
SANDIA REPORT
SAND88-3291 • t,JC-405
Unlimited Release
Printed February 1990

A Time Stepping Algorithm for
Parallel Computers

David E. Womble

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

SF2900Q(S-S1)

When printing a copy of any digitized SAND
Report, you are required to update the

markings to current standards.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern­
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AOI

'-

A Time Stepping Algorithm for Parallel
Computers *

David E. Womble t

Abstract
Parabolic and hyperbolic differential equations are often solved

numerically by time stepping algorithms. These algorithms have been
regarded as sequential in time; that is, the solution on a time level must
be known before the computation of the solution at subsequent time
levels can start. While this remains true in principle, we demonstrate
that it is possible for processors to perform useful work on many time
levels simultaneously. Specifically, it is possible for processors assigned
to "later" time levels to compute a very good initial guess for the
solution based on partial solutions from previous time levels, thus
reducing the time required for solution. The reduction in the solution
time can be measured as parallel speedup.

We demonstrate this algorithm for both linear and nonlinear prob­
lems. In addition, we discuss the convergence properties of the method
based on the convergence properties of the underlying iterative method,
and we present an accurate performance model from which the speedup
and other quantities can be estimated.

1 Introduction

One route to achieving the computing power required by scientists and en­
gineers today is through the use of parallel computers. However, to use par-

'This work was supported by the Applied Mathematical Sciences program, U.S. De­
partment of Energy, Office of Energy Research, and was performed at Sandia National
Laboratories, operated for the U.S. Department of Energy under contract No. DE-AC04-
76DP00789.

tSandia National Laboratories, Albuquerque, NM 87185

1

aIlel computers effectively, existing algorithms must be reexamined to take
advantage of inherent parallelism, and new algorithms must be developed
and analyzed.

Time stepping methods are commonly used to numerically solve parabolic
and hyperbolic partial differential equations (PDE's). In these methods, the
solution to a PDE is determined at a specified set of times tt < t2 < ., . < tN
in sequence beginning with tt; the solution at one time level is completed
before the solution at the next time level is started. The discretization in
space can be, for example, by finite differences or by finite elements, and
the discretization in time is by one-sided finite differences. The alterna­
tive approach of solving on all time levels simultaneously is not considered
practical [9J.

Time stepping algorithms can be either explicit or implicit [lJ. In explicit
algorithms, the solution at each point in space depends only on the solu­
tions at previous time levels, which are known. A high degree of parallelism
can be achieved because the solution at each point on a time level can be
calculated independently; however, explicit methods often suffer from severe
restrictions on the size of the time step. In implicit algorithms, the solution
at a point depends on the solutions at other points on the same time level,
which are unknown. Although implicit methods do not suffer the same step
size restriction as explicit methods, the degree of parallelism that can be
achieved is reduced by the communication and synchronization requirements
of solving simultaneously for each unknown at a time level [6J.

Another method for the solution of time dependent PDE's is waveform
relaxation, which was originally introduced as a numerical method for cir­
cuit simulation [4]. In this method, the space variables are discretized, and
the time variable remains continuous. The resulting system of initial value
problems is then solved using a line relaxation technique, such as Jacobi,
Gauss-Seidel, or SOR. The degree of parallelism that can be achieved de­
pends on the relaxation technique used; however, any relaxation technique
requires a substantial amount of communication and memory [5J.

Finally, we mention the windowed relaxation methods described in [7 ,8J.
In these methods the spatial domain is divided among the processors, and
within each subdomain, each processor computes iterates on several time
levels (the window) before communicating the results to other processors. In
a distributed memory machine, the effect of windowing is to decrease the
number of messages and increase the size of the messages, thereby increasing

2

the processor efficiency.
In this paper, we introduce a method of parallelization for implicit time

stepping algorithms. It is applicable to a wide range of problems (linear
and nonlinear) and can be coupled with a wide range of existing algorithms,
including finite element and finite difference algorithms. Further, the par­
allelism in our method is independent of any parallelism of the algorithm
with which it is coupled. In Section 2, we present the parallel time stepping
method. The method is analyzed in Section 3, and a performance model is
developed. In Section 4, the method is demonstrated for both linear and
nonlinear problems, and the performance is compared with the predictions
of the model. In Section 5, we summarize the paper.

