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Abstract 

Many asynchronous algorithms have been developed for parallel 
computers. Most implementations of asynchronous algorithms, how­
ever, have been for shared memory machines. In this paper, we study 
the implementation and performance of some common asynchronous 
algorithms on the NCUBE/ten, a 1024 node hypercube. In addition, 
we summarize existing theoretical work and discuss some classes of 
algorithms that can be made asynchronous and some that cannot. 
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1 Introduction 

One way to achieve the computing power required by scientists and engineers 
is through massively parallel computers, i.e., computers that have more than 
one thousand processors. However, for massively parallel computers to be 
used effectively, new algorithms must be developed and studied. In this pa­
per we study the performance of a class of new algorithms, asynchronous 
algorithms, which can improve the performance of existing synchronous al­
gorithms by reducing the amount of time a processor spends waiting on other 
processors. 

Many of the parallel computers available today are MIMD (multiple in­
struction, multiple data) type machines; that is, the processors are allowed 
to operate independently of one another. It is natural, then, that algorithms 
designed for MIMD machines should minimize the synchronization and com­
munication between processors. Algorithms in which synchronization has 
been completely eliminated are most often called asynchronous algorithms, 
although they were originally known as chaotic relaxation algorithms [5]. 

MIMD computers can be either shared memory machines or distributed 
memory machines. In a shared memory machine, communication takes place 
only through access to a common memory, and synchronization is usually 
accomplished through a set of semaphores or memory locks. In a shared 
memory machine, memory conflicts are often a major source of program 
delays. 

In a distributed memory machine, on the other hand, each processor 
has access only to a local memory. Communication takes place by passing 
messages over communication links between processors. While memory con­
flicts are eliminated in distributed memory machines, the communication of 
information can result in message conflicts or major program delays. Syn­
chronization in these machines is "pairwise": one processor must wait for 
information to be sent by another processor. 

Asynchronous algorithms are most often implemented on shared mem­
ory machines. Because the communication is implicit (by memory reference) 
and the synchronization is explicit, an iterative algorithm can be made asyn­
chronous simply by removing synchronization points. In a distributed mem­
ory machine, however, the synchronization is implicit in the communication. 
To implement an asynchronous algorithm, therefore, one processor must be 
able to send a message without waiting for the receiving processor to read it, 
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and a processor must be able to check for the presence of a message without 
having to read one. 

Asynchronous algorithms have been applied to a wide variety of problems. 
These include combinatorial problems (searching, sorting, etc ... ), minimiza­
tion problems, operating system problems (task scheduling, memory manage­
ment, etc ... ), and the solution of linear and nonlinear systems of equations. 
In this paper, we consider only the latter class of problems. 

In 1969, Chazan and Miranker [5] published an asynchronous relaxation 
algorithm for the solution of the linear system Ax = b and gave conditions 
on A under which the algorithm converged. In [10], Miellou generalized the 
results of Chazan and Miranker to nonlinear contracting operators, while 
Baudet [3] generalized the definition of asynchronous algorithm and reestab­
lished the convergence results of [5] and [10]. Finally EI Tarazi [7] restated 
the convergence results of [3] so that they were similar to classical fixed point 
theorems. Similar theorems were given by Bertsekas [4]. Many authors have 
used the results of [3,7,4] or have used similar methods to establish the con­
vergence of specific algorithms. These include [1,15,16,11,12]. 

The work mentioned above has developed around the formalism of Baudet. 
There are some alternate models, which we mention here. The first is the 
transition model [8], which is based on the idea of flow descriptions in soft­
ware design [14]. This formalism has resulted in at least one convergence 
theorem. A second model is the queueing network model [13,6]. This model 
seems most useful for statistical performance analysis of asynchronous algo­
rithms. 

Most of the work cited so far has been strictly theoretical, although some 
authors have included simulations in their work [9,16]. The lack of exper­
imental results has been due, in part, to the limited availability of MIMD 
computers. A notable exception is the work of Baudet [3], who studied the 
implementations of several algorithms on the Carnegie-Mellon multiproces­
sor computer. Experimental results including comparisons with synchronous 
algorithms can also be found in [2,1]. All of these experiments were carried 
out on shared memory machines with a small number of processors. 

