: The performance of the PTS algorithm for Example 3. Px and Py 

are the numbers of processors in the x and y direction respectively, and Pt is 
the number of time levels on which iterations are carried out simultaneously. 
The total number of processors used is Px X Py X Pt. Run times are in seconds, 
and speedups are given in parentheses. 

times and speedups for runs with various combinations of processors in the 
space and time directions. 

Even though Jacobi iteration is considered a highly parallel algorithm, a 
problem size of 32 X 32 is small and communication overhead is significant. 
We see from Table 3 that if only a small number of processors are available for 
the solution of (12), then they are most effectively used by the parallel Jacobi 
algorithm to solve at one time level. However, if a large number of processors 
are available, then they are most effectively used when the Jacobi iteration is 
coupled with the PTS method. This effect would be more pronounced if we 
had chosen an iterative method with a less efficient parallel implementation, 
such as multigrid or SOR. 

We can also see from Table 3 that the total speed up is approximately 
equal to the speedup obtained in the space variables times the speedup ob­
tained in the time variable. 

5 Summary 

In this paper, we have presented a technique by which parallelism in the 
time direction can be introduced into implicit time stepping algorithms. The 
attraction of the technique is that it can be coupled with a wide variety 
of algorithms and that the parallelism introduced in the time direction is 
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independent of any parallelism in space. Thus, the number of processors 
that can be efficiently applied to the solution of a time dependent PDE is 
increased by at least .an order of magnitude. 

We also presented a performance model of the method for linear prob­
lems. Based on this model, we were able to predict the effect of algorithm 
parameters, such as the convergence rate and the number of processors used, 
on the speedup. In Section 4, this model was found to be in good agreement 
with the actual performance of the method. 

Finally, we demonstrated the PTS method for linear and nonlinear prob­
lems and for three common iterative methods. We found that the method 
was very effective for a small number of processors and remained effective 
while the number of processors was less than the number of time levels on 
which the solution was desired and less than the number of iterations re­
quired for convergence on a time level. We also demonstrated that the PTS 
method can be effectively coupled with parallel iterative algorithms for the 
solution at each time level. 

Acknowledgment. The author would like to thank E. F. Brickell and 
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equation (5). 
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