
SANDIA REPORT
SAND87 - 2356 UC - 32
Unlimited Release
Printed April 1988

I

lll11lllllllllllllllIll
8232-2//067135

ll~lllullllllllllll Ill
00000001 -

The SAS@ System by Forms:

Into the Hands of an End-User
. Putting Statistical Power

Jonathan W. Lee

Prepared by
Sandia National Laboratories
Albuquerque. New Mexico 8 7 185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof or
any of their contractors or subcontractors.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
NTIS price codes
Printed copy: A02
Microfiche copy: A01

SAXD87 - ?:3ij6
C'nlimited Release
Printed April 1988

The SAW System by Forms:
Putting Statistical Power

Into the Hands of an End-User

Jonathan W. Lee
Product Data Systems Management

and Development Division
Sandia National Laboratories

Albuquerque, NM 87185

Abstract
The SAS System provides a high-level programming tool for

data analysis. However, the flexibility of the SAS language and
its numerous options can both intimidate and confuse a casual
user. This report demonstrates how the full power of the SAS
System can be integrated, so that end-users with limited training
can perform their own analyses without sacrificing flexibility.
SAS software has been integrated into a menu-driven system
that can be adapted to an extensible set of SAS procedures in a
dynamic data environment; it operates under VMS@ and uses
the DIGITAL@ FMS Forms Management System.

Dilitrihution
Category I.C -:32

I -

Contents
Introduction .. 7 - Organization of SAS Programs ..
Controlled Integration of SAS Programs ..
Synthesis of SAS Programs and Specific Data 1’1

Adaptable Video Forms ... 1’1
Conclusions .. 14
References 11

..
Proc Syntax for Forms ...

Figures
1 Downloading Data Into a SAS Dataset .. 8
2 An Example of a “GET” File ... 9
3 Linking a Partitioned SAS Program ...
4 The M1RACLE)ANALYZE)SSD Menu ..
5 MIRACLE Interface to the SAS System ... 11
6 SAS Proc Syntax for Forms Driver ...
’7 SAS Variables Form .. 13
8 SAS Options Form .. 15
9 SAS Labels Form ... 15

The SAW System by Forms:
Putting Statistical Power

Into the Hands

Introduction
In the past, computation was a very time-

consuming part of the statistical process. With the
advent of computers and scientific programming lan-
guages like FORTRAN, writing subroutine libraries of
statistical functions became possible; thus, it became
possible to program repetitive applications. In an ad
hoc environment, however, the programs were often
inflexible. requiring end-users to call on application
programmers when modifications were necessary.

A major step in speed and flexibility was achieved
with fourth-generation languages like base SAS soft-
ware. Programming is reduced to a few lines of com-
mands and options. However, because of the prolifera-
tion of options, proper training is required to learn
which lines of code (with proper syntax) will achieve
the desired purpose. Since most end-users lack this
training, fourth-generation languages have fallen
short of their potential. A better system was required.

Canned SAS programs written for applications
that reference a limited and static database are a
possible solution. These programs, however, are not
effective in a dynamic environment where multiple
datasets are individually defined and are unstable, i.e.,
they change in time. With a database of several hun-
dred different datasets, producing a single application
for each dataset would be difficult, let alone providing
the flexible functionality that is desired.

The Sandia product test data (PTD) system is an
example of this type of environment. The test data
originate from many sources during aerospace hard-
ware development/acceptance testing or from quality
assurance testing. Over 1600 different files comprising
more than 100 000 variables are retained on a VAX-
cluster@ operating under VMS@.

In this report, we hope to demonstrate how the
full power of the SAS System can be integrated so that
end-users with limited training can perform their own
analyses in this environment. Specifically, we will
describe how SAS software is integrated into a menu-
driven, interactive retrieval and analysis system
(MIRACLE).

of an End-User

The integration of SAS software is based on three

Separation of the embedded references between
the SAS data and the proc steps.
After separating and cornpartmentalizing the
SAS code, reintegration is controlled with YhlS
command procedures and is accessed through
menus.
Data references are made logical with SXS
macro variables and then integrated to physical
datasets by using on-line forms.

