
Unlimited Release
Printed Apri l 1989

System Manager’s Technical Guide for
PBFA-I1 Control/Monitor System

8232-2 / /068964

Charles E. Simpson 0-0-000001 -

Prepared by
Sandia National Laboratories
Albuquerque. New Mexico 87 185 and Livermore, California 94550
for the United S t a t e s Department of Energy
under Contract DE-AC04-76DP00789

.

Issued by Sandia Satiunal Lahclratories. operated f o r the L . n ~ t e d States
Department o f Energy by Sandia C'iqxJratiiin.
SOTICE: This report \vas prepared as an acci)unt uf wcirk sponsored by ;in
agency o f the Vnited States Government. Seither the L'nired Stares Crcivern-
ment nor any agency thereof. no r any ~f their employees. ntrr any I)! their
contractors. subcontractors. o r their employees. makes any ivarranty. express
c)r implied. or assumes any legal liability o r responsibility for the accuracy.
completeness. or usefulness of any intormation. apparatus. prnduct. o r process
disclosed. or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product. process. o r service hy
trade name, trademark. manufacturer. or otherwise. does not necessarily
constitute or imply its endorsement. recommendation. or favoring by the
United States Government. any agency thereof or any t ~ f their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the Cnited States Government. any agency thereof o r
any of their contractors or subccrntractors.

Printed in the Cnited States of .4merica
Available from
National Technical Information Service
LTS. Department of Commerce
5285 Port Royal Road
Springfield. ?'A 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

SAND87-1564

SYSTEM MANAGER'S TECHNICAL GUIDE FOR
PBFAII CONTROLfMONITOR SYSTEM

April 1989

C h a r l e s E. S i m p s o n
Digital S y s t e m s Division 7545
S a n d i a National Labora tor ies

Albuquerque , NM 871 85-5800

ABSTRACT

This document describes the methodology for implementation and management of the PBFAII
ControVMonitor Software System. It also describes software documentation using an
automated software engineering tool. A prerequisite to the efficient use of this document is the
information contained in a companion document titled "The Structure and Function of the
PBFAII Control System", SAND87- 1563.

1

Contents

1 . Introduction .. 4

2 . ControWonitor Software Management and Implementation 5

2.1 Control/Monitor Software Management Directory Structure

2.1.1 /CM-CODE Global Directory ...

2.1.2 Software Subsystem Subdirectories ..

2.1.3 Program Subdirectories ..

2.2 C/M Software Program Types ...

2.3 Software Compilation and Linking ..

2.3.1 Source Code CompiIation ...

2.3.2 Program Linking ..

2.4 Executable System Assembly ..

2.4.1 Subsystem Control Unit AssembIy ..

2.4.2 Graphics Engine Assembly ..

2.4.3 Target Host System Assembly ..

5

6

6

6

7

8

8

9

9

9

10

10

3.RTE-A Operating System Software .. 11

3.1 System and Snap Files .. 1 1

3.2 Program Directories .. 11

2

Con tents (continued)

4 . ControVMonitor Software Documentation ... 12

4.1 Notes on TAGS@ Terminology Used .. 12

4.2 Documentation Structure .. 13

4.3 Representation of Files and Memory Partitions .. 13
*

4.4 Representation of System Processes .. 13

APPENDIX A . PBFAII Control/Monitor Software Management Directory Structure 14

APPENDIX B . Compilation Command FiIe Example .. 25

APPENDIX C . Linker Command File Example .. 26

APPENDIX D . PBFAII ControVMonitor Executable System Assembly
Directory Structure ... 27

APPENDIX E . Subsystem Control Unit BUILD Answer File Example 28

APPENDIX F . Subsystem Control Unit BUILD Command File Example 29

APPENDIX G . Graphics Engine BUILD Answer File Example 30

APPENDIX H . Graphics Engine BUILD Command File Example 31

References .. 32

3

SYSTEM MANAGER'S TECHNICAL GUIDE FOR
PBFAII CONTROLlMONITOR SYSTEM

1. Introduction

4

The PBFAII C/M Software System involves approximately 100,000 lines of executable
code written in Hewlett-Packard's RTE FORTRAN 77. The code base at this time consists
of approximately 1600 separate compilation units which link into 185 programs. Not counted
as separate compilation units but also existing in the code base are approximately 800 'Include'
files. The system executes on a distributed computer network consisting of a Target Host, five
memory based Subsystem Control Units and two memory based Graphic Engines. Because of
the number of software modules, resuIting executabIe programs, impIementation procedures
and system and snap files involved, a methodology was developed to provide a means for
consistently building and implementing the system. Also an automated software engineering
system was purchased to document the software.

