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Analytic Theory of the Rayleigh-Taylor Instability

in a Uniform Density Plasma-Filled lon Diode

Thomas W. Hussey and Steven S. Payne

Radiation and Hydrodynamics Theory
Division 1261

Abstract

The J x B forces associated with the surface current of a
plasma-filled ion diode will accelerate this plasma fill
toward the anode surface. It is well known that such a con-
figuration with a high I is susceptible to the hydromagnetic
Rayleigh-Taylor instability in certain geometries. A number
of ion diode plasma sources have been proposed, most of which
have a falling density going away from the wall. A somewhat
more unstable case, however, is that of uniform density. 1In
this report we attempt to establish an upper limit on this
effect with a simple analytic model in which a uniform-density
plasma is accelerated by the magnetic field anticipated in a
PBFA-II diocde. We estimate the number of linear e-foldings
experienced by an unstable surface as well as the most damaging
wavelength initial perturbation. This model, which accounts
approximately for stabilization due to field diffusion,
suggests_ that even with a uniform fill, densities in excess of
a few 1015 are probably not damaged by the instability. In
addition, even lower densities might be tolerated if pertur-
bations near the most damaging wavelength can be kept very
small.



I. Introduction

As current flows along the surface of the plasma fill in an ion diode,
the 3xB forces acoelerate that plasma toward the anode.® Since this process
is potentially éusoept:!.ble to the hydromagnetic Rayleigh-Taylor
instability®, we were asked to quantify the amplification of initial
perturbations that would occur due to this effect with realistic ion diode
corditions. A variety of such conditions have been proposed, the most
unstable of which involves a uniform density, singly-ionized lithium plasma
extending some distance out fram a wall. We have chosen this density
profile for a worst case study. Furthermore, we have assumed this
acoelerated plasma to be semi-infinite in extent. In reality, such a plasma
may extend only a few millimeters out fram the surface, and growth will stop
when the moving plasma actually strikes the wall. Thus, the results in this
memorandum should not be regarded as a condemation of any particular diode
designs, but merely as a warning that such problems exist and as a
suggestion of some parameters that should be avoided. The intent was ard is
to use HAM, a two-dimensiomal (2-D), single—fluid MHD code®, which would
include the effects of such processes as snowplow stabilization® and field
diffusion on nonlinear instability growth.® Before performing such
calculations, however, we felt we ought to examine our worst case assessment
of the problem analytically, in order to understand, if not to limit, the
parameter space involved. To this end we analytically estimate the linear
growth rate and integrate over the time during which the interface is
unstable to obtain the mumber of linear e-foldings. We use this as a figure
of merit as to whether the growth will significantly amplify any initial
perturbation that might be present. In this memorandum we give results from

this analytic study.



II. The Basic Model

There are a variety of plasma sources under consideration for PEFA II
that will lead to a variety of different density profiles. We won't discuss
those sources here; instead, we consider only what we believe to be the case
most susceptible to the hydromagnetic Rayleigh-Taylor instability, a uniform

plasma being pushed back by a time-dependent magnetic field given by

0.75

.18 Mz (t/10 ns) t S 10 ns

.18 Mz t 210 ns

Since diffusion will be a relatively more effective smoothing mechanism with
a constant magnetic field than with a rising field, we only consider the
first 10 ns here. Furthermore, since we ultimately intend to compare to HAM
calculations, we use the following units

t - microsecord

L - centimeter

m - gram/ cm2

B - megagauss

P - megabar

m - milliohm - centimeter

Thus, we have

0.75 1)



which gives for magnetic pressure

1.8

P=B 6m=1.20t 2)

The equation of motion for an interface of area, A, total mass, M(t), and
velocity, v(t), is given by

Pa - &0 aiceve) -+ P = & @tv(e)) (3)

where lower case m is just mass per unit area. This is easily integrated
from zero to t to give

sfaet B = s 38 aw)
n(t)v(t) = .5167 20 (4)

This may be evaluated in the "pure snowplow" limit where all the material
through which an interface sweeps sticks to that interface in an
infinitesimally thin layer. In this limit we have

ax
m=xp , V=gt o (5)

where we take x(t = 0) = 0. From Egqs. 4 and 5 we have

2
e wn O _pdX” 2.5
WV =XP 3+ = 5 at .B157 ¢

which is again integrated over t to give
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v =.0409 t 07005 | )

—0.25/ 0.5 ) 8)

dv/dt = 7124 ¢ p

]
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One dimensional (1-D) MHD calculations have been performed with TTTAN of the
systen described above for a density of 10 (i.e., an ion density of about
10'°), and the velocity of the outer edge of the plasma is compared to Bq 7
in Figure 1. We note that the agreement is quite poor at early time when
field penetration dominates. Nevertheless, after a few nanoseconds the
TITAN velocity parallels the analytic result, indicating comparable
acceleration at that time.