The next three sections in this report describe the

design principles:

implementation of these three principles.

Organization of SAS
Programs

A SAS program consists of two types of state-

Statements associated with building datasets
Statements associated with processing datasets

When these statements are grouped together, they are
commonly referred to as the DATA step and the
PROC step. Although multiple steps may be inter-
leaved in any order, the most common order is a
DATA step, followed by one or more PROC steps.

A PROC step may refer specifically to a named
dataset or it may refer to specific variables by name;
the variables must reside in the associated dataset.
These embedded references to data within a PROC
step result in a limited use of the particular SAS
program. For example, a system of M different data-
sets being processed by N different procs would re-
quire MxN complete SAS programs when mapped
one-to-one into distinct files. As M and N increase, the
geometric rise in the number of programs soon grows
beyond reason.

I t is imperative that these references be isolated so
that any proc may be mapped with any dataset. This

ments:

results in an arithmetic growth of McN distinct files
as more datasets and procs are added to the system. In
MIRACLE. this IS accomplished by physically storing
in a separate file the statements needed to access a
SAS dataset. I n turn, PROC statements are stored in a
separate file with no reference to a dataset name since
the dataset is implied by association with a DATA
step.

A single, logical, SA8 dataset in this scheme is
composed of three physical files that have the same
file name with different file extensions.

The data are stored in (name).SSD.
The statements to access the dataset are stored

The description is stored in (name).CON (the
in (name).GET.

output of SAS proc contents).

These three files are created by an interface pro-
gram that downloads specified PTD variables in to a
SAS dataset (Figure 1). These files are stored in the
end-user's personal subdirectory assigned to DXT.4-
$SSD. The linkage statements contained in the "GET"
file are shown in Figure 2.

A library of procs is provided by application pro-
grammers: end-users can retrieve and modify these
procs within a subdirectory. which is assigned the
logical name: PROCSAS. End-users may also devel-
op their own procs in this subdirectory and access
them through MIRACLE.

The partition that has been created between data
and procs can be bridged by simply combining a GET
file with a PROC file into a temporary SAS program
and executing (Figure 3) .

.

CHOOSE

Figure 1. Downloading Data Into a SAS Dataset

8

I - 1

1 .

LIBNAME SASDATA 'DATASSSD:';
LIBSEARCH SASDATA;
DATA DATASETl ;

SET SASDATA.MC3717;
TITLE 'MC3717' ;

Figure 2. An Example of a "GET" File

SAS DATA

. . .

I 1 ----.--.....
JOBNAME
.SAS

PRINT.PRC CHART.PRC MEANS.PRC GPLOT.PRC . . .

SAS PROCS

Figure 3. Linking a Partitioned SAS Program

9

Controlled Integration of
SAS Programs -

s.4S operates in three modes under the VMS
operating system:

In le rac t iLe .Mode This mode is useless for an
untrained end-user as it simply prompts for the
SAS code.
Noninteractice Mode. This mode is used to
execute a file containing SAS code. It is initiated
with the VMS command:

S SAS (filename)
Batch Mode. By embedding the above command
in a file of VMS commands (called a command
procedure), that file can be submitted as a batch
job.

The PTD MIRACLE system uses the noninterac-
tive mode within a network of VMS command proce-
dures that present options to the end-user in the form
of menus and that carry out instructions by executing
VMS command sequences. Processing of SAS data-
sets is controlled by the M1RACLE)ANALYZE)SSD
menu shown in Figure 4.

