ar0ed22167/35 fyl
SANDIA REPORT '

SAND87 — 2356 « UC—32

Unlimited Release

Printed Aori 1965 ACARRRR

8232-2//067135

NAMRVIRRRNILY

00000001 -

The SAS® System by Forms:
Putting Statistical Power
Into the Hands of an End-User

Jonathan W. Lee

Prepared by

Sandia National Laboratories

Albuquerque. New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-76DP00789

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof or
any of their contractors or subcontractors.

Printed in the United States of America
Available from

National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

NTIS price codes
Printed copy: A02
Microfiche copy: A01

SANDS87 —-2356
Unlimited Release
Printed April 1988

The SAS® System by Forms:
Putting Statistical Power
Into the Hands of an End-User

Jonathan W. Lee
Product Data Systems Management
and Development Division
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

The SAS System provides a high-level programming tool for
data analysis. However, the flexibility of the SAS language and
its numerous options can both intimidate and confuse a casual
user. This report demonstrates how the full power of the SAS
System can be integrated, so that end-users with limited training
can perform their own analyses without sacrificing flexibility.
SAS software has been integrated into a menu-driven system
that can be adapted to an extensible set of SAS procedures in a
dynamic data environment; it operates under VMS® and uses
the DIGITAL® FMS Forms Management System.

Distribution
Category UC —~32

34

Contents

INETOQUELION oiiiiiiieiiii ettt st b e bbb et s et et et s eese s e et e et eeeeseeeseneet et eseeesetes s es et eess et e sessseasemneress s 7
Organization of SAS PrOZIAIMScoiiiiiiitiei ettt ettt ettt ettt eeee e eves et ettt et eeeeesesesetreestreeneees 7
Controlled Integration 0f SAS PIOZIAMS ..cocoviiiiiriiieitiie ettt eeese e e e e es et seeeeeseseeeeeresess e 10
Synthesis of SAS Programs and SPeCific Dataocoooriiirieieiei et ee s es e e e et st seeesn e 12
Proc SYNLAX fOr FOPMS oottt e et ee et et et ses e reseee s eseoseesseereneneseeeseneneseee 12
Adaptable Video FOIMS ..o oioiiiireiieceiceee ettt et et e et e eat et e e e et ireere s ereeraeresenes 12
CONCIUSIONS 1.ttt et ettt ettt bttt et e bet et e a et et e st ee et ee ettt es et ee et esee s eeenetenseeteasesat st tesessreserenesenene 14
REEETRIICES ...ttt a et et st et st et b st et e et e et et e et e et ee e e e e et eeea et s e et enateenee e st et et eeen et eeer et eenenan 14
Figures
1 Downloading Data INto 8 SAS Dataset......ccoiiuiviiiiieriiiiiiceccie ittt et e e eeee e et eveeesereeseseeeeeereetsenreessessnes 3
2 An Example of 8 “GET” FIle ..ottt ettt ettt sae sttt es et s eveteaeen v 9
3 Linking a Partitioned SAS PIOZTAM ...cccocvoviceoveriinieietiieie ettt ettt oss et b et ss s st et eneas v 9
4 The MIRACLE)ANALYZE)SSD MENUcoiiiiriiiieiiiinie ettt sttt sttt easseentetesse et et ensaeasesese e s essnee e 10
5 MIRACLE Interface t0 the SAS SYSTEIM ..ccvciviiieiiceiieree ettt ettt eae et eteee et et eeentetete s se et saeeteeanesssans 11
68 SAS Proc Syntax for FOIMS DIIVET ..ottt ettt ettt ee et e e s s e eaeas e 13
T SAS Variables FOM ..ottt sttt ettt teea et eteteetsebese et eseess et eteeteetesesasaenean s e 13
8 SAS OPUONS FOLM .ottt ettt ee et et este st e ee e s es et ereere s e et setessss et eseresseeees 15
9 SAS LADEIS FOIM. oottt sttt ettt e et svesae st as e s et ene e et e et et eas et ese s e et et ens 15

Ut
|
o]

The SAS® System by Forms:
Putting Statistical Power
Into the Hands of an End-User

Introduction

In the past, computation was a very time-
consuming part of the statistical process. With the
advent of computers and scientific programming lan-
guages like FORTRAN, writing subroutine libraries of
statistical functions became possible; thus, it became
possible to program repetitive applications. In an ad
hoc environment, however, the programs were often
inflexible, requiring end-users to call on application
programmers when modifications were necessary.