2 The Parallel Time Stepping Method

The parallel time stepping (PTS) method is a means by which parallelism can
be introduced into a time stepping algorithm that uses an iterative method
to find the solution at each time level. Specifically, while one or more proces­
sors are computing the solution on one time level, other processors can use
intermediate solutions from this time level to improve the initial guesses for
the solution on later time levels. The PTS method is very general in that it
can be used with either linear or nonlinear PDE's, with any discretization of
a PDE, and with any iterative method for the solution at a time level. The
parallelism of the PTS method is independent of any parallelism available
in the iterative method with which it is coupled; however, to simplify the
presentation in this section, we assume that only one processor is assigned
to each time line. An example including both space and time parallelism is
included in Section 4.

We introduce the PTS method by considering the numerical solution of a
linear, parabolic PDE that has been approximated by the sequence of linear
systems

n = 1, ... ,N, (1)

where Un and in are vectors in Rm, An and Bn are m X m matrices, and
Uo is given. The subscript n denotes a time level, and the vector Un denotes
the approximate solution to the PDE at a discrete set of points on that time
level. We note that the vector Un-l must be known before we can compute
the vector Un.

3

Iterative methods, such as SOR and multigrid, are often used effectively
in the solution of (1). If we let u~k) = Qn (u~k-1),un_l) denote the update
step of such an algorithm, a serial time stepping method for the solution
of (1) can be stated as follows.

Method 1 (serial time stepping) Serial time stepping (STS) for the so­
lution of (1) is given by

for n = 1, ... ,N do
set k = 0
set u~O) = U n -1 (u~O) is the initial condition)

until convergence do
compute k = k + 1
compute u(k) = Q (u(k-1) u 1) n n n ,n-

end until
set Un = u~k)

end for

The number of iterations required for convergence at each time level is a
function, in part, of the iteration function, Qn, and the initial guess, u~O). If
we assume that Qn is the best iteration function available for the solution of
this problem, the only improvement that can be made is the quality of the
initial guess. To this end, let us suppose that the function Rn (u~O), Un-I)

can be used to refine the initial guess at time level tn. Idle processors in a
parallel computer might then use Rn to improve the initial guesses on time
levels t n+1, ... , tN while the solution is being computed on time level tn. For
example, suppose we use three processors to solve on three time levels. Pro­
cessor 1 solves the problem at the first time level by repeated evaluations of
the iteration function Q17 and after each evaluation of Q1, sends the approx­
imate solution to processor 2. Processor 2 uses this approximate solution at
time level 1 to generate a new initial guess using the function R2 • This initial
guess is then sent to processor 3, which treats it as an approximate solution
at time level 2 and generates a new initial guess for time level 3 using R3 .

After processor 1 has solved the problem on time levell, processor 2 begins
the solution process at time level 2 using its (improved) initial guess and the
iteration function Q2 while processor 3 continues to improve its initial guess
using R3 • Finally, after processor 2 has solved the problem at time level 2,
processor 3 solves the problem at time level 3 using Q3.

4

'.
Pseudocode for the PTS method is given below. The first loop in the

pseudocode contains the evaluation of the function R.. and is executed until
the solution on the previous time level has converged. The second loop
corresponds to the loop in the serial time stepping method and is executed
until the solution on the current time level has converged.