As is pointed out in the companion document (SAND87-1563), design of the software
architecture was influenced greatly by the need to provide a flexible and extendible system in
order to support future control criteria changes. Driven by these requirements, the resuiting
design (from a very abstract viewpoint) consists of a 'non-changing' support substrate and two
primary areas within the software structure identified as being where expansion would likely be
required. The management methodology and documentation procedures described in the
following sections were developed to parallel the actual software architecture as much as
possible in order that these systems will also easily support the expected extensions to the code
base.

2. ControllMonitor Software Management And Implementation

2.1 Con t rol/Mon i t or Software Management Directory Structure

During development the CIM software was partitioned into six on-line software
subsystems and a utility subsystem as follows:

Control Action Task (CAT)
Host Satellite Interface (HSI)

Operator Machine Interface (Om
Subsystem Control Unit (SCU)

System Data Base (SDB)
Timing and Firing (T&F)

Tools and Utilities (TOOLS)

To facilitate system assembly and also to aid in configuration management, a hierarchical
file structure was established on the PBFAII development computer (Node 9) to catalog and
manage the C/M software. The tree structure for code storage is shown in Appendix A. As
can be seen, the root of the structure is a global directory named /CM-CODE. Immediately
below the root directory are subdirectories for each of the five on-Iine software subsystems and
a subdirectory for the utilities software. In all cases except for the OM1 subsystem, directly
below the subsystem subdirectories are subdirectories each of which contain files specific to
one executabIe program. The OM1 subsystem is further partitioned above the program
directories. Two basic rules for management of the software are as follows.

1. Each file within the system must be unique in terms of it's descriptor which
consists of a directory path and a file name.

2. When compiling or linking, modules may be inherited only from the
directory where the operation is being performed or from those directories
in the search path above.

From a configuration management view, adherence to these two rules produces the result that
modification of a module can potentially affect only those modules in the directory where the
modification was made or modules in those directories in search paths below.

2.1.1 ICM-CODE Global Directory

The /CM - CODE directory contains source and relocatable code that is global to the
software system in that any source code or relocatable in this directory is referenced in code or
command procedures from more than one of the lower software subsystems. This directory
also contains system and snap files that are used to link programs from more than one of the
lower software subsystems.

2.1.2 Software Subsystem Subdirectories

Each software subsystem subdirectory contains source and relocatable code that is global
only to that particular software subsystem. Any source code or relocatable in a software
subsystem subdirectory is referenced in code or command procedures from more than one of
the subsystem's Iower program subdirectories.

2.1.3 Program Subdirectories

Each program subdirectory is specific to a single program and contains source, relocatable
and executable code for that program. These are the only directories within the management
structure that contain executable code. Also in the CAT and SCU subsystems program
directories there will be instances where the same file name appears in more than one directory.
This does not present a problem because, as was pointed out earlier, within this management
structure each file must have a unique descriptor which indudes its particular directory search
path. The use of the same name for similar processes such as control actions, recorders and
archivers allows link and compile command files to be basically identical for many of the
program directories. Later discussions detail the manner in which specific programs are
assembled.

2.2 CIM Software Program Types

To aid in a better understanding of the compilation, linking and system assembIy
procedures to be discussed later it will be pointed out that programs in the C/M software
system are of three basic types in regards to the function that each performs. The fmt of these
types is a one-of-a-kind program of which only one copy executes within the entire software
subsystem. The second type of program is a completely generic program that performs exactly
the same function on more than one of the nodes or as a node specific server on the Target
Host. Examples of generic programs are the host communication servers (REPOR) executing
within the SCU system, report monitors (ASROO) executing on the Target Host within the HSI
system and master archiver monitors (ARCVS) executing on the Target Host within the SDB
system. It is necessary to link only one copy of these generic programs and then clone copies
as required. The third type type of program is a 'semi-generic* program that , like a generic
program, performs basically the same function on more than one node, but must be compiled
and/or linked with node or function specific modules. Examples of this third type of program
are the real time point recording programs (ARCH1 through ARCVS and RECOl through
RECOS) executing within the SCU subsystem. Control action programs in the CAT
subsystem are somewhat 'semi-generic' in nature in that they are all of the same basic form,
however the programs require a greater variety of custom modules in the form of controI
kernels, facility point lists and message strings.

