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Block Matrix Factorization Techniques 
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Numerical Mathematics Division 1422 

Abstract 

Two methods for computing preconditioners for nonsymmetric block 

tridiagonal systems of linear equations are investigated. Adaptable general 

purpose implementations are given for both methods. 
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1. Introduction 

The numerical solution of two-dimensional partial differential 
equations (PDE) frequently requires the solution of large highly structured 
systems of linear algebraic equations. 

technique that can be used to compute effective preconditioners which 
improve the performance of many popular iterative methods for solving these 

Block matrix factorization is a 

systems ( i l l  , [21 [31 , [41 and [ S I ) .  

In this work we examine two classes of SSOR like preconditioners [ll] 
for nonsymmetric systems that result from different implementations of block 
matrix factorization. The preconditioners in one class are similar to those 
first presented in (31. These generally have low storage requiremgnts and 
are not expensive to compute. We suggest a general technique for computing 
them that employs partial pivoting. The other class of preconditioners is 
computed using complete block factorization. 
to very effective iterative methods but are more expensive to compute. 

These preconditioners can lead 

Both classes of preconditioners are parameterized by a positive integer 

parameter p. 
less expensive to compute and store. For larger values of p the 

preconditioners require more storage and computation but result in more 
reliable and faster converging iterative methods. 

outline of the paper. 

For smaller values of p, the preconditioners are generally 

The following is an 

A discussion of how block matrix factorization can be used to obtain 
preconditioners is given in section 2 .  In section 3 the two classes of  

preconditioners are derived and a general procedure for computing each is 
presented, 
section 5 numerical examples are given that compare the performance of 
preconditioners from both classes in a simple iterative method. 

The effect of the parameter p is examined in section 4. In 
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2 .  BackPround - and Motivation 

In this section we describe 
compute preconditioners. 

We consider the problem 

where the matrix i has the form 

the use of block matrix factorization to 

B1 -F1 
-E1 B2 -F2 

n n 
L L and the matrices B E. and F. are n by n. The n by n matrix A is said to 

be a block tridiagonal matrix. In addition, we assume that B E. and F 
are banded matrices. 
dimensional PDEs when n grid points are used in each direction to discretize 

the problem. 
consists of the blocks F 
n2 by n matrices B and E are defined similarly. 
important problems, A is an m-matrix (i.e., off diagonal elements of A are 
nonpositive, A is invertible and A 2 0). 

i' 1 1 

i' 1 i 
Such systems arise frequently in solving two- 

2 Throughout this work, F denotes the n by n2 matrix that 
of A with all other components set to zero. The i 2 We note that in many 

-1 

Assume that the diagonal blocks Bi are nonsingular. We define the 
reduced n by n diagonal blocks G as i 
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The reduced diagonal blocks are produced by the forward course of block 
Gaussian elimination applied to A. It is not difficult to show that if A is 

a diagonally dominant m-matrix, then the matrices in (2.2) are well-defined 

and are also diagonally dominant m-matrices (see [7] and [ 3 ] ,  Lemma 1.). 
Throughout this work G will denote the n2 by n block diagonal matrix whose 
i-th diagonal block is GI. 

2 

We define the matrix M as 

(2.3) M - (G - E) G-l (G - F). 

A straightforward calculation shows that M-'A - I where I denotes the 
identity matrix. 

In order to solve (2.1), the scheme (2.2) could be implemented as 
calculate the triangular factors Li-l and U [ 6 ]  i-1' i-1 follows. Given G 

such that 

and complete the calculation of Gi as Use these factors to compute G 
in (2.2). Save the triangular factors L and Ui-l. The solution of (2.1) 

-1 
i-1 Fi-l 

i-1 
is given by 

(2.4) x - (G - F)-l G (G - E)-' b . 

t t  t t  t t t Writing the vectors b , x and qt as (bl,b2,. . . , bn), (xl,. . . ,xn) and 
(ql, ...,qn), respectively, where bi, x 
computed by calculating 

t t and q are n-vectors, (2.4) can be i i 

(2. Sa) 

and solving 
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(2.5b) 
(L.U.) x = q. + Fj j=n-1,. . . ,1 

J J  j J 

Although (2.2) and (2.4) provide a direct solution method that fully 
exploits problem structure, it requires a considerable amount of computation 
and storage. Note that the G. are usually dense matrices even if the B are 
banded. 