It is difficult to make general statements about the performance of asyn­
chronous algorithms: performance results usually apply only to a specific 
algorithm on a specific parallel computer. Nevertheless, in this paper, we 
try to present some intuitive guidance on the performance of asynchronous 
algorithms on distributed memory machines based on several examples. 
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We begin by stating a formal definition of asynchronous algorithm in 
Section 2 and giving some general convergence results in Section 3. Fol­
lowing that, in Sections 4 and 5, we present several specific asynchronous 
algorithms and discuss their implementation and experimental results on the 
NCUBE/ten hypercube. We also discuss a class of algorithms whose asyn­
chronous versions do not appear effective. 

2 Theory of Asynchronous Algorithms 

We motivate the formal definition of asynchronous algorithms with an ex­
ample. Gauss-Seidel relaxation is an iterative method for finding the so­
lution to an equation of the form U = G( u), where u = (U1,'''' up), and 
G( u) = (G1 (u), . .. , Gp( u)). The Gauss-Seidel iterates are given by the re­
laxation equation 

HI i+l HI i i 
Uk = Gk (U1 , .•. ,Uk _ 1 ,Uk,''''Up )' k=I, ... ,p, 

where i denotes the iteration number. 
We see that the computation of the u~+l must be carried out in a specific 

sequence. On a parallel computer, the result is that processors spend a 
lot of time waiting for other processors to carry out computations. If we 
remove the requirement that the relaxations be carried out in sequence, the 
result is an asynchronous version of the algorithm. We see that any formal 
definition of asynchronous algorithm must allow several components to be 
updated simultaneously and must allow "old" values of the Uk to be used if 
new values have not yet been computed. Hence, we introduce an update set 
and a delay set, denoted by J and S, in the definition below. 

The following definition is given in [3,7] and is the most useful definition 
for the analysis of scientific algorithms. In the following, R denotes the real 
numbers, and N denotes the natural numbers. 

We let Ei = Rn;, where ni E N, i = 1, ... ,p, and let 11·11; denote a norm 
on Ei , and 

p p 

E = II Ei = R n, n = L ni· 
t=1 ;=1 

Elements u E E have the form u = (Ull U2,' •• ,up) with norm 

1 
Ilull = milX -lluilli, 

• /i 
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where 'Yi E R, 'Yi > 0, i = 1, ... ,po (In a more abstract setting, Ei can be 
a Banach space.) 

We are interested in fixed points of an operator G : D(G) C E --+ E, 
where G(u) has the form 

G(u) = (G1(u), G2 (u), ... , G,,(u», G,,: D(G) C E --+ E". 

An asynchronous algorithm corresponding to the operator G and starting 
with the vector uO E D( G) is the sequence {Ui};eN of vectors in E defined 
by 

Hl_{G,,( ... ,U;I(i), ••. ) kEJ(i) k 1 
Uk - ui k f/. J(i), = , ... ,p, 

where J = {J(i)}ieN,J(i) C {1, ... ,p} has the property that k occurs in­
finitely often in the sets {J(i)};eN, and S = {st(i), ... ,sp(i)} is a sequence 
of elements of N" satisfying 

sk(i) ::; i, i E N, 

Jim s,,(i) = 00 • 
• _00 

An asynchronous algorithm is denoted by the quadruplet (G, uO, J, S). 
The sets J and S characterize the asynchronous algorithm. The set J(i) 

is the set of components to be updated at iteration i, and the requirement 
that k occurs infinitely often in the J(i) means that no component can be 
ignored during the iteration. The number sk(i) is the delay for component k 
at iteration i. The requirements on s,,(i) mean that we cannot use informa­
tion that has not yet been generated by the iteration and that we must use 
"reasonably current" information in the iterations. 

We see that the Gauss-Seidel iteration described at the beginning of 
this section can be put into the context of this definition with the following 
assignments for J and S: 

s,,(i) = i for k = 1, ... ,p, and i E N, 

J(i) = 1 + i mod p for i E N. 

In fact, any synchronous algorithm can be written as an asynchronous algo­
rithm with the proper choices for J and S. 
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We can now state a convergence theorem for asynchronous algorithms, 
The following is found in [7]. 

Theorem 2.1 We let G be an operator mapping D(G) C E into E, where 

p 

D(G) = II Dk(G), 
k=l 

We suppose that G has a fixed point, u*, in D( G), G[D( G)] c D( G), and 
for all u E D(G) 

IIG( u) - G( u*)II ::; I'llu - u*li, 0 < I' < 1. 

