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ABSTRACT

Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes
in tuff rock formation is presented. The ESCs evaluated include Conical Shaped
Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from
0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter.
Data for projectile impact angles of 30 and 90 degrees are presented. Analytically
predicted depth of penetration data generally compared favorably with experimental
data. Predicted depth of penetration versus ESC standoff data and hole profile
dimensions in tuff are also presented.



ACKNOWLEDGMENTS

The author wishes to thank those persons who contributed to this study, namely,
Donnie Marchi, 2512, for fabrication of test setup hardware, obtaining all test
measurements, and involvement in conducting the tests. Duane Smith, 7173, and
Dave Kessel, 7173, coordinated the scheduling, setup of safety procedures and
arming and firing for these tests.



IL.

I11.

IV.

Tables ...

Distribution

TABLE OF CONTENTS

Page
INOALCHON: s i es s R A e 8
IDCBTOPTINBIIE . sus nnsnisssnnss vnonssmsos s s oo oI At o s RS SO TR ST 9
Tuff Rock Formation............... w9
Conical Shaped Charges ........... A P SIII |
Predictad CSC Jet PeneTation . v 10
e S B T O T 10
Explosive Formed Projectile .. w10
Predic¢ted EFP Slup Penetration. cimmiciemrsrsssiimisikansasmssmise 11
EFP Test Results.. s 1B
NI TNR T v i R M A i A SR SRR S A A DA SRR AN 13
BeIerences .ivssamssmissminss .14
svisiscin 1O
)
..................................................... 83




Table

I
111
IV

VI

W~

TABLES

Page
Historical Background for Conical Shaped Charges (CSC).....covunenrrerreerienns 16
Explosive Shaped Charge Parameters........ooerevemerersesnesssssnsessssssssessesesssens 16
Shaped Charge/Tuff Penetration Tests at Tonopah .......................................... 18
EFP Parameters... T AT L.
Explosive Formed PrOJectlle Slug Parameters .................................................... 20
Predicted CSC Jet Penetration In Tl ..ammnsmnmssssesmsassinssssns 21

FIGURES

Page
General Explosive Shaped Charge tuff Target Configuration..........c.cecoeveerenne 22
General Explosive SHaped Charge Configuration.........ccccconmnnnesencsciennne 23

Hydrocode Simulation of a 42° Conical Shaped Charge,

Initial Liner Configuration, and Jet Slug Formation

Al AN O pS cusnsniiss s isn s R R e 24
Hydrocode Simulation of Jet Formation From a Hemispherical

Shaped Charge For the Point-Initiated Case at

Three Times After DetOnation.........cueereierneeseciesssssssssss 25
Slug Shape for 5 Inch-Diameter EFP at 200 us After Detonation............cc.... 26
Steel, Hollow Tube with High Pressure Hose Attached

Far Cléaning Holes in tifl FOrmation . .esissswssssssiiissmndiamsisiaii 27
Steel Tape Used to Measure Hole Depth...wunmsnsissasssnsasi 29
Solid Steel Rod Used to Measure Hole Depth......ccccvieeeniescnincncneniicenns 31
General Conical Shaped Charge Cross-Section Parameters .......ooevevenencnees 33
Basic Conical Shaped Charge CriosS-SeCtION ..csiersisissismssssssssssssassansisssiossiossn 34
Optimized Conical Shaped Charge Configuration..........eeeeusmsessssusssssessnsnnes 35
Conicdl Shaped Charge Oonbguration....cuasssasissmsissismsssimsssioiss 36
CSC Development Test Housing Configuration........cceveeensecusesesssmsissssssssses 37
3.86 Inch Diameter CSC Cross-Section....uueiesimersisssismssenisssssssesssenins 38
4.66 Inch Diamieter CSC Cross-Section . casisiimmmsimwasmaniinsmmrimimmie 39

