
SANDIA REPORT
SAND88-2714 · UC-32
Unlimited Release
Printed December 1988

The Performance of Asynchronous
Algorithms on Hypercubes

David E. Womble

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore , California 94550
for the United States Department of Energy
under Contract DE-AC04-76DPOO789

SF2900QI8-81)

When printing a copy of any digitized SAND
Report, you are required to update the

markings to current standards.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof or
any of their contractors or subcontractors.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy: A02
Microfiche copy: AOl

SAND88-2714
Unlimited Release

The Performance of Asynchronous
Algorithms on Hypercubes

David E. Womble

Numerical Mathematics Division, 1422
Sandia National Laboratories

Albuquerque, NM 87185

Abstract

Many asynchronous algorithms have been developed for parallel
computers. Most implementations of asynchronous algorithms, how
ever, have been for shared memory machines. In this paper, we study
the implementation and performance of some common asynchronous
algorithms on the NCUBE/ten, a 1024 node hypercube. In addition,
we summarize existing theoretical work and discuss some classes of
algorithms that can be made asynchronous and some that cannot.

-This work was performed at Sandia National Laboratories supported by the U.S.
Department of Energy under contract No. DE-AC04-76DP00789.

1 Introduction

One way to achieve the computing power required by scientists and engineers
is through massively parallel computers, i.e., computers that have more than
one thousand processors. However, for massively parallel computers to be
used effectively, new algorithms must be developed and studied. In this pa
per we study the performance of a class of new algorithms, asynchronous
algorithms, which can improve the performance of existing synchronous al
gorithms by reducing the amount of time a processor spends waiting on other
processors.

Many of the parallel computers available today are MIMD (multiple in
struction, multiple data) type machines; that is, the processors are allowed
to operate independently of one another. It is natural, then, that algorithms
designed for MIMD machines should minimize the synchronization and com
munication between processors. Algorithms in which synchronization has
been completely eliminated are most often called asynchronous algorithms,
although they were originally known as chaotic relaxation algorithms [5].

MIMD computers can be either shared memory machines or distributed
memory machines. In a shared memory machine, communication takes place
only through access to a common memory, and synchronization is usually
accomplished through a set of semaphores or memory locks. In a shared
memory machine, memory conflicts are often a major source of program
delays.

In a distributed memory machine, on the other hand, each processor
has access only to a local memory. Communication takes place by passing
messages over communication links between processors. While memory con
flicts are eliminated in distributed memory machines, the communication of
information can result in message conflicts or major program delays. Syn
chronization in these machines is "pairwise": one processor must wait for
information to be sent by another processor.

Asynchronous algorithms are most often implemented on shared mem
ory machines. Because the communication is implicit (by memory reference)
and the synchronization is explicit, an iterative algorithm can be made asyn
chronous simply by removing synchronization points. In a distributed mem
ory machine, however, the synchronization is implicit in the communication.
To implement an asynchronous algorithm, therefore, one processor must be
able to send a message without waiting for the receiving processor to read it,

3

and a processor must be able to check for the presence of a message without
having to read one.

Asynchronous algorithms have been applied to a wide variety of problems.
These include combinatorial problems (searching, sorting, etc ...), minimiza
tion problems, operating system problems (task scheduling, memory manage
ment, etc ...), and the solution of linear and nonlinear systems of equations.
In this paper, we consider only the latter class of problems.

In 1969, Chazan and Miranker [5] published an asynchronous relaxation
algorithm for the solution of the linear system Ax = b and gave conditions
on A under which the algorithm converged. In [10], Miellou generalized the
results of Chazan and Miranker to nonlinear contracting operators, while
Baudet [3] generalized the definition of asynchronous algorithm and reestab
lished the convergence results of [5] and [10]. Finally EI Tarazi [7] restated
the convergence results of [3] so that they were similar to classical fixed point
theorems. Similar theorems were given by Bertsekas [4]. Many authors have
used the results of [3,7,4] or have used similar methods to establish the con
vergence of specific algorithms. These include [1,15,16,11,12].

The work mentioned above has developed around the formalism of Baudet.
There are some alternate models, which we mention here. The first is the
transition model [8], which is based on the idea of flow descriptions in soft
ware design [14]. This formalism has resulted in at least one convergence
theorem. A second model is the queueing network model [13,6]. This model
seems most useful for statistical performance analysis of asynchronous algo
rithms.