Also, calculating G requires O(n ) floating point operations, and the total 

cost of (2.2) is O(n ) operations. For many problems these computational 
costs can be avoided. Observe that obtaining the final solution by (2.5) 

3 requires O(n ) operations. 

1 i 
for i=l,2,. . . ,n requires n3 words of storage. Thus storing L U 

3 i i  

4 i 

The basic idea behind incomplete block factorization schemes is to 
that are inexpensive to compute and approximate the G 

require less storage. Instead of (2.3) we could form the matrix 

with matrices E i i 

(2.6a) h = ( E  - E) E-' (5 - F) 

2 where E is an n2 by n 
Gi. In this case 

block diagonal matrix whose diagonal blocks are the - 

(2.6b) --1 x O = M  b 

is only an approximation to the solution of (2.1). Also, k-'A z I. 
if ci is a good approximation to G 
approximation to the inverse of A, and also that Ip(g-'A)-lI is small where 
p denotes the spectral radius. 
preconditioner for the system (2.1). 

However, 

we would expect that g-' is a good i' 

The matrix k-' can be viewed as a 

E can be used to improve the performance of various iterative methods. 
If A is symmetric and positive definite, incomplete Cholesky factorization 
can be used to compute the E 
be used as a preconditioner for the conjugate gradient method [5]. 

The resulting matrix h is symmetric and can i' 
For 
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nonsymmetric problems 
splitting [lo]. We recall several fundamental facts regarding these 

methods . 

can be used in an iterative method based on 

Given the matrix A, consider the splitting 

A - E - N  

where E is a nonsingular matrix. 
matrix. The splitting suggests the iteration 

The matrix N is referred to as the defect 
n 

+ E-' rk, k+l Xk X 

( 2 . 7 )  

r k = b - % .  

- xk - x where x denotes the solution of (2.1), and x is the 0 If 'k 
starting point for the iteration, then 

--1 k 
= (I - M A) e o  . k+l E 

Thus convergence requires that p(I-h-'A) < 1. The better E-' approximates 

A-', the faster (2.7) converges. 

One possible way to approximate G 
-1 

is to simply ignore the term i 
G F and set z( - Bi. For this choice (2.6a) is Ei-l i-1 i-1 i 

(2.9) - (B - E)-1 B (B - F)-l *SSOR 

which is the SSOR matrix [ll] with relaxation factor set to unity. Since 

the Bi in (2.9) are all banded matrices, the basic iterative step (2.7) is 
computed using very little additional storage and, approximately n p 

operations where p is the number of super- and sub-diagonals of B. 
Procedures based on incomplete block factorization that attempt to compute a 
better approximation f o r  the G 
methods than the SSOR method. 

2 

can be viewed as more highly implicit i 
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Diagonal dominance plays an important role in these methods and this is 

illustrated in the following simple example. Consider the usual second 
order centered difference discretization of the two-dimensional Laplace 
equation, Au = 0. The discretized system can be written in the form ( 2 . 1 )  

where Ei = I, Fi = I and Bi is a tridiagonal matrix with 4 on the diagonal, 
-1 on the super- and sub-diagonals. Although B-l is dense, components in a 
given row decrease by about an order of magnitude every two columns from the 
main diagonal. In this example the G in (2.2) are also diagonally dominant i 
and components of the G-' decrease in magnitude away from the main diagonal. 

Thus, one is led to consider modifications to (2.2) that approximate G by 
ignoring outer super- and sub-diagonals. 

i 

i 

i 

3 .  Amroximations for Reduced Diagonal Blocks 
In this section we describe two methods for computing approximations to 

the blocks Gi in ( 2 . 4 ) .  

preconditioners. The preconditioners in each class are parameterized by an 
integer parameter p. For smaller values of p, preconditioners in the first 
class have low storage requirements; those in the second class have low 
storage and computational requirements. 

The two methods lead to two different classes of 

Method 1 is the procedure for computing the first class of 
preconditioners. In order to simplify the description of the method we 
assume that B E and F have no more than p super- and sub-diagonals. The 
notation e 
s-th component which is 1. 

i' i i 
is used to denote a vector whose only nonzero component is the 

S 

Method 1 
1. Select an integer p, 1 I p I n. 