The current status of the MIRACLE system is
always displayed at the top of the menu. The current-
type will always be "SSD" for this menu. The current-
data will point to a SAS dataset, and the current-proc
will point to a SAS proc. Processing options are dis-
played below the menu title (Figure 4) on the lefthand
side of the menu, with a short description to the right.
These options are performed in conjunction with the

files that are designated in the status display. .A hrlet
description of each option follows:

The NEWFILE COMMAND allows the end-
user to change the current data file to a different
file.
The CREATE COMMAND allows a SAS proc
to be created from scratch with a text editor.
The GET COMMAND allows end-users to get
an existing proc from their own area or from the
SAS proc libraries that have been provided.
The EDT COMMAND allows the proc designat-
ed by "current-proc" to be edited.
The FORMS COMMAND loads the current
proc into an on-line forms program described in

the following section.
The RENAME COMMAND allows the proc file
to be renamed.
The XQT COMMAND links the GET file for
the current-data with the current-proc and exe-
cutes the resulting SAS program.
The LOG COMMAND produces a disposal
menu for viewing any LOG files created by SAS
programs. (The SAS System creates a LOG file
each time it executes; this file contains process-
ing information useful for finding errors.)
The OUTPUT COMMAND produces a disposal
menu for viewing any report (any LIS file) or
graph (any GSF file) created by a SAS program.

Figure 5 shows how these commands fit into the

-

MIRACLE interface to the SAS System.

CURRENT-TYPE =>>> "SSD" NOMENCLATURE = "MC37 1 7 'I
CURRENT-DATA =>>> "DATASSSD:MC3717. SSD" PQRTNO = "31 8940''
CURRENT-PROC =>>> "PROCSSAS : GPLOT. PRC ' MFGR = '1 . BBN "

I.11 RRC LE > Cil WL ''I'ZE > 55C1

Newf i l e - Get o r l o c a t e a new d a t a f i l e - -> ' c u r r e n t - d a t a "
Crea te Cfnl - C r e a t e a new SAS p r o c named < f n > . P R C
Get C L i b l Cfnl - Get a n e x i s t i n g p r o c f r o m / i n t o PROCBSAS d i r e c t o r y
Forms - Load CURRENT-PROC into d a t a e n t r y forms and modify
ED t - E d i t CURRENT-PROC
Rename C f n l - Rename CURRENT-PROC t o f i l e n a m e "<fn>.PRC"
xq t - Execu te SAS j o b (o r t y p e B f o r b a t c h j o b)
Log - Check log o f SQS j o b
o u t p u t - R e d i s p l a y r e p o r t o r g r a p h i c s o u t p u t o f SAS j o b
< - Moue d a t a s t a c k p o i n t e r t o p r e u i o u s f i l e
E x i t - E x i t t h i s menu

Figure 4. The M1RACLE)ANALYZE)SSD Menu

10

I -

Y .'.* ---I---

0 Cpname>

I""""