Most of the work cited so far has been strictly theoretical, although some
authors have included simulations in their work [9,16]. The lack of exper
imental results has been due, in part, to the limited availability of MIMD
computers. A notable exception is the work of Baudet [3], who studied the
implementations of several algorithms on the Carnegie-Mellon multiproces
sor computer. Experimental results including comparisons with synchronous
algorithms can also be found in [2,1]. All of these experiments were carried
out on shared memory machines with a small number of processors.

It is difficult to make general statements about the performance of asyn
chronous algorithms: performance results usually apply only to a specific
algorithm on a specific parallel computer. Nevertheless, in this paper, we
try to present some intuitive guidance on the performance of asynchronous
algorithms on distributed memory machines based on several examples.

4

We begin by stating a formal definition of asynchronous algorithm in
Section 2 and giving some general convergence results in Section 3. Fol
lowing that, in Sections 4 and 5, we present several specific asynchronous
algorithms and discuss their implementation and experimental results on the
NCUBE/ten hypercube. We also discuss a class of algorithms whose asyn
chronous versions do not appear effective.

2 Theory of Asynchronous Algorithms

We motivate the formal definition of asynchronous algorithms with an ex
ample. Gauss-Seidel relaxation is an iterative method for finding the so
lution to an equation of the form U = G(u), where u = (U1,'''' up), and
G(u) = (G1 (u), . .. , Gp(u)). The Gauss-Seidel iterates are given by the re
laxation equation

HI i+l HI i i
Uk = Gk (U1 , .•. ,Uk _ 1 ,Uk,''''Up)' k=I, ... ,p,

where i denotes the iteration number.
We see that the computation of the u~+l must be carried out in a specific

sequence. On a parallel computer, the result is that processors spend a
lot of time waiting for other processors to carry out computations. If we
remove the requirement that the relaxations be carried out in sequence, the
result is an asynchronous version of the algorithm. We see that any formal
definition of asynchronous algorithm must allow several components to be
updated simultaneously and must allow "old" values of the Uk to be used if
new values have not yet been computed. Hence, we introduce an update set
and a delay set, denoted by J and S, in the definition below.

The following definition is given in [3,7] and is the most useful definition
for the analysis of scientific algorithms. In the following, R denotes the real
numbers, and N denotes the natural numbers.

We let Ei = Rn;, where ni E N, i = 1, ... ,p, and let 11·11; denote a norm
on Ei , and

p p

E = II Ei = R n, n = L ni·
t=1 ;=1

Elements u E E have the form u = (Ull U2,' •• ,up) with norm

1
Ilull = milX -lluilli,

• /i

5

where 'Yi E R, 'Yi > 0, i = 1, ... ,po (In a more abstract setting, Ei can be
a Banach space.)

We are interested in fixed points of an operator G : D(G) C E --+ E,
where G(u) has the form

G(u) = (G1(u), G2 (u), ... , G,,(u», G,,: D(G) C E --+ E".

An asynchronous algorithm corresponding to the operator G and starting
with the vector uO E D(G) is the sequence {Ui};eN of vectors in E defined
by

Hl_{G,,(... ,U;I(i), ••.) kEJ(i) k 1
Uk - ui k f/. J(i), = , ... ,p,

where J = {J(i)}ieN,J(i) C {1, ... ,p} has the property that k occurs in
finitely often in the sets {J(i)};eN, and S = {st(i), ... ,sp(i)} is a sequence
of elements of N" satisfying

sk(i) ::; i, i E N,

Jim s,,(i) = 00 •
• _00

An asynchronous algorithm is denoted by the quadruplet (G, uO, J, S).
The sets J and S characterize the asynchronous algorithm. The set J(i)

is the set of components to be updated at iteration i, and the requirement
that k occurs infinitely often in the J(i) means that no component can be
ignored during the iteration. The number sk(i) is the delay for component k
at iteration i. The requirements on s,,(i) mean that we cannot use informa
tion that has not yet been generated by the iteration and that we must use
"reasonably current" information in the iterations.