Method 2 (parallel time stepping) If N processors are available for the
solution of (1), then the parallel time stepping (PTS) method for processor n
is given by

set k = 0
set u~O) to the initial condition
if n =I- 1 then

until convergence on processor n - 1 do
compute k = k + 1
receive u~~-/) from processor n - 1
compute u(k) = Q (u(k-1) u(k-1»)

n .Lton n 'n-l

send u~k) to processor n + 1
end until

end if
(k)

set Un-l = U n -1

set 1=0
set u(O) = u(k)

n n

until convergence do
compute I = I + 1
compute u(l) = Q (u(l-l) u 1) n n n ,n-

send u~) to processor n + 1
end until
set Un = u~)

There are many possible choices for the function R... For example, R..
might correspond to a multi grid algorithm in which a different combination
of grids is used than for Qn. (This would be useful because iterative methods
eliminate different frequencies at different rates and different frequencies can
propagate forward in time at different speeds.) One practical choice for the
iteration function R.. is to set it equal to Qn. There are several reasons for

5

this. First, we assume that Qn was chosen because of desirable convergence
properties for the problem to be solved. Second, because the Rn+I, ... ,RN
are used concurrently with Qn, setting Rn = Qn results in a load balanced
algorithm. (Note that in many cases, the amount of work required for one
application of the functions Qn and Rn does not depend on n.) Third, the
task of implementing the algorithm is simplified. Throughout the remainder
of the paper, we will take Rn = Qn.

In practice, we have P « N) processors available for the solution of (1).
In this case, processor p begins by computing the solution at time level tp.
When work has been completed on this level, it begins refining the initial
guess on time level tp+p and eventually computes the solution there. This
process continues until the solution has been computed on each of the N
time levels.

We note from the pseudocode above that processor n cannot begin work
until a message has been received from processor n - 1, which occurs after
processor n - 1 has completed one iteration. To formalize this, we introduce
the concept of the delay at time level n, dn , which we define to be the
number of iterations that processor n -1 completes before processor n starts.
For the pseudocode listed above, d1 = 0 and dn = 1, n = 2, ... , N. In
the case of P « N) processors, the delays, dn , are unknown a priori for
n = P+ 1, ... ,N.

Even though we have developed the PTS method for a linear, parabolic
PDE with a finite difference discretization, it is clear that the method can be
used to parallelize any time stepping algorithm, including those for nonlin­
ear problems, those for hyperbolic PDE's, and those that use finite element
discretizations. The PTS method is demonstrated for a variety of problems
in Section 4.

3 Analysis

The parallel time stepping method is very general. We have not spec­
ified the type of equation, the method of discretization, or the iterative
solution al90rithm. Thus, no one proof of convergence of the iteration
u~k) = Qn \u~k-l),Un_l)' k = 1,2, ... , can be constructed. However, for
a linear PDE, the convergence of the serial time stepping method (for a
choice of discretization and iterative solution algorithm) implies the conver-

6

"

, .

'.
gence of the parallel time stepping method because the iteration defined by
On will converge for any initial guess.

We can develop a model for the behavior of the parallel time stepping
method for linear PDE's. (Models can also be developed for nonlinear prob­
lems, but are highly problem dependent.) We assume that a linear PDE has
been reduced to the form

n = 1, ... ,N, (2)

where Un and in are vectors in Rm, An and Bn are m X m matrices, Uo is
known, and An is nonsingular. We let

U~ = A;;-l(fn + BnUn-l)

be the solution to (2) at time level n and define an iterative method for
obtaining u~ by

u~k) = On (u~k-l), Un-I) . (3)

To guarantee the convergence of u~k) to u~, we require that On satisfy the
Lipschitz condition

f3n < 1,

for all u and v in Rm and some norm"'" on Rm. These definitions form the
traditional framework for the study of the STS method. To study the PTS
method, we adopt the convention that u~k) = Uo, k = 1, ... ,00, and define

k = 1, ... ,In - 1 - dn

k > In - 1 - dn

where dn is the delay defined in the previous section, and In- 1 is the number
of iterations required for convergence of the iteration (3) to the solution of (2)
at time level n - 1. In the notation of Method 2, In is the number of times
Rn is evaluated plus the number of times On is evaluated. The vector u~k),* is
thus the solution to (2) with the true solution at time level n -1 replaced by
the most recent iterate, and we note that u~k),* = On(U~k),*, ut~dn)). Finally,
we define e~k) by

7

k = 1, ... , In
k > In

For k between 1 and In, e~k) is the norm of the difference between the iterate
u!:') and the "apparent" true solution u!:')", which we refer to as the apparent
error. For k > In, we set e~k) = 0 to simplify error bound on later time levels.

