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ABSTRACT

A computer program has been developed to determine the maximum
specific power for prismatic-core reactors as a function of
maximum allowable fuel temperature, core pressure drop, and
coolant velocity. The prismatic-core reactors consist of
hexagonally shaped fuel elements grouped together to form a
cylindrically shaped core. A gas coolant flows axially through
circular channels within the elements, and the fuel is dispersed
within the solid element material either as a composite or in
the form of coated pellets. Different coolant, fuel, coating,
and element materials can be selected to represent different
prismatic-core concepts. The computer program allows the user to
divide the core into any arbitrary number of axial levels to
account for different axial power shapes. An option in the
program allows the automatic determination of the core height
that results in the maximum specific power. The results of
parametric specific power calculations using this program are
presented for various reactor concepts.
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1.0 INTRODUCTION

The prismatic-core reactors consist of hexagonally shaped
fuel elements grouped together to form a cylindrically shaped
core. A gas coolant flows axially through circular channels
within the elements, and the fuel is dispersed within the solid
element (matrix) material either as a composite or in the form
of coated spherical pellets. Figure 1.0.1 provides a diagram of
a typical fuel element for a prismatic core along with examples
of the coated pellets and composite fuel forms.

The specific power is defined as the amount of power that
can be produced per unit of fuel mass (power/mass). Thus, higher
values of specific power result in less massive reactor cores
for a given power level. Two constraints that must be considered
when determining the maximum specific power that a reactor core
can achieve are criticality and heat removal. To satisfy the
criticality constraint, the size, composition, and geometry of
the core must be such that criticality can be achieved over the
entire reactor lifetime. Satisfying this constraint dictates the
mass of fuel required. To satisfy the heat removal constraint,
the amount of power produced must be such that it can be removed
without exceeding the maximum allowed core temperatures or the
maximum allowed coolant velocity or core pressure drop.

A computer program has been written to calculate the core
power for any given fuel mass and core length. Used in
conjunction with criticality calculations, this program allows
one to determine the specific power for a prismatic-core
reactor. The program includes approximate models to account for
the thermal resistance associated with the coolant, matrix,
coating, and fuel. Different coolant, matrix, coating, and fuel
materials can be selected to represent different prismatic-core
concepts. The computer program allows the user to divide the
core into any arbitrary number of axial levels to account for
different axial power shapes. Also, an option in the code allows
the automatic determination of the core height that results in
the maximum specific power.

This report contains a description of the models used in the
computer program along with some examples of the application of
the program.
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2.0 COMPUTER PROGRAM DESCRIPTION

The program was written to allow the user to specify the
material for the coolant, matrix, coating, and fuel. Presently,
properties for the following core materials are available:

- uranium carbide

- uranium dioxide

- uranium boride

- reactor grade graphite
boron carbide

- beryllium oxide

- zirconium carbide

- tungsten

- molybdenum

W OO0 b WN=
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Also, two gases are available for the coolant:

1 - helium
2 - hydrogen

The thermophysical properties for these materials are built
into the program as a function of temperature. These properties
were taken from References 1 through 4; curve fits (linear,
logarithmic, or power) to the data were made to allow easy
evaluation of the properties at any temperature. The property
functions are provided in the appendix, which contains a FORTRAN
listing of the entire program. Figures 2.0.1 through 2.0.5 are
graphs of the resulting property functions. The ideal gas law
was used to calculate the coolant density as a function of
pressure and temperature.

A cross-sectional view of a prismatic-core fuel element is
provided in Figure 2.0.6. In this example, there are seven
channels within the element. The variable S denotes the maximum
conduction length within the element; this represents the
greatest distance that heat must travel from the fuel to the
channel wall. If the fuel is in the form of coated pellets
dispersed uniformly within the matrix, a pellet is assumed to
reside at this location to provide a conservative (worst case)
estimate of the fuel maximum temperature. The input variable S
can be calculated for N uniformly spaced channels using the
following equation:

S = D/(2Ngcos®(30 )) - d./2 - dp/2 - t (1)
where: D = hexagon flat-to-flat width,
N3 = number of channels across the element diagonal,
e=11if N = 1; e = 2 for N > 1,
d. = channel diameter,
dp = pellet diameter, and
t"= coating thickness.

~ If the fuel is in the form of a composite, the fuel is
dispersed within the matrix material and there are no pellets or
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coating; d, and t would be set equal to zero in this case. For
uniformly gpaced channels, Table 2.0.1 provides the value of

N; for various values of the number of channels per element,
N. If the channels are not uniformly spaced, S must be
calculated in a manner appropriate with the spacing.

Table 2.0.1 Number of Diagonal Channels

N Ng
1 1
7 3
19 5
37 7
61 9

Specific power, defined as the total power produced in the
core divided by the total fuel mass, is determined by the core
criticality constraints and by the core heat transfer and
hydraulic constraints. The total core power, P, is given by:

P = mcp(Tg - Ty) (2)

with: m = pVA

core mass flow rate,

coolant density,

coolant velocity,

core flow area,

p coolant average specific heat,

o core outlet coolant temperature, and
I core inlet coolant temperature.

where:

HHE QP o B
I

For a given fuel element geometry (i.e., number of channels,
channel diameter, and hexagon width), only the velocity in
Equation (2) is unknown (T; and T, are input variables). The
computer program calculates the maximum coolant velocity such
that a prescribed maximum fuel, coating, or matrix temperature
is not exceeded (heat transfer limit) or a maximum core pressure
drop (hydraulic limit) is not exceeded. Also, a maximum-allowed
coolant Mach number can be established as a limiting criteria.

Based on the specified core pressure, and coolant inlet and
outlet temperatures, the coolant sonic speed is calculated at
the core inlet and outlet. Using the maximum of the inlet and
outlet sonic speeds and the specified maximum allowed Mach
number, the coolant velocity (and hence, core mass flow rate) is
determined. Equation (2) is then used to calculate the core
power based on this velocity. However, if this calculated power
results in core temperatures or a core pressure drop that exceeds



specified limits, the velocity is reduced and a new power and
associated core temperatures and pressure drop are determined.
The velocity is reduced until the limits are no longer exceeded.

For any arbitrary axial power profile, the axial location at
which the maximum core temperature occurs is not known.
Therefore, the computer program allows the core to be divided
into any number of equally spaced axial levels. Relative power
factors for each level are then specified to define the axial
power profile. (A program option allows the user to specify
either a flat or cosine power profile in which the relative
power factors are automatically calculated.) Equation (2) is
used to determine the coolant temperature at the ends of the
axial levels. The average specific heat for each level is
calculated as the algebraic average of that level’s inlet and
outlet specific heats. The average specific heat must be
determined iteratively with Equation (2) because the outlet
temperature for each level is unknown.

