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ABSTRACT 

A design for a compact, high current, high power linear electron 
accelerator using an RF power source is investigated. 
adjacent cavities into which RF power is injected and through which 
electron pulses pass. The source is assumed t o  be capable of delivering 
sufficient RF power to the desired location at the proper phase. 
issues such as cavity loading, energy extraction, longitudinal and 
transverse pulse focusing, and beam breakup are considered. A device 
which, given the required source, can deliver beam parameters comparable to 
existing induction accelerators but which is more than an order of 
magnitude smaller appears feasible. 

It consists of 
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1. Introduction 
The idea of utilizing RF electromagnetic energy to accelerate 

electrons to a Gev of energy dates back to the 40's.' 
high power, long duration microwave sources, such as the magnetically 
insulated transmission line oscillator (MILO) , 2  has generated renewed 
interest in some of these basic ideas. In this paper we examine the 
beamline considerations for the design of a compact accelerator. We shall 
simply assume that RF power is delivered to the accelerator at the desired 
location and in the required phase. While this in itself represents a 
formidable task, we shall not address it in any detail. Our purpose is 
rather to examine the possibilities and limitations of a particular RF 
accelerator given an ideal source. Where deviations from ideal are 
necessary, it should be possible to estimate the penalty paid. 

The promise of new 

In the following section we propose an accelerator concept on which to 
base our analysis. In doing so we do not mean to suggest that other 
accelerator concepts harnessing RF power would not be feasible and, indeed, 
there are other candidates. 3 ' 4  
necessary to assess the feasibility of the concept. 

The next four sections develop the tools 

The third section contains our considerations of how a relativistic 
electron pulse interacts with a resonant structure. 
"loads" a cavity with electric and magnetic fields. In addition to 
extracting energy from the pulse, these wake-fields can influence both the 
beam electrons in the cavity and those on subsequent pulses. 

The passage of a pulse 

In section four we determine the conditions under which a beam can 
extract energy from the electric field in a cavity. 

The fifth section has an examination of the problem of beam focusing: 
overcoming the self electrostatic repulsion and keeping the pulses intact 
both longitudinally and transversely as they pass through the device. 

In the sixth section we look at beam breakup. This well known 
instability would appear to be devastating in a small, high current 
accelerator. There are, however, ways to diminish its magnitude and we 
shall examine their effectiveness. 
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In the seventh section we utilize these results to examine the 
potential utility and fundamental limitations of this type accelerator for 
specific parameters. In particular, an optimized accelerator design is 
proposed. 

The last section summarizes our findings. 

2. Design Considerations 
Referring to Fig. 1, the fundamental unit of our accelerator will be a 

resonant cavity, either rectangular with sides X and Y or cylindrical with 
radius R. In both cases the depth, Z,  will be very much the smaller 
dimension. 
maintain an oscillating electric field in the z direction. Properly phased 
pulses of electrons pass through a centered hole and are accelerated by the 
electric field in the cavity. A substantial part of our analysis will 
consist of examining electrical properties of these cavities: the resonant 
modes they support, the interaction of a cavity with an electron pulse, and 
the effect of energy loss in the cavity. 

RF energy at the fundamental cavity mode is injected to 

We shall be interested in z-independent modes with longitudinal 
electric field and transverse magnetic field relative to the beam 
propagation direction. The fundamental mode consists of an oscillating 
electric field with peak amplitude at the beamline and a magnetic field 
which vanishes at the center and loops around the cavity. Clearly, the 
time during which electrons can be accelerated by this field is limited to 
that half period during which the oscillation has the proper sign. The 
kinematics of a pulse passing through a cavity are shown in Fig. 2. We 
shall assume the pulse length is much greater than the cavity depth, 
L > > 2,  so that the time during which part of the pulse occupies the 
cavity, T 
relativistic beam to pass a single point, L /c. Time will be defined as 

starting when the pulse enters the cavity, so TI = 0. 

which RF energy at the frequency of the fundamental mode is injected. The 
phase of the electric field in each cavity is such that the field delivers 
energy to the electrons. Such a device is characterized by the following 
list of parameters. 