Then u· is the unique fixed point of G in D( G), and any asynchronous algo­
rithm (G, uo, J, S) corresponding to G and starting with Uo E D(G) converges 
to u*. 

Theorem 2.1 is similar in nature to many of the classical convergence the­
orems for fixed point algorithms. However, even though the iteration scheme 
in Theorem 2.1 is more general than that of most fixed point algorithms, the 
application of the theorem is limited to operators that are contractions in 
the norm II· m· 

3 Algorithms for Linear Systems 

In this section, we define three asynchronous algorithms: the names are 
based on the synchronous algorithms from which they are derived. The 
first algorithm, Jacobi relaxation, was chosen because it represents a class of 
algorithms that can be implemented efficiently on a parallel computer. The 
second algorithm, Gauss-Seidel relaxation, represents a class of algorithms 
that cannot be implemented efficiently on a parallel computer. The third 
algorithm, steepest descent, represents a class of algorithms that cannot be 
implemented asynchronously without making fundemental changes to the 
algorithm. 

We have combined the asynchronous Jacobi and asynchronous Gauss­
Seidel algorithms into one description because of the similarities. In Algo­
rithm 3.1 below, the coordinate functionals, Gk(X), of G(x) are specified. 
The delays, S, are not known a priori: if there is one unknown assigned to 
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each processor, then the delays are determined by the relative speeds of the 
processors. If there is more than one unknown assigned to each processor, 
then the delays enforced within each processor determine whether the al­
gorithm is an asynchronous Jacobi (AJ) or an asynchronous Gauss-Seidel 
(AGS) algorithm. Specifically, if a processor uses the most recent values of 
the unknowns assigned to it during each iteration, it is an AGS algorithm. 
Otherwise, it is an AJ algorithm. 

Although Algorithm 3.1 is formulated for linear systems, it can be for­
mulated for any system to which Jacobi relaxation can be applied. 

Algorithm 3.1 (AJ, AGS) We consider the linear system 

Ax = b, (1) 

where A is an n x n matrix with entries (ai,j), and define the operator G( x) : 
RR ..... RR by the coordinate functionals 

k = 1, ... , n, (2) 

where Xk denotes the kth element of x. The starting guess, XO E R n is ar­
bitrary, as are the sets J and S (although J and S must always satisfy the 
definition of asynchronous algorithm). 

The convergence of Algorithm 3.1 is easy to establish for a variety of 
linear systems. The following convergence result demonstrates the use of 
Theorem 2.1. 

Theorem 3.1 If A is a diagonally dominant, n x n matrix, then Algo­
rithm 3.1 converges to the unique solution of (1). 

Proof. We begin by writing A = L + D + U, where L, D and U are, respec­
tively, the lower triangular, diagonal and upper triangular components of A. 
The function G(x), defined in Algorithm 3.1, can then be written as 

G(x) = _D-l(L + U)x + D-1b. 
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Because A is diagonally dominant, A -I exists. Thus, there is a unique so­
lution, x·, to (1), and, by inspection, x· is a fixed point of G. We now 
write 

G(x) - G(x*) = -D-I(L + U)(x - x*). 

Because A is diagonally dominant, 

IID-t(L + U)lIoo = mj1X ( I: lai,il/lai,;I) = (3 < 1. 
I$.$n l<i<n 

7~J 

It is clear that G(x) satisfies the conditions of Theorem 2.1, with the choices 
E; = R, i = 1, ... , n, and II . IIi = I . I. We conclude that Algorithm 3.1 
converges to the unique solution of (1). 0 

Corollary 3.1 If A is a diagonally dominant, n x n, matrix, then both Jacobi 
iteration and Gauss-Seidel iteration converge to the unique solution of (1). 

Proof. Both Jacobi iteration and Gauss-Seidel iteration are asynchronous 
algorithms. For Jacobi iteration, J and S are given by 

for k = 1, ... ,p, and i EN, 

J(i) = {I, ... ,n} for i E N, 

while for Gauss-Seidel iteration, J and S are given by 

for k = 1, ... ,p, and i E N, 

J(i) = 1 + i mod p for i E N. 

The convergence of Jacobi iteration and Gauss-Seidel iteration now follows 
from Theorem 3.1. 0 

We conclude our discussion of the AJ and AGS algorithms with another 
convergence theorem. This theorem establishes the convergence of Algo­
rithm 3.1 for a class of matrices that arise in the finite difference discretiza­
tions of many elliptic operators, such as the La.pla.cian operator. 