Using the average coolant temperature for each level, the
coolant properties are evaluated from which the Reynolds and
Prandtl numbers are determined. The velocity for each core
level, V,, is determined based on continuity such that Vv, =
m/pA where m is the core mass flow rate and p is that level’s
coolant density. (If a value of zero is specified as the number
of core levels, then the coolant properties and velocity for the
heat transfer calculations are based on the core exit
temperature.) Now, enough information is available to determine
the temperature drop from the coolant, through the matrix and
coating, to the fuel. (If the fuel is in the form of a
composite, the temperature drop associated with the coating and
the fuel pellet is not applicable.)

To determine the temperature drop from the coolant to the
channel wall, the Taylor equation [4] for the coolant heat
transfer coefficient, h, is used. This equation is:

h = 0.023 Ck/d, Re0:8 pr0-4 (3)
with,
C = (T,/T.)E
E = (1. 59§c/x - 0.57)

where: k = coolant conductivity,
channel diameter,

Rg = Reynold’s number,
Pr = Prandtl’s number,
T, = wall temperature,
T, = coolant bulk temperature, and

X = distance from channel entrance.

This equation is for turbulent flow in circular channels and
is a function of the channel wall temperature; thus, it must be
solved iteratively with Newton’s law of cooling, given by:



P = hA_ (T, - Tg) (4)
where: Aw = total channel wall area.

If the core is divided into axial levels, then Equation (4) is
solved for each level. (This equation does not account for
aerodynamic heating effects that would be expected to occur at
very high coolant velocities.)

Next, the temperature drop across the matrix material of the
element (AT,) is determined. As already mentioned, the
variable S represents the maximum distance that heat must travel
from the fuel to the channel wall. An estimate of the
temperature drop across this distance can be made by using the
conduction relation for heat flow in a hollow cylinder of inside
radius equal to one-half the channel diameter and outside radius
equal to the inside radius plus the distance S. Thus,

AT, = (P,/N) In[(2S + d.)/dc] / (2mAzkp) (5)

= core axial level powver,
= number of coolant channels,
= maximum conduction length,
= channel diameter,
Zz = axial level length, and
= matrix thermal conductivity.

This equation has been derived assuming that the matrix
thermal conductivity is constant. A crude estimate of an average
thermal conductivity for the matrix is found by first solving
Equation (5) using k, evaluated at the previously calculated
(Equations (3) and (4)) channel wall temperature. Then, a first
guess for the maximum matrix temperature, T,, is calculated as
T, + AT,. Now, k, is evaluated at the algebraic average of
T,, and T, and Equation (5) is solved again to provide a
better estimate of T _ . If the fuel is in the form of a
composite, kp is determined as a volume average of the fuel
and matrix conductivities.

If pellet fuel is used, the temperature drop across the
coating and the pellet must next be calculated. The temperature
drop across the coating, AT., is given by:

AT, = (Pz/Np,z) t/[27rdpkc(dp/2 + t)] (6)
where: P, = core axial level power,
Np = number of fuel pellets per core level,
'E = coating thickness,
dp = pellet diameter, and
ko = coating thermal conductivity.

The temperature drop from the center of the spherical fuel
pellet to the coating inside surface, ATp, is given by:



ATy = P,/Ng /(4 mdgky) (7)

where: kp = pellet thermal conductivity.

The next task is to determine the pressure drop from the
core inlet to the core outlet. This is just the sum of the
pressure drops across all core levels. The pressure drop for a
core level, Ap,, is calculated using:

AP, = £ Az/d. (p/2) V,2 (8)
with: £ = 0.184 Re~0:2 py=0.6

The core pressure specified in the input is assumed to be
the core inlet pressure. The pressure for each level (which is
used in the calculation of the coolant density) is taken as the
pressure at the level inlet based on the pressure drop for the
preceding level. Thus, pj,7; = Pjy - 4Ap;. The subscripts
refer to the pressure for 1eve1 i+l and the preceding level 1i.

Although this computer program can be used for any
prismatic~core reactor, it was originally developed to perform
parametric calculations for the NERVA reactor [5]. It therefore
contains provisions to account for the effects of internal
support structure within the core on the core flow rate and
pressure drop.

NERVA fuel elements are grouped into clusters; each cluster
contains six fueled elements and one centrally located unfueled
element. Some of the clusters have central unfueled elements
that contain a moderating material such as ZrH,; these
clusters are referred to as moderated clusters and the elements
in these clusters are referred to as moderated elements. The
central elements in the moderated clusters contain an inner can
and can holes that could be used to provide flow paths for
coolant. The unmoderated clusters contain an inner and outer can
in the central element that could also be used for coolant flow.
Figure 2.0.7 shows a diagram of the two types of clusters.

Two support structure cooling options are available in the
program for the NERVA reactor. In one option, coolant first
flows through the central elements to provide cooling of the
support structure. The coolant then turns and flows through the
fueled elements of the core. Thus, two core coolant passes are
made and the pressure drop associated with each pass is
calculated. The program user can also specify that the coolant
makes only one core pass; i.e., the support structure and fueled
elements are treated as parallel flow paths. For this option,
the program calculates the additional coolant flow rate needed
for support structure cooling assuming the pressure drops across
both flow paths are equal. For the single-pass option, the input
parameters describing the central element geometry can be
neglected without effecting the specific power calculations.
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3.0 COMPUTER PROGRAM USE

This section is included to provide an explanation of the
use and interpretation of the program input and output. An
annotated example input listing is included in Table 3.0.1; the
annotations provide a concise description of the required input
variables. The items marked with a "*" can be set to a value of
one 1if the coolant makes only a single pass of the core and the
total core power 1is not of interest. As mentioned in the
previous section, the specific power is not affected by these
variables.