A major step in speed and flexibility was achieved
with fourth-generation languages like base SAS soft-
ware. Programming is reduced to a few lines of com-
mands and options. However, because of the prolifera-
tion of options, proper training is required to learn
which lines of code (with proper syntax) will achieve
the desired purpose. Since most end-users lack this
training, fourth-generation languages have fallen
short of their potential. A better system was required.

Canned SAS programs written for applications
that reference a limited and static database are a
possible solution. These programs, however, are not
effective in a dynamic environment where multiple
datasets are individually defined and are unstable, i.e.,
they change in time. With a database of several hun-
dred different datasets, producing a single application
for each dataset would be difficult, let alone providing
the flexible functionality that is desired.

The Sandia product test data (PTD) system is an
example of this type of environment. The test data
originate from many sources during aerospace hard-
ware development/acceptance testing or from quality
assurance testing. Over 1600 different files comprising
more than 100 000 variables are retained on a VAX-
cluster™ operating under vMS®,

In this report, we hope to demonstrate how the
full power of the SAS System can be integrated so that
end-users with limited training can perform their own
analyses in this environment. Specifically, we will
describe how SAS software is integrated into a menu-
driven, interactive retrieval and analysis system
(MIRACLE).

The integration of SAS software is based on three
design principles:

» Separation of the embedded references between
the SAS data and the proc steps.

» After separating and compartmentalizing the
SAS code, reintegration is controlled with VMS
command procedures and is accessed through
menus.

e Data references are made logical with SAS
macro variables and then integrated to physical
datasets by using on-line forms.

The next three sections in this report describe the
implementation of these three principles.

Organization of SAS
Programs

A SAS program consists of two types of state-
ments:

 Statements associated with building datasets
e Statements associated with processing datasets

When these statements are grouped together, they are
commonly referred to as the DATA step and the
PROC step. Although multiple steps may be inter-
leaved in any order, the most common order is a
DATA step, followed by one or more PROC steps.

A PROC step may refer specifically to a named
dataset or it may refer to specific variables by name;
the variables must reside in the associated dataset.
These embedded references to data within a PROC
step result in a limited use of the particular SAS
program. For example, a system of M different data-
sets being processed by N different procs would re-
quire M XN complete SAS programs when mapped
one-to-one into distinct files. As M and N increase, the
geometric rise in the number of programs soon grows
beyond reason.

It is imperative that these references be isolated so
that any proc may be mapped with any dataset. This

results in an arithmetic growth of M+ N distinct files
as more datasets and procs are added to the system. In
MIRACLE. this is accomplished by physically storing
in a separate file the statements needed to access a
SAS dataset. In turn, PROC statements are stored in a
separate file with no reference to a dataset name since
the dataset is implied by association with a DATA
step.

A single, logical, SAS dataset in this scheme is
composed of three physical files that have the same
file name with different file extensions.

e The data are stored in (name).SSD.

» The statements to access the dataset are stored
in (name).GET.

o The description is stored in (name).CON (the
output of SAS proc contents).

These three files are created by an interface pro-
gram that downloads specified PTD variables into a
SAS dataset (Figure 1). These files are stored in the
end-user’s personal subdirectory assigned to DATA-
$SSD. The linkage statements contained in the "GET"
file are shown in Figure 2.

A library of procs is provided by application pro-
grammers; end-users can retrieve and modify these
procs within a subdirectory, which is assigned the
logical name: PROC$SAS. End-users may also devel-
op their own procs in this subdirectory and access
them through MIRACLE.

The partition that has been created between data
and procs can be bridged by simply combining a GET
file with a PROC file into a temporary SAS program
and executing (Figure 3).