Definition 3.1 A matrix A is an M-matrix if the diagonal entries of A are 
positive, the off-diagonal entries of A are negative, and the entries of A-t 

are positive. 
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Theorem 3.2 If A is a symmetric, positive definite {SPD}, M-matrix, then 
Algorithm 9.1 converges to the unique solution of {1}. 

The proof of Theorem 3.2 can be found in [5]. 
Our second algorithm, Algorithm 3.2 below, is derived from classical 

steepest descent and is called asynchronous steepest descent (ASD). As be­
fore, we state the algorithm for a linear system. 

Algorithm 3.2 (ASD) We consider the linear system {1}, where A is an 
n X n, SPD matrix with entries (ai,j), and b is a vector in R n with entries 
(bi ). ForI = {1, ... ,n} ands l ,s2 c I, we define the matrix 

and the vector 

{
a' . 1,) 

A.,X82 = 0 
i E SI, j E 82 

otherwise 

b" = { 
bi i E SI 

o otherwise 

Finally, we denote by gi, i = 1, ... ,p, subsets of I satisfying Uf=l gi = I. 
ASD is defined by G{x} : R n -+ R n

, where the coordinate functionals of G(x) 
are given by 

(3) 

where 

and 
T rg. rg. 

Qk = -=--"''--''-''---
rJ,. Ag. Xg. r g. 

The starting guess XO E R n is arbitrary, and the sets J and S are required 
only to satisfy the definition of asynchronous algorithm. 

We note here that in general 

This implies that in the case of more than one group, we cannot eliminate 
one of the matrix multiplies. In the case of a large number of groups, this 
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is not a large penalty because a full matrix multiply is not required in the 
computation of Ok. 

We see from the definition of Algorithm 3.2 that if p = n, and 9i = 
{i}, i = 1, ... , n, then we recover Algorithm 3.1. Algorithm 3.2 can, in fact, 
be viewed as a hybrid of block Jacobi and steepest descent. The convergence 
of Algorithm 3.2 has not been established due to the restriction on norms in 
Theorem 2.1. 

4 Implementations on a Hypercube 

The NCUBE/ten at Sandia National Laboratories contains 1,024 process­
ing nodes in a hypercube configuration. Each node contains a processor, 
a hardware floating point unit with 32-bit and 64-bit IEEE floating point 
arithmetic, 512 Kb of ECC memory, and eleven bidirectional DMA channels: 
ten are used for communications within the hypercube; the eleventh provides 
a connection to an Intel 80286 host processor or other 110 device. 

In the Introduction, we stated two conditions that must be satisfied by 
the hardware of a distributed memory machine in order to implement an 
asynchronous algorithm. Specifically, a processor must be able to send a 
message to another processor without waiting for the receiving processor to 
read the message, and a processor must be able to test for a message from an­
other processor without waiting for that processor to write a message. These 
conditions must also be satisfied by any language in which an asynchronous 
algorithm is to be written. The NCUBE/ten and its implementation of FOR­
TRAN satisfy both conditions. 

Computation and communication times for the NCUBE depend on both 
the program and the language of implementation. A computationally in­
tensive, single-node, double precision FORTRAN program can achieve 0.07 
to 0.13 MFLOPS. Communication between nodes from within a FORTRAN 
program occurs at about 0.5 Mb/sec with a setup time of about 350 J1.S re­
quired for each read and write. Testing for the presence of a message also 
requires about 350 J1.s. Clearly, communication is a time consuming opera­
tion, and any efficient implementation of an algorithm will minimize first, 
the number of communications and second, the number of bytes in each 
communication, even at the expense of some redundant computation. 

The implementation of an algorithm on the NCUBEjten requires two 
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programs: a host program and a node program. The host program is respon­
sible for such tasks as allocating all or part of the ten-dimensional hypercube, 
sending the node program to each processor in the allocated hypercube, and 
handling all input to and output from the nodes. The node program is re­
sponsible for all the computation and communication within the cube. 