Table 3.0.1 Example Input Listing

INPUT FOR NERVA-TYPE REACTOR POWER DENSITY CALCULATIONS

2 COOLANT 1D (1:HELIUM,2:HYDROGEN)

1 FUEL 1D (1:UC,2:U02,3:UB4)

Py MATRIX ID (4:C,5:B84C,6:BEQ,7:ZRC,8:W,9:M0)

7 COATING ID (ANY OF 1 - 9)

1 NUMBER OF COOLANT PASSES

13.6E6 CORE INLET PRESSURE (PA)

400.0 CORE INLET TEMPERATURE (K)

1200.0 CORE OUTLET TEMPERATURE (K)

500.0 FUEL LOADING (KG/CUB.M)

1.0 RADIAL PEAK-TO-AVERAGE POWER RATIO

2.5 CORE HEIGHT (M) (MAX VALUE FOR HEIGHT OPTIMIZATION)

0.01 RELATIVE HEIGHT ERROR (ZERO FOR NO HEIGHT OPTIMIZATION)
0.60 MINIMUM ALLOWED HEIGHT FOR OPTIMIZATION ( — FOR RANGE)
0.45 «CORE DIAMETER (M) (NEEDED IF NUMBER OF COOLANT PASSES > 1)
0.0191 HEXAGON FUELED ELEMENT FLAT=TO-FLAT WIDTH (M)

0.32727 +FRACTION OF TOTAL OF “"UNMODERATED" CLUSTERS

7 TOTAL NUMBER OF ELEMENTS PER CLUSTER (CAN BE 1)

5.22 +AVG NUMBER OF FUELED ELEMENTS PER UNMODERATED CLUSTER

5.22 «AVG NUMBER OF FUELED ELEMENTS PER MODERATED CLUSTER

19 NUMBER OF CHANNELS PER UNMODERATED ELEMENT

12 NUMBER OF CHANNELS PER MODERATED ELEMENT

10 oNUMBER OF HOLES PER MODERATED ELEMENT

©.00254 DIAMETER OF ‘COOLANT CHANNEL (M)

©.00468 +DIAMETER OF CAN HOLES (M)

0.001027 S, MAXIMUM MATRIX CONDUCTION LENGTH TO CHANNEL WALL (M)
9.00025 DIAMETER OF FUEL PELLET (M) ( — FOR COMPOSITE FUEL)
9.000125 THICKNESS OF PELLET COATING (M)

0.0075 sDIAMETER OF INNER UNMODERATED CAN (M)

0.216 «DIAMETER OF OUTER UNMODERATED CAN (M)

9.00875 «DIAMETER OF INNER MODERATED CAN (M)

3000.0 MAXIMUM ALLOWED COATING TEMPERATURE (K)

5000.0 MAXIMUM ALLOWED MATRIX TEMPERATURE (K)

2300.0 MAXIMUM ALLOWED FUEL TEMPERATURE (K)

1.0 MAXIMUM ALLOWED PUMPING POWER FRACTION

0.1 MAXIMUM ALLOWED CORE PRESSURE DROP FRACTION

8.3 MAXIMUM ALLOWED COOLANT MACH NUMBER

31 NUMBER OF AXIAL CORE LEVELS (@ TO USE TOUT FOR HEAT TRANSFER)
0 ® — COSINE POWER SHAPE, 1 - FLAT, OR 2 — USER SPECIFIED SHAPE
0.05 EXTRAPOLATION LENGTH (M) (ONLY USED FOR COSINE POWER SHAPE)

RELATIVE POWER FACTORS (FOR USER SPECIFIED SHAPE, ONE/LEVEL)
o PARAMETER CAN BE SET TO ONE IF NUMBER OF PASSES IS ONE
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The specific power can be determined for any specified core
height; or, if a nonzero value for the "relative height error"
is entered, the program will automatically determine the core
height that results in the maximum specific power. To use this
option, a minimum and maximum core height must be entered to
provide an interval in which the search for the maximum height
is conducted. Also, if the minimum core height is entered as a
negative number, the program will determine the specific power
for a range (15 values) of core heights between the minimum and
maximum height values.

As mentioned in Sections 1.0 and 2.0, the specific power is
determined such that specified maximum core temperatures,
pressure drop, and Mach number are not exceeded. The maximum
core pressure drop is specified in the input as a maximum
allowed core pressure drop fraction. This is defined as the
maximum allowed core pressure drop divided by the core inlet
pressure. Likewise, the maximum allowed coolant Mach number is
defined as the maximum allowed coolant velocity divided by the
coolant sonic velocity. Also, a maximum allowed pumping power
can be imposed; this is defined as the maximum allowed pumping
power for coolant flow through the core divided by the core
power. (The core power is a function of the core diameter input
variable.)

The number of axial core levels can be specified. If zero is
chosen, the core is not subdivided and the heat transfer
calculations are based on the coolant properties at the core
outlet and the pressure drop calculation is based on the coolant
properties evaluated at the coolant average temperature. Any
power shape can be imposed on the core. If a cosine or flat
power profile is desired, the program will automatically
determine the relative power factors based on the number of
axial levels selected. For the cosine profile, an axial
extrapolation length can be specified. This is the distance
outside the core where the neutron flux vanishes. If the
diameter of the fuel pellet is specified as a negative number,
the fuel is assumed to be in the form of a composite of the fuel
and matrix materials. If this option is selected, the
temperature drops across tle pellet and the coating are not
applicable. The maximum conduction length, S, can be determined
using Equation (1) of Section 2.0.

Table 3.0.2 provides the final output of the program for the
example input problem. For this problem, the optimum core height
was found to be 0.63 m corresponding to a specific power of 32.6
MW/kg. Besides the specific power, other parameters of interest
are included in the output such as pressure drops and pumping
powers. The output also consists of the core temperatures as a
function of axial position. This output is displayed graphically
in Figure 3.0.1. This figure shows that the maximum fuel
temperature (2300 K) occurs at a core elevation of about 0.35 m.
This figure also shows that the largest temperature drops occur
between the coolant and the channel wall and between the wall
and the outside surface of the fuel coating.

13



Table 3.0.2 Example Program Output

CHANNEL VOLUME FRACTION = ©. 30468
NUMBER OF FUEL PELLETS = 2.13640E+08

FUEL MASS (KG) = 19.23

NUMBER OF COOLANT CHANNELS = 5287
SONIC SPEED OF COOLANT (M/S) = 2608.74
CORE HEIGHT (M) = 0.629

CORE MASS FLOW RATE (KG/S) = 52.202

TOTAL CORE POWER (W) = 6.27717E+08

e POWER DENSITY (W/KG) = 3.26491E+07

+ POWER DENSITY (W/CUB.M) = 1.63245E+10
CORE PRESSURE DROP (PA) = 1.14163E+06
CORE PUMPING POWER (W) = 1.74732E+07
CAN MASS FLOW RATE (KG/S) = 4.466
CAN PRESSURE DROP (PA) = 1.14169E+06

— TURNING PRESSURE DROP (PA) = ©.00000E+00
CAN PUMPING POWER (W) = 6.23422E+05

FRACTION OF SONIC SPEED IN CORE = ©.29773
FRACTION OF SONIC SPEED IN MODERATOR = @.01951

TOTAL PRESSURE DROP (PA) = 1.1417E406
FRACTION OF CORE PRESSURE = ©.88395
TOTAL PUMPING POWER (W) = 1.8097E+407

FRACTION OF CORE POWER = ©.02883

As an additional item of interest, the example problem was
repeated using a flat axial power profile instead of a cosine
profile. With the flat profile, the maximum specific power was
found to be 37.9 MW/kg with an optimum core height of 0.54 m.
This demonstrates the advantage that can be gained by flattening
of the axial power profile. (The program also allows the
specification of a radial peak-to-average power ratio as a
simple means of accounting for the effect of a radial power
distribution.)