Set G1 - B1. 
Repeat steps 2, 3 and 4 for i=2,3, ..., n. 

2 .  Factor G to obtain L and Ui-l. i-1 i-1 

9 



-1 3 .  Compute X - Giel Fi-l by solving 

for s=l,2, . . . ,  n. Set Gi - Bi - Ei_lX. 

4. Form the truncated factors and ei-l by discarding all but the i-1 
diagonal and p sub- and super-diagonals of Li-l and Ui-l, 
respectively. 

5 .  Compute and fin for Gn. n 

In order to solve (2.1) , let Qi - 0 i i  be an approximation to the i-th - 
reduced block. Use the matrices ci to form the matrix as in (2.6a). M 
can then be used in iteration (2.7) to obtain the solution to (2.1). It can 
also be used to precondition (2.1). 

The LINPACK routine SGEFA [ 6 ]  is used in our implementation of Method 1 

to compute L 
stability. If at some stage in constructing L and U SGEFA chooses a 
nondiagonal pivot, it interchanges the current row and selected pivot row. 
When SGEFA terminates, the lower triangle of the matrix contains Li and the 
upper triangle contains U 

and Ui in step 2.  It employs partial pivoting for i 

i i 

i' 

In step 4 all but the diagonal and p super- and sub-diagonals are 

discarded to form E. and oi. 
when A is a diagonally dominant matrix. 

performed by SGEFA bring elements of larger magnitudes into the diagonal 
positions of U Also, these interchanges tend to reduce the magnitudes of 
elements in the outer super- and sub-diagonals of both factors. 

Motivation for this was provided in section 2 

For many problems row interchanges 
1 

i' 

Iteration (2.7) requires the vector fi-lr. To compute this vector our 

implementation of (2.7), which is used in section 5, employs (2.5a) and 
(2.5b) where the truncated factors zi and ciare used in (2.5b). 
modified LINPACK routine SGESL [ 6 ]  so it can use the truncated factors to 

We have 
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obtain a solution. 
and ci to reduce the total cost of solving the systems in (2.5b) to 
approximately (3p+l)n2 operations. 
in step 3 to compute Xe . 

The modified routine exploits the banded structure of E i 

The unmodified version of SGESL is used 

S 

Method 1 offers no savings in computation over the direct method (2.2), 
2 but total storage for all the matrices L and ci is only (2p+l)n . Note i 

that the method computes the same blocks Gi that are produced in ( 2 . 2 ) .  

Errors arise when the truncated factors of G are used to form E. One would 
expect the inverse of fi to be a good approximation to A-' and this is 
certainly evidenced in the numerical tests presented in section 5. 

- 
i 

The next method, Method 2, usually requires considerably less 
computation than Method 1. For the remainder of this section, it is assumed 
that Ei is computed by Method 2. 
the banded matrix formed from the 
of A .  

For a matrix A ,  the notation [ A ]  denotes 
diagonal, and p sub- and p super-diagonals 

P 

Method 2 

1. Select an integer p, 1 5 p I n. 

1' sub-diagonals of B 
Set 5, to the diagonal and p super- and 

Repeat steps 2, 3 and 4 for 112, ..., n. 

to obtain E,-1 and ci-l. i-1 2 .  Factor E 

3. Compute X = (Ei-l) -1 Fi-l by solving (Li-lci-l) X = Fi-l . 

4 .  Compute E i - B~ - [Ei-lXlp * 

5 .  Compute and fin . n 

As in Method 1 the matrices Zi can be used to form by (2.6a). fi can 
then be used in (2.7) to solve (2.1) or as a preconditioner for (2.1). 
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In step 2 and gi-l are just the factors of a banded matrix with p 

super- and sub-diagonals. Partial pivoting is used in constructing these 
factors and due to possible row interchanges performed in selecting pivots, 

'i-1 i-1 
factored form requires (3p+l)n words. 

can have up to 2p nonzero super-diagonals. Thus storage for E in 

In step 3 the factors are used to obtain X by solving a matrix 
equation. This is the computationally intensive step in method 2 .  The 
following is an outline of our implementation of this step. 