P 
- T1, is approximately equal to the time needed for a p = T4 

P 

The accelerator, then, consists of a series of adjacent cavities into 
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Cavity parameters: 
A, , the fundamental mode of the cavity 
w , the angular frequency of the fundamental mode 
4 , the phase of the RF field in the cavity 
W , the aspect ratio of a rectangular cavity, X/Y 
Z , the depth of the cavity (in the direction of beam propagation) 
0 , the quality factor of the cavity 
N , the number of cavities 
L , the minimum length of the accelerator ( = NZ ) 

A0 

the applied longitudinal focusing magnetic field BZo , 

Pulse parameters: 
b , the pulse shape factor (rise time) 
T , the time during which the pulse occupies a cavity 
I , the current in the pulse 
AU the energy gained by the pulse per cavity 
L , the length of the pulse 
r , the radius of the pulse 

P 
P 
P' 
P 
P 

Derived parameters: 
F , the fundamental frequency = w /2n 

r , the fundamental period of oscillation = 1 / F 
X 
Y 
R 
d , the fraction of time the pulse is in the cavity (duty cycle) 
I,,, the average current = dI 

A0 

, the height of a rectangular cavity with fundamental frequency F 
, the width of a rectangular cavity with fundamental frequency F 
, the radius of a cylindrical cavity with fundamental frequency F 

P 

3 .  Cavity Loading 

resonant modes of the cavity. Referring again to Fig. 1, let the cavity be 
pierced at location x 

radius r carrying current I . Assume the charge density, p, is 
independent of both r and 8 and is given by h(s)I /cnr where 

As a pulse of electrons passes through a cavity it excites the 

by a relativistic electron pulse of length L P P and 

P' P 
P P  
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s/[L b(l - b)] 
I P  

h(s) = 1/(1 - b) \ 
O I s < L b  

P 

P P 
L b < s < L ( l - b )  

Lp(l - b) 5: s 5 L 
P - s)/(L b(1 - b ) ]  

(LP P 

where s is the distance from the head of the pulse. This double ramped 
shape is illustrated in Fig. 3 .  
0 to L is 1. The current density in the z direction is given by 

The average value of h(s) in the interval 

P 

2 h(ct) I /nr 
P P  

J ( x , t )  = for 

I x - x I  < r  
P P 0 

5 Our analysis is similar to that used by Faehl, Lemons, and Thode in which 
electromagnetic fields produced by the current are expressed in terms of 
the scalar and vector potentials, 

B = curl A 

which satisfy 

where c, E, and IJ have their usual meanings. We shall use the Coulomb 
gauge, V A = 0. 

( 4 ) ,  A is expressed as a sum of the orthonormal cavity eigenmodes. 
Only the z component of A, designated by A ,  is required. To solve 

-7- 



where X represents I and m, the indices of the mode. 
a,(x), vanish on the boundary and satisfy 

The eigenmodes, 

with J a x v  a dV = 6xv . 2 2 V aX + (aX/c) ax = 0 

is the Kronecker delta which equals 1 when the indices are the same and &Xu 
0 otherwise. For rectangular and cylindrical coordinates these are 

and 

J (W R/c) = 0 . B Bm 

The time-dependent coefficients in ( 5 ) ,  qX(t), satisfy the equation 

where denotes differentiation with respect to time. Using the fact that 
the scalar potential is zero on the boundary, i t  can be shown that the term 
in the integral containing it vanishes. With the requirements that q and 
its derivative are initially zero, this equation can be solved to yield: 

t 
qx(t) = (I Z/uXc) a (x ) J h(cT) sin(wX(t - T)) d.r . (12)  

P X p o  

pulse 
The electromagnetic fields produced in the cavity by the electron 
are, according to ( 3 ) ,  
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Figure 4 depicts the beamline electric field produced by a centered pulse 
in a square cavity for b 3: .05, .25 and .5 as a function of s. Notice that 
the field amplitude in (13) depends on the beam intersect location, x 
occurring in qx(t). 

P' 
The energy in each mode, Ux, is given by 

4 .  Energy Extraction from Cavities 
In this section we investigate the extraction of energy by a pulse 

from the fundamental mode of a cavity. Assume the electric field in the 
empty cavity is 

where A, represents the fundamental mode of the cavity, either I =  m = 1 
for a rectangular cavity or 1 = 0 ,  m = 1 for a cylindrical one. x is the 
cavity center and E is the peak amplitude of the applied RF field. 
Associated with this electric field is a qrf(t) defined by (13): 

C 

rf 

The energy in the cavity before the pulse enters is 

2 2  
A, qrf ) -ur f = (E /2 )  (irf2 + w 

The energy remaining in the fundamental 

- 2  'fin = (El21 Hirf - SA,) 
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The pulse also excites higher modes in the cavity which receive an amount 
of energy, Uhi, given by 