As a final example of the program use, the example problemn
was repeated with the number of coolant core passes specified as
two. This situation is representative of the original NERVA
core. Table 3.0.3 shows the output for this case. Because two
core passes are made, the core pressure drop is larger than for
the single-pass case. The specific powers for the two cases are
about the same, however. The reason for this is that the coolant
velocity in the single-pass case was limited by the Mach number
restriction; therefore, the advantage of the lower core pressure
drop could not be realized.

14



Table 3.0.3 Output for Two-Pass Case

CHANNEL VOLUME FRACTION = ©.30468
NUMBER OF FUEL PELLETS = 2.10906E+08
FUEL MASS (KG) =  18.98

NUMBER OF COOLANT CHANNELS = 5287
SONIC SPEED OF COOLANT (M/S) =  2608.74
CORE HEIGHT (M) =  ©.621

CORE MASS FLOW RATE (KG/S) = 50.648
TOTAL CORE POWER (W) = 6.09027E+08

+ POWNER DENSITY (W/KG) = 3.20875E+07
o POWER DENSITY (W/CUB.M) = 1.6@43BE+1@

CORE PRESSURE DROP (PA) = 1.06567E+@6
CORE PUMPING POWER (W) = 1.57627E+07

CAN MASS FLOW RATE (KG/S) =  50.648

CAN PRESSURE DROP (PA) = 2.54894E405

- TURNING PRESSURE DROP (PA) = 1.38169E+@5
CAN PUMPING POWER (W) = 1.57149E+@6

FRACTION OF SONIC SPEED IN CORE = ©.28720
FRACTION OF SONIC SPEED IN MODERATOR = ©.25986

TOTAL PRESSURE DROP (PA) = 1.3206E+06
FRACTION OF CORE PRESSURE = ©.09710

TOTAL PUMPING POWER (W) = 1.7334E+07
FRACTION OF CORE POWER = ©.02846
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4.0 PARAMETRIC CALCULATIONS

To demonstrate the application of the specific power
computer program, parametric calculations were performed for
three different prismatic-core reactor concepts: (1) NERVA
derivative, (2) PLUTO derivative, and (3) CERMET derivative.
Three variations of the NERVA concept and three variations of
the PLUTO concept were included in the parametric calculations.
Table 4.0.1 lists the assumed criteria used for the specific
power calculations for all concepts. The pressure drop for all
calculations was based on a single pass of the hydrogen coolant.
The effects of changing the maximum fuel temperature, pressure
drop fraction, and Mach number were investigated and are
discussed later in this section.

Table 4.0.1 Assumed Criteria
Power profile - flat
Outlet coolant temperature - 1200 K
Inlet coolant temperature - 400 K
Inlet pressure - 13.6 MPa
Maximum pressure drop fraction - 0.10
Maximum Mach number - 0.30

Maximum fuel temperatures -

NERVA (UC,,2rC,C) - 2300 K
NERVA (UC,-ZrC,C) - 2700 K
NERVA (UC,,ZrC) - 3000 K
PLUTO (UO,,Be0) - 2500 K
PLUTO (UC,,C) - 2700 K
PLUTO (UB,,B,C) - 2300 K
CERMET (UO,,W,W) - 2400 K

The symbols in parentheses indicate the core materials. The
first material listed is the fuel, the second material is the
fuel coating, and the last material is the element or matrix
material that the fuel is imbedded in. If the core is made of a
composite of fuel and matrix material, no coating material is
needed and only two materials are listed.

The specific power for a given concept was determined as a
function of the fuel loading and the core height (length). The
fuel loading is defined as the mass of fuel material per unit
volume of solid element (i.e., the volume of the element minus
the volume of the coolant channels). The fuel loading and core
length are treated parametrically because their final values
depend on reactor criticality considerations.
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4.1 NERVA

Table 4.1.1 presents the pertinent geometric data that was
used for the specific power calculations for the NERVA concepts.
It is not necessary to specify a core diameter because specific
power is independent of this parameter. (Recall that specific
power is defined as the total power divided by the total fuel
mass; both the total power and the total fuel mass are
proportional to the square of the core diameter.)

Table 4.1.1 NERVA Geometric Data

Hexagon flat-to-flat width ~ 0.0191 m
Channel diameter - 0.00254 m

Number of channels/element - 19

Fuel pellet diameter - 0.00025 m

Coating thickness ~ 0.000125 m

Figure 4.1.1 shows the results of the NERVA specific power
calculations for ZrC coated UC, pellet fuel in a graphite
matrix. These curves show that a peak specific power occurs for
a core length between about 0.55 and 0.65 m, depending on the
fuel loading. To the left of the peak, the specific power is
limited by the maximum fuel temperature limit (i.e., heat
transfer limited); to the right of the peak, the specific power
is limited by the pressure drop or Mach number limit (i.e.,
hydraulic limited). Therefore, to increase the specific power in
the heat transfer limited region, it is necessary to improve the
heat transfer characteristics of the core by increasing the
channel wall area, by using materials with higher thermal
conductivity, or by increasing the maximum allowed fuel
temperature. To increase the specific power in the
hydraulic-limited region, it is necessary to improve the flow
characteristics of the core by increasing the channel hydraulic
diameter, by increasing the maximum allowed Mach number, or by
increasing the maximum allowed pressure drop.