We now turn our attention to an implementation of Algorithm 3.1. We 
assume that there are p processors available for the solution of the linear 
system (1). We also assume, for ease of exposition, that n, the number of 
unknowns, is an integer multiple of p. Thus, each processor is responsible for 
evaluating m = nip ofthe GA;(X), the coordinatefunctionals of G(x). Looking 
at equation (2), we see that if each processor stores the vector x and the m 
rows of the matrix A corresponding to coordinate functionals that it must 
evaluate, the evaluations can be carried out without any communication. 
Once a processor has carried out the evaluation of a coordinate functional, 
the new value of x must be communicated to other processors. If the matrix 
is sparse, this information should be communicated to only those processors 
that need it. 

We can now give a pseudocode version of Algorithm 3.1. 

Host program: 
1. Allocate a hypercube and load the node programs 
2. Send rows of the matrix to each node 
3. For each node, do 
4. Determine what communication is required 
5. Send this communication information to the node 
6. End for 
7. Send a "start computing" message to the nodes 
8. Wait for nodes to compute the solution 
9. Send a "stop computing" message to the nodes 
10. For each node, do 
11. Read the solution and print it 
12. End for 
13. Close the hypercube 
End program 

Node program: 
1. Read rows of the matrix from the host 
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2. Read communication information from the host 
3. Read a "start computing" message from the host 
4. While no "stop message" pending, do 
5. While messages pending, do 
6. Read a message 
7. Update the solution vector 
8. End while 
9. For each coordinate functional this node is responsible for, do 
10. Evaluate the coordinate functional, Gk(x) 
11. Update the solution, x 
12. End for 
13. For each processor that needs the new solution, do 
14. Send the new solution 
15. End for 
16. End while 
17. Send the solution to the host 
End program 

In the node program, it would be possible to move the loops 5-8 and 
13-15 into the loop 9-12. This would have the effect of reducing the delay 
in communicating information to other processors, thus reducing the overall 
computation time. However, it would also have the effect of increasing the 
number of messages and the number of tests for pending messages that a 
processor must make. In the experimental codes that we have written for 
the NCUBE, we have found that, in most cases, the pseudocode listed above 
is most efficient. (In the cases where we have a very sparse matrix and are 
using a small number of processors, the alternate version would be more 
efficient. This is also true for shared memory machines [3].) 

In the ASD algorithm, processor i is responsible for computing the com­
ponents of the solution corresponding to the group gi. As in the AJ algorithm, 
each processor needs to know the entire solution vector, x, and the rows of the 
matrix indexed by the group gi' If the g; are not pairwise disjoint, then either 
some rows of the matrix must be stored more than once, or there must be 
additional communication between processors. If we assume that the g; are 
pairwise disjoint, then the pseudocode for processor i in the implementation 
of ASD is the same as that for AJ with the loop 9-12 replaced by 

9. Compute Gk(x) according to equation (3) 
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10. Update the solution x 

One issue of practical importance, which requires further research, is that 
of stopping criteria. Most stopping criteria involve a global check of a resid­
ual; however, this requires the synchronization of processors. Thus, for an 
asynchronous algorithm, a distributed stopping criterion, which would allow 
processors to independently determine if convergence has been achieved, is 
needed. Such stopping criteria would also improve the performance of some 
synchronous algorithms by removing one synchronization and communica­
tion step. 

A couple of programming points should also be noted. The first is that 
of node-host communication. In our AJ, AGS and ASD algorithms, the 
host must monitor the nodes and decide when to send the "stop computing" 
message; however, if there is too much communication, it is possible that the 
host will not be able to respond fast enough and will abort the program. 

The second programming issue is what a processor does between the time 
that it has converged and the time that is receives the "stop computing" 
message from the host or more data from other nodes. In some algorithms, 
such as steepest descent, division by the norm of a residual is required. Once 
a processor has converged, this will result in a "divide by zero" condition 
that should not result in the termination of the program. 

5 Numerical Results 

We have implemented the AJ, AGS and ASD algorithms described in the 
previous section. In this section, these algorithms will be compared with 
their synchronous counterparts. As a test problem for each algorithm, we 
have chosen the linear system arising from the discretization of the Laplacian 
operator on the unit square using a nine point star with a 65 X 65 grid (4,096 
unknowns). This problem size was chosen because it is the largest problem 
that can be stored in the memory of one processor with our algorithms. 