= (&/2) c qx * 2  + Wx 2 2  qx 
XfX,  'hi 

The net energy gained by the pulse, U 
the fundamental mode minus the energy injected into higher modes. 

is equal to the energy change of 
P' 

up= Urf - Ufin - Uhi 

The energy remaining in a cavity after the passage of a pulse will be 
dissipated by various loss mechanisms represented by the cavity quality 
factor, Q. The energy in the fundamental mode which is lost to the cavity 
in one period is approximately 

-2 K/Q 
)'fin = (1 - e uloss 

In order to achieve steady state operation, the energy fed into the cavity 
during each cycle must be sufficient to restore the fundamental mode to its 
initial strength. The required input energy is, therefore, 

(22) = Urf - Ufine -2n/Q 
'in = 'rf - 'fin + "loss 

The efficiency, defined as the ratio of the energy gained by the pulse to 
the input energy per period during steady state operation, is 
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The fields in the cavities after multiple pulses consist of a mixture 
of modes. With the exception of the fundamental, which is replenished each 
period, the modes oscillate at different frequencies and dissipate at 
different rates. We have, therefore, treated each cavity as if it were 
initially free of fields, making the assumption that, on the average, these 
higher modes do not influence the pulses. 

The discussion so far has been for pulses with arbitrary shape. 
the remainder of this section let us assume the pulses have constant 

For 

density throughout their length, that is, b = 

estimate of the energy transfer between pulse 
pulse we find that for t > T (12) becomes 

P' 

2 q,(t) = (21 Z / w x  ) a (x ) sin(w T 12) P X P  X P  

0. This will provide an 
and cavity. With this shape 

sin(wA(t - Tp/2)) . 

Utilizing (20) and replacing T by 2nd/wx , we obtain 
P 0 

U = 2 I Z sin(nd) sin(nd + 4) (Erf - Emin)/ ox P P 0 
, 

where 
2 

= K I Z a ( x  ) sin(nd) / (&a sin(nd + 4)) , 
Emin P X P  A0 

and 
2 

K = E [a ( x  ) w  sin(ndw / w  )/a (x  ) w  sin(~d)J . x P x o  x o  x o  P 

is the magnitude of the minimum RF electric field'necessary to Emi n 
impart energy to the pulse. 
loaded into a cavity by the passage of a pulse. It is a function of the 
location where the pulse pierces the cavity, the duty cycle, and the shape 
of the cavity. Assuming a rectangular cavity pierced at its center, we 
obtain 

K is a measure of the electromagnetic energy 

-11- 



For the cylindrical case, only I = 0 modes contribute: 

K = E [J1(oolR/c)ools~n(ndw /o )/Jl(oomR/c)w~msin(nd)] 2 . (29) Om 01 

Plots of K vs. d are given in Fig. 5 for cylindrical and rectangular 
cavities. Letting E = Emin/ Erf, the efficiency, (23 ) ,  can be written 

2 - 2 n / Q [ ~ 2  + 4 E ( E  - K)sin 2 (nd + $ ) I )  . 0 = 4 ~ E ( 1  - E )  sin (nd + +)/(IC - e 

(30) 

As an interesting aside, we can determine the fraction of energy a 
single pulse can extract from the fundamental mode of a resonating cavity. 
This is the energy extracted by the pulse, minus the energy loaded into the 
cavity, divided by the original energy in the cavity. To obtain this, let 
0 = 0 in (30) so that all the energy remaining in the cavity after passage 
of the single pulse is lost: 

2 This attains a maximum value of sin (nd + + ) / K  when E = 1/2  (i.e., 

Erf = 2 Emin). From Fig. 5 we see, for example, that the maximum single 
pulse extraction efficiency for a cylindrical cavity is about 50%, for a 
square cavity it is about 40%, and it decreases as the cavity elongates. 

If we assume the energy in electron volts gained by the pulse in each 
cavity is AU [ev], the power fed to the pulse is 

P 

I AU [ev] = U /T . (32) P P  P P  

Using ( 2 5 ) ,  substituting 2nd/o for T and L for NZ, we obtain the total 
P' 

energy gain in N cavities: 

AU[ev] = N AU [ev] = L sin(nd) sin(nd + 4) (Erf - Emin)/nd (33) P 

Alternatively, this 
accelerator capable 

expression can be used to find the minimum length of an 
of imparting a given energy to a pulse. 
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5. Pulse Focusing 

radial and longitudinal forces produced by its own space charge. 
requirement that the pulse remain intact during its transit of the 
accelerator places constraints on the design. 