Figure 4.1.2 illustrates the effect of increasing the
maximum allowed fuel temperature. The peak is shifted to a
smaller core length and the specific powers to the left of the
peak are improved. Increasing the temperature limit, however,
has no effect on the specific powers to the right of the peak
because there, the specific powers are hydraulic limited.
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Figure 4.1.3 shows the effect of changing the maximum
allowed Mach number and pressure drop fraction. Increasing the
Mach number to 0.4 without also increasing the pressure drop
fraction has no effect on the specific power because the
specific power is limited by the pressure drop restriction.
Increasing only the pressure drop fraction without increasing
the Mach number has a small effect over most of the
hydraulic-limited region. However, further increase in the
pressure drop limit would not change the specific power because
of the Mach number restriction. To get any significant benefit
in the hydraulic-limited region, it is necessary to increase
both the Mach number and pressure drop limits. For example,
increasing the pressure drop fraction to 0.5, with no Mach
number restriction, results in a peak specific power of 54.0
MW/Kkg. This peak occurs at a core length of 0.86 m and an exit
Mach number of 0.62.

Figure 4.1.4 shows the specific power for a variation of the
NERVA concept. The core geometry information is the same as for
the previous concept but the core is made from a composite of
the UC,-ZrC fuel and graphite matrix materials. Because the
conduc%ion resistances associated with a fuel pellet and coating
are removed, the heat transfer characteristics of the composite
core are improved. Also, the maximum allowed fuel temperature is
higher for the composite, offering a further advantage over the
pellet fuel. However, specific power is improved only in the
heat transfer limited region. The specific power in the
hydraulic-limited region remains the same as for the pellet fuel
concept. Thus, the advantages of the composite core can be
obtained only by using a very short core (for this particular
core geometry).

Figure 4.1.5 shows the specific power for a third NERVA
concept. The core for this concept is a UC, fuel, ZrC matrix
composite. The higher maximum allowed temperature for this
composite offers improved specific powers, but again, only for
short cores. Pressure drop and Mach number constraints obviate
any improvement for longer cores.
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4.2 PLUTO

Three variations of the PLUTO concept [6] were investigated.
The geometry for these concepts is given in Table 4.2.1. The
major difference between this geometry and that used for the
NERVA concepts is that only one cooling channel per element is
used. However, the channel volume fraction, defined as the total
channel volume divided by the total element volume, is about the
same for both concepts (about 30%).

Table 4.2.1 PLUTO Geometric Data
Hexagon flat-to-flat width - 0.00683 m
Channel diameter - 0.004 m

Number of channels/element - 1

The first concept variation for PLUTO uses a UO, fuel, BeO
matrix composite core. The specific power results are shown in
Figure 4.2.1 for this concept. The effect of the PLUTO geometry
on the specific power is that the peak occurs at a greater core
length. Using one channel per element results in less wall area
per channel compared to using 19 channels per element (as in
NERVA). This reduces the specific power in the heat transfer
limited region but increases it in the hydraulic-limited region
for the concept. The effects of increasing the maximum allowed
Mach number and pressure drop fraction are similar to that
observed for NERVA and are shown in Figure 4.2.2.

An additional set of calculations was performed for this
concept in which the channel diameter was varied. (The hexagon
width was changed for each channel diameter to maintain the
channel volume fraction equal to 0.30 to maintain structural
integrity.) The results of these calculations are shown in
Figure 4.2.3. Increasing the diameter reduces the specific power
in the heat transfer limited region while decreasing the
diameter reduces the specific power in the hydraulic-limited
region. Obviously, choosing the optimum channel diameter depends
on the core length, which can only be determined in conjunction
with criticality and control considerations. However, with
respect to heat removal, it is apparent that using many small
diameter channels is better for shorter cores and that using a
few large diameter channels is better for longer cores.

The second PLUTO concept variation uses a UC, fuel,
graphite matrix composite core. This is essentiafly the same as
the second NERVA concept except for the geometry. The specific
power for this concept is shown in Figure 4.2.4. Because this
concept is similar to NERVA, comparing this to Figure 4.1.4
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shows the effect of changing the geometry from 19 small channels
per element to one large channel per element. As expected, the
effect is to increase the specific power for the larger values
of core length.

The third PLUTO concept uses a core that is a composite of
UB, fuel and B,C matrix material. Because of the poor
conductivity o% this material, the specific powers are
relatively low and are heat transfer limited over the core
length of interest, as shown in Figure 4.2.5.
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4.3 CERMET

The final concept evaluated is a derivative of the 710
reactor [7] that used a core comprised of a ceramic fuel and a
metal matrix material, referred to as a CERMET. The advantage of
such a material is its very high thermal conductivity. The
CERMET investigated is made of UO, fuel dispersed as coated
pellets in a tungsten matrix. The coating is also tungsten. An
alternative to tungsten is molybdenum, but, because its thermal
conductivity is very similar to that of tungsten, specific power
calculations were performed only for the tungsten CERMET
concept.

The geometric data for the 710 CERMET core is given in Table
4,.3.1. Based on this data, the channel volume fraction for the
710 core is only 0.154, compared to 0.30 for both NERVA and
PLUTO. It is not known why such a low volume fraction was used;
therefore, specific power calculations for both channel volume
fractions were performed. (Also note that the pellet diameter is
smaller than the pellet diameter used for NERVA.) The results
are shown in Figure 4.3.1. (The fuel loadings used for these
calculations are very high because, based on criticality
calculations, the very high density of the matrix material
results in an unacceptably low fuel-to-moderator ratio for lower
fuel loadings.) As the figure shows, increasing the volume
fraction to 0.30 appreciably increases the specific power. This
same favorable increase can be realized for the other concepts
provided structural integrity can be maintained at the higher
volume fractions.

Table 4.3.1 CERMET Geometric Data
Hexagon flat-to-flat width - 0.03622 m
Channel diameter - 0.00343 m
Number of channels/element - 19
Fuel pellet diameter - 0.0001 m

Coating thickness - 0.00005 m
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4.4 SUMMARY OF PARAMETRIC CALCULATIONS

Figure 4.4.1 shows the specific power for the three
different concepts and their variations (for a 500 kg/m” fuel
loading). This set of curves can not really be used for
comparing specific powers among the various concepts because
they do not reflect the criticality aspects associated with the
different fuel loadings, core lengths, and fuel and matrix
materials. However, they do provide an indication of what
geometric parameter would have to be changed to improve the
specific power in either the heat transfer or hydraulic-limited
regions. For example, The NERVA concepts offer very good heat
transfer characteristics but poor hydraulic characteristics with
respect to specific power. To improve the hydraulic
characteristics (at the expense of the heat transfer
characteristics) it would be necessary to use fewer channels of
larger diameter. This would shift the specific power peak to the
right. The PLUTO concept that uses UB, and B,C would require
the exact opposite change. That is, it would be necessary to use
more channels of smaller diameter to increase the specific power
in the heat transfer limited region.

