
SANDIA REPORT 
SAND87-0959 • UC-705 
Unlimited Release 
Printed May 1990 

The Prediction of Loads on Penetrators 
Into Rock Via the Spherical Cavity 
Expansion Approximation 

Donald B. Longcope, Jr. 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico 87185 and Livermore, California 94550 
for the United States Department of Energy 
under Contract DE·AC04·76DPOO789 

/ 

SF2900Q18-81 ) 

When printing a copy of any digitized SAND 
Report, you are required to update the  

markings to current standards.



Issued by Sandia National Laboratories, operated for the United States 
Department of Energy by Sandia Corporation. 
NOTICE This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States Govern- 
ment nor any agency thereof, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring 
by the United States Government, any agency thereof or any of their 
contractors or subcontractors. The views and opinions expressed herein do 
not necessarily state or reflect those of the United States Government, any 
agency thereof or any of their contractors. 

Printed in the United States of America. This report has been reproduced 
directly from the best available copy. 

Available to DOE and DOE contractors from 
Office of Scientific and Technical Information 
PO Box 62 
Oak Ridge, TN 37831 

Prices available from (615) 576-8401, FTS 626-8401 

Available to the public from 
National Technical Information Service 
US Department of Commerce 
5285 Port Royal Rd 
Springfield, VA 22161 

NTIS price codes 
Printed copy: A03 
Microfiche copy: A01 



SAND87-0959 
Unl imi ted Re1 ease 

May 1990 

Distribution 
Category UC-705 

THE PREDICTION OF LOADS ON PENETRATORS INTO ROCK 
VIA THE SPHERICAL CAVITY EXPANSION APPROXIMATION 

Donald B. Longcope, Jr. 
Applied Mechanics Division IV 
Sandia Nationa7 Laboratories 

A7buquerque, New Mexico 87185 

ABSTRACT 

A spherical cavity expansion (SCE) model for axial loads on 
penetrators into rock has been developed and used in the GNOME penetrator 
code to cal cul ate a recent full -scale strategic earth penetrator test 
(SEPW) into sidewinder tuff. 
l-D motion produced by an expanding spherical cavity which allows rapid 
calculations over a complete penetrator trajectory. 
includes a region of tensile fracturing which has not been modeled in 
production cont i nuum dynami cs code cal cul at i ons . One reason for the 
development of this model is the current interest in blunter nosed 
penetrators than those previously analyzed with cylindrical cavity 
expansion (CCE) 1 oad model s. 

The 2-D target motion is approximated by the 

The target response 
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INTRODUCTION 

A spherical cavity expansion (SCE) model for loads on penetrators 
into rock and other geologic media has been developed and implemented into 
the GNOME penetrator code, Reference [l]. The spherical and cylindrical 
cavity expansion (CCE) load models use results from 1-D wave propagation 
problems which approximate the 2-D or 3-D target motion. 
models have been used in GNOME to rapidly calculate complete penetration 
trajectories, and are well-suited to investigate the effects of target 
property uncertainties and penetrator design changes. The SCE load model 
was developed because of current interest in the Strategic Earth 
Penetrator Weapon (SEPW) which has a 3.0 CRH (caliber radius head) ogival 
nose. 
penetrators, such as the Pershing-I1 which had a 6.0 CRH nose. 
model may be better-suited for the SEPW than existing CCE models, 
References [2 ,3 ] ,  because the SCE kinematics represents both vertical and 
radial target motion whereas the CCE model allows only radial motion and 
breaks down in the limit of a very blunt nose. 

These load 

This nose is considerably blunter than those of other recent Sandia 
The SCE 

Some related previous work includes Reference [2 ]  which numerically 
solved 1-D, nonlinear, dynamic cy1 indrical cavity expansion problems. 
References [3,4] developed CCE and SCE results using approximate solution 
techniques. Reference [5 ]  developed the first SCE load model used in 
GNOME which approximated the target response as rigid-plastic. Reference 
[6] used the continuum dynamics code PRONTO to calculate penetration 
events with a 2-D,  elastic-plastic target response model. 