pulse and following the boundary in time. 
canonical angular momentum, its motion will be governed by 

As the pulse passes through the accelerator it will experience both 
The 

The radial expansion can be approximated by assuming a sharp edged 
Assuming the beam has no net 

6 

d/dt (ydrldt) - yv;/r = (elm) (Er + veBz - VzBe) ( 3 4 )  

2 yrve - (e/2m) BZr e 0 . (35) 

The longitudinal magnetic field, BZ, consists of the applied field, BZO, 
and the diamagnetic field arising from the beam's own r~tation.~ 
latter field is, in general, far smaller than the applied field and its 
effect on the motion will be ignored. 

The 

Defining Q = eBZo/m yields 

2 2 
P d/dt (ydrldt) + Q r/4y = e1 /(2mecn& r) , 

where we have used Er = I /2n&cr and Be = BEr/c, the surface values 
obtained for an infinite uniform cylindrical beam. 
mass, is the electron velocity divided by the speed of light, and 
y (1 - f3 ) = 1. Both f3 and y are functions of time. The applied magnetic 
field for which the pulse radius remains unchanged is 

P 
Here m is the electron 

2 2 

= ( l / r  )(21 m/ycnec6) 1/2 
BZO P P  (37) 

Pulses are also subject to longitudinal forces produced by a 
combination of the electrostatic and inductive electric fields. Consider 
a pulse of radius r and length L carrying a current I in a cylinder of 
radius Rc. When Maxwell's equations are transformed into the pulse frame 
by defining C-= z - vt the steady-state equations for the electric fields 
are 

P P P 
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E~ = y-2awt , 

and 
= a$/ar , 

( 3 8 )  

( 3 9 )  

where J, satisfies 

with $ = 0 on the outer wall. It is clear from ( 4 0 )  that as y increases, 
the dependence of J, on 5 becomes weaker, diminishing the value of EZ. It 
is further reduced by another factor of y2 occurring in ( 3 8 ) .  
of solving this equation numerically bear this out. For a duty cycle of 
1 / 2  and a shape factor of .25, the resultant field is illustrated in . 
Fig. 6 for a range of y .  When the beam is weakly relativistic ( y  s 2) ,  the 
electric field is predominantly electrostatic. This causes the head of the 
pulse to be accelerated and the tail to be decelerated. As the energy of 
the pulse increases, however, the inductive electric field gains in 
strength with a sign opposite the electrostatic field. For y = 8 ( 3 . 6  MeV) 
the resultant longitudinal field essentially vanishes. It appears, 
therefore, that in a high energy electron accelerator, longitudinal 
defocusing of the pulses will not be a problem where the pulses become even 
modestly relativistic. Furthermore, when it becomes relativistic, its 
velocity cannot significantly increase, only its energy. Thus, an applied 
electric field cannot "overfocus" a pulse and cause i t  to shorten. 

The results 

6 .  Beam Breakup Instabilities 

modes with 1 = 1 in a cylindrical cavity, can interact with pulses through 
the magnetic field at the center of the cavity. Figure 7 sketches the 
magnetic field in a rectangular cavity for the 21,  41, 2 3 ,  and 43 modes as 
well as the 10, 11, and 12 modes in a cylindrical cavity. This transverse 
magnetic field can divert electrons as they transit the cavity. As ( 1 3 )  
shows, these modes are created only when the pulse crosses the cavity off- 
center. That is, to create a 21 mode in a rectangular cavity, a pulse must 
pass either to the right or left of center. Some nimble employment of the 

Modes with one even and one odd index in rectangular cavities, or 
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right hand rule will demonstrate that the magnetic field created by passage 
to the right of center has the effect of creating a magnetic field which 
diverts the next pulse even further in that direction. This is the origin 
of the beam breakup instability.8 It is amplified by high currents, small 
cavities (i.e., high frequency), high Q, long total length, and a large 
number of pulses. 
of pulses if we desire a high power, long pulse duration accelerator and we 
must live with small cavities if the device is to be llcompactll. As we 
shall see, however, we can reduce the effective length with respect to the 
instability without reducing the actual accelerating length. 