As a stopping criterion, we use 

lIuc - Utlloo < TOL 
IIU tiloo ' 

where U c is the computed solution and Ut is the true solution, which is known 
for the test problems. While this criterion can not be used in practice, 
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Time (s) % Communication Iterations 
p J AJ J AJ J AJ 
1 6,639 6,639 0.0 0.0 5,271 5,271 
4 1,769 1,740 7.1 1. 7-3.3 5,271 5,338-5,525 
16 462 470 15.6 2.8-5.0 5,271 5,643-6,213 
64 150 149 49.1 11.9-14.7 5,271 6,301-9,028 
256 147 114 86.8 59.4-69.5 5,271 5,271-10,585 

1,024 267 159 98.1 91.7-95.0 5,271 5,349-7,822 

Figure 1: Comparison of the Jacobi and asynchronous Jacobi methods 

it enables us to compare the algorithms directly without introducing any 
addi tional synchronization. 

In each run of each program, we measured the number of iterations re­
quired for convergence, time required for communications on each processor 
(which includes synchronization time), and the total run time. Based on 
the measured times, we can compute the percentage of time spent in com­
munications. For an asynchronous algorithm, we quote a range of values 
for the number of iterations and percent communication. This is of interest 
because some processors require less communication than others, and if less 
communication is required, more computations can be performed. 

Figure 1 compares the Jacobi and asynchronous Jacobi algorithms. We 
make several observations here. First, because the synchronization has been 
removed from the AJ algorithm, the communication to computation ratio 
can be computed by "% Communication" /(1-"% Communication"). This 
ratio is fixed (for each processor) for a given problem and number of pro­
cessors. Thus, the time spent idle by a processor in the Jacobi algorithm 
is the difference between the % Communication for that processor for the J 
and AJ algorithms. Based on the numbers in Figure 1, we can compute the 
maximum and minimum processor idle times for the Jacobi algorithm. 

We also observe that there is a substantial increase in the number of 
iterations required by the asynchronous Jacobi method, which is caused by 
increasing delays, S, changes in the order in which the unknowns are updated, 
J, and the amount of communication required of a processor. This increase in 
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Time (s) % Communication Iterations 
p GS AGS GS AGS GS AGS 
1 3,190 3,190 0.0 0.0 2,639 2,639 
4 1,688 891 52.7 1. 7-3.4 2,639 2,819-2,920 
16 431 276 56.2 2.9-5.2 2,639 3,409-3,765 
64 126 119 71.0 12.4-15.2 2,639 5,151-7,481 
256 134 94 93.0 59.6-70.1 2,639 4,363-8,872 

1,024 262 136 99.0 91.8-95.2 2,639 4,596-6,731 

Figure 2: Comparison of the Gauss-Seidel and asynchronous Gauss-Seidel 
methods 

the number of iterations offsets the reduced communication cost, and the net 
effect is that the Jacobi method is competitive with the asynchronous Jacobi 
method for a small number of processors. (Because there is a relatively low 
synchronization cost, Jacobi's method is often referred to as embarrassingly 
parallel.) For large numbers of processors, the communication costs dominate 
the total time, and small differences in the communication costs are seen as 
a major difference in the overall times. 

Finally, we note that there is a large jump in the percentage of time 
spent in communication in the asynchronous Jacobi algorithm for more than 
64 processors. This corresponds to the case when there is exactly one row of 
unknowns per processor. If there are more than 64 processors, there is more 
than one processor per row of unknowns and the solution within a processor 
must be communicated to almost twice as many other processors. This is a 
result of the relatively coarse-grained parallelism of our implementations. 

In Figure 2, we compare the Gauss-Seidel and asynchronous Gauss-Seidel 
methods. Our first observation here is that the percentage of time spent in 
communication in the AGS algorithm is approximately the same as that for 
the AJ algorithm. This is the case because, even though we are perform­
ing slightly different computations, the number of communications and the 
number of floating point operations is the same for the two algorithms. (The 
communication to computation ratio is the same.) 

Our second observation is that because the Gauss-Seidel algorithm re­
quires that the unknowns be updated in a fixed order, there is at least a 
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Time (s) % Communication Iterations 
p SD ASD SD ASD SD ASD 
1 12,198 12,198 0.0 0.0 3,294 3,294 
4 3,195 3,517 5.4 0.6-1.1 3,294 3,759-3,826 
16 824 889 12.7 1.0-1.8 3,294 3,876-4,118 
64 250 221 42.6 4.8-6.3 3,294 4,132-5,465 
256 199 113 81.5 37.7-47.6 3,294 3,985-6,593 

1,024 395 114 97.4 83.3-88.0 3,294 2,948-5,226 

Figure 3: Comparison of the steepest descent and asynchronous steepest 
descent methods 

50% synchronization penalty for two or more processors even though the al­
gorithm allows different processors to compute simultaneously on different 
iterations. The result is that the asynchronous algorithm is substantially 
more efficient for a small number of processors. 