We see that the Gauss-Seidel iteration described at the beginning of
this section can be put into the context of this definition with the following
assignments for J and S:

s,,(i) = i for k = 1, ... ,p, and i E N,

J(i) = 1 + i mod p for i E N.

In fact, any synchronous algorithm can be written as an asynchronous algo
rithm with the proper choices for J and S.

6

,"

We can now state a convergence theorem for asynchronous algorithms,
The following is found in [7].

Theorem 2.1 We let G be an operator mapping D(G) C E into E, where

p

D(G) = II Dk(G),
k=l

We suppose that G has a fixed point, u*, in D(G), G[D(G)] c D(G), and
for all u E D(G)

IIG(u) - G(u*)II ::; I'llu - u*li, 0 < I' < 1.

Then u· is the unique fixed point of G in D(G), and any asynchronous algo
rithm (G, uo, J, S) corresponding to G and starting with Uo E D(G) converges
to u*.

Theorem 2.1 is similar in nature to many of the classical convergence the
orems for fixed point algorithms. However, even though the iteration scheme
in Theorem 2.1 is more general than that of most fixed point algorithms, the
application of the theorem is limited to operators that are contractions in
the norm II· m·

3 Algorithms for Linear Systems

In this section, we define three asynchronous algorithms: the names are
based on the synchronous algorithms from which they are derived. The
first algorithm, Jacobi relaxation, was chosen because it represents a class of
algorithms that can be implemented efficiently on a parallel computer. The
second algorithm, Gauss-Seidel relaxation, represents a class of algorithms
that cannot be implemented efficiently on a parallel computer. The third
algorithm, steepest descent, represents a class of algorithms that cannot be
implemented asynchronously without making fundemental changes to the
algorithm.

We have combined the asynchronous Jacobi and asynchronous Gauss
Seidel algorithms into one description because of the similarities. In Algo
rithm 3.1 below, the coordinate functionals, Gk(X), of G(x) are specified.
The delays, S, are not known a priori: if there is one unknown assigned to

7

each processor, then the delays are determined by the relative speeds of the
processors. If there is more than one unknown assigned to each processor,
then the delays enforced within each processor determine whether the al
gorithm is an asynchronous Jacobi (AJ) or an asynchronous Gauss-Seidel
(AGS) algorithm. Specifically, if a processor uses the most recent values of
the unknowns assigned to it during each iteration, it is an AGS algorithm.
Otherwise, it is an AJ algorithm.

Although Algorithm 3.1 is formulated for linear systems, it can be for
mulated for any system to which Jacobi relaxation can be applied.

Algorithm 3.1 (AJ, AGS) We consider the linear system

Ax = b, (1)

where A is an n x n matrix with entries (ai,j), and define the operator G(x) :
RR RR by the coordinate functionals

k = 1, ... , n, (2)

where Xk denotes the kth element of x. The starting guess, XO E R n is ar
bitrary, as are the sets J and S (although J and S must always satisfy the
definition of asynchronous algorithm).

The convergence of Algorithm 3.1 is easy to establish for a variety of
linear systems. The following convergence result demonstrates the use of
Theorem 2.1.

Theorem 3.1 If A is a diagonally dominant, n x n matrix, then Algo
rithm 3.1 converges to the unique solution of (1).

Proof. We begin by writing A = L + D + U, where L, D and U are, respec
tively, the lower triangular, diagonal and upper triangular components of A.
The function G(x), defined in Algorithm 3.1, can then be written as

G(x) = _D-l(L + U)x + D-1b.

8

Because A is diagonally dominant, A -I exists. Thus, there is a unique so
lution, x·, to (1), and, by inspection, x· is a fixed point of G. We now
write

G(x) - G(x*) = -D-I(L + U)(x - x*).

Because A is diagonally dominant,

IID-t(L + U)lIoo = mj1X (I: lai,il/lai,;I) = (3 < 1.
I$.$n l<i<n

7~J

It is clear that G(x) satisfies the conditions of Theorem 2.1, with the choices
E; = R, i = 1, ... , n, and II . IIi = I . I. We conclude that Algorithm 3.1
converges to the unique solution of (1). 0

Corollary 3.1 If A is a diagonally dominant, n x n, matrix, then both Jacobi
iteration and Gauss-Seidel iteration converge to the unique solution of (1).