DATA
BASE

CHOOSE

<dname>
.BLD

BUILD

<dname>

<dname>
.CON

Figure 1. Downloading Data Into a SAS Dataset

DATASSSD:MC3717 .GET

LIBNAME SASDATA ’DATAS8SSD:’;
LIBSEARCH SASDATA;
DATA DATASET1;

SET SASDATA.MC3717;

TITLE ’MC3717’,;

Figure 2. An Example of a "GET” File

SAS DATA
[DATAOL.CON MC1214.CON MYDATA.CON [DATAB8.CON
[DATAQ1.SSD MYD [DATAB8.55D
DATAO1.GET MC1214.GET MYDATA.GET DATA88.GET
JOBNAME
SAS
PRINT.PRC CHART.PRC MEANS.PRC GPLOT.PRC

m

SAS PROCS

Figure 3. Linking a Partitioned SAS Program

Controlled Integration of
SAS Programs

SAS operates in three modes under the VMS
operating svstem:

» Interactive Mode. This mode is useless for an
untrained end-user as it simply prompts for the
SAS code.

o Noninteractive Mode. This mode is used to
execute a file containing SAS code. It is initiated
with the VMS command:

$ SAS (filename)

e Batch Mode. By embedding the above command
in a file of VMS commands (called a command
procedure), that file can be submitted as a batch
job.

The PTD MIRACLE system uses the noninterac-
tive mode within a network of VMS command proce-
dures that present options to the end-user in the form
of menus and that carry out instructions by executing
VMS command sequences. Processing of SAS data-
sets is controlled by the MIRACLE)ANALYZE)SSD
menu shown in Figure 4.

The current status of the MIRACLE system is
always displayed at the top of the menu. The current_
type will always be “SSD” for this menu. The current_
data will point to a SAS dataset, and the current_proc
will point to a SAS proc. Processing options are dis-
played below the menu title (Figure 4) on the lefthand
side of the menu, with a short description to the right.
These options are performed in conjunction with the

files that are designated in the status displav. A hriet
description of each option follows:

* The NEWFILE COMMAND allows the end-
user to change the current data file to a different
file.

» The CREATE COMMAND allows a SAS proc
to be created from scratch with a text editor.

* The GET COMMAND allows end-users to get
an existing proc from their own area or from the
SAS proc libraries that have been provided.

* The EDT COMMAND allows the proc designat-
ed by “current_proc” to be edited.

* The FORMS COMMAND loads the current_
proc into an on-line forms program described in
the following section.

* The RENAME COMMAND allows the proc tile
to be renamed.

¢ The XQT COMMAND links the GET file for
the current_data with the current_proc and exe-
cutes the resulting SAS program.

e The LOG COMMAND produces a disposal
menu for viewing any LOG files created by SAS
programs. (The SAS System creates a LOG file
each time it executes; this file contains process-
ing information useful for finding errors.)

¢ The OUTPUT COMMAND produces a disposal
menu for viewing any report (any LIS file) or
graph (any GSF file) created by a SAS program.

Figure 5 shows how these commands fit into the
MIRACLE interface to the SAS System.

_______ PRODUCT_TEST_DARTA________MIRACLE_2.1________29-SEP-1987 88:31:47.93______
CURRENT_TYPE =>>> "SSD" NOMENCLATURE = "MC3717" 3
CURRENT_DATA =>>> "DATA$SSD:MC3717.5SD" PARTNO = "31894@"
CURRENT_PROC =>>> "PROC$SAS:GPLOT.PRC" MFGR = ".BBN"
MIRACLESANALYZESSSD

Newfile - Get or locate a new data file --> "current_data®

Create [fnl] - Creote a new SAS proc named <{fn>.PRC

Get [Lib]l [fn]l - Get an existing proc from/ into PROC$SAS directory

Forms - Lood CURRENT_PROC into dota entry forms and modify

EDt ~ Edit CURRENT_PROC

Rename [fn] - Rename CURRENT_PROC to filename "<{fn>.PRC"

Xgt - Execute SRS job (or type B for batch job)

Log - Check log of SAS job i

Output - Redisplay report or graphics output of SAS job

< - Move data stack pointer to previous file

Exit - Exit this menu
Enter option, 7o0ption, or ? :

Figure 4. The MIRACLE)ANALYZE)SSD Menu

10

DATA
BASE

(download)

<dname>
.CON

<dname>
ET

<dname>
SSD

/ <pname>
L T .SAS

nxQTn

<pname>
.LOG

“LOG"

L

*| SAS

<pname>
P LIS

"OUTPUT"

L

"CREATE"

N eomes—

v !