Recall that fii-' is constructed by applying a sequence of row 
interchanges and elementary row operations to E More specifically, i-1' 

where \ and P k k 
and multiplication by % performs an elementary row operation. \ is a 
matrix with one on the main diagonal, and all other entries are zero with 

are n by n matrices. Multiplication by P interchanges rows, 

the exception 
These entries 

In order 

of the p positions below the main diagonal in the k-th column. 
are the multipliers found in the k-th column of 
to compute X, the matrix 

T - [""' % Pk] Fi,l 
k= 1 

is formed, and then the system 

is solved. Both calculations can be implemented by making calls to the basic 
linear algebra subroutine SAXPY [ 6 ]  with vectors of length n. 1 

'Recall that given vectors x and y and the scalar a, SAXPY forms ax+y. 
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We have found this implementation performs well on both scalar and 

vector machines. Since n is the number of grid points in one direction, n 
is large enough in most problems so that excessive loop overhead is avoided, 
and vector performance rates are achieved on vector machines. 

In step 4 only the components on the diagonal and the p super- and sub- 

diagonals of E X are computed. i-1 

Our current implementation requires approximately (3p+1)n3 operations 
to compute all the 8, in factored form. If pivots were restricted to the 
diagonal, this would be reduced to about (2p+l)n operations. If, in 
addition, the banded structure of F. were exploited in forming T, the 
operation count could be reduced further. For example, if F. has a 
symmetric structure and a bandwidth no greater than 2p+l, the operation 
count can be reduced to about (1.5p+l)n . 

3 

1 

1 

3 

Both methods employ partial pivoting for stability. We feel this is 
essential in a method that will be used to solve a wide range of problems. 

It also results in codes that are easier to use. For example, in solving 

multicomponent PDE systems it eliminates the need for a particular variable 
ordering that ensures diagonal pivoting is stable. 

4 .  Analvsis of the Defect Matrix and Convergence 
Methods 1 and 2 calculate a matrix fi that approximates A. Both methods 

require the selection of a parameter p that determines the accuracy of the 
approximation. In either method the defect matrix is N - fi - A. In this 

section we analyze the behavior of the defect matrix and prove the 
convergence of Method 2 .  

The following is a well-known convergence result for (2.7). Assume 
-1 that A is an invertible matrix such that A 

k is nonsingular, fi-' I 0 and N 2 0, then 
2 0 .  If in the splitting of A 

p (8-'N) < 1, 
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and it follows from ( 2 . 8 )  that iteration (2.7) converges [ l o ,  Theorem 3 . 1 3 1 .  

Obviously, a splitting where components of N are small in magnitude is 
desirable. Throughout this section, we assume that A in (2.1) is a 
diagonally dominant m-matrix; therefore, A 10. -1 

In this section a superscript p is used to indicate that the matrix 
P depends on the value of p used in Method 1 or Method 2. For example, G. is 

used to denote an approximation to G i' 
computed by Method 1 or Method 2 .  

1 
It will be pointed out whether G i  is 

Regardless of the method used, it is 
assumed that in constructing G P pivots are taken on the diagonal. It will i 
also be assumed,'unless otherwise indicated, that p 1 p 
largest half bandwidth of the matrices Ei, Fi and Bi. 

where po is the 0 

The defect matrix Np is the block diagonal matrix 

In Method 1, 

P P  
GY = Li ui 

where Lip and Uip are the truncated factors of 

In Method 2 

Np is the zero matrix for both methods. 
results in order to describe the behavior of Np. 
A is a matrix, A denotes the i,j-th element. 

GT is the band matrix computed in step 4. Note that if p = n, 
We require several preliminary 

Throughout this section if 

i,j 
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Preliminarv Results 
Lemma 4.1 
be triangular factors for G. 
in constructing L and U. 

Let G be an n by n diagonally dominant m-matrix and let L and U 
Assume that pivots are taken from the diagonal 

Then 

L ~ O i f j z k ,  
j ,k (4.2a) 

U ~ O i f j z k ,  
j Sk 

(4.2b) 

(4.2~) 

for j=-1,2, . . .  ,n and k = 1,2, . . .  ,n. 

Proof: Inequalities (4.2b) 

elimination on a diagonally 
dominant m-matrix [7]. Let 
after j-1 steps of Gaussian 

and (4.2~) hold since a basic step of Gaussian 

dominant m-matrix results in a diagonally 
c and 0 be elements in the reduced matrix 
elimination. If j + k, then c I 0 and 
j ,k j ,j 

j ,k 
f j  > 0. Since L , , ~  - fik,jflj,j , (4.2a) follows.. 
j J 

In the next lemma, Gp = Lp Up where L and U are the triangular factors 
of G and Lp = [LIP and Up = [VIp. 