We now derive a bound for e~k). Applying the Lipschitz condition on Qn
for n = 1 yields

and for n > 1,

(k) < 13k (0) el _ 1 el ,

e~k) < f3nllu~k-l) _ u~k)"11
< f3n (lIu~k-l) _ u~k-l)'*11 + lIu~k-l),. _ u~k)'*II)

< f3n (e~k-l) + IIA~lBnllllu~~-ll+dn) _ u~~dn)ll) _
< f3n (e~k-l) + (1 + f3n_l)IIA~l Bnllllu~~-;.l+dn) - ui~~dn)"II) .

Applying the above calculations recursively yields

e~) :5 f3n (e~k-l) + ~ (ei(k-l+I:~:ildj+l) 'fi (1 + f3j) IIAjJ1BH11I)) . (4)

We note from (4) and the definition of e~k) that if dn = In-I, then we
recover the traditional error bounds for the STS method. Using induction,
we can also conclude from (4) that the PTS method converges (for linear
problems).

We also note from (4) that the effect of the error on one time level can
be magnified at all later time levels on which the computation is proceeding
simultaneously. For many practical problems, this magnification factor is
greater than one. Hence, our upper bound on the error allows the possibility
that the PTS method on N processors requires more time to solve a problem
than does the STS method on one processor.

The upper bound on the error (4) is not tight; however, the error can be
approximated. Because, the iterates, Ui~l' asymptotically approach U~_l
along a vector lying in the subspace spanned by the eigenvectors corre­
sponding to the largest eigenvalue, the distance between consecutive iterates
asymptotically approaches 1- f3n-l. Replacing the term 1 + f3n-l in the upper
bound with 1 - f3n-l yields

e~k) < f3n (e~k-l) + IIA~lBnllllu~k_-;.l+dn) _ u~k!rdn)lI)

~ f3n (e~k-l) + (1- f3n_l)IIA~lBnllei~-;.l+dn»).

8

.'

Thus, e~k} is approximated by (J'~k), the solution to the recursion

(k-l+dn) >
(J'n-l _ f

otherwise

for k = 1,2, ... and n = 1,2, ... with the initial conditions

where

(J' (k) - 0 o - , k = 0,1, ... ,

(J'(O) = Ilu* - u* II + "V (J'(dn-l) n n n-l In n-l , n = 1,2, ... ,

an = t1n(l - t1n_l)IIA;;-l Enll,
In = 1 + IIA;;-l En I!'

(5)

and f corresponds to the convergence criterion. This recursion can be solved
in closed form; however, the this form does not yield additional information.
Instead, we will evaluate the recursion relation numerically for specific cases.
The approximations for the error will be used to predict speedups, which will
be compared with experimental results in the next section.

The delays can be used to generalize the model to the case of P « N)
processors. For example, to model the one processor case (STS method), we
can set dn equal to In, the minimum k such that (J'~k) = O. To model the P
processor case, the delays on the first P time levels are arbitrary, and the
delay at time n (> P) is chosen so that computation does not start until
the solution on line n - P has been completed. We note that the maximum
number of processors that can be used without at least one processor being
idle at all times must satisfy

(6)

for all n between 1 and N - P. This relation states that the processor assigned
to time level n cannot complete its calculations before each of the remaining
processors is assigned a time level and begins iterating.