M2A3 Conical Shaped Charge Coniguration.........c.ceeeesemseeesusesesnsesesesnsaensnesd0
M3 9125 Inch Diameter CSC Cross SEcHON st ]
Conical Shaped Charpge Copper JEb vmmnmsmesmcmmmmmassopsesmsmussomstsmnssmimmsss 42
Film Cassette #2 Showing Jet Tip at 201 us from Detonation........ccccovveeennas 43



20
21
22
23
24

26

27

28
29
30
31
32
33
34
b
36

3%

38
39
40

41

42
43
44
45

Figures cont’d

Flash X-Ray Triple Exposure of Cassette #1... T morr— .
0.158 Inch Diameter CSC Penetration Versus Standoff .................................... 45
3.86 CSC Jet Penetration Versus Standoff for a Tuff Target.........coovevereernrennns 46
4.66 CSC Jet Penetration Versus Standoff for a Tuff Target........ccoeeververrrrrnns 47
6.986 Inch Diameter M2A3 CSC penetration Versus Standoff..........c..ccevurunens 48
9.125 Inch Diameter M3 GO ...usumimimseiinmmmsississsissssisvonsssismiins 49
Conical Shaped Charge Jet Penetration into Welded

Tuff Formations at Tonapah Test RaNGe........coccovererrseermeesninnseeessssssssessssessenns 50
Shaped Charge Orientations Relative to Tuff

Formation Surface .............. wissisiedd
3.86 Inch Diameter CSC Test Conflguratlon BN, . 7.
3.86 Inch Diameter CSC Generated Hole in Tuff add
4.66 Inch Diameter CSC Test Configuration.......................................................57
4.66 Inch Diameter CSC Generated Hole in Tuff..........ccccoeeverrevenveicnrrencnnnenennn 39
1.0 Inch Diameter CSC Test Configuration.......cuauswmssiscsissmissssivsisiiOd
7.0 Inch Diameter CSC Generated Hole in Tuff........ccccocermerrenerenennnsersensnaenns 63
9.125 Inch Diameter CSC Test Configuration........ SR
9.125 Inch Diameter CSC Generated Hole in Tuff........ccnsuissimmin 67
Conical Shaped Charge Jet Entrance Hole Diameter

in Tuff as a Function of CSC Cone Inside Diameter ..........ccoccevsurercessnsnscariens 69
Conical Shaped Charge Jet Bottom Hole Diameter in

Tuff as a Function of CSC Cone Inside Diameter........covrnessesesnessessssesnens 70
Explosive Formed Projéctile ConBiguration ;..uessssesssmsumsressinsisesssansssssioss 71
EFP Copper Liner for 5.0 Inch Inside Diameter EFP .....cc.uomoiesiesssssosssissos 72
JTI Explosive Formed Projectile Measured Penetration

into Steel (RHA) Target Versus Standoff ...........ccernrerinenccnnecnsninensnsennannn, 73
Projectile Penetration to Length Ratio Versus Square

Root of Projectile Density and TArget .coumssissnsssosssissssonisossesssssrsssisessisases 74
EFP Test Configuration for 90 Degree Impact of Tuff TP huncnviinnld
EFP Shig Generated Hole in Toff Targetl....cummimismimsssmsis 71
EFP Test Configuration for 30 Degree Impact of Tuff Target.......c.ccooeuruncne 79
EFP Slug Generated Hole in Tuff Target I S — 81




EXPLOSIVE SHAPED CHARGE PENETRATION INTO TUFF ROCK

I. Introduction

Explosive Shaped Charges (ESC) were used to generate holes in tuff rock formations.
This ESC technology has application in the mining industry?, road construction,
demolition, excavation, petroleum industry and general rock barrier penetration
work. Several Conical Shaped Charges (CSC) and one Explosive Formed Projectile
(EFP) were evaluated. The CSCs vary in size from 0.158 to 9.1 inches inside cone
diameter. The EFPs were 5.0 inches in diameter. ESC generated hole profiles in tuff
are presented. Analytically predicted ESC depth of penetration data are compared
to experimental data. Predicted CSC penetration versus standoff data are included.