Lemma 4.2 Let E, F and G be n by n matrices and assume that E 1 0, F 2 0 

and that G is a diagonally dominant m-matrix. If p1 and p2 are positive 
integers less than or equal n and p 1 .e P2' then 

(4.3) 

Proof: For 1 I p I n, 

(4.4) 

p1 -1 p2 -1 OIE(G ) FsE(G ) F . 

For a given unit vector e consider the solution of the system 
S I  
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( 4 . 5 )  

which is 

Lp x = Fes , 

i-1 

k-1 

Since G is an m-matrix, Lemma ( 4 . 1 )  shows that Lp 
LT,l = 1 and F 2 0 ,  it follows that x1 2 0. 

definition of Lp implies that 

I 0 if i z k. Since i,k 
Also, if p1 < p2, then the 

P1 p2 where x and x denote the corresponding solutions of ( 4 . 5 ) .  From the 
preceding inequality, we have 

( 4 . 6 a )  

and similar arguments show that 

( 4 . 6 b )  p2 -1 E I E (U ) 

Thus, inequality ( 4 . 3 )  follows from ( 4 . 4 )  and ( 4 . 6 ) . .  

Note that if E z 0 and F z 0, then the inequalities in ( 4 . 6 )  are strict 
if Li,j # 0 for i 2 j and U 
follows that the inequalities in ( 4 . 3 )  are also strict. 

z 0 for i I j. Under these conditions, it 
i,j 

Lemma 4 . 3  

and U are its triangular factors. 
Assume that G is an n by n diagonally dominant m-matrix, and L 

Then for positive integers p1 < p2 I n, 
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Proof. The proof is a straightforward consequence of Lemma 4.1.. 

Behavior of Np in Method 1 
Let A in (2.1) be a diagonally dominant m-matrix and assume the GT are 

For integers p1 and p2, 1 I p1 < p2 I n, it follows computed by Method 1. 
from Lemma 4.2 that - 

( 4 . 7 )  

This inequality leads to the following theorem that describes the behavior 
of N for Method 1. 

P 

Theorem 4.1 Let Np be defined by (4.1). If p1 and p are integers such 
that 1 5  p1 < p2 5 n, then 

2 

Proof. Since G4 is a diagonally dominant m-matrix, Lemma 4 . 3  shows 

P1 p2 Gi I [Gi ] . This inequality and inequality (4.7) show that 
P1 

and 

hence, the first inequality is true. 
zero matrix.. 

The second follows since Nn is the i 

1 super- 

P1 

Theorem 4.1 shows that for Method 1, if pl< p2 entries in the p 
P1 and sub-diagonals of N are negative. Furthermore, entries in the 
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p2 super- and sub-diagonals of N 

N . However, in N super- and sub-digaonals more than p columns away 

from the main diagonal can have positive entries. 
entries in sub- and super-diagonals more than p columns away from the main 

diagonal can be larger than those in N . This occurs, for example, if 
Method 1 is used to compute the approximate reduced diagonal blocks f o r  the 
diffusion problem in section 5 .  

have magnitudes less or equal to those of 

P1 P1 
1 

p2 In addition, in N 

2 
P1 

Behavior of Np in Method 2 
Let GI denote the reduced blocks computed in Method 2. The diagonal 

blocks of Np are NY, which is the zero matrix, and 

( 4 . 9 )  

It is not difficult to show that the Gp computed by Method 2 are 
diagonally dominant m-matrices. Recall that we have assumed the half 

bandwidth of each B. is no greater than po and p 1 p 

i 

Since Gp = B1, it is 
1 0' 1 

a diagonally dominant m-matrix. Now, Gp - [Alp where A - B2 - E1(G1> P -1 F1. 
2 

Since A is obtained by Gaussian elimination on a diagonally dominant 

m-matrix, it is also a diagonally dominant m-matrix. Moreover, so is [ A ]  

since discarding outer super- and sub-diagonals of a matrix preserves the 
diagonally dominant m-matrix property. 
m-matrix. This argument can be repeated to show that all the matrices 
G. are diagonally dominant m-matrices. 