With Egqs. 6-8 we are now able to estimate the Rayleigh-Taylor (R-T)
instability growth rate, Y, fram the approximate formula,

vy = GER0-5 ®
dg

where A 1s wavelength. This is similar to the usual expression for linear
growth except for xdg, which is a measure of the density gradient scale
length. Note that for A »»> )‘dg (1.e., a step function interface) this
reduces to the familiar expression for linear R-T growth, Y = Jka. We fird
from the form of the above equation that v is largest for shortest
wavelength. With A short compared to the diffusion length, A,, however, we
anticipate that growth will be inhibited, particularly when the nonlinear



stage 1s reached. Thus, in order to estimate a maximm value for y, we

evaluate the above for A = A

a ™A

ag

« 0.5
Y - (va./xd)

(10)
vhere we recognize that diffusion determines density gradient scale length.
Diffusion length may be appraximated by®

)0.5 11)

xd-(nt/n
where m is in millichm—cm and t is in microseconds. The usual expression
for 7 is

M= 41!\1/(.012)6 (12)

wherevisanelectronmouentlmtransferoouisionfrequerwya:dwpeisthe
electron plasma frequency

w__ = 5.64 x 10% ng’s sec

16 0.5 0.5 -1
Z/A sec .
e (2/8) p

= 4.3 x 10

Anomolous resistivity is expeotedg under these corditions. Then, the

anomolous collision frequency is approximately equal to the ion plasma
frequency where

- (Zme/mi)o'sw -2.334x10° (za)°%.

wp:!. pe e

which gives with Ey. 12
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n=6.082%x10° p 9% miltcman |, (13)

and with BEy. 11

-2 -0.256 ,0.5

A, =4.382x10 " p t . (14)

This implies that )‘d

R-T growth, is increasing as Vt. It is tabulated for a variety of demsities

, which we take to be the most unstable wavelength for

at t = 10 ns in Table I.

'Ihefactthat)\disnotoonsta.ntintmpliesﬂntonemustusqu.9

to evaluate v, rather than Eg. 10. To evaluate the mumber of linear e-
foldings, n0 , we integrate the growth rate over time

% %
0 £ £ om 0.8
Ngp = Jo YAt = fyidt 3 )\d(t))

0
Tef
wavelength possible consistent with A » )\d. Vith xd(t) growing

monotonically in time, this minimum wavelength is simply A (t;). Taking

Since we want to calculate the case with maximum we choose the smallest

this into account and substituting Eg. 8 and 11 into the above gives

t
£ 1/8(

8
Jo ¢t

t1/2 +

f

-1.011 p Y % at

e
(15)

- 1.011 p /8 x(t

0
Tef I
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vwhere Figure 2 gives results of evaluating X(t) mmerically. Table 1 gives
no, evaluated at 10 ns (X(10 ns) = .061) as a function of ion mumber density
where we assume singly ionized lithium. Also included are diffusion length,
velocity and distance traveled, all evaluated at 10 ns. We note that, even

17

at an ion density as high as 107, we obtain more than an order of magnitude

amplification of an appropriate scale length initial perturbation.

ITT. Quasi-Two-Dimensional Interface Calculations

The above is a simplified treatment of a quite complex process and it
is important to keep in mind the approximations used. Ome such
approximation is the fact that snowplow stabilization® is only included to
the extent that it reduces the acceleration profile. Full 2-D calculations
will include the fact that this effect preferentially slows the “bubble”
portion of the nonlinear R-T instability® as it penetrates the plasma. Ve

were able to use the zero-dimensional interface code, ZORK2D'C

, which does
account for this effect, to determine that, despite stabilization,
significant instability growth is achieved. Because of mmerical problems
intrinsic to this model it is usually difficult to carry instability
calculations well into the nonlinear phase with such a code. Nevertheless,
Figure 3 shows Tesults from a calculation with a simusoidal * 5% demsity
perturbation having a 2.5 m wavelength superimposed on a 10'° ion density.
We have plotted (vs - vb)/v0 vhere v is spike (highest density) velocity,
v,, is bubble (lowest density) velocity, and v, is mean velocity. From Eq. 7

we recall that velocity is proportional to p_0'5.

Thus, we would expect (vs
- vb)/vo to be constant at approximately .05 if the motion of the spike and
bubble regions were uncoupled. The figure shows, however, that this ratio

starts at the proper value, but then grows as mass moves from the lower



density region to the higher density region. Thus, even though the
interface calculation cannot be run long enough to see significant
accumulation of mass in the spike region, we find the occurrence of

exponential growth. |

IV. Effect of Magnetic Field Penetration

Another important effect that will only be treated approximately here
is magnetic field diffusion. This effect has already been included
approximately in that the diffusion length, A,, evaluated at te (taken to be
10 ns in Table 1), was used to determine the wavelength of the most damaging
mode. Nevertheless, a comparison of Eq. 6, which shows x increasing as
17, to By. 14, which shows A, increasing as t0-°
early time diffusion will dominate advection (see Figure 1). During this

t , indicates that at some

time it is quite reasonable to suppose that there will be no appreciable R-T

growth. This suggests the possibility of cutting off the integral over the
growth rate at early time to account for this. In order to find the time,

teq’ at which diffusion and advection are equal, we set Eq. 6 equal to Eq.