The general ESC -- tuff target configuration for this study is shown in Figure 1. The
general explosive shaped charge configurations considered for this study are shown in
Figure 2.

The three ESCs shown in Figure 2 produce three different projectiles as illustrated in
Figures 3 - 5 for a conical shaped charge (CSC), hemispherical shaped charge (HSC)
and explosive formed projectile (EFP), respectively. For any homogeneous target
material that will flow under high dynamic pressure impact conditions, a CSC will
produce the smallest diameter and deepest hole. The EFP will produce the largest
diameter and shallowest hole in the target. The HSC should produce a hole profile
where diameter and depth of penetration are between the CSC and EFP limits. Only
CSCs and EFPs were used in this study.

After each test, a small diameter hollow tube, with a high pressure air hose attached,
was inserted into the hole to blow out or clean the hole as shown in Figure 6. A
measuring tape as shown in Figure 7 or a solid, steel rod about 0.375 inches in
diameter, as shown in Figure 8, were used to measure the hole depth. An
inclinometer along with the steel rod were used to measure the hole angle ()
relative to the target surface. Different diameter, wooden spheres on threaded
aluminum rods were used to measure the hole diameter at a given depth. Other
methods for measuring hole profile proved to be too expensive.



II. Development

Tuff Rock Formation

The ESC tests were conducted in the welded tuff formations at Tonopah Test Range
in Nevada. The density of the tuff is 1.85 grams per cubic centimeter and the
unconfined compression strength is 23 megapascals or 3338 pounds per square inch.
The porosity of the tuff is about S percent.

Conical Shaped Charges

A detailed historical background for the development of conical shaped charge
(CSC) technology is presented in Reference 1. A brief summary of major historical
CSC events is listed in Table I and References 2 -- 19. Reference 19 lists 99
references on the theory and operation of conical shaped charges. General
configurations for CSCs are shown in Figure 9 -- 10. Figure 9 illustrates the large
number (20) of variables involved in the design of a CSC. An optimized CSC cross-
section is illustrated in Figure 11. It is assumed that the reader has some knowledge
of the functioning!® of CSCs.

The cross-sections for the CSCs evaluated in this study are shown in Figures 12 -- 17.
Figures 12 and 13 show the cross-section and steel housing for the 0.158 inch
diameter CSC, respectively. Figures 14 -- 17 illustrate the configurations for 3.86,
4,66, 6.986, and 9.125 inch inside diameter CSCs.

The ESC liner inside diameter, liner material, apex angle, explosive type, explosive
weight and tamping material are listed in Table II. The eleven ESC tests conducted
in this study are listed in Table III. The first nine tests involved CSCs.

Radiographs for the 0.158 inch diameter CSC jet are shown in Figure 18 at one
microsecond intervals. The jet diameter aft of the tip is about 0.025 inches and the
jet length just before breakup is about 0.5 inches. The measured jet tip velocity is 5.5
millimeter per microsecond. Figures 19 and 20 show radiographs of the 9.125 inch
diameter CSC (M3) jet. Three flash X-ray heads were used to expose the two films
shown in Figures 19 and 20. The three jet paths indicated on the radiographs are a
result of each of the three different X-ray heads projecting the jet profile onto three
different heights on the film. The jet had not arrived along the top path in Figure 19
film which was located down stream of the film of Figure 20 relative to the jet tip.
The jet diameter aft of the tip is about 0.70 inches and the jet length before breakup
is about 30 inches. The measured jet tip velocity was 7.1 millimeters per
microsecond.



Predicted et Penetration

The Shaped Charge Analysis Program (SCAP)20.21 code developed at Sandia
National Laboratories was used to predict the CSC jet penetrations in Tuff. This
code uses a hydrodynamic model for target penetration. The model works well for
targets that flow hydrodynamically under high dynamic pressure loading conditions.
It was assumed that the tuff rock material would flow like metallic target materials.
Figures 21 -- 25 show the SCAP code predictions of jet penetration versus standoff
for the 0.158, 3.86, 4.66, 6.986, and 9.125 inch diameter CSCs, respectively. The
SCAP code predicted and measured jet penetration versus CSC cone inside diameter
data are compared in Figure 26.