The most common performance measure is speedup. It is normally de­
fined as the time required for one processor to solve a problem divided by the
time required for P processors to solve the same problem. The time to solve a

9

problem using either Method 1 or Method 2 is proportional to the "effective"
number of evaluations of Qn, that is, the number of evaluations of Qn that
are not overlapped with computations on previous time levels. The effective
number of evaluations of Qn is given by L:;;=1 En, where En = In - In-1 + dn.
If we denote by In(P) the number of iterations and by En(P) the effective
number of iterations required for convergence at time level n and by dn(P)
the delay at time level n in the P processor case, S(P), the speedup on P
processors, is given by

S(P) = (~In(1») / (~En(P») (7)

- (~ln(1)) / (IN (P) + ~dn(P»).
For some problems, 1(1) = 11(1) = ... = IN(I) are constant. In this case,
there is a "steady state" solution of (5) in which l(P) = 11(P) = ... = IN (P)
are constant, and d(P) = l(P)/ P, and the "steady state" speedup is given
by

SS(P) = lim S(P) = P x l(I)/l(P).
N-+oo

(8)

The steady state speedup is an asymptotic value for the speedup (as the
number of time levels at which the solution is desired increases). The "tran­
sient" nature of the speedup for a small number of time levels is due to the
fact that none of the iterations at the first time level can be overlapped with
iterations at previous time levels.

We now look at the effect of the parameters in the model on the per­
formance of the PTS method. The delays, the terms IIA;lBn II , and the
convergence factors, i3n, have the largest effect, while the effect of the other
parameters is minimal. The results presented in the remainder of this sec­
tion are obtained by numerically evaluating the recursion relation, (5). The
values of the parameters used in the evaluation of (5) are close to values seen
in many applications, and the effects shown in the remainder of this section
are observed over a range of values for the parameters.

The delay is a function of both hardware and software. It depends on the
number of processors, the number of iterations that each processor requires
for convergence, and the time to "start up" a processor on a new time level.
In almost all cases, we want the minimum delay possible; nevertheless, it is

10

instructive to consider the effect of the delay on the number of iterations. As
the delay, dn , is decreased, the error introduced as the result of error at the
previous time level is increased, and we expect that the number of iterations
required for convergence, In, will increase. However, the numerical evaluation
of (5) indicates that the "effective number of iterations," En = In - In-I + dn ,

will be reduced. This is shown in Figure 1.

120

110

100

90
fIl
~
0

...... 70
(\j
1-1 60 Q)

...... - 50

+0

30

20

10

Figure 1: The effect of the delay, d2 , on the number of iterations, 12, and
the effective number of iterations, E2 • ((32 = .9, 0'2 = .09, lIu; - uill = .1,
f = .00001.) Note that II = 88.

The terms II~I En II are determined by the PDE and the method of dis­
cretization. We see from (5) that increasing the value of IIA;I En II magnifies
the effect of the error at the previous time level. The result is that the num­
ber of iterations required at each time level increases, the delays, dn (n > P),
increase, and the speedup decreases. Noting equation (8) and the effect of
the delays on the number of iterations shown in Figure 1, we expect the de­
crease in speedup to be much more severe for a large number of processors.
This effect is shown in Figure 2. There is a slight "staircase" nature to the
curves, which is due to the fact that dn and In are integers.

11

16

14

12

10

6

4r---~~~------____ -=
2

Figure 2: The effect of IIA;;l Bn II on the steady state speedup. (f3n = .9,
Ilu~ - u~_lll = .1, f = .00001, P = 16.)

12

The convergence factors f3n are determined by the iterative method cho­
sen and affects both the number of iterations required for convergence and
the magnification of the error on the previous time level. As the f3n ap­
proach one, errors from previous time levels are introduced faster than they
can be eliminated. Thus, the effective number of iterations increases, and
we expect the speedup to decrease. On the other hand, as f3n approaches
zero, the number of iterations required for convergence decreases, and we see
from equation (6) that the number of processors that can be used effectively
decreases. Thus, we expect a decrease in the speedup. The overall effect of
changing f3n on the steady state speedup is shown in Figure 3. We note that
the speedup achieves its maximum on the interior of the interval (0,1), and
that the PTS method performs best with relatively good iterative algorithms.
As before, the staircase nature of the curves is due to the fact that dn and
In are integers.