We can do nothing about the high current or the number 

Let us consider breakup due to the Im mode in a rectangular cavity. 
Assume the beam does not move vertically, but remains centered at y = Y/2. 
From (13) we obtain for the y component of the magnetic field 

P 

sin(ndu / w  ) sin(wlm(t - nd/wll)) Bm 11 

Notice that this field has its peak amplitude at the center of the cavity 
and is created only when x is not equal to X/2. Beam breakup can be 
studied numerically in the following manner. The time dependent term in 
( 4 1 )  is taken to be 1, giving a worst case approximation. Assuming the 
cavities are labeled with n and the pulses are numbered by k, the field in 
cavity n after passage of pulse k will be denoted by B(n,k). 
acts on pulses subsequent to k. 
to cross the cavity, Z/c, it acquires a specified amount of longitudinal 
energy as well as being diverted by the V x B force. 
magnetic field into the cavity according to (41 ) .  Finally, the fields in 
each cavity are reduced in value by e-"h 'I2' after each pulse. 

P 

This field 
During the time a relativistic pulse takes 

In addition, it loads 

It is not necessary to reduce the actual number of cavities in the 
accelerator to control beam breakup, only the "effective" number. By this 
we mean the number of essentially identical cavities through which the beam 
passes. 
fundamental frequencies are equal, but for which the frequencies of the 
undesirable transverse magnetic modes are different from each other. That 
is, we shall use cavities with different cross-sections. The ratio of the 

We can do this by using several differently shaped cavities whose 
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frequencies of higher modes to that of the fundamental in a rectangular 
cavity with W = X / Y is 

th For a cylindrical cavity it is Xlm/XO1 where Xam is the mth zero of the I 
Bessel function. 

In order for two cavities to be considered "distinct", the frequencies 
of the modes whose magnetic field lies in the same direction must be 
sufficiently different that they are not coupled by the cavities. This 
provides a bound on the frequency separation: 9 

Aw > w/Q . ( 4 3 )  

For larger values of Q the modes are more readily distinguished, so more 
distinct cavities exist. It is this possibility that suggests using 
rectangular cavities. 

Table I gives the frequencies for a variety of rectangular cavities 
and the cylindrical cavity. ( 4 3 )  can be used to determine how many of 
these are "distinctt1 for a given Q. By spacing the similar cavities 
uniformly throughout the accelerator, the effective number of cavities with 
respect to beam breakup is lowered. Since the growth rate is a strong 
function of the distance that the pulse travels while subject to a 
particular unstable mode, this cavity distribution can significantly reduce 
i ts magni tude. 
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TABLE I 

Rectangular Cavities 

X/Y "2 1 /"11 w41/"11 w23/wl l  w43/"11 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 
11 
12 
13 
1 4  
15 
16 
17  
18 

1 9  

0.0 
0 .2  
0.3 
0 . 4  
0.5 
0 . 6  
0.7 
0.8 
0 .9  
1.0 
1.11 

1.25  
1.43 
1.67 
2.0 
2.5 
3.3 
5.0 
a, 

2.000 
1.971 
1.937 
1.894 
1.839 
1.791 
1.736 
1.682 
1.630 
1.581 
1.531 
1.473 
1.410 
1.339 
1.265 
1.189 
1.117 
1.056 
1.000 

4.000 
3.927 
3.842 
3.732 
3.606 
3.468 
3.327 
3.185 
3.048 
2.916 
2.777 
2.618 
2.436 
2.230 
2.000 
1.752 
1.496 
1.256 
1.000 

2.000 4.000 
2.048 3.966 
2.101 3.927 
2.166 3.877 
2.236 3.821 
2.307 3.761 
2.376 3.701 
2.440 3.643 
2.498 3.587 
2.550 3.536 
2.601 3.483 
2.655 3.425 
2.712 3.362 
2.771 3.294 
2.828 3.225 
2.883 3.157 
2.930 3.095 
2.968 3.045 
3.000 3.000 

Cylindrical Cavity 

"4 3'@11 w / w  "ll /wol "1 2/ "0 1 13 01 

20 

~ ~~ 

1.593 2.917 4.231 5.540 
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Cavities can also be coupled through different modes. For example, in 
Table I the 41  mode of cavity number 10 has the value 2.916 while the 23 
mode of cavity 18 has the value 2.968. When one designs an accelerator, 
these factors must be considered. In general, however, the growth rates of 
the higher modes are smaller than that of the lowest mode. 
the magnetic fields for the 4 1 ,  2 3 ,  and 43 modes are smaller than those for 
the 21 mode by factors of .05,  .17 ,  and .21 respectively due primarily to 
the influence of the sin(rrdo / w  ) term in ( 4 1 ) .  