The present work follows the solution technique of Reference [ 2 ] .  It 
represents the target with regions of elastic, tensile fractured and Mohr- 
Coulomb plastic response. Closed-form results for the quasistatic 
response are developed and used to check the numerical procedure for the 
dynamic response in the limiting case. A comparison is made between loads 
calculated with SCE and CCE models which shows significant differences, 
particularly at low penetrator velocities when tensile cracking is 



important. Finally, the SEPW-DG4 test, Reference [7 ] ,  is calculated with 
the SCE model in GNOME and found to agree reasonably well with the 
deceleration-time measurements. 

SCE KINEMATICS AND PENETRATOR NOSE GEOMETRY 

It is assumed that the projectile impacts a uniform target half-space 
at normal incidence with velocity V in the vertical, z direction. The 
target response is axisymmetric and 2-D. The penetrator nose geometry is 
axisymmetric, typically either a cone or ogive. The normal stress on the 
penetrator nose is approximated by the pressure (I required to expand a 
spherical cavity in an infinite medium, Figure 1. Thus, the 2-D target 
response is replaced by the 1-D cavity expansion problem. 
assumed to expand from zero initial radius with constant radial velocity, 
i ,  and this requ res stress (I on the cavity surface, where (I depends on 
i ,  but not on a. Then the normal stress on the penetrator nose at a 
particular locat on, Q in Figure 1, is taken to be (I for a corresponding 
spherical cavity which is tangent to Q as shown in Figure 1 and is 
expanding with 

The cavity is 

where Vsine is the component of penetrator velocity normal to its surface 
at Q. 
given penetrator velocity, while for an ogive nose, the stress is a 
maximum at the tip and decreases toward the tangent point between the nose 
and aft - body. 

For a conical nose, the stress is constant over the nose for a 

The SCE kinematics represent the target vertical motion as well as 
its radial motion, whereas CCE allows only radial target motion. Thus the 
SCE approximation should be better than the CCE for noses which are blunt, 
while the CCE motion is accurate for slender penetrator noses. 

-8- 



Much of this work is concerned with the solution of the l-D wave 
propagation problem for the expanding spherical cavity in an infinite 
medium represented by appropriate geological material response models. 

MATERIAL MODEL AND RESPONSE REGIONS 

Material compressibility is modeled by a linear pressure-volume 
strain relation 

+ 2a& rl = 1 - P O / P  ( 2 )  P = Kq; P = 3  1 F R  
where aR and 04 are the radial and tangential components of Cauchy stress, 
taken positive in compression, in a spherical coordinate system; P is the 
pressure; K is a constant; 9 is the volumetric strain; and p o  is the 
initial density. Figure 2 shows how Equation (2) with K = 91 kbar fits 
data from Reference [8] for sidewinder tuff, a target of recent SEPW 
penetrator field tests. 

The target shear strength is represented by a pressure-dependent yield 
or failure condition 

where /.L and r0 are constants and Q is the unconfined compressive strength. 
Tensile fracture in geologic materials is accounted for by the tensile 
strength Y and the requirement 

0 p Y  (4) 

which insures that the tensile stress not exceed the tensile strength. 
Equations (3,4) are a Mohr-Coulomb failure criterion with a tensile cutoff. 
This model with p = 0.91, Q = 0.50 kbar and Y = 0.033 kbar is compared in 
Figure 3 with sidewinder tuff data from Reference [8]. 
failure criterion is a generalization of the Tresca yield condition for 

The Mohr-Coulomb 
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metals and is often used as a yield surface to describe the plastic 
behavior of geologic materials. 
hydrostatic pressure through the parameter p, but is independent of the 
plastic deformation. In the solution for a spherical cavity expanding 
continuously from zero initial radius with constant velocity, it is assumed 
that once the stress state of a particle reaches the Mohr-Coulomb failure 
surface, it remains there. 
Reference [9 ] .  

The Mohr-Coulomb condition depends on the 

This is demonstrated for the case p = 0 in 

At stress states below failure, the response is elastic and is 
represented by the isotropic Hooke's law with bulk modulus K,  the same as 
in Equation (2) and Poisson's ratio, Y .  