P=4

Figure 3: The effect of f3n on the steady state speedup. (11.4;1 Bnll - 1,
lIu~ - u~_111 = .1, t = .00001, P = 16.)

13

4 Experimental Results

In this section, we present three examples of the PTS method. The first ex­
ample is a parabolic PDE and an iterative method for which the parameters
in the model, equation (5), can be calculated analytically. This allows direct
comparison of the performance of the PTS method with the predictions of
the model. The second example is a nonlinear, parabolic PDE with multi­
grid as the underlying iterative method. This example demonstrates that
the PTS method is applicable to a wide variety of problems. In the third
example, we demonstrate that the PTS method can be effectively coupled
with a parallel implementation of an iterative algorithm at each time level.
All numerical results were obtained on the NCUBE/ten hypercube. For ease
of programming, we assume that the number of processors to be used is a
power of two, although this is not a requirement for the PTS method.
Example 1 The first example is the PDE

fPu au
- ox2 + at = 3, (x, t) E (0,1) x (0,5), (9)

u(x,O) = 0, x E (0,1),

u(O, t) = 3t = u(l, t), t E (0,5).

We let .6.x = 1/64 and .6.t = 5/200 and replace (9) with the finite difference
approximation

-Ui+l,n + 2Ui,n - Ui-l,n + Ui,n - Ui,n-l _ 3
.6. x 2 .6.t

z 1, ... ,63, n = 1, ... ,200,

Ui,O = 0, i = 1, ... ,63,

UO,n = 3n.6.t = UM,n, n = 1, ... ,200.

This yields a linear system of the form (1), which we solve with SSOR iter­
ation with the near optimal relaxation parameter, w = 1.8. The parameters
needed to evaluate equation (5) can be calculated analytically. They are

n = 1, ... ,200.

For the convergence criterion, we let f = 1 X 10-6 • Convergence can be
checked explicitly because the true solution to (9) is known.

14

"

The problem was solved numerically using different numbers of proces­
sors. The results and the predictions of the model are shown in Table l.
Note that problem (9) satisfies the requirements necessary to compute the
steady state speedup. As was stated in the previous section, the steady state
speedup is an asymptotic value for the speedup as the number of time levels
on which the solution is desired increases.

P E~~lEn S(P) SS(P)
1 12,000 (12,200) 1.00 (1.00) 1.00 (1.00)
2 6,118 (6,121) 1.96 (1.99) 2.00 (2.00)
4 3,168 (3,201) 3.79 (3.81) 3.90 (3.87)
8 1,847 (1,915) 6.49 (6.37) 6.53 (6.78)

16 1,234 (1,319) 9.72 (9.25) 9.50 (10.8)
32 872 (1,137) 13.7 (10.7) 13.9 (15.2)
64 634 (1,137) 18.7 (10.7) 19.1 (20.0)

128 489 (1,137) 24.5 (10.7) 27.6 (23.6)

Table 1: Comparison of the performance of the PTS method for Example 1
with the predictions of the model. The predictions are in parentheses.

We make two observations based on Table 1. The first is that with only
200 time steps, we cannot use more than 200 processors. The second observa­
tion is that the model is most accurate for P ~ N = 200. One reason is that
the delays are larger, and small errors in modeling the delay have a smaller
effect. (We recall that the delays are dependent, in part, on the hardware
and must be modeled.) Another reason is that we used the approximation

f3n < 1,

which is most accurate for a large number of iterations (with f3n equal to the
spectral radius of Qn). For P = 128, there is a average of less than three
effective iterations per timestep.
Example 2 As a second example, we choose Burgers' equation:

cPu ou ou
/1- - u- - - = 0, ax2 ax at (x, t) E (0,1) x (0,5) (10)

15

u(x, 0) = sin(1rx),

u(O, t) = 0 = u(l, t),

x E (0,1),

t E (0,5).