14 axxd solve for t__,
eq

1.75, 0.5 _ 4 zga x 102 p0-25 (0-5

5428 t
&q

&q

t = .1336 p02 | (16)

&

vhich is evaluated in Table 1. Note that such a transition from diffusion

dominated to advection-dominated flow is illustrated in Figure 1. (For this

example at 10°° an™ density, ©

eq=5ns, compared with the slope change at

11
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4 ns.) Ve use this result to again find the mumber of linear e-foldings,
this time acoounting for diffusion by cutting off the integral at early time
t

4
£ £ 218 10.5
Per = Jg MO T O SESWOL

t t
£ . om 0.8 oma 0.5
ne = Jo G+ )\d(t)) -1 G kd(t))

Again, following the reasoning leading to Eq. 15, we find
np = 1.011 p7-® (x(tp) - X(t)) a”

where X(t) is evaluated in Figure 2 and n_, is evaluated in Table 1.
Comparing n_, to 1o, we find that diffusion effects are greatest at
highest density. Thus, n_, 1S a stronger function of demsity than n)e. If
we rather arbitrarily consider an order of magnitude amplification of an
initial perturbation of the most unstable wavelength to be our threshold of
acceptable instability growth, we find that densities below a few times 107
are unacceptable. Note that, in order to use Table 1 to estimate effects of
the R-T instability, there are three quantities to consider: the mumber of
e-foldings, the most damaging wavelength, and the amplitude of perturbations
at or near that wavelength. large perturbations of much shorter wavelength
will actually be smoothed by field diffusion and represent very little
problem. large perturbations of wavelength much longer than the most
unstable one will experience growth, but with a considerably reduced growth

rate (see Eq. 9).



V. Effect of Finite Ion Dwell Time

All of the above analysis has assumed that the plasma is essentially
fluid-like. The fact is, however, that the relatively low density and high
electric field present emsure that particle effects will play some role
despite anomolous collisionality. In particular, reflection of ioms by the
advancing magnetic piston means that ioms, if they experience no collisions,
will only spend a finite time in the accelerating region, which has a
thickness of A;. This instantaneous "dwell" time, t,, is approximated by’

td = 4xd/v .

0.25 ,-0.25

t, = .1845 p t

d
Thus, tdstartsveryla.rgea.nddeereasesint:lme. Since instability growth
requires that ions remain at the unstable interface (see ref. 2 for a
general discussion of the linear R-T instability), a measure of whether this
problem can be neglected is whether a dwell time exceeds the time for
instability growth. An approximate (though somewhat arbitrary) way to
estimate this, which accounts for the fact that td is time deperdent, is to

define a new dwell time, , such that

%a

tl

d _dt

J =1
teg ta(t)

wvhere we have cut the integral off at t « teq’ when little instability
growth is expected. This is easily integrated to give
1.25 0.25 1.25

tcll Y= .23(5vp R ta'I .

13
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which with Eq. 18 gives

612 - e (0B
t) - .ame7 02 . (18)

In order for ions to remain at the accelerating layer during the time scale

of interest
10108 < t] , .01 « .3787 p°°2%
-8 3
p>1.318x 10 - g/cm” . (19)

Thus, for densities less than the above (n, < 1.318 x 10°°) ve can expect
finite dvell time effects to modify fluid-model predictions for R-T
instability growth. Since it is at precisely these low densities that such
an instability can be expected to have the greatest effect, any theoretical
program to assess such problems in detail would require 2-D hybrid (or
particle) code calculations.

VI. Other Approximations

If ion emission removes mass from the accelerated layer at the field-
plasma interface at a rate comparable to the accretlon rate, then a
Stabilizing effect analogous to "fire polishing"'! in ICF targets can be
expected. In order to assess at what demsity, if any, this effect would be
important, we must first relate h (recall that m is mass per unit area) to a

current density



2

1 g/usec—cm R

> 6.02 x 10%°/A ions/usec—cm
- 1.608 x 10'° Anps/an® |

where we have taken A = 6. Going back to Eq. 16 we find that for densities
less than 2.538 x 10 © g/cn® the transition from being diffusion dominated
to being advection-dominated occurs before 10 ns. Since realistic systems
would have lower density than this, we must consider the m resulting from
both. At first diffusive field penetration dominates,

my = p Ioay - 2,101 x 1078 007 08 g/p000-am®
» 3.522 x 10% - 705 Avpe/cn® | (20)
After t = teq advective motion dominates
- v = 9490 008 0T g/cen
» 1.527 x 10°0 008 07 avpe/em® . (21)

Ve first note that md decreases with increasing t so that the corresponding

currentdensitymstexoeequZOa.tt=teqifitistoemeedita.ta.ll.