2.3 Software Compilation And Linking

2.3.1 Source Code Compilation

Each directory in the C/M software management structure contains a command procedure
named &COMp_<xxx>.CMD where <XTX> corresponds to the name of the directory or to
the name of a generic program in the directory. An example of such a compilation command
file is shown in Appendix B. With reference to Appendix B note that two basic forms of
compiler invocation are used as follows:

Compiler Invocation Result
... _---____--I-_----_--_______I____________--"-"*-"-------"--

ftnirx,$file,O,- 1) Searches previously specified Working
Directory (directory where command file
resides) for source code ($file). 2) Compiles and
places resulting relocatable in same Working
Directory.

1) Searches source directory ($source) for
source code ($file). 2) Finds include files
without path names in previousIy specified
working directory. 3) Compiles and places
relocatable (xx.re1) in relocatable directory
($reloc). This form allows generic modules in
$source to be compiled with customized include
files in the specified Working Directory. To
conform with the software management rules, the
source directory ($source) must be in the path
above the Working Directory. Also $reIoc must
be the same as the Working Directory.

The entire C/M software system can be compiled by executing a file named
&COMP_PBFAII.CMD which exists in the /CM-CODE global directory. Command files for
compiling individual software subsystems exist in each of the software subsystem directories.
These files each make use of the control structure capabilities of the RTE command interpreter
to assure that the process will be halted if a compilation error occurs. If an error does occur,
the operator is presented the option to 1) ignore the error, 2) correct the error and continue or
3) terminate the compilation process.

8

2.3.2 Program Linking

Each program subdirectory contains a command file named <PROG>.LOD where
<PROG> corresponds to the name of the directory or to the name of a generic program being
linked. The command file is used with the linker to place an executable version of the program
in the directory. An example of such a command file is shown in Appendix C. The entire C M
software system can be linked by executing a file named LINKPBFAIICMD which exists in
the /CM-CODE global directory. Command files for linking individual software subsystems
exist in each of the software subsystem directories. These master link command files also halt
the process if a link error occurs.

2.4 Executable System Assembly

After all programs have been linked into their individual subdirectories on the development
computer, it is necessary to partition the executable software into node specific subsystems.
This is accomplished using another hierarchical file structure on the development computer.
This structure is shown in Appendix D. As can be seen, the root of the structure is a global
directory named /V2 - SYS - BUILDR. Immediately beIow the root directory are subdirectories
for each of the five subsystem controller nodes, each of two graphic engine nodes and for
simulator software.

2.4.1 Subsystem Control Unit Assembly

Each of the five Subsystem Control Units (X U) is a memory based system. To assemble
these systems each of the SCU subdirectories in the /V2 - SYS - BUILDR structure contains an
answer file to be used by the R E - A BUILD utility. An example is shown in Appendix E. As
can be seen, this answer file Rp's basic operating system programs from a /SATPROGRAMS
subdirectory and then selectively RP's node specific programs from individual program
subdirectories in the /CM-CODE file structure. Note that the generic programs executing on
each satellite can be RP'd in a non node specific manner @COR instead of RECO1). It is
also here that generic run files in the CAT subsystem subdirectories get assigned specific run
file names (/CM-CODE/CAT/MARX-CHARGING/CATV2.RUN to MRXCA.RUN). Note
also that the answer file specifies the correct system and snap file. Also existing in each if the
SCU subdirectories is a command file that invokes the R E - A BUILD utility with the proper
answer file and moves the resulting memory based system to a file manager cartridge on the
Target Host. A command file example is shown in Appendix E

9

2.4.2 Graphics Engine Assembly

Each of the two Graphics Engines (GE) is a memory based system. To assemble these
systems each of the GE subdirectories in the /V2 SYS BUILDR structure contains an answer
file to be used by the R E - A BUILD utility. An example is show in Appendix G. As can be
seen, this answer file Rp's basic operating system programs from a IPGSPROGRAMS
subdirectory and then selectively RP's node specific programs from individual program
subdirectories in the /CM-CODE file structure. Note also that the answer file specifies the
correct system and snap file. Also existing in each if the GE subdirectories is a command file
that invokes the RTE-A BUILD utility with the proper answer file and moves the resulting
memory based system to a file manager cartridge on the Target Host. A command file example
is shown in Appendix H.