Proof. Both Jacobi iteration and Gauss-Seidel iteration are asynchronous
algorithms. For Jacobi iteration, J and S are given by

for k = 1, ... ,p, and i EN,

J(i) = {I, ... ,n} for i E N,

while for Gauss-Seidel iteration, J and S are given by

for k = 1, ... ,p, and i E N,

J(i) = 1 + i mod p for i E N.

The convergence of Jacobi iteration and Gauss-Seidel iteration now follows
from Theorem 3.1. 0

We conclude our discussion of the AJ and AGS algorithms with another
convergence theorem. This theorem establishes the convergence of Algo
rithm 3.1 for a class of matrices that arise in the finite difference discretiza
tions of many elliptic operators, such as the La.pla.cian operator.

Definition 3.1 A matrix A is an M-matrix if the diagonal entries of A are
positive, the off-diagonal entries of A are negative, and the entries of A-t

are positive.

9

Theorem 3.2 If A is a symmetric, positive definite {SPD}, M-matrix, then
Algorithm 9.1 converges to the unique solution of {1}.

The proof of Theorem 3.2 can be found in [5].
Our second algorithm, Algorithm 3.2 below, is derived from classical

steepest descent and is called asynchronous steepest descent (ASD). As be
fore, we state the algorithm for a linear system.

Algorithm 3.2 (ASD) We consider the linear system {1}, where A is an
n X n, SPD matrix with entries (ai,j), and b is a vector in R n with entries
(bi). ForI = {1, ... ,n} ands l ,s2 c I, we define the matrix

and the vector

{
a' . 1,)

A.,X82 = 0
i E SI, j E 82

otherwise

b" = {
bi i E SI

o otherwise

Finally, we denote by gi, i = 1, ... ,p, subsets of I satisfying Uf=l gi = I.
ASD is defined by G{x} : R n -+ R n

, where the coordinate functionals of G(x)
are given by

(3)

where

and
T rg. rg.

Qk = -=--"''--''-''---
rJ,. Ag. Xg. r g.

The starting guess XO E R n is arbitrary, and the sets J and S are required
only to satisfy the definition of asynchronous algorithm.

We note here that in general

This implies that in the case of more than one group, we cannot eliminate
one of the matrix multiplies. In the case of a large number of groups, this

10

is not a large penalty because a full matrix multiply is not required in the
computation of Ok.

We see from the definition of Algorithm 3.2 that if p = n, and 9i =
{i}, i = 1, ... , n, then we recover Algorithm 3.1. Algorithm 3.2 can, in fact,
be viewed as a hybrid of block Jacobi and steepest descent. The convergence
of Algorithm 3.2 has not been established due to the restriction on norms in
Theorem 2.1.

4 Implementations on a Hypercube

The NCUBE/ten at Sandia National Laboratories contains 1,024 process
ing nodes in a hypercube configuration. Each node contains a processor,
a hardware floating point unit with 32-bit and 64-bit IEEE floating point
arithmetic, 512 Kb of ECC memory, and eleven bidirectional DMA channels:
ten are used for communications within the hypercube; the eleventh provides
a connection to an Intel 80286 host processor or other 110 device.

In the Introduction, we stated two conditions that must be satisfied by
the hardware of a distributed memory machine in order to implement an
asynchronous algorithm. Specifically, a processor must be able to send a
message to another processor without waiting for the receiving processor to
read the message, and a processor must be able to test for a message from an
other processor without waiting for that processor to write a message. These
conditions must also be satisfied by any language in which an asynchronous
algorithm is to be written. The NCUBE/ten and its implementation of FOR
TRAN satisfy both conditions.

Computation and communication times for the NCUBE depend on both
the program and the language of implementation. A computationally in
tensive, single-node, double precision FORTRAN program can achieve 0.07
to 0.13 MFLOPS. Communication between nodes from within a FORTRAN
program occurs at about 0.5 Mb/sec with a setup time of about 350 J1.S re
quired for each read and write. Testing for the presence of a message also
requires about 350 J1.s. Clearly, communication is a time consuming opera
tion, and any efficient implementation of an algorithm will minimize first,
the number of communications and second, the number of bytes in each
communication, even at the expense of some redundant computation.