All of the concepts analyzed had the same basic geometry;
i.e., a group of hexagonal elements with a certain number of
channels formed within each element for coolant flow. It would
therefore be possible to "redesign" (without consideration for
structural integrity) all of the concepts in order to optimize
the specific power with respect to channel diameter and number.
Thus, with respect to thermal hydraulic performance, the only
parameters that distinguish one concept from another are the
thermal conductivity and the maximum operating temperature.
However, it may not be possible to take advantage of a materials
higher conductivity or temperature capability due to the imposed
hydraulic limits. Whether or not a higher conductivity or
temperature will be of benefit can only be determined after
considering the criticality and control aspects of the concept.
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5.0 SUMMARY AND CONCLUSIONS

A computer program has been written to determine the maximum
specific power for prismatic-core reactors as a function of
maximum allowable fuel temperature, core pressure drop, and
coolant velocity. The prismatic-core reactors consist of
hexagonally shaped fuel elements grouped together to form a
cylindrically shaped core. A gas coolant (either helium or
hydrogen) flows axially through circular channels within the
elements and the fuel is dispersed within the solid element
(matrix) material either as a composite or in the form of coated
pellets. Different coolant, matrix, coating, and fuel materials
can be selected to represent different prismatic-core concepts.
The computer program allows the user to divide the core into any
arbitrary number of axial levels to account for different axial
power shapes. An option in the program allows the automatic
determination of the core height that results in the maximum
specific power.

This program provides a simple means for evaluating and
comparing the specific power of various prismatic-core concepts.
The program is written such that additional material properties
can easily be added if desired. Various input parameters allow
the program user to specify different heat transfer and
hydraulic constraints along with different core geometries.
Results from the program also provide information that can be
useful in the redesign of the concept to take better advantage
of the heat transfer characteristics of the various core
materials.
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APPENDIX - COMPUTER PROGRAM LISTING



OOOO0OO000

(o] [N alalel

o0 OO0 0000

inl

PROGRAM TO DETERMINE MAXIMUM SPECIFIC POWER
COMPRISED OF HEXAGONAL FUEL ELEMENTS (SUCH A

INPUT: UNIT 5
OUTPUT. UNIT 6

COMMON / INPUT / 1DCOOL , NPASS,PRES, TIN,TOUT,F
HCOREMIN, DCORE , FTOF FRACCLUSU , NECH
NEHOLES . DCHANU . DHOLES , SCHAN DFUEL ,
DFU,DOU,DIM.TCLADMAX,TGMAX,TFUELMA
FRACSPMAX, FRACSONIC NAX AL, | SHAPE ,
NEPC, IDFUEL, DMOD, IDCLAD

COMMON/D!M/RELPOW(SG) TCOOL (50), TWCHAN(50

6(5@) TCLAD(SB] TFUEL(5B) DEL
ORK(50)

COMMON/OUTPUT/VF NCHAN, SONIC,POWTOTAL ,DEL
1 PWORKTOTY, DELTAPCAN . DPTURN, PWORKCA
< DELPTOTZ, FRACSP, PWORKTOT2 , FRACP

COMMON/REALS/MFUEL NPELLET . MPELLET, MDOTMA

NPELAX,NCLUSPERA, NFEPCU,NFEPCM

DB wrd -

REAL MFUEL ,NPELLET.MPELLET MDOTMAX,MDOTCA
1 NCLUSPERA .NFEPCU.NFEPCM
READ(5,1)}NO

1 FORMAT(I\)
READ(5,+) IDCOOL
READ(5,+ )1 DFUEL
READ(S, +) | DMOD
READ(5,#) IDCLAD
READ(5 . * JNPASS
READ(5,+)PRES
READ(S,+)TIN
READ(5,*)T0UT
READ(5,+)}FLOAD
READ(5, s }PTOAR
READ(5, + JHCORE
READ(5.* JHERR
READ (S, » JHCOREMIN
READ(5,# )DCORE
READ(5.+)FTOF
READ(5,+ JFRACCLUSU
READ(5, s )NEPC
READ(5, s JNFEPCU
READ(5,+ JNFEPCM
READ(S .+ }NECHANU
READ(5,* JNECHANM
READ(5, e JNEHOLES
READ (5. )DCHANU
READ(5, + )DHOLES
READES,t%SCHAN
READ(5,+)DFUEL
READ(5, * ) THCLAD
READ(5,+)DIU
READ(5,+)D0OU
READ(S,+)DIM
READ(S, « ) TCLADMAX
READ(5, * ) TGMAX
READ(S. » J TFUELMAX
READ(5, » IFRACPPMAX
READ(S, # JFRACSPMAX
READ(S,*« JFRACSONIC

READ(S .+ )NAXIAL

IF NAXITAL = 8, THEN USE CORE EX!T TEMPERATURE TO DO HEAT TRANSFER

CALCULATIONS BUT TAV TO DO DP CALCULATIONS
PF(NAXTAL . EQ.9) THEN
NAXTAL=1
{FLAG=1
ELSE
| FLAG=0
ENDIF
1SHAPE = @ COSINE POWER SHAPE S USED
{SHAPE = 1 FLAT AX1AL POWER SHAPE
|SHAPE = 2 USER SPECIFIED POWER SHAPE
READ(S,») | SHAPL
EXL 1S THE £xTRAPOLATION LENGTH
READ(S EXL

FOR_A REACTOR
S NERVA)

LOAD,PTOAR ,HERR,
ANU, NECHANM
THCLAD .
X,FRACPPMAX,
EXL.IFLAG, ICOMP,

% ,POW(50) ,HTC(5@)
AP(5@).VEL(50)

PTOT1,POWDENV,
N.FSONIC,FSONICM,

X ,MDOTCAN,
N, NPELAX,

(ISHAP .GT.1)}READ(S, ‘)(RELPOWéI%,I=1.NAXIAL)

FOP COMPOS{TE FUEL INSTEAD OF PELL
1 COMP=0
F(DFUEL.LT.@.8) I COMP=1
DFUEL=ABS(DFUEL

BeAEIA IR IEA BN A K
OPTIMIZE POWDENM WRT HCORE IF HERR GT ©.0
HEN

IF{HERR.GT.0.0)7
FIND AN INTERVAL CONTAINING THE MAXIMUM

(INPUT HLORE 1S USED AS MAXIMUM ALLOWED HCORE)