Figure 2 demonstrates the advantages of an asynchronous algorithm when 
there is a large synchronization penalty, while Figure 1 demonstrates that 
even when there is a small synchronization penalty, the performance of an 
asynchronous algorithm is competitive. 

Our final comparison, shown in Figure 3, is between the steepest descent 
(SD) and asynchronous steepest descent (ASD) algorithms. This comparison 
differs from the previous comparisons in two ways. First, as more groups are 
added, the character of the asynchronous algorithm changes. In fact, if there 
is only one point per group, the algorithm is the same as the asynchronous 
Jacobi algorithm. Second, in the synchronous steepest descent algorithm, a 
second communication stage is required to calculate the full r~sidual. 

Even with the second communication step, we note that the behavior of 
the asynchronous steepest descent is much like that of the asynchronous Ja­
cobi algorithm. There is more work during each iteration of steepest descent 
than during each iteration of Jacobi. Thus, if there is only a small synchro­
nization penalty, but a fairly large increase in the number of iterations for 
the asynchronous algorithm, then the synchronous algorithm may actually 
run faster. Based on Figure 3, we see that this is the case, but only for a 
small number of processors. If there are enough processors, the asynchronous 
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algorithm will eventually be the faster algorithm. 

6 Conclusions 

There are many possible asynchronous algorithms. We have presented three, 
each of which has different features. These algorithms point out some of the 
advantages, as well as disadvantages, of asynchronous algorithms. 

In a distributed memory machine, the communications are relatively slow 
and must be carried out whether the algorithm is synchronous or asyn­
chronous. Thus, if an algorithm has a small synchronization penalty and 
small number of communications, the synchronous algorithm can perform 
as well as the asynchronous algorithm. On the other hand, if an algorithm 
requires that a large number of small messages be sent, the asynchronous 
algorithm can perform substantially better. This was shown in Figure 1. 

If there is a large synchronization penalty, as in the case of the Gauss­
Seidel algorithm (Figure 2), the asynchronous algorithm performs better than 
its synchronous counterpart on a small number of processors. If enough pro­
cessors are used, we return to the case where the number of communications 
dominates the time. Here again, the asynchronous algorithm performs better. 

For the third example, we examined an algorithm whose characteristics 
changed when it was made asynchronous. For the asynchronous steepest 
descent algorithm (Figure 3), we found that the synchronous algorithm was 
faster for a small number of processors while the asynchronous algorithm was 
faster for a large number of processors .. 

Each of the algorithms showed a change in performance at 64 processors, 
which demonstrates that algorithms were affected by the structure of the 
problem. We did not optimize the algorithms for the particular problem 
that we solved because our purpose was to investigate the dependence of 
the performance of asynchronous algorithms on the characteristics of the 
synchronous algorithms. 

The three asynchronous algorithms presented performed better than their 
synchronous counterparts in almost all cases; however, there are exceptions. 
For example, an asynchronous conjugate gradient algorithm can be derived 
in a manner similar to that demonstrated in Algorithm 3.2, but this algo­
rithm is almost never competitive with the conjugate gradient algorithm. In 
fact, the rate of convergence is similar to that of asynchronous Jacobi. This 
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is because the iteration between groups is a Jacobi iteration, and if there is 
more than one group, the finite termination properties (in exact arithmetic) 
of conjugate gradient are lost, even within the groups. Thus, it is clear that 
the performance of an asynchronous algorithm depends not only on the com­
munication delays of the synchronous algorithm, but also in the theoretical 
properties of the synchronous algorithm. 

Finally, we note that future distributed memory machines will incorporate 
substantially faster communication hardware. Thus, a larger percentage of 
the cost of parallelization will be synchronization delays, and the advantages 
of using asynchronous algorithms will be even greater. 

References 

[1] M. N. Anwar and M. N. EI Tarazi. Asynchronous algorithms for Pois­
son's equation with nonlinear boundary conditions. Computing, 34:155-
168, 1985. 

[2] R. H. Barlow and D. J. Evans. Parallel algorithms for the iterative 
solution to linear systems. Computer Journal, 25:56-60, 1982. 