<pname>
.PRC

<pname>

.GSF

"OUTPUT”

Figure 5. MIRACLE Interface to the SAS System

PROC
LIB

11

Synthesis of SAS
Programs and
Specific Data

We have shown how different datasets can be
linked with data-independent procs at the external
file level. For example. separate datasets can be linked
with a simple version of PROC UNIVARIATE to
produce univariate statistics on all numeric variables
without making any specific reference to a variable by
name. However, most procs require some variables to
be specified by name (e.g., PROC PLOT). Conse-
quently, it is necessary to provide a mechanism to link
data and procs internally as well as externally.

The answer as to how such a link can be made
without returning to the undesirable homogeneous
procs lies in the proficient use of SAS macro variables.
Since data references must be made at the exact
location required by the syntax of the SAS program,
the result is a random dispersal of variables. By re-
placing the variable names with SAS macro variables,
it is possible to group all data references in a single
location of the SAS code. Thus, in addition to the
partition between the data and proc steps, another
partition can be built within the proc step between the
macro definition and the SAS code containing macro
references. Substitution of variable names into macro
variables can then be performed by end-users without
modifying the underlying SAS program.

Substitution of values into macro variables may
be done in one of two ways:

* With a text editor
¢ With on-line forms (the easier way)

MIRACLE provides a forms driver program that
produces forms adaptable to any SAS proc written in
a specified format. The format and the associated
forms are further described below.

Proc Syntax for Forms

The forms driver reads a SAS proc file, processes
it on-line via video forms, and outputs a modified
version of the proc. A few syntax rules are needed in
order to parse the proc. Procs are divided into five
sections:

» Variables
» Options
 Labels

e Help

s Proc

The proc must be the last section in sequence since it
is unmodified. The other sections are not order depen-
dent. Each section must hegin with a kevword that has
the svntax:

/EE*{XXXXXX) ¥/

Macro variables that are assigned variable names
from a dataset are defined in the variables section. All
other macro variables are grouped as options in a
separate section. Options may be followed by a vne-
line comment containing the valid entries: these en-
tries will be referenced by the forms driver program.
Titles and footnotes are stored in the labels section in
base SAS syntax. Up to nine help sections. consisting
of 23 lines of comments. may be provided by the SAS
programmer. The forms driver program will store each
help section in a separate page that may be accessed
by the end-user. Finally, the proc section contains the
procs that consist of SAS statements and macro vari-
able references. This section is unmodified.

An example of a partitioned SAS proc is given in
Figure 6. For a more detailed description of SAN proc
writing, see Reference 1.

Adaptable Video Forms

Partitioning a SAS proc as described in the pre-
ceding section allows each section to be easily pro-
cessed by a forms driver program. Such a program has
been written in FORTRAN by using the DIGITAL®
VAX-11 FMS Forms Management System; the pro-
gram reads a proc file and displays the macro variables
on the associated video forms, from which an end-user
may enter or modify appropriate values. When fin-
ished, a modified version of the proc is output. Sepa-
rate video forms exist for the variables, options, labels,
and help sections. The number of entries that appear
on the screen is adaptable to different procs. A brief
description of each form follows.

The variables form (Figure 7) is the key to linking
physical data from a SAS dataset to logical macro
names from a proc. Twenty-four variables from the
dataset appear at a time in a scrollable window at the
top of the form. (The variable names are retrieved
from the contents file associated with the current
data.) Up to 12 macro variable arrays may be dis-
played on the left side of the screen, followed by
blanks for entering a variable and indices for the array
{e.g., 1 of 3). The forms driver program will validate
the user-supplied entries to ensure their membership
in the current SAS dataset.

/=== (Variables) ===/

%LET PLOTVAR1= ;

%LET BYVAR1= ;

/=== {(Options) ===/

ZLET DEVICE= ;

%LET CHART=VBAR ;

/=~ VALID CHOICES: [VBAR,HBAR,PIE,BLOCK

/=== (Labels) ==x/

TITLE1l F=triplex C=blue H=2
’This is the title’ ;

FOOTNOTE1 F=duplex C=red H=1
>This is the footnote’® ;

/=== (Help) =xxx=/

= Proc: Author: J. Doe

=~ Help message begins here...