CALL XINT(HCORE ,HCOREMIN,H1,H2 ,FH1,FH2)
USE MODIFIED REGULAE FALSI 70 FIND HCORE AT
(IF NO MAX IS FOUND WITHI!N ALLOWED HCOREMAX,

IF(H1.EQ H2)GO 70 5

CALL MRF( ,FH1,FH2 , HERR,HCORE)

CALL FDEN(HCORE‘POWDENM)

ELSE
NO OPTIMIZATION, JUST USE INPUT HCORE
5 CALL PDEN(HCORE ,POWDENM)
ENDIF

B eI R EEIRB A AT E RO E

WRITE OUT FINAL RESULTS

WHICH MAX POWDENM OCCURS

SKIP OPTIMIZATION)



WRITE(6,2005)

DO

150 | A=1 NAXI

TCOOLA-(TCOOL(IA +TCOOL(IA+1))t0
150 WRITE(6,2030) (A, POW(I1A), VEL(IA HTC(IA) TCOOLA, TWCHAN(IA),

1T6(

WRITE

1A),TCLAD{ 1A}, TFUEL JDELTAP(1A)

6.2010 )MDOTMAX , PONTOTAL . POWDENM . POWDENY

WRITE%G.Z@OGiVF NPELLE M UEL, NCHAN SONIC,HCORE

1DELPTOT1,PWO

WR |
WR)

K107
TE(6,2020 MDOTCAN DELTAPCAN,DPTURN, PWORKCA
TE(6.2040)FSONIC, FSONICM, DELPTOT2,FRACSP, PWORKTOTZ FRACPP

c
2628 FORMAT(" * ///, 3, *CHANNEL VOLUME FRAgT}ON - ".F8.5./,

13,
23X,
33X,
43X,
53X,

/
"NUMBER OF FUEL PELLETS = 1PE1
"FUEL MASS (KG) = ' ,@QPF8.2, /
"NUMBER OF COOLANT CHANNELS = *,118,/,
"SONIC SPEED OF COOLANT gM/S) = ', f9.2,./,
*CORE HEIGHTY (M)

F8.3)
2005 FORMAT( NI 3X POWER (W) ~,2X, VELCTY (M/S)

12X,
23X,
32X.

LW/SO,M/k) J3X. 1 TCOOL (k) DX FUUTwWALL (k)
TMOD (K 4X TCLAD (k) 3X TFUEL (K)

s}
2e10 FORMAT% t,/,3x CCQE MASS FLOW RATE (KG/S) = ",F9.3,/.

13X
25X,
35X,
43X,
53X,

13X,
24X,
33X,

€1
E11.
2820 FORMAT( ©,/,3%, CAN MASS FLOW RATE
1PEY
y =

“TOTAL CORE POWER (W) = ° //
"+ SPECIFIC POWER (W/KG-U) = '
s POWER DENSITY (W/CUB M-U)
"CORE PRESSURE DROP %PA) ,
"CORE PUMPING POWER (W) =

"CAN PRESSURE DROP (PA) = ",
— TURNING PRESSURE DROP (PA :
* CAN PUMP\NG POWER (W) = " E11.5

20630 FORMAT% /2%, 13, 2X, 9(1PE12.5, 2x)

2040 FORMAT

SuB
C FIND T
DEL
X1=
X2=
CAL
CAL

oPD

WR |
4 FOR
RET
END

CR

[aln]

SUB
COM

(SRR FTNEN

COM

[N

COM

2

REA
1

C
C FRICT!
FF(

Pl=
DCH
TER

7.3x, FRACTION OF SONIC SPEED IN CORE = *,F8.5,/,
"FRACTION OF 'SONIC SPEED N MODERATOR = * F8.5.//.

"TOTAL PRESSURE DROP (PA& JIPE1Y .4, /,

"FRACTION OF CORE PRESSURE = °, ,
"TOTAL PUMPING POWER (W) = ' .1PE11.4./,

| "FRACTION OF CORE POWER = ', OPF8.5)

______________ SUBROUT INES -7

RQUTINE FUN(HC, DPDEN)

HE g;LUE OF THE DERIVATIVE OF THE POWDEN FUNCTION
=0,

AMAX1£HC-DEL.0.01)

AMAX1(HC+DEL . X1+0.01)

L PDEN x1,Fx1g

L PDEN{XZ,FXx2

EN=(FX2—FX1)/2.0/DEL

TE(6.4)x1 Fx1 X2 ,FX2.HC,DPDEN
MAT (' ', 2 (F7 4 2X,E12.4,3X))
URN

ROUT INE PDEN(HCORE , POWDENM)
MDN/INPUT/IDCODL NPASS,PRES, TiN,TOUT,FLOAD ,PTOAR, HERR,
HCOREM I N . DCORE , FTOF , FRACCLUSU , NECHANU , NECHANM,
NEHOLES . DCHANU . DHOLE'S , SCHAN, DFUEL , THCLAD,
DIU,DOU.DIM, TCLADMAX , TGMAX , TFUE LMAX , FRACPPMAX,,
FRACSPMAX,FRACSONIC,NAXIAL,ISHAPE.EXL,lFLAG,ICOMP,
NEPC, IDFUEL, | OMOD, I DCLA
MON/DIM/RELPOW(S@) TCOOLL50) TWCHAN(50% POW(58) HTC(58)
PwéQ@%ﬁ%CLAD(5@) TFUEL(508) . DELTAP(50) . VEL(58)
MON/OUTPUT/VF NCHAN . SONIC,POWTOTAL ,DELPTOT 1, POWDENY,
WORKTOT1.DELTAPCAN, DPTURN , PWORKCAN , FSONIC, FSONICM,
ELPTOTZ2 ,FRACSP , PWORKTOTZ , FRACPP

D
COMMON/REALS/MFUEL NPELLET,MPELLET,MDOTMAX ,MDOTCAN,

NPELAX, NCLUSPERA, NFEPCU, NFEPCM

L MFUEL.NPELLET MPELLET MDOTMAX,MDOTCAN,NPELAX,
NCLUSPERA ,NFEPCU,NFEPCM

ON FACTOR
RE,PR)=0.184+RE++ (=0 .Z)+PRsx(—0.6)

3.141592654
ANM=DCHANU
R=6.5

HE=HCORE+Z.@*EXL
HS=~HCORE*0.5

DX=

107
RMA

¢

i

.F&
IREL
RMA

5 101
PEAK T
PTO
SCALE
AX AL

oo O

HCORE /NAX | AL

=0.0

xX=0 .0

5 1=1,NAXIAL

I SHAPE .EQ. 1)RELPOW( I )=1.8

ISHAPE .EQ. @)