P 

Hence, Gp is a diagonally dominant 2 

P 
1 

The following lemma provides several results needed to describe the 

behavior of Np 
Method 2 which 

Lemma 4.4 Let 
such that po 5 

for Method 2. It is also required for the convergence of 

is discussed later in this section. 

the Gp be computed as in Method 2. 
p1 < p2 s n, then for i-l,2,...,n 

If p1 and p are integers i 2 
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(4.10a) 

( 4 .  lob) 

(4.10~) 0 5 Ei (G:')-' Fi I Ei (Gi p2 ) -1 Fi . 

Proof. 

inequalities hold for i - 1. Assume that (4.10a) holds for some i. Since 
GP is an m-matrix, (4.10b) follows. 
follows. From (4.10c), we have that 

The proof is by induction. Since Gp - B for any p 1 po9 the three 1 1  

Since Ei 2 0 and Fi 1 0 ,  (4.10~) 
1 

hence, (4.10a) holds for i+l. In addition, (4.10b) and (4.10~) are true for 
i+l . w  

Note that (4.9) is just the matrix Ei(G!)-I Fi with the diagonal and 

the p super- and sub-diagonals set to zero. If p1 C p2# then the diagonal 
P6 

and p 

p1 sub- and super-diagonals of N 

show that for the outer nonzero diagonals of N 

are greater than those of N . 

sub- and super-diagonals of N - L  are zero while only the diagonal and 2 
P1 are zero. However, (4.10~) and (4.9) 

P1 p2 p2 and N elements of N 

P1 

The preceding discussion indicates that preconditioners computed by 

Method 2 may not be effective for certain problems unless a large value of p 

is used. For problems that are strongly diagonally dominant, the magnitudes 
of elements on the outer sub- and super-diagonals of Np are small relative 
to elements on the diagonal of Mp. 
problems, this will not be the case unless p is chosen large enough so that 
these elements are 0. 

However, in less diagonally dominant 

19 
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It is very interesting to note the difference in the defect matrices 

that result from Method 1 and Method 2. Method 1 is much closer to a direct 
method for computing the reduced diagonal blocks (2.2) and provides more 
accurate approximations. 
nonnegative. This is atypical of most suggested incomplete block 
factorization methods which usually result in a regular splitting. 

Yet, the defect matrix for Method 1 need not be 

Convergence of Method 2 

Since the defect matrix that results in Method 1 can have both positive 
and negative components, the classical convergence theory for regular 
splittings [lo] does not apply. We do not analyze the convergence of this 
method here. Method 2 ,  however, yields a regular splitting. Convergence 
follows from general convergence results presented in [ 3 ,  Theorem 1 and 
Corollary 11. 

here as Theorem 4.2 using our notation. 

to have the block tridiagonal form (2.1). 

., 

For the convenience of the reader, we restate these results 
Recall that the matrix A is assumed 

Theorem 4.2 Consider the splitting A - E - N where 
- --1 M = ( E  - E) z-’(E - F) and N = + E E-’F - B. If A-‘ 1 0 ,  G 2 0 and 

N 1 0, then p (  k-’N) < 1 and iteration (2.7) converges. 

The next theorem provides a convergence result for Method 2 .  

Theorem 4 . 3  

integer, po 5 p 5 n. 
to form the matrices Gp, Mp and Np. 

Assume that A is a diagonally dominant m-matrix and let p be an 
Assume that GP are computed by Method 2 and are used 

1 
Then for the splitting A = Mp - Np,  

p((M P ) -1 N P ) < 1 and iteration (2.7) converges with - Mp. 
Proof 
for i = 1,2, . . . ,  n and po I p I n, hence, N 
Lemma 4.4 (G!)-’ 1 0 ,  for i=l,2,. . . ,n and po 5 p 5 n, thus, (Gp) 

-1 Since A 

and G = Gp.m 

Equality (4.9) and inequality (4.10~) of Lemma 4.4 show that Ni 2 0 
P P 
10. By inequality (4.10b) of 

1 0, Theorem ( 4 . 3 )  follows by applying Theorem ( 4 . 2 )  with N = Np 

-1 2 0. 

- 
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5 .  Numerical ExDeriments 

In this section we examine the performance of (2.7) on two test 
problems where fi is computed using Method 1 (Ml) and Method 2 (M2). 
present results obtained using MSSOR (2.10) for purposes of comparison. 