For the infinite medium in which a spherical cavity is expanding from 
zero initial radius with constant radial velocity i, Figure lb, this 
material model generally results in three response regions as indicated in 
Figure 4. 
holds. At larger radii is a region of tensile fracturing in which C T ~  = 0 
which represents the average effect of radially running tensile fractures, 
and farthest out is a region of elastic response. The cracked region is 
significant when both the cavity expansion velocity is low and the material 
tensile strength is much less than the compressive strength, such as for 
geologic materials. 

Nearest the cavity is a plastic region in which Equation (3) 

COMPARISON OF SCE AND CCE STRESSES ON THE SEPW 

Using the SCE solution procedures discussed in the Appendix, the stress 
0 normal to the surface of a conical nosed penetrator with a/d = 1 into 
sidewinder tuff has been calculated as a function of penetrator velocity V ,  
where 1 i s  the nose length and d is the aft-body diameter. 
are shown in Figure 5. A cone with n/d = 1 approximates a 3 CRH ogive, the 
nose shape of the SEPW. 
dimensional ized by cp = [K/po]1/2 which is the elastic-plastic interface 
speed for 1-D strain elastic-perfectly plastic waves and is of the order of 

These results 

In Figure 5 the penetrator velocity is non- 
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the unknown (a priori) speed of the interface bounding the plastic c1 , 
region, Figure 4. 
penetration speeds and elastic-cracked-plastic at lower speeds. 

The target response is elastic-plastic at the higher 

Figure 5 also shows the stress on the penetrator calculated with the 
cy1 indrical cavity expansion (CCE) kinematic approximation and the same 
target response regions. The CCE solution procedure follows that of 
Reference [2] with aZ assumed to be the mean of the other two normal 
stresses. There are significant differences between the SCE and CCE 
stresses, particularly at low speeds for which the CCE stress is less than 
one-half of the SCE stress. 

Lastly, Figure 5 shows the SCE and CCE stresses in the quasistatic 
limit when the response is assumed to be elastic-plastic. A comparison of 
these values with the other results indicates that the stress is 
significantly lower when tensile cracking is allowed, particularly for the 
CCE approximations. 

COMPARISON OF SCE THEORY WITH THE SEPW-DG4 TEST 

The SCE and CCE based theories are compared with the full scale Davis 
Gun test of a 3.0 CRH SEPW into sidewinder tuff at the Tonopah Test Range 
on August 21, 1986, Reference [ 7 ] .  

The penetrator external geometry is a 3.0 CRH ogival nose, a 
cylindrical aft-body, and a gradual conical flare to the back, as shown in 
Figure 6. 
pusher plate. 
an 80" impact angle from the horizontal. 
1520 ft/sec. 

It weighs 906 lbs, which included the weight of an integrated 
The penetrator was launched with a 0" angle of attack and 

The measured impact velocity was 

. 
The sidewinder tuff target parameters, Reference [8], used in the 

theory are po = 1.80 gm/cm3, p = 0.91, K = 91 kbar, Q = 0.50 kbar, u = 

0.21, and Y = 0.033 kbar. 



Figure 7 shows the penetrator axial deceleration history from an on 
board accelerometer filtered to 2 kHz. The theoretical results are 
computed with GNOME using the S1G5 (CCE) and SIG6 (SCE) load subroutines 
with combined elastic-plastic and elastic-cracked-plastic target material 
response. The theory represents the 3.0 ogival nose, but ignores the 
gradual aft flare. This is justified by the data which do not indicate a 
significant increase (or change) in the deceleration on entry of the flare 
into the target (at about 2.4 msec). Sliding penetrator/target frictional 
effects are not included in the theory. The peak deceleration is 
predicted well by either theory; but the later-time deceleration is over 
predicted by the SCE theory and underpredicted by the CCE theory. 
property uncertainties are sufficient to account for either of the 
differences between the theories and measurements. The calculated maximum 
depths are 6.9 ft. and 7.2 ft. for the SCE and CCE theories, respectively; 
while the measured final depth was 9.6 ft. 