The implementation of an algorithm on the NCUBEjten requires two

11

programs: a host program and a node program. The host program is respon
sible for such tasks as allocating all or part of the ten-dimensional hypercube,
sending the node program to each processor in the allocated hypercube, and
handling all input to and output from the nodes. The node program is re
sponsible for all the computation and communication within the cube.

We now turn our attention to an implementation of Algorithm 3.1. We
assume that there are p processors available for the solution of the linear
system (1). We also assume, for ease of exposition, that n, the number of
unknowns, is an integer multiple of p. Thus, each processor is responsible for
evaluating m = nip ofthe GA;(X), the coordinatefunctionals of G(x). Looking
at equation (2), we see that if each processor stores the vector x and the m
rows of the matrix A corresponding to coordinate functionals that it must
evaluate, the evaluations can be carried out without any communication.
Once a processor has carried out the evaluation of a coordinate functional,
the new value of x must be communicated to other processors. If the matrix
is sparse, this information should be communicated to only those processors
that need it.

We can now give a pseudocode version of Algorithm 3.1.

Host program:
1. Allocate a hypercube and load the node programs
2. Send rows of the matrix to each node
3. For each node, do
4. Determine what communication is required
5. Send this communication information to the node
6. End for
7. Send a "start computing" message to the nodes
8. Wait for nodes to compute the solution
9. Send a "stop computing" message to the nodes
10. For each node, do
11. Read the solution and print it
12. End for
13. Close the hypercube
End program

Node program:
1. Read rows of the matrix from the host

12

2. Read communication information from the host
3. Read a "start computing" message from the host
4. While no "stop message" pending, do
5. While messages pending, do
6. Read a message
7. Update the solution vector
8. End while
9. For each coordinate functional this node is responsible for, do
10. Evaluate the coordinate functional, Gk(x)
11. Update the solution, x
12. End for
13. For each processor that needs the new solution, do
14. Send the new solution
15. End for
16. End while
17. Send the solution to the host
End program

In the node program, it would be possible to move the loops 5-8 and
13-15 into the loop 9-12. This would have the effect of reducing the delay
in communicating information to other processors, thus reducing the overall
computation time. However, it would also have the effect of increasing the
number of messages and the number of tests for pending messages that a
processor must make. In the experimental codes that we have written for
the NCUBE, we have found that, in most cases, the pseudocode listed above
is most efficient. (In the cases where we have a very sparse matrix and are
using a small number of processors, the alternate version would be more
efficient. This is also true for shared memory machines [3].)

In the ASD algorithm, processor i is responsible for computing the com
ponents of the solution corresponding to the group gi. As in the AJ algorithm,
each processor needs to know the entire solution vector, x, and the rows of the
matrix indexed by the group gi' If the g; are not pairwise disjoint, then either
some rows of the matrix must be stored more than once, or there must be
additional communication between processors. If we assume that the g; are
pairwise disjoint, then the pseudocode for processor i in the implementation
of ASD is the same as that for AJ with the loop 9-12 replaced by

9. Compute Gk(x) according to equation (3)

13

10. Update the solution x

One issue of practical importance, which requires further research, is that
of stopping criteria. Most stopping criteria involve a global check of a resid
ual; however, this requires the synchronization of processors. Thus, for an
asynchronous algorithm, a distributed stopping criterion, which would allow
processors to independently determine if convergence has been achieved, is
needed. Such stopping criteria would also improve the performance of some
synchronous algorithms by removing one synchronization and communica
tion step.

A couple of programming points should also be noted. The first is that
of node-host communication. In our AJ, AGS and ASD algorithms, the
host must monitor the nodes and decide when to send the "stop computing"
message; however, if there is too much communication, it is possible that the
host will not be able to respond fast enough and will abort the program.

The second programming issue is what a processor does between the time
that it has converged and the time that is receives the "stop computing"
message from the host or more data from other nodes. In some algorithms,
such as steepest descent, division by the norm of a residual is required. Once
a processor has converged, this will result in a "divide by zero" condition
that should not result in the termination of the program.

5 Numerical Results

We have implemented the AJ, AGS and ASD algorithms described in the
previous section. In this section, these algorithms will be compared with
their synchronous counterparts. As a test problem for each algorithm, we
have chosen the linear system arising from the discretization of the Laplacian
operator on the unit square using a nine point star with a 65 X 65 grid (4,096
unknowns). This problem size was chosen because it is the largest problem
that can be stored in the memory of one processor with our algorithms.