In other words, for fire polishing to occur we must satisfy the condition
J - 1.597 x 1010 p0.5 1;0.'?'5

which for t = 10 ns (i.e., when J is largest) gives

15
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J - 4.83 x 10° p°°% ampe/a® . (22)

For an ion density of 10'°, therefore, we require a J of the order of 4.83 x
10% Amps/an®, oampared with current densities of 0.1 — 1.0 x 10% Amps/cn®
typically extracted fram ion diodes.

Another possible stabilizing mechanism is the effect of entrained B-z
field on R-T growth. We have not attempted to include the back pressure due
to this field in the pressure equation (Eq. 3), because we don’t know how to
assess diffusive leakage of field out of the compressed plasma analytically.
Nevertheless, with only 5 T of field present both inside and outside the
plasma we would expect little effect until the field-plasma interface has
moved more than halfway to the wall.

VII. Conclusions

In this memorandum we have used a very simple model for plasma dynamics
in the presence of an intense magnetic field to assess the effects of
Rayleigh-Taylor instability growth in plasma-filled ion diodes. The
simplest and most pessimistic case of a uniform plasma density was
considered and a projected magnetic field vs. time profile was used to get
acceleration vs. time. This was then used to obtain the growth rate of the
most unstable mode, taken to have a wavelength equal to a magnetic field
diffusion length. We then integrated the growth rate, accounting for field
diffusion by cutting off the integral at early time, to obtain the number of
linear e-foldings. This cutoff was found to qualitatively reproduce the
results from 1-D calculations. Therefore, we take the mumber of linear e-
foldings, evaluated as a function of plasma fill density in Table 1, as our
figure of merit for assessing the unstable response of this system to



initial perturbations. We find from this prooess that noticeable (order of
magnitude or more) amplification of an initial perturbation is highly likely
for densities less than a few times 10'°. Thus, we can eliminate this
problem elther by keeping the demsity sufficiently high or by avoiding
perturbations at the damaging scale length. In addition, there are other
factors suggesting that present designs may not be hurt by this effect. The
Bolvaps density profile that increases as one approaches the wall will be
less unstable, and, furthermore, the plasma is quite thin and will very
likely stagnate against the wall well before 10 ns. Nevertheless, this
simple model illustrates that such a problem could exist, and it presents an
easily applied criterion for assessing R-T instability growth for certain
alternative designs.

17



Table 1

(0]
n, p Aa teq Dgg Dgp x(10 ns) v(10 ns)
1014 100° 779 om 2.116 ns 6.833 5.476  5.43 cm 950 20—
3.16x1014 3.16):10—9 .584 2.663 5.918 4,261 3.05 534
15 -8
10 10 .438 3.353 5.123 3.223 1.72 300.4
3.16x10%°  3.18x107% .329 4.221  4.438 2.337 066  169.
16 -7
10 10 . 246 5.315 3.843 1.578 . 543 95.0
3.16x10'°%  3.16x1077 .185 6.600  3.327  .927 305 53.4
17 -6
10 10 .139 8.423 2.882 . 367 172 30.0
3
p ~—- density g/cm
Aa -— diffusion length after 10 ns
also minimum allowed wavelength
teq -- time after which advection dominates diffusion
ngf —-- number of linear e-foldings neglecting
field penetration
I number of linear e-foldings including
field penetration
x —-- distance traveled at 10 ns
v -- velocity at 10 ns

18



VELOCITY(10%cm /sec)

100

COMPARISON TO TITAN CALCULATIONS

T L LS AL H S B S R Bt
Titan. -
................... ANALYTIC
80 B
60 |-
40
s
20 |
0 i SRR RN N R FE U SR R
0 1 2 3 4 5 6 7 8 9 10
TIME(ns)
Figure 1. Compares the velocity from Equation 7 to

that obtained from the comparable 1-D
MHD calculation using TITAN for an ion
density of 1 x 1016 cm—3,
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Figure 2.

2 3 4 5 6
TIME(ns)

Evaluates the function X(t)
Equation 15.

from
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SUPERZORK: (VS—VB)/VO0
ni = l.el6 +/— 5% mass variation

! ! ' T ) ' j
8 -
] ] ) 1 N
0 2 4 6 8 10
Figure 3. Shows instability growth from SUPERZORK.

"Spike" velocity minus "bubble" velocity
divided by mean velocity is plotted.
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