We let ~x = 1/128 and ~t = 5/200 and replace (10) with the finite difference
approximation to get

Ui," - ui,n-l _ +.
~t - ;',n, (11)

Z - 1, ... ,127, n = 1, ... ,200,

Ui,O = sin(i1r~x), i = 0, ... ,128

UO,n = 0 = U128,n, n = 1, ... ,200.

We note that upwind differencing has been used for the term au/ax.
As an iterative method for the solution of (11), we choose multigrid it­

eration with a weighted Jacobi smoothing step and a weighting factor of
w = .95. Because multigrid iteration requires a linear equation, we delay
Ui,n in the nonlinear term by one cycle. We consider the iterations to have
converged if the residual is less than 1.0 x 10-5

. Table 2 shows the results
obtained by running the PTS algorithm for this problem with v = .01 on
different numbers of processors. There are no predicted results because the
problem is nonlinear.

P L,~~l En S(P)
1 5,346 1.00
2 2,732 1.96
4 1,341 3.99
8 765 7.00

16 570 9.38
32 505 10.6
64 487 11.0

128 487 11.0

Table 2: The performance of the PTS algorithm for Example 2 with v = .01.

We note that the performance of the PTS algorithm for Example 2 is
somewhat worse than that for Example 1. The reason for this is that fewer

16

iterations are required at each time step in Example 2. Thus, fewer proces­
sors can be used effectively. In general, for problems that have steady state
solutions, the number of iterations decreases as n increases (as in Example
2), and as a result, fewer processors can be used effectively at later time
levels.
Example 3 The third example is a linear, parabolic PDE that arises in
the study of grain-boundary diffusion [3]. The dimensionless equation with
parameters approximating the diffusion of chromium in gold is

1
(x,y,t) E (0,1) X (0'2) X (0,1), (12)

with boundary conditions

au a2u au
at (x,O,t) = ax2 (x,0,t)+0.l ay (x,0,t), xE(O,l), tE(O,l),

au 1
ox (x, 2' t) = 0, xE(O,l), tE(O,l),

u(O, y, t) = 1,
1

YE(0'2)' tE(O,l),

u(l, y, t) = 0,
1

YE(0'2)' t E (0,1),

and initial conditions

u(x,y,O) = 0, x E (0,1],
1

y E (0, 2]'

u(O, y, 0) = 1,

u(x,O,O) = I-x, x E (0,1).

We let ~x = 1/32, ~y = 1/64, and ~t = 1/32, and replace (12) with
an implicit finite difference approximation (implicit Euler difference in time,
central differences in space where possible, one-sided differences otherwise)
to get a system of linear equations of the form (1). As a parallel iterative
algorithm for the solution at each time level, we choose Jacobi iteration
because of its inherent parallel nature and consider the iterations to have
converged when the residual is less than 1.0 X 10-3• Table 3 shows the run

17

Pt

Px X Py 1 2 4 8 16
1 x 1 467. (1.00) 264. (1.77) 178. (2.62) 145. (3.22) 124. (3.77)
2 x 2 135. (3.46) 76.1 (6.13) 52.0 (8.98) 42.6 (11.0) 35.9 (13.0)
4x4 47.3 (9.87) 26.6 (17.6) 18.4 (25.4) 15.0 (31.1) 12.6 (37.1)
8x8 24.1 (19.4) 13.8 (33.8) 9.44 (49.5) 7.73 (60.4) 6.64 (70.3)

Table 3: The performance of the PTS algorithm for Example 3. Px and Py

are the numbers of processors in the x and y direction respectively, and Pt is
the number of time levels on which iterations are carried out simultaneously.
The total number of processors used is Px X Py X Pt. Run times are in seconds,
and speedups are given in parentheses.

times and speedups for runs with various combinations of processors in the
space and time directions.

Even though Jacobi iteration is considered a highly parallel algorithm, a
problem size of 32 X 32 is small and communication overhead is significant.
We see from Table 3 that if only a small number of processors are available for
the solution of (12), then they are most effectively used by the parallel Jacobi
algorithm to solve at one time level. However, if a large number of processors
are available, then they are most effectively used when the Jacobi iteration is
coupled with the PTS method. This effect would be more pronounced if we
had chosen an iterative method with a less efficient parallel implementation,
such as multigrid or SOR.