As a stopping criterion, we use

lIuc - Utlloo < TOL
IIU tiloo '

where U c is the computed solution and Ut is the true solution, which is known
for the test problems. While this criterion can not be used in practice,

14

Time (s) % Communication Iterations
p J AJ J AJ J AJ
1 6,639 6,639 0.0 0.0 5,271 5,271
4 1,769 1,740 7.1 1. 7-3.3 5,271 5,338-5,525
16 462 470 15.6 2.8-5.0 5,271 5,643-6,213
64 150 149 49.1 11.9-14.7 5,271 6,301-9,028
256 147 114 86.8 59.4-69.5 5,271 5,271-10,585

1,024 267 159 98.1 91.7-95.0 5,271 5,349-7,822

Figure 1: Comparison of the Jacobi and asynchronous Jacobi methods

it enables us to compare the algorithms directly without introducing any
addi tional synchronization.

In each run of each program, we measured the number of iterations re
quired for convergence, time required for communications on each processor
(which includes synchronization time), and the total run time. Based on
the measured times, we can compute the percentage of time spent in com
munications. For an asynchronous algorithm, we quote a range of values
for the number of iterations and percent communication. This is of interest
because some processors require less communication than others, and if less
communication is required, more computations can be performed.

Figure 1 compares the Jacobi and asynchronous Jacobi algorithms. We
make several observations here. First, because the synchronization has been
removed from the AJ algorithm, the communication to computation ratio
can be computed by "% Communication" /(1-"% Communication"). This
ratio is fixed (for each processor) for a given problem and number of pro
cessors. Thus, the time spent idle by a processor in the Jacobi algorithm
is the difference between the % Communication for that processor for the J
and AJ algorithms. Based on the numbers in Figure 1, we can compute the
maximum and minimum processor idle times for the Jacobi algorithm.

We also observe that there is a substantial increase in the number of
iterations required by the asynchronous Jacobi method, which is caused by
increasing delays, S, changes in the order in which the unknowns are updated,
J, and the amount of communication required of a processor. This increase in

15

Time (s) % Communication Iterations
p GS AGS GS AGS GS AGS
1 3,190 3,190 0.0 0.0 2,639 2,639
4 1,688 891 52.7 1. 7-3.4 2,639 2,819-2,920
16 431 276 56.2 2.9-5.2 2,639 3,409-3,765
64 126 119 71.0 12.4-15.2 2,639 5,151-7,481
256 134 94 93.0 59.6-70.1 2,639 4,363-8,872

1,024 262 136 99.0 91.8-95.2 2,639 4,596-6,731

Figure 2: Comparison of the Gauss-Seidel and asynchronous Gauss-Seidel
methods

the number of iterations offsets the reduced communication cost, and the net
effect is that the Jacobi method is competitive with the asynchronous Jacobi
method for a small number of processors. (Because there is a relatively low
synchronization cost, Jacobi's method is often referred to as embarrassingly
parallel.) For large numbers of processors, the communication costs dominate
the total time, and small differences in the communication costs are seen as
a major difference in the overall times.

Finally, we note that there is a large jump in the percentage of time
spent in communication in the asynchronous Jacobi algorithm for more than
64 processors. This corresponds to the case when there is exactly one row of
unknowns per processor. If there are more than 64 processors, there is more
than one processor per row of unknowns and the solution within a processor
must be communicated to almost twice as many other processors. This is a
result of the relatively coarse-grained parallelism of our implementations.

In Figure 2, we compare the Gauss-Seidel and asynchronous Gauss-Seidel
methods. Our first observation here is that the percentage of time spent in
communication in the AGS algorithm is approximately the same as that for
the AJ algorithm. This is the case because, even though we are perform
ing slightly different computations, the number of communications and the
number of floating point operations is the same for the two algorithms. (The
communication to computation ratio is the same.)