- -

2.4.3 Target Host System Assembly

Executable code specific to the Target Host is not handled through the /V2_SYS7BUILDR
structure but is instead copied from the individual program subdirectories to the Target Host
by use of a series of command fiIes residing in the MANAGER directory on the Target Host.
The names of these command files are of the form COPY <SUBSYSTEM>-RUN.CMD
where <SUBSYSTEM> corresponds to one of the software subsystems. The generic report
monitors and master archiver monitors mentioned earlier are Rp'd (cloned) in the Target Host
welcome file.

-

10

3. RTE-A Operating System Software

Implementation of the PBFAII C/M Software System necessitates the generation of three
different RTE-A systems. As it becomes necessary to rebuild RTE-A operating system
software (as opposed to appIications software), some steps must be taken in order that system
files, snap files and properly linked operating system programs will be in the directories
specified by the command files discussed earlier.

3.1 System and Snap Files

System and snap files for the three systems must be placed in the /CN - CODE global
directory and must be named as follows:

3.2 Program Directories

RTE-A operating system run files must be placed in global directories named as follows:

I1

4. Control/Monitor Software Documentation

Because of the size and complexity of the C/M system, an automated software engineering
tool was purchased and used to provide a documentation package. The tool is “The

Technology for the Automated Generation of Systems’’ (TAGS@) marketed by Teledyne
Brown Engineering [11. The tool consists of a graphical system requirements and design

language called “InpurlOurpur Requirements Language” (IORLB) [Z] and a series of
supporting software packages one of which is a diagnostic analyzer to check that a design is
complete and syntactically correct. In the future, a simulation compiler will be available for
evaluation of the real time aspects of a design. Because TAGS@ was used in this case to
document an existing system, more emphasis was placed on providing informational
documentation rather than documentation in the form required by the IORLB system anaIyzers
to evaluate a design.

The C/M software documentation consists of a single computer workstation containing
baseline documentation describing high level software components, major data flows and
detailed logic for select software subsystems.

4.1 Notes On TAGS@ Terminology Used

Training and manuals have been provided to persons from the PBFAII project and it is
assumed that persons using the docurnentation to any great extent will be familiar with

TAGS@ For the purposes of this document however the following IORL@ components are
summarized.

SYSTEM ---- unique name referring to an overall design

DOCUMENT ---- related diagrams and tables for one major software component

IORTD ---- inputloutput relationship and riming diagram

PPD ---- detailed logic flow diagram for a single predefined process

PPT ---- table of parameters local to a single PPD

DSD ---- graphic representation of system data

12

4.2 Documentation Structure

The name of the IO=@ SYSTEM for the CA4 software documentation is PBFAII.
Documents within this system were chosen where possible to represent the source code
software subsystems described earlier.

A library structure pardleling to some extent the source code hierarchical file system was
also established for cataloging and referencing PPD's. Because TAGS@ at the time of this
writing did not directly provide the capability, the library structure was implemented using a
dummy IORTD in the top level document. This library structure can be examined by accessing
IORTD- 1 in the PBFAII document.

4.3 Representation of Files and Memory Partitions

The CA4 software makes extensive use of shared fiIes and extended memory partitions the
structures of which are defined in the documentation using PPDs. Because PPD's are
normally used to define executable code, they are in this case dummy processes whose primary
purpose is to allow the creation of PPT's and DSD's which actually show the data
configuration. Because the PPD's are used in higher level logic diagrams, any change to a
PPD representing a file or shared memory structure wilI be reflected as appropriate throughout
the documentation.

4.4 Representation of System Processes

Operating system service routines (EXEC, DS- 1000, IMAGE, etc) were also represented
in the documentation with dummy PPD's. This provides a way to consistently specify the
services throughout the documentation. Also if in the future it becomes applicable to evaluate
the effects of software modifications perhaps using the forthcoming simulation compiIer, the
dummy PPD's are already in pIace and need only be expanded.