[3] G. M. Baudet. Asynchronous iterative methods for multiprocessors. 
Journal of the Association for Computing Machinery, 25(2):226-244, 
1978. 

[4] D. P. Bertsekas. Distributed asynchronous computation of fixed points. 
Mathematical Programming, 27:107-120, 1983. 

[5] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and 
Its Applications, 2:199-222, 1969. 

[6] M. Dubois and F. A. Briggs. Performance of synchronized iterative 
processes in multiprocessor systems. IEEE Transactions on Software 
Engineering, SE-8( 4 ):419-431, 1982. 

[7] M. N. EI Tarazi. Some convergence results for asynchronous algorithms. 
Numerische Mathematik, 39:325-340, 1982. 

19 



[8) T. Kato, K. Wakimoto, K. Inagaki, and T. Sakai. Determinacy prob­
lem in relaxation method-analysis of asynchronous parallel processing. 
Systems and Computers in Japan, 17(6):85-94, 1986. 

[9) B. Lubachevshy and D. Mitra. A chaotic asynchronous algorithm for 
computing the fixed point of a nonnegative matrix of unit spectral ra­
dius. Journal of the Association for Computing Machinery, 33(1):130-
150, 1986. 

[10) J. Miellou. Algorithmes de relaxation a retards. Revue d'Automatique, 
Informatique et Recherche Operation nelle, 9, R-l:55-82, 1975. 

[11) J. Miellou. Asynchronous iterations and order intervals. In M. Cos nard 
et. al., editor, Parallel A.lgorithms and Architectures, Elsevier Science 
Publishers B. V., 1986. 

[12) D. Mitra. Asynchronous relaxations for the numerical solution of differ­
ential equations by parallel processors. SIAM Journal for Scientific and 
Statistical Computing, 8(1 ):s43-s58, 1987. 

[13) J. T. Robinson. Some analysis techniques for asynchronous multipro­
cessor algorithms. IEEE Transactions on Software Engineering, SE-
5(1):24-31, 1979. 

[14) A. C. Shaw. Software descriptions with flow expressions. IEEE Trans­
action of Software Engineering, SE-4(3):242-254, 1978. 

[15) P. Spiteri. Parallel asynchronous algorithms for solving boundary value 
problems. In M. Cosnard et. al., editor, Parallel Algorithms and Archi­
tectures, Elsevier Science Publishers B. V., 1986. 

[16) P. Spiteri. Simulation d'executions param~les pour la resolution 
d'inequations variationnelles stationnaires. EDF-Bulletin de la Direc­
tion des Etudes et des Recherches, Serie C, 149-158, 1983. 

20 



· . 

Internal Distribution 
UC-32 (191) 
E. H. Barsis (5) 
P. J. Eicker 
J. J. Wiczer and Staff* 
S. J. Weissman and Staff* 
R. W. Harrigan and Staff* 
W. J. Camp 
R. J. Thompson and Staff* 
D. B. Holdridge 
R. C. Allen, Jr. 
D. E. Amos 
L. S. Baca 
P. B. Bailey 
L. A. Romero 
D. E. Womble (15) 
E. F. Brickell and Staff* 
G. G. Weigand 
R. E. Benner 
J. L. Gustafson 
G. R. Montry 
G. M. Pollock 
D. K. Gartling 
J. A. Schutt 
J. H. Biffie 
S. A. Landenberger (5) 
W. I. Klein (3) 
C. L. Ward (8) 
M. E. Thompson 
J. M. Harris and Staff* 
J. C. Meza 
R. A. Whiteside 
J. A. Wackerly 

* Route 

1400 
1410 
1411 
1412 
1414 
1420 
1421 
1421 
1422 
1422 
1422 
1422 
1422 
1422 
1423 
1424 
1424 
1424 
1424 
1424 
1511 
1513 
1523 
3141 
3151 
3154-1 
6233 
8233 
8233 
8233 
8524 

External Distribution 
Bob Hiromoto 
MS B265 
Los Alamos National Laboratories 
Los Alamos, NM 87545 

Linda Petzold L-316 
Lawrence Livermore National Laboratories 
P. O. Box 808 
Livermore, CA 94550 

Wayne Joubert 
Center for Num. Anal. RLM 13.150 
Univ. of Texas 
Austin, TX 77004 