Target 
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APPENDIX - SOLUTION OF SPHERICAL CAVITY EXPANSION PROBLEMS 

GOVERNING EQUATIONS 

In analyzing the 1-D static and dynamic response of an infinite medium 
in which a spherical cavity is expanding from zero initial radius at 
constant radial velocity, both Lagrangian R and Eulerian r radial 
coordinates are employed. They are related by 

where u is the particle displacement in the radial direction. 
difference in these coordinates is not usually important in the elastic 
region, Figure 4, but is obviously significant near the surface of the 
cavity which has expanded to finite radius r = a (at R = 0). 

The 

The target or medium response is generally separated into three 
regions - elastic, cracked, and plastic. These are separated by three 
radially propagating spherical interfaces at Eulerian coordinates r = clt, 
c2t7 and c3t as shown in Figure 4. 

The medium motion within each o f  these regions is governed by the 
equations of momentum and mass conservation in Lagrangian coordinates, 

- ( R + u )  2 - -  auR 2(R 4- u) [I $1 PR - 04] 
2 a2u 

aR P O R  - -  
at2 - 

= p(R + u)‘ 11 + E] POR (A3 1 

where po ,  p are the initial and current densities and u are the radial 
and tangential components of Cauchy stress, taken positive in compression. 

R’ d 

The equations of conservation of momentum and mass across a moving 
spherical interface are required to connect the response in one region with 



that in an adjacent area, e.g., across the elastic-cracked interface. 
These equations, for an interface moving in the positive r direction with 
speed c in an Eulerian frame are 

p+v+ (c - V+) 

p-(c - v-) = p t (c - V+) 

where v = au/at is the particle velocity and t, - refer to the radially 
outer and inner sides of the interface, respectively. Equations (A4, A5) 
are the same as those in cylindrical coordinates, Reference 121. 

QUAS I STAT IC RESPONSE 

When the spherical cavity growth is slow enough, corresponding to low 
penetration speeds, a quasistatic assumption is valid and leads to closed- 
form results for the stress required to expand the cavity. 
are useful in providing an independent check of the dynamic solution in the 
limit of zero cavity expansion velocity. The solution procedure is similar 
to that for cylindrical cavity expansion, Reference [ 2 ] .  It will be 
summarized here for elastic-plastic response and the results given for both 
el astic-pl astic and el astic-cracked-plastic response. 

These results 

The medium response is assumed to consist of two regions, a plastic 
one, a < r < rl and an elastic one rl < r; where rl is the Eulerian 
coordinate of the elastic-plastic interface. 
Reference [ lo ]  for the elastic response of a medium with a spherical 
boundary surface and applying the Mohr-Coulomb condition of incipient 
plasticty, Equation [3] at r = rl+ gives the elastic results at the 
interface, 

Using results from Hill, 
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(1 + V )  ;o rl t u. = --I 9(1 - 2 4  + (1 t v) F0 

Rewriting Equation (A2) in terms of r and omitting the inertia term 
gives the equation of static equilibrium. 

continuity of aR at r = rl, the stress at the cavity surface is 

This is integrated to determine 
After satisfying after using Equations (2, 3) to eliminate u aR 4 .  

The ratio rl/a is determined by considering displacements. Equation 
(2) i s  used to substitute for p / p o  in the continuity Equation (A3) and 
following Chadwick [ll] the result is written in terms of r and R using 
Equation (Al). This is integrated to give 

rl - u1 rl 

0 a 

where P is known through Equations (A9,3). Using the small parameter 
<< 1, an approximate solution to Equation (A10) is developed for rl/a, 

0 



As p -> 0 ,  Equation (A9) can be evaluated by L'Hospital's rule, but 
Equation (All) breaks down as the correction term becomes of the same order 
as the leading term and a different approximate expression is required. 

Equations (A9, All) give the stress required to expand a spherical 
cavity slowly from zero initial radius when the material is elastic- 
plastic. 
additional cracked region of response should be included. 
the results o f  an analysis similar to that given for the elastic-plastic 
case are 

The most usual case for geologic materials is when Y << Q and an 
For this case, 

.,(a) = 2 [ 
P 

3 

Equations (A12, A13) give the required stress to expand a spherical 
cavity when the medium response is elastic-cracked-plastic and approximate 
the stress on a penetrator nose at low velocity. 
(A12, A13) have the same limitations as discussed previously for Equations 
(A9, All). 