CSC Test Results

CSC tests were conducted at 30 (shallow impact) and 90 (normal impact) degrees
relative to the tuff target surface as illustrated in Figure 27. The standoffs were
varied as shown in Table III. The 3.86 and 4.66 inch diameter CSC tests were
conducted with relatively short (7 inch) and with relatively long (27 and 36 inches,
respectively) standoffs.

Figures 28, 30, 32, and 34 show the test configuration for the 3.86, 4.66, 7.0, and
9.125 inch diameter CSCs. Figures 29, 31, 33, and 35 show the CSC generated holes
in the tuff rock for the above CSCs, respectively. All CSC tests shown are for

90 degree orientations of the CSC relative to the tuff surface. The measured CSC
standoff (S.0.), jet penetration (P), entrance hole diameter (D,), hole bottom
diameter (Dy), surface crater depth (H,) and hole center line to target surface angle
(a) data are listed in Table III for all tests.

The target entrance hole diameter (D,) as a function of CSC diameter is shown in

Figure 36 for CSCs with copper liners. The bottom of the hole diameter versus CSC
diameter is shown in Figure 37 for CSCs with copper liners.

Explosive Formed Projectile

The dimensions for the EFP22 used in this study are shown in Figure 38. The EFP
explosive, copper liner, and tamping (casing) parameters are listed in Table IV. The
EFP slug or projectile parameters are listed in Table V. The upper liner is shown in
Figure 39. The EFP projectile penetration into rolled homogeneous armor (RHA)
versus standoff is shown in Figure 40.

10



Predicted EFP Slug Penetration

The only simple predictive tool for projectile penetration is the following modified
Bernoulli equation:23

1/2 pe(Vp-U)2 + Y, = 1/2 p,U? + R,

where,

U = projectile penetration velocity
Yr = projectile strength factor

Rt = target strength factor

py = target density
pp = projectile density
V, = projectile velocity

The SCAP code cannot model EFPs. Hydrodynamic codes would require equation
of state parameters for the tuff material which are not readily known. Modeling the
collapse of the EFP disk could present some difficulties in addition to the expense.

Since the strength factors (Y, R;) for the tuff and copper were not known, these

terms were dropped in the above equation resulting in the familiar square root
density law?9 for high velocity impact:

P = 1(pp/py)0*

The above equation was used to estimate the EFP penetration (P) in the tuff target:

where,

L = 10.0 inches (Table V) = projectile length
pp =896g/cc

py = 1.85g/cc

Thus,

P = 22.1 inches
A second similar method was also used. Since the EFP slug penetration in steel

(RHA)?2 is known, and shown in Figure 40, then for the same EFP, the following
relationship can be derived:

(PTUFF/ PSteel) = (pSteel/ PTUFF)D‘5

11



from Figure 40,

at Standoff = 12 inches
Psieer = 9.2 inches

PSteel = 7.86 ngC

PTUFF = 19 inches

The above two methods predict EFP slug penetrations into tuff of 19 -- 22.1 inches.
The square root density law relationship for projectile (slug) penetration to slug
length ratio as a function of square root of projectile density for various target
materials including tuff is shown in Figure 41.

The EFP slug velocity was calculated using the Taylor Piston model?4 for barrel
tamped flyers:

V., = DA[(Z-1)/(Z+1)]

where,

V = maximum slug velocity = 3.4 mm/microsecond
A = [8/(G?-1)]e5 = 1.0

Z =[1+ (32 C,/2TM)]05 = 2.24

D = detonation velocity = 8.8 mm/microsecond

G = explosive detonation product gas exponent = 3.0

Ce = discounted or effective explosive
weight = C(ALPHA) = 945g (Ref. 24)
ALPHA = explosive discount factor = 0.35
M = liner weight = 280g

C = actual explosive weight = 2700g

The calculated EFP slug velocity was 3.4 millimeters per microsecond which agrees

well with the measured values of 3.83 (slug tip) to 2.4 (slug tail) millimeters per
microsecond (average velocity = 3.1).22

EFP Test Results

EFP tests were conducted at 30 and 90 degrees relative to the tuff target surface as
illustrated in Figure 27. The standoffs were varied as shown in Table III.