We also 

The test problems are the following simple two-dimensional diffusion 
problem (Laplace equation) and a two-dimensional diffusion-convection 
problem. 

1. Diffusion problem: Au = 0 if (x,y) E n where n = (0,l) x ( 0 , l )  and 
u = 1 on an. 

- S(X,Y) if - + au X + @ “Y 2. Diffusion-convection problem: 

(x,y) E n, u = 0 on 80. 

For problem 2, it was assumed that the solution was 

sin(zx)sin(zy) eJe (e J e  + e -Y + eY-l) 

S(x,y) was obtained by applying the partial differential operator to the 
solution. In the experiments B - .01, a - . 2  and @ = .2. 

Problem 2 was chosen because it requires the solution of a nonsymmetric 
linear system. 
discretization scheme was used. 
problem and was discretized using the usual centered second order 
differences. 

In order to handle convection in this problem, an upwind 

Problem 1 is commonly used as a test 

M1 and M2 were used to solve problems 1 and 2 with 15 and 31 interior 
grid points in both the x and y directions. 
direction is (n+l) . The tables in Figures 5.1 and 5.2 give the number of 
iterations of (2.7) required to solve each problem for a given value of the 
parameter p. 

The grid spacing in each 
-1 

The number of iterations required by SSOR is also given. 
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Problem 1 

11-15 

M1 

M2 

(value of p) 

1 2 3 6 

16 10 7 4 

23 14 9 5 

M2 79 44 28 12 

n-15 

M1 

M2 

Figure 5.1 

(value of p) 

1 2 3 6 

14 9 6 4 

19 12 8 4 

Problem 2 

M2 61 36 23 10 

Figure 5.2 

SSOR = 81 (iterations) 

SSOR = 294 

SSOR = 63 

SSOR = 201 

For each test an initial guess was obtained using (2 .6a)  and (2.6b) 

where E was computed using the appropriate method - M1, M2 or SSOR. 
iteration was terminated when the inequalities 

An 
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and 

max 
i 

t where \ ei # 0 were both satisfied. The method for - 
approximation and the stopping criteria are similar 

In each problem and for all values of n and p, 

determining an initial 
to those used in [3]. 

Ml requires the least 

number of iterations. The savings are most pronounced in problems 1 and 2 

for the case n = 31 where the problems are more highly ill-conditioned. 
Note that both M1 and M2 require fewer iterations when larger values of p 
are used to compute 8. 
M2 with p = 1 are identical to those in [3]. 

The results obtained for the diffusion problem using 

A significant portion of the costs of solving a problem with M1 or M2 
Since M1 requires O(n ) operations to compute 4 is the cost of computing fi. 

E, it is the most expensive method for solving the two test problems despite 
the fact it requires the least number of iterations. Recall that M2 
requires at least (1.5p+l)n3 operations to compute R. 
iterations of (2.7) are the main costs. 

In the SSOR method, 

The method of choice for solving either of the test problems is M2 with 

p = 1 or p = 2. 

1 or 2 in either the case that n - 15 or n - 31. 
problem 1 in the case n = 31. 
to solve the problem. 
and 494n are 
strongly diagonally dominant in both problems; therefore, SSOR performs 
reasonably well. 

This method requires the least total work to solve problem 

For example, consider 
2 SSOR requires approximately 1180n operations 

M2 requires approximately 424n2 operations if p - 1, 
2 if p = 2. It should be noted that the diagonal blocks B i 

Figure 5.3 shows the bounds on the spectral radius of 8-'A where A is 
the coefficient matrix in problem 1 for n - 31. The two columns give the 
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results obtained when 8 is computed by M1 or M2 using several different 
values of p. The bounds on p(A) are .019 I p ( A )  57.98. 

M1 M2 

[ . 2 2 ,  1.181 [.14, 1.071 
I.37, 1.181 [.24, 1.081 
[.51, 1.161 [.36, 1.091 
[.80, 1.101 [ . 6 7 ,  1.071 

Figure (5.3) 

-4, M1 does a slightly better job of reducing the spectral radius of M 
for all values of p. For p - 2 and 3 there is a slight increase in the 
upper bound on the spectral radius when M is computed by M2. 
M1, the upper bound on the spectral radius does not increase as in M2. 

Note that for 
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