As p -> 0 ,  Equations 

DYNAMIC ELASTIC-PLASTIC RESPONSE 

For high enough cavity expansion velocity, tensile stresses in the 
target do not reach the tensile strength of the rock ( ~ 4  > - Y )  and an 
elastic-plastic solution is valid. 
cracked region between interfaces 1 and 2 is removed. 

This i s  represented in Figure 4 if the 
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Elastic ResDonse. Following Reference [9], Equation (A2) is 
linearized and written in terms o f  u using Hooke's law (with K, u). 
resulting equation is reduced to a first order equation in dq/d( by the 
transformations 

The 

- u  -1- ; u = -  ; q = <  u e = -  R 
clt clt 

where E is a similarity parameter and c1 is the unknown speed o f  the 
elastic-plastic interface in an Eulerian frame. 
is not necessary to distinguish between Lagrangian and Eulerian coordinates 
R and r. After satisfying G = 0 at the elastic wave front (( = l/7, 7 = 

cl/c3) and the Mohr-Coulomb condition (3) at the elastic-plastic interface 
( = 1 (the difference between Lagrangian and Eulerian coordinates may be 
neglected in the elastic region), the solution is 

In the elastic region it 

where 

(1 - u) $ +  z u q  E OR = - 



and i = v/cl; OR = aR/K; and 
point, unknown. 

and applying the Mohr-Coulomb condition on both sides of the elastic- 
plastic interface, one finds that i, V and all other quantities are 
continuous across this interface. 

= a/K. In Equations (A15-19) 7 is, at this 4 

Elastic-Plastic Interface Conditions. Using the conditions (A4, A5) 

Plastic ResDonse. Using Equations ( 2 ,  3, A3) to substitute into 
Equation (A2) and the transformation (A14) yields the field equation in the 
plastic region 

+ 2 ( ( t i )  1 +  I 

where a 2 = a1 2 = c1 2 2  /cp ; c z = K/pO. The nonlinear Equation (A20) is 
P 

solved by an inverse numerical procedure beginning at the elastic-plastic 
interface f = l-ili and ending at the cavity surface 5 = 0 where 1 refers 
to the interface. New dependent vari ab1 es 

1 dU 2 s  U = i + ( , N =  

are introduced to convert (AZO) into a pair of first order equations which 
are solved by a Runge-Kutta integrating subroutine, Reference [12]. A 
value of the unknown constant a is assumed. With the restriction a < 1 + 
2p/3 the coefficient of d2u/d< will be negative and no singularity will 
occur. u1 and il+ from the elastic solution (A15-19) and continuity of u 
and i at { = 1 - U1 provide starting values for U and N. 
integration reaches = 0 the cavity expansion velocity i corresponding to 
the assumed value of a is determined by 

2 
2 

- +  
When the 
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The corresponding normal stress required to expand the spherical cavity is 

u = K 11 + $1 [l - U2(0) N(O)] + T O  

For identical input parameters representing sidewinder tuff (;o = 

0.00383, p = 0.91, and u = 0.21) we find that the limit of the dynamic 
solution as 5 - ->  0 gives u/K = 0.0458 while the quasistatic solution 
(9A,llA) gives 0/K = 0.0460, which is satisfactory agreement. 

DYNAMIC ELASTIC-CRACKED-PLASTIC RESPONSE 

At low enough cavity expansion velocity, the target is modeled with 
regions o f  elastic, cracked, and plastic response, as shown in Figure 4. 
In the cracked region, 04 = 0. This region is required because otherwise, 
04 would exceed the material tensile strength. 

Field Eauations. Variables are non-dimensionalized based on the 
unknown speed of the cracked-elastic interface, c ~ .  In particular, 

In the elastic region, the solution is required to satisfy the condition 

at the elastic side o f  the cracked-elastic interface, R = c2t+. 
elastic solution is again given by Equations (A14-A18) with cl replaced by 
c2 and 

The 

( 1  + v )  P 7z B =  
2v (1 - r3) t ( - 2 ~ ~  + 37' - 1) 

where 7 = c2/c3. 