Our second observation is that because the Gauss-Seidel algorithm re
quires that the unknowns be updated in a fixed order, there is at least a

16

Time (s) % Communication Iterations
p SD ASD SD ASD SD ASD
1 12,198 12,198 0.0 0.0 3,294 3,294
4 3,195 3,517 5.4 0.6-1.1 3,294 3,759-3,826
16 824 889 12.7 1.0-1.8 3,294 3,876-4,118
64 250 221 42.6 4.8-6.3 3,294 4,132-5,465
256 199 113 81.5 37.7-47.6 3,294 3,985-6,593

1,024 395 114 97.4 83.3-88.0 3,294 2,948-5,226

Figure 3: Comparison of the steepest descent and asynchronous steepest
descent methods

50% synchronization penalty for two or more processors even though the al
gorithm allows different processors to compute simultaneously on different
iterations. The result is that the asynchronous algorithm is substantially
more efficient for a small number of processors.

Figure 2 demonstrates the advantages of an asynchronous algorithm when
there is a large synchronization penalty, while Figure 1 demonstrates that
even when there is a small synchronization penalty, the performance of an
asynchronous algorithm is competitive.

Our final comparison, shown in Figure 3, is between the steepest descent
(SD) and asynchronous steepest descent (ASD) algorithms. This comparison
differs from the previous comparisons in two ways. First, as more groups are
added, the character of the asynchronous algorithm changes. In fact, if there
is only one point per group, the algorithm is the same as the asynchronous
Jacobi algorithm. Second, in the synchronous steepest descent algorithm, a
second communication stage is required to calculate the full r~sidual.

Even with the second communication step, we note that the behavior of
the asynchronous steepest descent is much like that of the asynchronous Ja
cobi algorithm. There is more work during each iteration of steepest descent
than during each iteration of Jacobi. Thus, if there is only a small synchro
nization penalty, but a fairly large increase in the number of iterations for
the asynchronous algorithm, then the synchronous algorithm may actually
run faster. Based on Figure 3, we see that this is the case, but only for a
small number of processors. If there are enough processors, the asynchronous

17

algorithm will eventually be the faster algorithm.

6 Conclusions

There are many possible asynchronous algorithms. We have presented three,
each of which has different features. These algorithms point out some of the
advantages, as well as disadvantages, of asynchronous algorithms.

In a distributed memory machine, the communications are relatively slow
and must be carried out whether the algorithm is synchronous or asyn
chronous. Thus, if an algorithm has a small synchronization penalty and
small number of communications, the synchronous algorithm can perform
as well as the asynchronous algorithm. On the other hand, if an algorithm
requires that a large number of small messages be sent, the asynchronous
algorithm can perform substantially better. This was shown in Figure 1.

If there is a large synchronization penalty, as in the case of the Gauss
Seidel algorithm (Figure 2), the asynchronous algorithm performs better than
its synchronous counterpart on a small number of processors. If enough pro
cessors are used, we return to the case where the number of communications
dominates the time. Here again, the asynchronous algorithm performs better.

For the third example, we examined an algorithm whose characteristics
changed when it was made asynchronous. For the asynchronous steepest
descent algorithm (Figure 3), we found that the synchronous algorithm was
faster for a small number of processors while the asynchronous algorithm was
faster for a large number of processors ..

Each of the algorithms showed a change in performance at 64 processors,
which demonstrates that algorithms were affected by the structure of the
problem. We did not optimize the algorithms for the particular problem
that we solved because our purpose was to investigate the dependence of
the performance of asynchronous algorithms on the characteristics of the
synchronous algorithms.

The three asynchronous algorithms presented performed better than their
synchronous counterparts in almost all cases; however, there are exceptions.
For example, an asynchronous conjugate gradient algorithm can be derived
in a manner similar to that demonstrated in Algorithm 3.2, but this algo
rithm is almost never competitive with the conjugate gradient algorithm. In
fact, the rate of convergence is similar to that of asynchronous Jacobi. This

18

is because the iteration between groups is a Jacobi iteration, and if there is
more than one group, the finite termination properties (in exact arithmetic)
of conjugate gradient are lost, even within the groups. Thus, it is clear that
the performance of an asynchronous algorithm depends not only on the com
munication delays of the synchronous algorithm, but also in the theoretical
properties of the synchronous algorithm.

Finally, we note that future distributed memory machines will incorporate
substantially faster communication hardware. Thus, a larger percentage of
the cost of parallelization will be synchronization delays, and the advantages
of using asynchronous algorithms will be even greater.