For example, 

Im 11 
designate the number of cavities which can be considered Let Ndist 

distinct for a given mode and 0. We shall restrict the cavities to those 
with aspect ratio between 1 / 5  and 5 ,  as in Table I. The average ho can be 
approximated by the difference in the frequency between the two extreme 
cavities (numbers two and eighteen) divided by the number of distinct 
cavities, so ( 4 3 )  becomes 

There is another limit to the required frequency separation. It 
serves no purpose to have the modes appear "distinct" to the cavity if the 
two frequencies are so close that they appear identical during a time 
sufficient for the instability to develop. That is, if the beat period of 
the two modes is longer than the time required for the instability to 
develop, the two modes are essentially equivalent. This resolves the 
apparent paradox that, for infinite Q, there are an infinity of "distinct" 
cavities which differ only infinitesimally in their dimensions. Thus, a 
stable accelerator could be built with a large number of virtually 
identical, very high Q, cavities, a proposition we know to be false. 

To quantify this notion, let us define Nstab to be the number of 
cavities for a particular Q through which an infinite number of pulses can 
pass without moving laterally more than ten times its initial displacement. 
In the next section we shall obtain N 
using the code. 
cavities, t = 2 N /c, the two oscillations under consideration must 
become at least 90° out of phase: 

for parameters of interest by stab 
Let us stipulate that in the time needed to cross Nstab 

stab 

bw > n c / ( 2  2 Nstab) ( 4 5 )  
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Using this and ( 4 4 )  gives the following constraints on the number of 
distinct cavities 

blocks each of which contains Ndist stab An accelerator consisting of N 
distinct cavities will be stable to beam breakup. If, however, a 
longitudinal guide magnetic field is applied, the pulse will rotate as it 
passes through the accelerator. 
orientation. To avoid this, the cavities could be progressively skewed at 
such an angle that the pulses enter each cavity at the same orientation. 
The above analysis would then still be valid. 

This could couple modes with different 

7. Accelerator Design 
The following parameters characterize the accelerator performance: 

the average current, 
the exit energy of the pulse, 
the length of the accelerator, 
the frequency of the RF source, 
the duty cycle, 
the phase of the RF cycle relative to the pulses, 
the aspect ratio of the rectangular cavities, and 
the maximum applied longitudinal magnetic field 

Using the results derived in the previous sections we shall attempt to 
design an accelerator which is stable both to beam breakup and defocusing. 

For the cavities themselves, we shall assume that the depth, 2, is one 
tenth the side of the square cavity (W = 1) corresponding to the chosen 
frequency. The following is a list of formulas for accelerator parameters 
accompanied by the numbers of the expressions in the text from which they 
were derived. 

( 8 )  => 

( 8 )  => 

X[cm] = 15 (1 + W2)1'2/F[GHz] , 

Y[cm] = X(cm]/W , 
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(49) (10) => R[cm] I 11.48/F[GHz] , 

Assumption Z[cm] = 2.12/F[GHz] , (50) 

Definition N = 100 L[m]/Z[cm] , (51) 

Definition Lp[cm] = 30 d/F[GHz] , (52) 

(37) => (53) 

(26) => Emin[kV/cm] = 321aV[kA]F[GHzlKW sin(rrd)/(d(l + W 2 )sin(rrd + 0 ) )  , 
(54) 

(33) => 

(30) => 0 = 4~C(1 - C)sin 2 (nd + + ) / ( I C  

Erf[kV/cm] = Emin[kV/cm] + lOndAU[MeV]/(L[m]sin(~d)sin(nd + 0 ) )  
(55) 

(56) 
- e -2n/Q(~2 + 4C(C - K)sin2(nd + 4 ) ) )  , 

where 6 = Emin/Erf . 

The ratio Z/L , which equals .212 for a square cavity, marginally satisfies 
the criterion that the pulse length be much greater than the cavity depth. 

The discussion so far has been kept as general as possible. To 

P 

proceed further requires specifying some of the accelerator parameters. 
Let us take for the electron energy and total length the values 

AU = 20 MeV L = 4 m  . (57) 