Figures 42 and 44 show the test configurations for 90 and 30 degree impacts,
respectively. Figures 43 and 45 show the EFP slug generated holes in the tuff rock.
The measured EFP standoff (S.0.), slug penetration (P), entrance hole diameter
(D.), bottom of the hole diameter (Dy), surface crater depth (H.) and hole centerline
to target surface angle («) data are listed in Table III for both tests.

12



III. Summary

Conical shaped charges (CSC) and explosive formed projectiles (EFP) have been
shown to be useful in generating holes in tuff rock. CSCs varying in diameter from
0.158 to 9.125 inches and an EFP of 5.0 inch diameter were used to generate holes in
tuff with parameters in the following ranges (for 90 degree impacts and excluding the
0.158 inch CSC):

Penetration depth: 23.5 - 55 inches
Entrance hole diameter: 1,2 - 5.5 inches
Bottom of hole diameter: 0.5 - 2 inches
Surface crater diameter: 6 - 23 inches
Depth of surface crater: 1 - 8 inches

The CSCs generated the maximum depth of penetration with the 4.66 inch diameter
CSC producing a 55 inch hole in the Tuff. The EFP generated the largest diameters
with 5.5 inches at the entrance and 2.0 inches at the bottom.

The SCAP code predictions of CSC jet penetration in tuff versus standoff were
generally in good agreement with the experimental data, as illustrated in Table VL
The simple hydrodynamic square root density law relationship for EFP slug
penetration predictions were in reasonable agreement with the experimental data.
Therefore, hydrodynamic theory describes the CSC jet and EFP slug penetration in
tuff reasonably well.

13
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Year

1888
1910
1936
1944
1945
1946
1947
1948

1948

1949
1950
1952

1953
1959
1986

Table 1. Historical Background for Conical Shaped Charges (CSC)

Person

Charles E. Monroe

Egon Neumann

R. W. Wood

Korolev & Pokrovski

Voltra Torrsy

J. B. Huttl

Lewis, Clark, Brunckner

H. C. Draper, J. E. Hill
W. G. Agnew

Birkoff, MacDougal,
Prigh, Taylor

L. S. Byers

J. T. Gardiner

M. P. Lebourg,
G. R. Hodgson

V. C. Davis

R. M. Hyatt

P. C. Chou, W. J. Flis

Discovery

Unlined cavity effect

Unlined cavity effect

Lined cavity/high velocity jet

High velocity copper jet (No. 8 blasting cap)

First unclassified publications on military CSCs
First publication on CSC use in mining
Additional publications on CSC use in mining
CSC:s applied to mining, drilling holes for blasting

First paper on jet formation
and penetration theory

CSC marketed for mining

CSC use in Petroleum industry

CSC use in Petroleum industry

Publication on CSC for mining
Bazooka at work
Recent development in CSC technology

Reference

11

12,13
14
15,16

17
18
19
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Table II. Explosive Shaped Charge Parameters

Liner Apex Explosive Explosive Tamping

Type  Diameter Material Angle Weight Material
(deg) (Ib)

CSC 0.158 Copper 47 LX-13 0.002 Steel
CSC 3.860 Copper 42 Octol 3.500 Aluminum
CSC 4.660 Copper 60 Octol 5.330 Aluminum
CSC 6.986 Glass 60 Comp B 9.500 Fiberglass
CSC 9.125 Steel 60 Comp B 30.000 Steel
EFP 5.000 Copper - LX-14 595 Steel
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Table III. Shaped Charge/Tuff Penetration Tests at Tonopah