References

[1] M. N. Anwar and M. N. EI Tarazi. Asynchronous algorithms for Pois
son's equation with nonlinear boundary conditions. Computing, 34:155-
168, 1985.

[2] R. H. Barlow and D. J. Evans. Parallel algorithms for the iterative
solution to linear systems. Computer Journal, 25:56-60, 1982.

[3] G. M. Baudet. Asynchronous iterative methods for multiprocessors.
Journal of the Association for Computing Machinery, 25(2):226-244,
1978.

[4] D. P. Bertsekas. Distributed asynchronous computation of fixed points.
Mathematical Programming, 27:107-120, 1983.

[5] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and
Its Applications, 2:199-222, 1969.

[6] M. Dubois and F. A. Briggs. Performance of synchronized iterative
processes in multiprocessor systems. IEEE Transactions on Software
Engineering, SE-8(4):419-431, 1982.

[7] M. N. EI Tarazi. Some convergence results for asynchronous algorithms.
Numerische Mathematik, 39:325-340, 1982.

19

[8) T. Kato, K. Wakimoto, K. Inagaki, and T. Sakai. Determinacy prob
lem in relaxation method-analysis of asynchronous parallel processing.
Systems and Computers in Japan, 17(6):85-94, 1986.

[9) B. Lubachevshy and D. Mitra. A chaotic asynchronous algorithm for
computing the fixed point of a nonnegative matrix of unit spectral ra
dius. Journal of the Association for Computing Machinery, 33(1):130-
150, 1986.

[10) J. Miellou. Algorithmes de relaxation a retards. Revue d'Automatique,
Informatique et Recherche Operation nelle, 9, R-l:55-82, 1975.

[11) J. Miellou. Asynchronous iterations and order intervals. In M. Cos nard
et. al., editor, Parallel A.lgorithms and Architectures, Elsevier Science
Publishers B. V., 1986.

[12) D. Mitra. Asynchronous relaxations for the numerical solution of differ
ential equations by parallel processors. SIAM Journal for Scientific and
Statistical Computing, 8(1):s43-s58, 1987.

[13) J. T. Robinson. Some analysis techniques for asynchronous multipro
cessor algorithms. IEEE Transactions on Software Engineering, SE-
5(1):24-31, 1979.

[14) A. C. Shaw. Software descriptions with flow expressions. IEEE Trans
action of Software Engineering, SE-4(3):242-254, 1978.

[15) P. Spiteri. Parallel asynchronous algorithms for solving boundary value
problems. In M. Cosnard et. al., editor, Parallel Algorithms and Archi
tectures, Elsevier Science Publishers B. V., 1986.

[16) P. Spiteri. Simulation d'executions param~les pour la resolution
d'inequations variationnelles stationnaires. EDF-Bulletin de la Direc
tion des Etudes et des Recherches, Serie C, 149-158, 1983.

20

· .

Internal Distribution
UC-32 (191)
E. H. Barsis (5)
P. J. Eicker
J. J. Wiczer and Staff*
S. J. Weissman and Staff*
R. W. Harrigan and Staff*
W. J. Camp
R. J. Thompson and Staff*
D. B. Holdridge
R. C. Allen, Jr.
D. E. Amos
L. S. Baca
P. B. Bailey
L. A. Romero
D. E. Womble (15)
E. F. Brickell and Staff*
G. G. Weigand
R. E. Benner
J. L. Gustafson
G. R. Montry
G. M. Pollock
D. K. Gartling
J. A. Schutt
J. H. Biffie
S. A. Landenberger (5)
W. I. Klein (3)
C. L. Ward (8)
M. E. Thompson
J. M. Harris and Staff*
J. C. Meza
R. A. Whiteside
J. A. Wackerly

* Route

1400
1410
1411
1412
1414
1420
1421
1421
1422
1422
1422
1422
1422
1422
1423
1424
1424
1424
1424
1424
1511
1513
1523
3141
3151
3154-1
6233
8233
8233
8233
8524

External Distribution
Bob Hiromoto
MS B265
Los Alamos National Laboratories
Los Alamos, NM 87545

Linda Petzold L-316
Lawrence Livermore National Laboratories
P. O. Box 808
Livermore, CA 94550

Wayne Joubert
Center for Num. Anal. RLM 13.150
Univ. of Texas
Austin, TX 77004