0 <pname>

"OUTPUT"

~~~ 

I "OUTPUT' 

Figure 5. MIRACLE Interface to the SAS System 

11 



Synthesis of SAS 
Programs and 
Specific Data 

We have shown how different datasets can be 
linked with data-independent procs a t  the external 
file level. For example. separate datasets can be linked 
with a simple version of PROC UNIVARIATE to 
produce univariate statistics on all numeric variables 
without making any specific reference to a variable by 
name. However, most procs require some variables to 
be specified by name (e.g., PROC PLOT). Conse- 
quently, it is necessary to  provide a mechanism to link 
data and procs internally as well as externally. 

The answer as to how such a link can be made 
without returning to the undesirable homogeneous 
procs lies in the proficient use of SAS macro variables. 
Since data references must be made at the exact 
location required by the syntax of the SAS program. 
the result is a random dispersal of variables. By re- 
placing the variable names with SAS macro variables. 
it is possible to group all data references in a single 
location of the SAS code. Thus,  in addition to the 
partition between the data and proc steps, another 
partition can be built within the proc step between the 
macro definition and the SAS code containing macro 
references. Substitution of variable names into macro 
variables can then be performed by end-users without 
modifying the underlying SAS program. 

Substitution of values into macro variables may 
be done in one of two ways: 

With a text editor 
With on-line forms (the easier way) 

MIRACLE provides a forms driver program that 
produces forms adaptable to  any SAS proc written in 
a specified format. The format and the associated 
forms are further described below. 

Proc Syntax for Forms 
The forms driver reads a SAS proc file, processes 

it on-line via video forms, and outputs a modified 
version of the proc. A few syntax rules are needed in 
order to parse the proc. Procs are divided into five 
sections: 

Variables 
Options 
Labels 
Help 
Proc 

The proc must he the last section in sequence -ince i t  

is unmodified. The other sections are not  order depen- 
dent. Each section must begin wi th  a kel-word tha t  ha. 
the syntax: 

Macro variables that are assigned variable names 
from a dataset are defined in the variables section. .\I1 
other macro variables are grouped as options in a 
separate section. Options may be followed by a one- 
line comment containing the valid entries: these en- 
tries will be referenced by the forms driver program. 
Titles and footnotes are stored in the labels section in 
base SAS syntax. U p  to nine help sections. consistins 
of 23 lines of comments. may be provided hy the S.AS 
programmer. The forms driver program will store each 
help section in a separate page that may be accessed 
by the end-user. Finally, the proc section contains the 
procs that consist of SXS statements and macro vari- 
able references. This section is unmodified. 

An example of a partitioned SAS proc is given in  
Figure 6. For a more detailed description o f  SA> proc 
writing, see Reference 1. 

Adaptable Video Forms 
Partitioning a SAS proc as described in the pre- 

ceding section allows each section to be easily pro- 
cessed by a forms driver program. Such a program has 
been written in FORTRAN by using the DIGITAL@ 
VAX- 11 FMS Forms Management System; the prn- 
gram reads a proc file and displays the macro variables 
on the associated video forms, from which an end-user 
may enter or modify appropriate values. When fin- 
ished. a modified version of the proc is output. Sepa- 
rate video forms exist for the variables. options. labels, 
and help sections. The  number of entries that appear 
on the screen is adaptable to different procs. A brief 
description of each form follows. 

The variables form (Figure 7 )  is the key to linking 
physical data from a SAS dataset to logical macro 
names from a proc. Twenty-four variables from the 
dataset appear at a time in a scrollable window a t  the 
top of the form. (The variable names are retrieved 