13

Q,
L
1
V

L

U

a
Y cn

L
0
u
0
L

Y

.I

n

4
X

2 w
Llc
Llc
4

E;

;=
0 cn
L
0
U
.I

E z
s

:
0
L

c Y

U
E m
h
L
0
V
PI
L

Y

b'

Q,
L
1
V

L

U

a
z

m
Q,

L
3
u
Q,
L

.I

.cI

E
E
2
e
CD

a
c
G u
U
E
CJ

E aJ
Y

5 a
m
a

L
0

c
0

Y
.LI

E aJ
Y

h a
m
a

f
L
t:
0
tA

Q,
L

u
L

a
a
fi

Y

;cz
L
0

V
0
L

Y

c u
L
a
fi
h
L
0
0
0,
L

Y

h'
E

B

01
rn
h

Y

a m

a4
L
3
0
3
L

rc)

tj
h
L
0
0
0
L

CI

.I

r3
CI

E
E

4 %
n

a2
L
3
0
3
L

Y

in'
2
0

0
0
L

Y

.I

.c)

L
0

E
0

Y
.I

v1
W
L
0
u
W
L

.I -
5
E

e
Q
L
ct

a
L
0

LJ
L
W

ICI

5
13
2 a
h'
- u
U
E
.*c

2

a

3
V
W
L

.L

f

iz

0

3
V
c

5

Qi
L

V

L

a
a
z
U

rr:
Q,

L
0
V

.-
Y

2
i3
E m
L
clj
3
&
a u
c/i

U
E
G

2

b'
E

R
2

3
V
a4
L

Y

0)
Y

1 m
aJ
L
Q
3 c
0 m
3 u

os
6

m

X

z w
h
A.

E

QJ
L

V

L

a
a

Gi

Y

)z
L-
O
V
aJ
L

Y

*-
n

L
0

E
Y
.I

z
5

'=;
0
L
E:
Y

E

e
c1I
L
u)

a
t *
k

2

2
b'
E

3
V
.cI

a4
Y

5
c,
rn
a

Q,
L

V

L

a
a
tj

rc)

*
L
0
V
0
L

c

.I

n

APPENDIX B
CompiIation Command File Example

B.1 Portion of CATV2 Compilation Command File

set source = /cm-codelcat
set reloc = /cm - codelcatlmarx-charging

set file = CATV2.FTN
set STATUS = bad
WHILE IS $STATUS EQ bad
D o

*

echo COMPILIh'G >>>------> $file
ftn7x,$file,O,-
IF IS $return1 h ? 0:
THEN TR /cm codekmd continue.cmd
ELSE SET STATUS = good -
FI

Doh%
IF IS $STATUS h' GOOD; THEN RETURN ; FI *

*
set fde = AUTO M0DE.FT.N
set STATUS = b%d
WHXLE IS $STATUS EQ bad
D o

echo COMPILING >>>------> $file
ftn7x,$source/$fde,O,$reloc/auto - mode.re1
IF IS $return1 NE 0;
THEN TR Icm codekmd continue.cmd
ELSE SET STATUS = gobd
FI

DONE
IF IS $STATUS NE GOOD; THEN RETURN ; FI

0

0

*

APPENDIX C
Linker Command FiIe Example

C.1 CATV2 Linker Command File

* -------__-----_-_ I_-I -I----r_____" I__--__-_______ "I _-_---- - _ _ _ _ _ _ _ "" -_-I---------- I _c-1- * ----_ ----------*
* File Name: CATVLLOD
* Purpose:
,,,""-_-____----------___"_I -----c-______^_-- ~ ---_--_ "_""---I ---_____-e "I" --------c-- * c--__-_ -----,----*

II,CATV2,map
su,of
IC

li ,$MCLIB
li ,/CM-CODE/CAT/CATV2-LIBRARY .Ii b

re,ALARM CATV2S.rel
re,AUTO MODE.rel
re,BUILD INPUT CHAIN.re1
re,BUILD-OUTPI7T-CHAIN.rel
re,CATVZTrel
re,CNTRL KERhTAL.rel
re,DISABEE PNTS.re1
re ,DOREPORT. re1
re,ENABLE PNTS.re1
re,GET RIh4-R BUFFER.re1
re,GET-STAT&el
re,nVITrALIZE MODE.re1
re,LOCAL MOnE.rel
re,MAMJ& MODE .re1
re,MRX C m G CMD DEC.rel
re,REPaRT GRaUP.rEl
re,REPORT-iUXORD.rel
re,SEND M-&ESTONES.rel
re,SET cONTROL.re1
re,VEC'i'OR - STATE .re1