As is evident from (56), for maximum efficiency, K should be as small 
as possible. According to Fig. 5, this is achieved for a duty cycle of 
1/2. Furthermore, the phase required for optimum efficiency is given by 
nd + + = n /2 ,  giving a phase of 0. Thus, peak efficiency is achieved when 
part of the pulse is in the cavity for the entire duration of the 
accelerating electric field. Such operating conditions will not, however, 
produce uniform acceleration along the beam, a situation exacerbated by the 
influence of the wake field loaded into the cavities. As indicated in 
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Fig. 4 ,  this field decelerates the head of the pulse while it supplies 
energy to the tail. To counter its effect, the RF field acting on the head 
must be larger than that on the tail. This requires that the duty cycle be 
less than 1/2 and the phase, 0, be positive. Let us take the duty cycle to 
be 113 and specify that the RF electric field should pass through zero just 
as the pulse exits the cavity. That is, 

d = 1/3 and 6 = K/3 (58) 

Notice that this specification of the phase is opposite that for non- 
relativistic ion accelerators in which cavity loading effects do not enter. 
In these devices the electrostatic fields are not cancelled by the 
inductive fields and the pulses experience an expansive longitudinal force. 
To counteract this, the pulse must experience a rising electric field so 

that the tail will be accelerated more than the head. 
We shall consider beam breakup with the parameters of (57) and (58). 

In particular, we shall use the code to determine Nstab, the number of 
cavities t h r o u g h  which  an essentially infinite number of pulses can pass 
without undergoing a displacement of more than 10 times the initial value. 
As an example of the code output, Figs. 8a, b, and c illustrate the results 
of in square cavities for Q = 10, 100, and = and an average current of 
1 kA. The plots show the displacement of the last pulse after passing 
through a given number of cavities vs. the number of previous pulses. 
is clear that unless Q is fairly small, large numbers of pulses will not 
pass through many cavities for these parameters. It appears, however, that 
even for a Q of 100, an unlimited number of pulses can pass. through 10 
identical cavities without suffering excessive displacement. Repeated use 
of the code with different parameters suggests that Nstab can be 
approximated by 

It 

= 120(Ip[kA1Q) -1/2 
Nstab ( 5 9 )  

Using ( 4 6 )  and the frequencies for the most unstable mode in Table I, we 
obtain for the total number of cavities in the accelerator 

N < HIN(55.8(Q/I [kA1)1’2, 372011 [kAIQ) . < Ndist stab P P 
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Figure 9 is plots of Ndist, Nstab , and N vs Q for I 
current). The maximum N occurs when Q = 16.6/1 For I equal 3 kA 
this gives 108 cavities at a Q of 11.4. 
for any number of cavities below this limit, there is a range of acceptable 
0. Since the efficiency increases with 0, the upper limit is preferable. 

The final output parameters can be expressed as functions of the 
average current and frequency of the RF source. Using the parameters in 
(57) and (58), and taking the representative values K = 4 and 
KW/(1 + W ) = 1.5, the expressions in (51), (55), (56), and the 
discussion in the preceeding paragraph imply 

= 3 kA (1  kA average 

From the figure it is clear that, 
P P 

2 

N = 188 F[GHz] , (61) 

2 34 Iav[kA] F[GHz] < Q < 6.6/(Iav [kA] F[GHz]) , (62) 

Erf[kV/cm] = 144 F[GHz] + 70 , (63) 

where 
parameters as a function of frequency in Fig. 10 for several values of Q, 
including the region defined by (62). Notice that (62) gives a maximum 
frequency of the RF source for an accelerator of this type: 

5 = (1 + .5/F[GHz]}-l. The efficiency, (64), is plotted for these 

-2/3 F[GHz] < .6 Iav[kA] 

The radius of the pulse is related to the applied magnetic field by 
For a pulse radius of 1 cm and an injection energy of 1 NeV the (53). 

applied magnetic field at injection need be no larger than .12 Tesla. 
can decrease along the device as y . 

An electron pulse passing through a driven cavity is acted upon by 
three electric fields: the RF cavity field, (15); the wake field loaded 
into the cavity by the pulse, given by (13) and plotted in Fig. 4; and the 
self electrostatic/inductive field, given by (38) and (40). The beamline 
values of the first two of these fields, expressed as functions of the 
distance from the head of the pulse are, respectively 

It 
-1/2 
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SIC 
( s )  = (I Z/r) E ax (x  ) I h(cT)cos(ux(T - s/c))dT (67) 2 . 

Eload P x P o  

The third field, as we have seen, plays almost no role for relativistic 
pulses. 
loaded field and RF field. 