/xxx
(SAS code goes here...)

(Proc) ===/

,STAR] =/

, 555-1234

Figure 6. SAS Proc Syntax for Forms Driver

-------------- Uariables

SAS UARIABLES FGRIM - PROC GPLOT

in 5AS dataset MC3717

1AGE LOTNO MFDATE SERIALND TSTCOD TSTDAT UNITDSP _24a1FH
i _2401FL _2481FN _C404FH _2404FL _2484FN _2681FH _2681FL _2681FN
| _2604FH _2684FL _CaB4FN _2784FH _27R4FL _2784FN _2714FH _2714FL
R i ittt Press ctrl-p for new page----------=----------—-—---~
XUAR: AGE (1 of 1) tmmm e Cursor_Caoamminds----------
YURR: _2681FH (1 of 3) 1<tak> - Moue tao next field
<bksp> - Move to previgus field
i<ctrl-£> - Maue ta Farm/Function:
fmmm S5croll_Commands----------
<return?> - Scrall var idx farward
iKctrl-b> - Scroll vor idx backward
f == Exit_Commands----~--=~---
i{ctrl—a> - Abort (Dan’t saue prac)
i<ctrl-e> - Exit (Sague this grac)
i<etrl-x> - Execute with this prac

FormFunction:

L?,Variacbles,Optians,lLaobels, Xgt ,Exit ,Abart]

Figure 7. SAS Variables Form

ls

The options form (Figure 8) is used for any other
macro variables that are not associated with dataset
variables. Up to 36 macro variables may be read from
the options section ot the proc file and displaved on
the screen in two columns. each tollowed by a 16-
character blank. If a macro variable in the options
section of the proc file is followed by a one-line
comment containing the valid entries enclosed by
square brackets, the forms driver program will vali-
date the user-supplied entry. Otherwise, no validation
will be performed by the forms driver program.

The labels form (Figure 9) provides a fixed format
for entering variable labels, titles, and footnotes. Up
to 99 variable labels may be entered. The variables are
validated and the labels are stored in the GET file so
that future association to the dataset will retain the
labels. Up to nine lines of titles and footnotes may be
entered, with options for color, font, and height. In
addition, footnotes may be translated and rotated for
graphics procs. Titles and footnotes are stored in the
proc file.

Many levels of help may be initiated by entering a
“?” into a field on the video form. Help is displayed in
the following order:

1. If a comment associated with the current field
exists, it will be displayed on the bottom line of
the screen.

2. If a help form associated with the current field
exists, it will be displayed on the video screen.
(These help forms are linked with the forms
driver program as they are written.)

3. If help forms have been provided by the proc
itself, they will be displayed in the same order
as they appear in the proc.

4. The help form associated with the form cur-
rently on the screen will be displayed.

Conclusions

The basic building blocks of this end-user system are
now in place:

e The organization of files
e The menu-driven procedures
» The on-line forms

Nevertheless, it should be noted that this is an extend-
able system which is still in its infancy. Currently,
~20 procs have been written and stored in 4 libraries:

14

e The Utilities Library

» The Stats Library

e The Reports Library

» The Graphics Library

The true value of the system depends on how well
the procs are written and organized. Coding tech-
niques and choices of names for macro variables can
make the difference in whether a proc can be under-
stood. Judicious use of help screens also plavs an
important role in the friendliness of the svstem. How-
ever. the primary roadblock to designing flexible.
smooth-running procs is the lack of a complete SAS
macro language for VMS. Once the full SAS macro
language becomes available on VMS, this svstem has
the potential of growing into a powerful computation-
al tool for end-users.

As with all powerful tools, caution must be ob-
served. As computational tools become more sophisti-
cated, the temptation increases for an end-user to
bypass professional statisticians and "wing it.” How-
ever, computation is only the second step in the three-
fold statistical analysis process. It is preceded by
tactics (i.e., determining appropriate questions, hy-
potheses, and procedures) and is followed by inter-
preting the computational results. Without a com-
plete understanding of all three steps, making valid
conclusions and informed decisions is impossible.