In the cracked region, the global effect of major tensile fractures is 
represented by 

u4 = 0 (A271 

Using Equations (A27, 2, A3) and the transformation (A24) to substitute 
into Equation (A2) yields the field equation in the cracked region 

t e u - u  -2 - 5  .“I = o  

The region of plastic response in which the Mohr-Coulomb condition (3) 
is satisfied is again represented by Equation (AZO) in which o = a2 = c2/cp 
and < = R/c2t. 

Interface Conditions. Initially, both the elastic-cracked and the 
cracked-plastic interface speeds are unknown. 
known and in particular 0 = - Y .  Using these results and = 0 at ( = e2 
in Equations (A4, A 5 ,  and 2) gives 

The solution at ( = is 
- 

4 4 

in which V = v/c2$ 9 = Y/K, a2 = c /c 
P2+ is computed from the known stresses and is not equal to 1. 
(A29) represents a jump in i2  and other quantities have corresponding 
jumps . 

and p = p / p o .  In equation (A29) 
Equation 

2 P’ 

At the cracked-plastic interface, e l ,  a similar procedure shows all 
quantities are continuous. 
location o f  this interface in the solution procedure discussed below is 

An additional condition used to determine the 
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which results from setting ad = 0 in Equation (3). 

Solution Procedure. As for the elastic-plastic calculations, the 
field equations (AZO, A28) are numerically integrated using the dependent 
variables U and N, Equation (A21). One difference is that now, both 
interface speeds c1 and c2 are unknown. 
value of c2 (or a2 = c /c ), and the numerical integration begins at the 
elastic-cracked interface, = t2 = 1 - U2. 
solution, continuity of f i ,  and Equations (A29, A15, A16, A21), the starting 
values U2- and N2- are known. 
proceeds with ( decreasing until Equation (A30) is satisfied which 
determines the cracked-plastic interface cl. 
this interface and the numerical solution continues with U, N satisfying 
the plastic field equation (AZO) until the cavity surface = 0 is 
reached. 

The solution starts by assuming a 

2 P  
Using the known elastic 

Then the numerical solution of U and N 

U and N are continuous at 

To avoid singularities in the differential equations, a2 is 
restricted by both a 2 = a2 < 1 + 2 / 3 p  and a 2 = aZ2< 3 .  

For input parameters representative of sidewinder tuff ( i o  = 0.00383, 
p = 0.91, 0 = 0.00036, u = 0.21), the limit o f  the dynamic solution as i 
- ->  0 gives u / K  = 0.0322 while the quasistatic solution (A12, A13) 
gives u / K  = 0.0323, which is satisfactory agreement. 

USE OF THE SCE MODEL AS A LOAD SUBROUTINE IN GNOME 

The SCE elastic-plastic and elastic-cracked-plastic numerical solution 
procedures have been implemented together as a load subroutine in the GNOME 
penetration code. Once a penetration problem is defined in GNOME, a curve 
of normal stress on the penetrator versus velocity normal to the penetrator 
surface is generated to cover the range of penetrator surface velocities. 
This curve is calculated once at the beginning of the penetration solution 
and then subsequently interpolated as needed to determine the load stresses 
on the penetrator during a complete trajectory calculation. 



In determining the initial 0 versus i curve, it is necessary to decide 
when to change from elastic-plastic target response (at high :) to elastic- 
cracked-plastic response (at low :). The criterion used is that elastic- 
plastic response occurs for values of a = a1 = c /c such that 1 P  

1/2 

a* 

& = 2 1 t  * [l + p 7 0 -  - PY 3]Y] 

where c1 is the elastic-plastic interface speed. 

The criteria (A31) i s  developed from the equation 04 = -Y, where 04 
comes from the elastic solution (A18), evaluated at < = 1. 
tensile stress always occurs at the elastic-plastic interface, < = 1. 

The largest 

To calculate o at penetrator local normal velocity components lower 

such that 0 < a2 < a*, where 
than those for which al> a*, we assume elastic-cracked-plastic 
response and select values of a2 = c /c 

a2 
response, a1 < a2.  

2 P  
is the elastic-cracked interface speed. For elastic-cracked-plastic 
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