from the contents file associated with the current 
data.) Up to 12 macro variable arrays may be dis- 
played on the left side of the screen, followed by 
blanks for entering a variable and indices for the array 
(e.g., 1 of 3). The forms driver program will validate 
the user-supplied entries to ensure their membership 
in the current SAS dataset. 

. 



, I = -  ( V a r i a b l e s )  ---/ 
SLET PLOTVARl= 
%LET BYL'ARl= I 

,--- ( O p t i o n s )  -I-/ 
%LET DEVICE= 1 

%LET CHART=VBAR 
/-  V A L I D  CHOICES : 

/=I= ( L a b e l s )  - - = /  
TITLE1 F = t r i p l e x  C = b l u e  H=2 

[WAR, H E M ,  P i E  ,BLOCK, STAR] -/ 

i *  ' T h i s  is t h e  t i t l e '  ; 
FOOTNOTE1 F = d u p l e x  C=red H= 1 

' T h i s  is t h e  f o o t n o t e '  ; 

/--- ( H e l p )  ---/ - P r o c :  XXXXXX A u t h o r :  J .  Doe, 555-1234 

- H e l p  message b e g i n s  h e r e  . . .  
- 
x 

I 

/ x - =  (Proc) ---/ 

(SAS c o d e  goes h e r e . .  . )  

Figure 6. SAS Proc Syntax for Forms Driver 

SAS IJkRIABLES FOHI.1 - PROC GPLOT 

XUAR : 
YUAR : 

C u r s o r - C o m n d s  -- - -- --- - - + 
~ 

I<bksp> - Moue to p r e v i o u s  f i e l d  I 1 
I < c t r l - f >  - Moue t o  Form/Funct ion:  I ~ 

l - - - - - - - - - ?  I 

I < c t r  1-b> - Scro  11 uar  Ldx backward I ~ 

I - - - - _ _ _ - _ -  E x  i t - C o n m n d s - - - - - - - - - - -  1 
I < c t r l - a >  - Rbor t  (Don ' t  save p r o c l l  ~ 

I < r , t r l - e >  - E x i t  (Save t h i s  p r o c )  ' 
I < c t r l - x >  - Execute  w i t h  t h i s  p rac  I 1 

+ - - - - - - - - -  FIGE ( 1 o f  1 )  

I !  

; < r e t u r n >  - S c r o l l  ua r  Ldx fo rward  ' i  I 

;~ 

2601 FH ( 1 o f  3 )  I < tab>  - Moue t o  n e x t  f i e l d  

x r o  1 l -commnds- - - - - - - - - - '  

+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  + I  

Form/Funct ion  : C~,Var iab les,Opt ians,Lobels ,Xqt ,Ex i t ,Abar t l  

~ 

Figure 7 .  SAS Variables Form 

1.3 



The options form (Figure 3 )  is used for any other 
macro variables that dre not associated with dataset 
variables. Up to :36 macro variables may be read from 
the options sectwn o t  the proc file and displayed on 
the screen in two columns;. each followed by a 16- 
character blank. I f  a macro variable in the options 
section of the proc file is followed by a one-line 
comment containing the valid entries enclosed by 
square brackets, the forms driver program will vali- 
date the user-supplied entry. Otherwise, no validation 
will be performed by the forms driver program. 

The labels form (Figure 9)  provides a fixed format 
for entering variable labels, titles, and footnotes. L p  
to  99 variable labels may be entered. The variables are 
validated and the labels are stored in the GET file so 
that future association to the dataset will retain the 
labels. Up to nine lines of titles and footnotes may be 
entered, with options for color, font, and height. In 
addition, footnotes may be translated and rotated for 
graphics procs. Titles and footnotes are stored in the 
proc file. 

Many levels of help may be initiated by entering a 
"?" into a field on the video form. Help is displayed in 
the following order: 

1. If a comment associated with the current field 
exists, it will be displayed on the bottom line of 
the screen. 

2.  If a help form associated with the current field 
exists. it will be displayed on the video screen. 
(These help forms are linked with the forms 
driver program as they are written.) 

3. If help forms have been provided by the proc 
itself, they wilt be displayed in the same order 
as they appear in the proc. 

4. The help form associated with the form cur- 
rently on the screen will be displayed. 

Conclusions 
The basic building blocks of this end-user system are 
now in place: 

The organization of files 
The menu-driven procedures 
The  on-line forms 

Nevertheless. it should be noted that  this is an extend- 
able system which is still in its infancy. Currently, 
-20 procs have been written and stored in 4 libraries: 

The Ltilities Library 
The Stats Library 