Tactics and interpretation must be as sophisticat-
ed as the computation. Unfortunately, these steps are
not as readily transformed into computerized process-
es. Providing narrative text to guide an end-user
through these steps is one approach, but it is not a
trivial one. Knowledge-based expert systems may pro-
vide the keys for simplifying these areas in the near
future. In the meantime, the SAS System Interface
described in this report is an important first step
toward the goal of putting statistical power into the
hands of an end-user.

Note: SAS is a registered trademark of SAS Insti-
tute, Inc., Cary, NC, USA. DIGITAL, VAXcluster,
and VMS are trademarks of Digital Equipment Cor-
poration.

References

'J. W. Lee, PTD-08-07: “Writing a SAS Proc for the
PTD MIRACLE System,” unpublished document (Albu-
querque, NM: Sandia National Laboratories, 1987).

DEVICE:
INTERP :
FONTTEXT:
CLRAXIS:
CLRTEXT:
COLOR1 :

! COLar2:
COLOR3:
SYMBOL 1
} SYMBOLZ2:
. SYMBOL3:
i LINETYPE:
| LINESIZE:

ZAS UFTIONS FORM - PROC GFLOT

TEK411S

NONE

TRIPLEX

WHITE Ainddd Cursor_Commands----+
Cran <Ctakd> - Next gption !
crAaN 1 <bksp> ~ Prev aption |
MAGENTAR <ectrl-f> - Farm/Functian!
GREEN e Help_Commands ----- !
STAR 1?<return>- Display help |
DIAMOND) message’/ farm |
SGUARE e Exit_Commands----- i
1 i<ctrl-a> - Abart '
2 ilctrl-e> - Exi1t :

Form/Function:

{ckri-x> - Execute prac

[?7,Var iagbles,Optians,lobels, Xgt ,Exit,Rbart]

Figure 8. SAS Options Form

R Rl b el Uariables in SAS dataset MC3717----vo---mooommoommmemm o
MFOATE SERIALNG TSTCAD TSTOAT UNITOSP

‘AGE

Scrall Cmds:

LO™O

SAS LRBELS FORM - FROC GPLOT

FormFunction:

! Cursar Cmds: {tabd>,<bksp>,<{ctrl-f>
H Creturnd,<{ctrl-b>

{?,Varichles,Optians,lLobels, Xgt ,Exit ,Rbartl

Helpg Cmds: ?<{return>

1 _2401FL _2481FN _2404FH _24804FL _24a4FN _2ra1FH _2a81FL
| _C6A4FH _26084FL. _2684FN _27a4FH _27A34FL _27A4FN _38714FH
e dntata ettty Press ctrli-p far new page----------==---~=~=---c-------
Uariable 48-charaocter lahel far varichle
Label: _2601FH = 2681FH (1 of
Title: RAge Degradation (2 aof
Faont: TRIPLEX Calar: CYAN Height: 1
Footnate: (Age 1s rounded to the nearest manth) ¢ 1 aof
Fant: DUPLEX Colar: LHITE Height:
Xpas: Ypos: Angle:

Exit Cmds: <{ctrl-a>,<{ctrl-e>,lctrl-=x>

Figure 9. SAS Labels Form

DISTRIBUTION:

2334 J. L. Wilcoxen
234_) R. O I()hn\nn
2541 C. E. Warren
2543 K. L. Woodall
2561 .J. B. Newquist
2564 L. A. Shope
2564 G. W. Smith

2800 W. E. Alzheimer
2810 D. W. Doak
2813 J. R. Yoder
2820 G. Carli

2821 R. E. Thompson
2825 J. K. Sharp
2825 J. W. Lee (30)
2826 A.J. Ahr

2830 G. R. Urish
2850 J. L. Tischhauser. Jr.
7222 D. L. Wright
7223 H. E. Anderson
7223 K. V. Diegert
7223 R. G. Easterling
7223 E. L. Frost
7223 S, A. Martinez
7223 F. W. Spencer
7223 E. V. Thomas
7254 R. Ingram
8524 P. W. Dean
3141 S. A. Landenberger (5)
3151 W. L. Garner (3)
3154-1 C. H. Dalin (8)

For DOE/OSTI

16