The net force on the pulse, therefore, arises from the sum of the 

Suppose the RF source has a frequency of 500 MHz and the beam has an 
average current of 1 kA. From (61) we see that the number of cavities in 
the accelerator is 94. The 0 of the cavities should be about 13. This 
results in an efficiency of about 35% as shown in Fig. 10. The accelerator 
consists of 19 cavities of each of five distinct shapes. These could be, 
for example, the cavities numbered 2, 6 ,  10, 14,  and 18 in Table I, which 
measure 

30.6 by 153, 
35 by 58.3, 
42.4 by 42.4, 
58.3 by 35, and 
153 by 30.6 cm. 

All cavities are 4.24 cm deep 

For purposes of frequency discrimination the cylindrical cavity is 
indistinguishable from the square one at this 0. While there is no harm in 
using both of these cavities in the accelerator, little is to be gained 
insofar as eliminating beam breakup. 
throughout the accelerator in Nstab groups consisting of Ndist cavities 
each, as sketched in Fig. 11. The applied RF electric field at 500 MHz has 
a peak amplitude of 142 kV/cm. Figure 12 is plots of the net electric 
field acting on a pulse with shape factor .25 for 1 kA average current. 

The N cavities would be evenly spaced 

Clearly, although the total energy given to the pulse satisfies the 
given conditions, the energy distribution as indicated by Fig. 12 varies 
considerably along the pulse. If this is unacceptable, the frequency can 
be reduced. This decreases the severity of the cavity loading by 
increasing the size of the cavities. Figure 13 shows the total electric 
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field resulting from a frequency of 166 MHz. Erf is now only 94 kV/cm and 
the cavities are three times as large, while the length is still 4 meters. 
The energy distribution is more uniform, although still far from constant. 
There are now, according to (61), only 32 cavities in the device. If the 0 
remains at 13, the efficiency, as read from Fig. 10, falls to around 22%. 
With this lower frequency, however, a Q of about 40 can be used, increasing 
the efficiency to 40%. 
respectively, so the accelerator consists essentially of 10 blocks of 3 
distinct cavities each. 

Ndist and Nstab for this Q are 3 and 10 

Another way to achieve a more uniform energy spread is to tailor the 
waveform of the input RF. If i t  is possible to add higher harmonics, the 
applied field can more closely match the loaded field. 

The above considered RF electric fields, 142 kV/cm at 500 MHz and 
94 kV/cm at 166 Mhz, are, by a considerable margin, both too large to cause 
electron mult ipactoring6 and too small to cause sparking according to 
Kilpatrick’s criterion. 10 

Conclusions 

There are, obviously, a wide range of parameter choices available in 
designing an accelerator along these lines. We have attempted to provide 
the tools required to facilitate this design. An example was presented of 
an accelerator 4 meters long, and about 1.5 meters wide, which accelerates 
a 1 kA average current beam to 20 MeV at an efficiency of about 40%. 
beam is stable both to beam breakup and defocusing forces, although if the 
input RF wave form is restricted to a pure sinusoid, some energy spread, 
which increases with frequency, is unavoidable. With this caveat, it 
appears that, given an RF source which can meet the stated requirements, a 
linear high power, high current RF electron accelerator, which is at least 
an order of magnitude more compact than existing induction devices, is 
feasible . 

The 
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FIGURE 1. The RF cavities which form the basis of the accelerator. 
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FIGURE 2. The kinematics of an electron pulse piercing a cavity. 
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BEAMLINE E FIELD LOADED INTO A SQUARE CAVITY 
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FIGURE 4. Beamline electric field loaded into a square cavity for 
pulse shapes given by b = .25 and .5. 
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FIGURE 5. IC vs duty cycle for various shaped cavities. 
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LONGITUDINAL ELECTROSTATIC & INDUCTION FIELD 
b =.25, d =.5, Lp/rp=20y Rc/rp=1.5, GAMMA = 2, 4, 8 
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FIGURE 6. Longitudinal electrostatic/inductive field as a function of position 
for b = -25, d = .5, R, /rp= 1.5, Lp /rp = 20 and a range of 7 .  
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FIGURE 8. BBU Displacement for 3 kA pulse with (a) Q =lo, (b) 100, and (d-. 
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FIGURE 9. Ndist , NStab, and N, for a 1 kA, 20  MeV beam with duty cycle 113. 
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region. 
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FIGURE 11. Sketch of a 100 cavity accelerator consisting 
20 blocks of 5 distinct cavities. 
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LOADED, RF, AND TOTAL ELECTRIC FIELD 
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FIGURE 12. Electric field on a pulse with shape factor .25 for 500 MHz source. 
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LOADED, RF, AND TOTAL ELECTRIC FIELD 
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- FIGURE 13. As in 14 but with a 186 MHt source. 
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