The Reports Library 
The Graphics Library 

The true value of the system depends o n  how u.ell 
the procs are written and organized. Coding tech- 
niques and choices of names for macro variables can 
make the difference in whether a proc can be under- 
stood. Judicious use of help screens also plays an 
important role in the friendliness of the system. HOW- 
ever. the primary roadblock to designing tlexible. 
smooth-running procs is the lack of a complete S.\S 
macro language for VMS. Once the full  SXS macro 
language becomes available on YMS, this system has 
the potential of growing into a powerful computation- 
al tool for end-users. 

As with all powerful tools, caution must he ob-  
served. As computational tools become more sophis t i -  
cated, the temptation increases for an end-user t o  
bypass professional statisticians and "wing it." How- 
ever, computation is only the second step in the three- 
fold statistical analysis process. I t  is precedrl I by 
tactics (i.e., determining appropriate question-. h>.- 
potheses, and procedures) and is followed by I titer- 
preting the computational results. LVithout a c 'o rn -  
plete understanding of all three steps, making valid 
conclusions and informed decisions is impossible. 

Tactics and interpretation must be as sophisticat- 
ed as the computation. Unfortunately, these steps are 
not as readily transformed into computerized process- 
es. Providing narrative text to guide an end-user 
through these steps is one approach, but it is not a 
trivial one., Knowledge-based expert systems may pro- 
vide the keys for simplifying these areas in the near 
future. In the meantime, the SAS System Interface 
described in this report is an important first step 
toward the goal of putting statistical power into the 
hands of an end-user. 

Note: SAS is a registered trademark of SAS Insti- 
tute, Inc., Cary, NC, USA. DIGITAL, VAXcluster, 
and VMS are trademarks of Digital Equipment Cor- 
poration. 

References 
'J. W. Lee, PTD-08-07: "Writing a SAS Proc for the 

PTD MIRACLE System," unpublished document ( Albu- 
querque, NM: Sandia National Laboratories, 1987). 

14 



DEVICE: T E k 4  1 15 
INTERP : HONE 

FONlTEXT: TRIPLEX 
C L R R X I S  : ILH I T E  , CLREXT: C f A N  

COLORl: CYAN 
' C O L O R 2 :  WAGENTQ 
' COLOR3: GREEN 
, SYMBOLl :  STHR 
1 SYMBOL?: DIUMOND 

l LINENPE: 1 
1 L I N E S I Z E :  2 

SYMBOL3: SQUARE 

+ - - - - -  Cursor-Commnds - - - - +  ' 

I < tab> - Next o p t i o n  I 1 
I<bksp> - P r e u  o p t  i o n  
I c c t r  I-€> - Form/Funct ton I 

I - - - - - -  Help-Corrmnds-- - - -  I ' 
: ? < r e t u r n > -  D t5p lay  h e l p  I I 

; - - - - - -  E r i t - C o n m n d s - - - - - l  ! 
; I  I < c t r l - a >  - FIbort 
: I  I < c t r l - e >  - E x i t  

I<c t rL -x>  - Execute proc 1 

message/form I 

+ - - - - - - - - - - - - - - - - - - - - - - - - +  

1 Form/Funct ion: C 7 ,  Uar l a b  les ,  O p t  ions, Labe ls ,  X q t  / Ex L t ,  Rbor t7  
I 

Figure 8. SAS Options Form 

Uar l a b  l e  = 48-charac ter  l a b e l  f o r  u a r  lab l e  
Labe l :  2681FH = 2G81FH ( 1 o f  1 )  

T i t l e :  Rae Dearada t ion  ( 2 of 2) 
Fon t :  TRIPLEX C o l o r :  CYAN H e i g h t :  1 

Foo tno te :  (Age is rounded t o  t h e  n e a r e s t  month) ( 1 o f  1 )  
Fan t : DUPLEX C o l o r :  LHITE Ise i g h t  : 
x p o s :  Ypos : Rng le: 

Figure 9. SAS Labels Form 



D ISTRIB L-T IO 5:  

2334 .J. L. \ t . i lcourii  

2.541 C. E .  L\..arren 
2343 K. L. LVoodall 
3561 .J. B. Newquist 
2564 L. A. Shope 
2561 G. W. Smith 
2800 W. E. Xlzheimer 
2810 D. W. Doak 
2813 .J. R. Yoder 
28820 G. Cadi 
2821 R. E. Thompson 
28825 .J. K. Sharp 
2825 .J. W. Lee (30) 
2826 A. .J. Ahr 
2830 G. R. Urish 
2850 .J. L. Tischhauser. .Jr. 
7222 D. L. Wright 
7223 H. E. Anderson 
7223 K. V. Diegert 
7223 R. G. Easterling 
7223 E. L. Frost 
7223 S. A. Martinez 
7223 F. W. Spencer 
7223 E. Y. Thomas 
7254 R. Ingram 
8524 P. W. Dean 
3141 S. A. Landenberger ( 5 )  
31\31 W. L. Garner ( 3 )  
3154-1 C. H. Dalin (8) 

For DOE/OSTI 

2342 R.  0. . J o h n x > n  

16 