Hole Profile

P
Test Shaped D S.0. Depth I, D, D, H. a
No. Charge Dia. (in) (in) (in) (in) (in) (in) (deg)
1 CSC 0.15 0.16 0.92 0.12 0.07 0.84 0.13 90
2 CsC 3.86 24 27.01 1.20 7 10.0 7.5 90
3 CSC 3.86 7 375 3.0 7.0 8.5 2.8 87
4 CSC 3.86 24 43.0 1.13 0.5 29.0 6.0 31
5 CSC 4.66 36 53.0 1.50 0.5 9.0 8.0 90
6 CSC 4.66 7 55.0 3.5 16.42 6.0 1.0 89
7 CSC 4.66 36 525 1.50 0.5 35.0 7.0 28
8 M2A3/CSC 7.0 14 46.0 3.50 44.02 14.5 4.0 88
9 M3/CSC 9.13 20 50.0 5.50 40.02 23.0 4.0 89
10 JTI/EFP 5.0 12 23.5 5.50 23.02 14.0 3.0 90
11 JTI/EFP 5.0 12 13.5 7.008 40.0 6.5 30
D = shaped charge diameter (D = unable to clean hole out with air compressor
S.0. = standoff (2) = Depth for 2 inch diameter ball
P = penetrating depth 3) = EFP projectile ricochet
D, = hole entrance diameter
D, = hole bottom diameter
CSC = conical shaped charge
EFP = explosively formed projectile
NA = not applicable
o = impact angle
D, = surface crater diameter
H = surface crater depth



Table IV. EFP Parameters

Explosive??
Lx-14
2.7 Kg (5.95 Ib)

p =183 g/cc
Detonation velocity = 8.8 mm/microsecond

Copper Liner??
Weight = 280 grams
ing/Tamping?2

Stainless Steel
Weight = 33572 ¢g

19
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Table V. Explosive Formed Projectile Slug Parameters

Slug Parameters??

N LA WP e

Diameter
Length

Tip Velocity
Tail Velocity
Mass

Energy
Breakup Time

Value

0.75 inches

10.0 inches

3.83 mm/microsecond

2.4 mm/microsecond

280 grams

1.35 megajouls

255 microseconds at 43.3 inches
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Table V1. Predicted CSC Jet Penetration In Tuff

CSC Impact Standoff (in) Penetration (in)

Diameter Angle Measured SCAP Measured SCAP % Diff.,
(deg).

0.158 90 0.2 0.2 0.92 1.2 30
3.860 90 24 24 27.0* 51 -
3.860 30 7 7 43.0 47 10
4.660 90 36 36 53.0 54 4

4.660 30 7 7 525 49 7

6.986 90 14 14 46.0 54 17
9.125 90 20 20 50.0 43 13

* = Unable to clean hole
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Figure 4. Hydrocode Simulation of Jet Formation From A Hemispherical Shaped Charge
For The Point-Initiated Case at Three Times After Detonation
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Figure 5. Slug Shape for 5 Inch-Diameter EFP at 200 us After Detonation
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Figure 6.  Steel, Hollow Tube With High Pressure Hose Attached For Cleaning Holes in
Tuff Formation 27-28
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Figure 9. General Conical Shaped Charge Cross-Section Parameters
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Figure 12. Conical Shaped Charge Configuration
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Figure 18.  Conical Shaped Charge Copper Jet
(Liner/LD. - 0.158", Apex Angle = 45°,
Thickness =- 0.005", Stamped



Figure 19.  Film Cassette #2 Showing Jet Tip at 201 ps from Detonation




Figure 20.  Flash X-Ray Triple Exposure of Cassette #1
Showing Jet Tip At 140.5 us
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Figure 21.  0.158 Inch Diameter CSC Penetration Versus Standoff
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Figure 23.  4.66 CSC Jet Penetration Versus Standoff for a Tuff Target
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Figure 28.  3.86 Inch Diameter CSC Test Configuration
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Figure 30.  4.66 Inch Diameter CSC Test Configuration
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Figure 34.  9.125 Inch Diameter CSC Test Configuration
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Figure 42.

EFP Test Configuration for 90 Degree Impact of Tuff Target
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