re,/CM CODEERRER.re1
re,/CMrCODE/PRINT - ABREG-ERR.re1

re,/CM - CODE/CAT/BI-VECI'OR - STATE.re1

se,/CM CODE/CAT/CATVZ - LIBRARY .LIB
se,$McLIB

en

Loads Version 2 Control Action

*

*

*

*

*
*

*

26

a4
L
3
0

L

Y

a
si
h
L
0
.I
0
W
L
.I

n

APPENDIX E
Subsystem Control Unit BUILD Answer FiIe ExampIe

E.l Portion of BUILD Answer File For ACMPl Subsystem Control Unit

*ACMP1::::7272
/CM CODE/SAT SNAPSNP
ICMICODEIS A T ~ S Y S.SYS
YES,,,,,,,
909,,*,,,,
RP,/S ATPROGR AMS/DRTR.RUN,D.RTR,
RP,/S ATPROGR AMS/DSRTR.RUN,,
RP,/S ATPROGR AMS/GRPM.RUN,,
RP,/S ATPROGR AMS/#SEND.RUN,,
RP,/SATPROGRAMS/QCLM.RUN,,
RP,/S ATPROGR AMSIRTRY .RUN,,

0

0

RPJSATPROGR AMS/COMND.RUN,,
RP,/S ATPROGR AMS/DINIT.RUN,,
RP,/S ATPROGR AhIS/DEMON.RUN,,
RP,/SATPROGRAMS/EhlPTY .RUN,,
RP,/SATPROGR AMS/WH.RUN,
RP,/CM CODE/SCU/h’ODXXINODXX.RUN,NODO 1,

ST,0,1.10,0,1,,,
R P K M CODE/SDB/IOCNF/IOCNF.RUN,,

RP,/CM:CODE/SCU/UPSAT/UPSAT.RUN,,

RP,/CM-CODE/SCU/TMSYN/TMSY N .RUN,,
RP,/CM;CODE/SCU/RECO ~/RECOR.RUN,,
PR ,4 0
RPKM-CODE/SCU/ARCH l/ARCHV.RUN,,
PR ,9 9
RP,/CM-CODE/SCU/REPOR/REPOR.RUN,,
PR,34
RP,/CM-CODE/SCU/DIGE l/DIGEM.RUN,,
PR,36

* AUTO PARTION CONSTRUCNTION
* PHYSICAL MEMORY SIZE
* VO HANDLER
* DS DO HANDLER
* GENERAL REQUEST PROCESSOR
* UPDATE TRANSMITTER
* ERROR LOG TRANSMITTER
* RETRANSMIT-ON-ERROR

0

0

* REMAT COMMAND PROCESSOR
* NODE INITIALIZATION PROCESS
* 2250 DIAGNOSTIC PROGRAhl
* 32 PAGE DUhlhlY PROGRAhl
* SYSTEM STATUS
* DINIT INITIALIZE PROGRAhl
* SCU STARTUP PROGRAM
* AUTO START UPSAT
* MC2250 CONFIC QUERY
* SATELLITE TIME SYNC PROGRAM
* POINT STATE DATA RECORDER

* POINT STATE DATA ARCHIVER

* HOST REPORT SERVER

* DIGITAL EVENT MONITOR

RP,/CM-CODE/CAT/M ARX-CH ARGINCVCATVZ .RUN,MRXCA.RUN
PR,38
RP,/CM-CODE/CAT/MTG-CHARGING/CATV2.RUN,MTGCA.RUN
PR,38
RP,/CM-CODE/CAT/MTA-CH ARGING/CATVZ.RUN,MTACA.RUN
PR,38
RP,/CM-CODE/CAT/LAS-CHARGlNG/CATV2.RUN,LTSCA.RUN
PR.38
RP,/CM-CODE/CAT/MARX-XFER-ARMS/CATV2.RUN,MRXTA.RUN
PR.38
RP>CM-CODUCAT/MTG-XR-ARMS/CATV2.RUN,MTGTA.RUN
PR,38
RPJCM-CODE/CAT/PNEUMATIC-SY S/CATV2.RUN,PNUCA.RUN
PR,38
RPJCM-CODEICATIL AS-OPTICS/CATVZ.RUN,LTSOP.RUN
PR,38
PT
I

28

APPENDIX F
Subsystem ControI Unit BUILD Command File Example

F.l ACMPl BUILD Command File

29

.

.