We can also see from Table 3 that the total speed up is approximately
equal to the speedup obtained in the space variables times the speedup ob­
tained in the time variable.

5 Summary

In this paper, we have presented a technique by which parallelism in the
time direction can be introduced into implicit time stepping algorithms. The
attraction of the technique is that it can be coupled with a wide variety
of algorithms and that the parallelism introduced in the time direction is

18

independent of any parallelism in space. Thus, the number of processors
that can be efficiently applied to the solution of a time dependent PDE is
increased by at least .an order of magnitude.

We also presented a performance model of the method for linear prob­
lems. Based on this model, we were able to predict the effect of algorithm
parameters, such as the convergence rate and the number of processors used,
on the speedup. In Section 4, this model was found to be in good agreement
with the actual performance of the method.

Finally, we demonstrated the PTS method for linear and nonlinear prob­
lems and for three common iterative methods. We found that the method
was very effective for a small number of processors and remained effective
while the number of processors was less than the number of time levels on
which the solution was desired and less than the number of iterations re­
quired for convergence on a time level. We also demonstrated that the PTS
method can be effectively coupled with parallel iterative algorithms for the
solution at each time level.

Acknowledgment. The author would like to thank E. F. Brickell and
D. E. Amos of Sandia National Laboratories for their help in the analysis of
equation (5).

19

References

[1] W. F. Ames. Numerical Methods for Partial Differential Equations. Aca­
demic Press, Inc., New York, 1977.

[2J G. J. Golub and C. F. van Loan. Matrix Computations. The Johns
Hopkins University Press, Baltimore, MA, 1983.

[3] P. H. Holloway, D. E. Amos, and G. C. Nelson. Analysis of grain­
boundary diffusion in thin films: chromium in gold. J. Appl. Phys.,
47(9):3769-3775, 1976.

[4] E. Lelarasmee, A. Ruheli, and A. 1. Sangiovanni-Vincentelli. The wave­
form relaxation method for the time domain analysis of large scale in­
tegrated circuits. IEEE Trans. Computer-Aided Design of ICAS, CAD-
1(3):131-145,1982.

[5] A. R. Newton and A. L. Sangiovanni-Vincentelli. Relaxation-based elec­
trical simulation. SIAM J. Sci. Stat. Comp., 4(3):485-524, 1983.

[6] J. M. Ortega and R. G. Voigt. Solution of Partial Differential Equations
on Vector and Parallel Computers. SIAM, Philadelphia, PA, 1985.

[7] J. H. Saltz and V. K. Naik. Towards developing robust algorithms for
solving partial differential equations on MIMD machines. Par. Comp.,
6(1):19-44, 1988.

[8J J. H. Saltz, V. K. Naik, and D. M. Nicol. Reduction of the effects of the
communication delays in scientific algorithms on message passing MIMD
architectures. SIAM Journal of Scientific And Statistical Computing,
8(1):s118-s134, 1987.

[9] G. Strang and G. J. Fix. An Analysis of the Finite Element Method.
Prentice Hall, Inc., Englewood Cliffs, N.J., 1973.

20

Internal Distribution

E. H. Barsis (5)
W. J. Camp (5)
D. B. Holdridge
R. C. Allen
D. E. Amos
L. S. Baca
D. D. Cline
D. E. Womble (15)
A. J. Cleary
R. S. Tuminaro
E. F. Brickell
C. A. Phillips
R. E. Benner
G. M. Pollock
M. P. Sears
J. N. Shadid
C. T. Vaughan
S. J. Plimpton
S. A. Landenberger (5)
C. L. Ward (8)
W. I. Klein (3)
J. A. Wackerly

1400
l420
1421
1422
1422
1422
1422
1422
1422
1422
1423
1423
1424
1424
1424
1424
1424
1424
3141
3141-1
3151
8524

21