APPENDIX G
Graphics Engine BUILD Answer File Example

G.l Portion of BUILD Answer File For Node 11 Graphics Engine

*PGSI 1::::8944
/CM CODE/PG SNAP.SNP

YESY,..,,,
1118,,,,,,,
RP/PGSPROGR AMS/GRPM.RUN,,
RP,/PGSPROGRAMS/#SEND.RUN,,
RP,/PGSPROGR AMS/QCLM.RUN,,
RPJPGSPROGRAMSIRTRY .RUN,,

/CM-CODE/PG:SYS.SYS

RP,/PGSPROGRAMS/DMIT.RUN,,
RPJPGSPROCRAMSIEMPTY .RUN,,
RP,/PGSPROGRAMS/WH.RUN,
RP,/CM CODE/OMUNODX?UNODXX.RUN,NOD I 1,
RP/CMrCODE/OMI/UPPG 1 l/UPPGN.RUN,,
ST, l , l , l l , lO, ,

RPJCM CODE/OMI/PGS/PG055/PGO55.RUN,PG057
RP,/Chl~CODE/OhlI/PGS/PGO5SIPG055.RUh’,PG058
RP,/Chl~CODE/OhlI/PGS/PG055/PG05S.RUN,PG059
RP,/CM-CODE/OMUPGS/PG055/PGO5S.RUh’,PG06O
RP,/Chl~CODE/OhlUPGS/PGOO2/PG002.RUN,PG002

RPJCM CODE/OML/PGS/PG002/PG002.RUN,PGOI 1
RP,/Chl~CODE/OhlL/PGS/PGOO2/PGOO2.RUN,PGO4 I

RPJCM CODE/OMUPGS/PG002/PG002.RUN,PGOS3
RP,/CM-CODE/OMYPGS/PGOIUPGOl2,RUN,PG014
RP,/CM-CODE/OMI/PGS/PGOluPGOI 2.RUN,PGO 15
RP,/CM-CODE/OMYPGS/PGOl2/PGOl2.RUN,PGOl6
RP,/CM-CODE/OMYPGS/PGO 12/PG012.RUN,PGO 17

RP,/CM-CODE/OMI/PGS/PGOl9/PGO19.RUN,PG022
RP,/CM-CODE/OMYPGS/PGO 19/PG 0 19.RUN.PG023
RP,/CM-CODE/OMI/PGS/PG019/PG019.RUN,PG024
RP,/CM~CODE/ONI/PGS/PG030/PG030.RUN,PG030
RP,/CM CODE/OMI/PGS/PG03 1/PG03 1 .RUN,PG033
RP,/CM-CODE/OMI/PGS/PG03l/PG031 .RUN,PG034
RP,/CM-CODE/OMI/PGS/PG03 1/PG03 1 RUN,PG035
RPJCM-CODE/OMUPGS/PG03 lIPG03 1 .RUN,PG036
RPJCM-CODE/OMI/PGS/PG038/PGO38.RUN,PG038
RPJCM-CODE/OMYPGS/PGOS l/PG039.RUN,PG039

RP,/CM~CODE/OMI/PGS/PGO62!PG062.RUN,PG062
PT
/E

RP,/CM-CODE/OMVPGS/PGO~~/PGOI~.RUN,PGO~ I

RPJCM-CODE/OMYPGS/PG~~~/PG~~~.RUN,PG~~O

30

* AUTO PARTION CONSTRUCNTION
* PHYSICAL MEMORY SIZE
* GENERAL REQUEST PROCESSOR
* UPDATE TRANSMITTER
* ERROR LOG TRANSMITTER
* RETRANSMIT-ON-ERROR

* NODE INITIALIZATION PROCESS
* 32 PAGE DUMMY PROGRAM
* SYSTEM STATUS
* DINIT INITIALIZE PROGRAM
*PG STARTUP PROGRAM
* AUTO START UPPGN

APPENDIX H
Graphics Engine BUILD Command File Example

H.1 Node 11 Graphics Engine BUILD Command File

.

31

References

1. Teledyne Brown Engineering, Cummings Research Park, Huntsville, Alabama,
"Technology For The Automated Generarion of Systenrs (TAGS)".

8 2. Teledyne Brown Engineering, Cummings Research Park, Huntsville, Alabama,

"InpurlOu pur Requirements Language Reference Manrtal".

32

DISTRIBUTION:
1266 D. R. Nations (2)
1266

1266 D. D. Bloomquist (2)
3141 S. A. Landenberger (5)
3151 W. 1. Klein (3)
7500 D. M. Olson
3154- 1 C. L. Ward for DOE/OSTI (8)
7540 T. B. Lane
7545 J. L. Mortley
8524 J. A. Wackerly
7545 C. E. Simpson (5)

E. J. Mader (EG&G) (5)

x

33