POW( I }=SIN(PI/HE# (HS+ | *DX))—SIN(PI/HE*(HS+(1-1)+DX))
X=AMAX 1 (RMAX ,RELPOW( 1))

xTOT+RELPOW(Ig

O AVERAGE POWER FACTOR

AZ=RMAX/TOT*NAX AL

RELATIVE POWER SHAPE SO THE TOTAL POWER OF ALL
LEVELS ADDS TO THE CORRECT TOTAL CORE POWER

0 7 I=1,

D
7 REL

NA
POW( |)=RELPOW(I)/TOT
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CALCULATE CHANNEL FLOW ARCA AND WALL AREA
ACORE=P | « DCORE+DCORE+G . 25
AREA OF HEXAGON = FTOF#+«2 «] 5/TAN(66£
NCLUSPERA — NUMBER OF CLUSTERS PER AREA OF CORE
NCLUSPERA=1.0@/(NEPC+0.866025+FTOF+FTOF)
NCLUSTU=NCLUSPERA+FRACCLUSU«ACORE
NCLUSTM-NCLUSPERAt%1.Q—FRACCLUSU +«ACORE
A CLUSTER CONTAINS A TOTAL OF NEPC ELEMENTS
NFEPCU 1S NUMBER OF FUELED ELEMENTS/UNMOD CLUSTER
NFEPCM 1S NUMBER OF FUELED ELEMENTS/MOD CLUSTER
NCHANU=NCLUSTUNECHANUSNFEPCU
NCHANM=NCLUS TM*NECHANM+NFEPCM
NCHAN=NCHANU+NCHANM
ACHAN=P | «DCHANU+DCHANU+8 . 25+ NCHANU+P | + DCHANM«DCHANM+0 . 25+ NCHANM
WACHAN=P | « DCHANU#HCORE *+ NCHANU+P | « DCHANM» HCORE « NCHANM

SINGLE AND DOUBLE PASS
ACANU-PI‘DOUtDOUtO.ZStNCLUSTUtENEPC—NFEPCU)
ACANM=P | ¢+DIM*D IM*@ . 25+ NCLUSTMs* (NEPC-NFEPCM
AHOLES=P | s DHOLES*DHOLES#+0Q . 25+ NCLUSTM»NEHOLES

EFFECTIVE CHANNEL AND CAN HYDRAULIC DIAMETERS
WPC=WACHAN /HCORE
DCHAN=4 G+ACHAN/AMAX1(WPC,0.0001)
WP=NCLUSTU+P |+ (DOU+2.0+D1U)

HDCANU=4 . 8+ ACANU/AMAX 1 (WP, ©.0001)
IF(HDCANU.LT . 1.0E-6)HDCANU=0 . 020001

FOR THREE PASSES
ACANUT=P 1 «DI1UsDIU*0.25+NCLUSTU+ (NEPC~NFEPCU)
ACANUZ=ACANU-ACANU1
WP2=NCLUSTU#P | « (DOU+D I U)
HOCANUZ=4 . @+ ACANUZ/AMAX 1 (WP2,0.0001)
| F(HDCANUZ. LT 1.0E—~6)HDCANU2=0 . 00001

AREAS PER MOD AND UNMOD ELEMENTS (AREA OF MOD ELEMENT IS
NECHANM/NECHANU OF UNMOD ELEMENT)
APEU=1.0/(NEPC+«NCLUSPERA)
APEM=APEU*NECHANM/NECHANU
AETOT=APEU«NCLUSTU*NFEPCU+APEM*NCLUS TM*NFEPCM
TOTAL VOL OF ALL ELEMENTS AVA{LABLE FOR FUEL LOADING
VOLCORE=(AETOT—ACHAN) » HCORE
VF=ACHAN/AETOT
MFUEL=FLOAD*VOLCORE
VOLPELLET=4.0/3 . 0+P |+ (DFUEL+0.5)++3
USE COLD (ROOM TEMPERATURE% DENSITY OF FUEL TO CALCULATE FUEL MASS
CALL DENSITY(300.0,!DFUEL,DENFUEL)
MPELLE T=VOLPELLET+DENFUEL
NPELLET=MFUEL/MPELLET
NPELAX=NPELLET/NAXIAL
CALCULATE MASS OF MODERATOR IN FUELED ELEMENTS
CALL DENS!TY(30@ ©,1DMOD,DENMOD)
GMASS=0DENMOD* (VOLCORE-MFUEL/DENFUEL)

CALCULATE SONIC VELOCITY OF COOLANT AT CORE ENTRANCE AND EXiT
(WM 1S COOLANT MOLECULAR WE IGHT)

WM=4

IF(IDCOOL .EQ.2)WM=2.0

CALL CSUBPCOOLFTIN‘IDCOOL,CSUBPC()

CALL CSUBPCOOL TOUT,IDCOOL,CSUBPCO;

CALL DENCOOLEPRES,TIN‘lDCOOL.DENCI

CALL DENCOOL(PRES,TOUT, iDCOOL,DENCO)

GAMCOOL=CSUBPCI/(CSUBPCI—8314 5/WM

SONICt=[{GAMCOOL /WMs8314.5«T [N) w20 .

GAMCOOL=CSUBPCO/ (CSUBPCO-8314 . 5/WM)

SONICO=(GAMCOOL /WM*8314.5+4TOUT )#+0.5
MAX IMUM SONIC VELOCITY 1S AT CORE EXIT, BUT (Ff RESULTING CORE
INLET VELOCITY 1S GREATER THAN INLET SONIC VELOCITY, MUST USE
INLET SONIC VELOCITY AS MAXIMUM ALLOWED

[ F(SONICO*DENCO/DENCI .GT . SONICI)THEN

VELMAYX=FRACSONIC*SONICI

SONIC=SONIC!

G=VELMAX*DENCI

1 LOC=)

ELSE

VELMAX=FRACSON{C*SONICO

SON|C=SONICO

G=VELMAX*DBENCO

1 LOC=NAX AL

ENDIF

DO 1208 tv=1,30@
CORE FLOW RATE BASED ON MAXIMUM ALLOWED VELOCITY (G = VEL#DEN)
MDUTMAX=G» ACHAN
POWTOTAL=MDOTMAX» (CSUBPCO+CSUBPC! )#8 . 5+ (TOUT-TIN)
POWFUEL=POWTOTAL
POWPELLET=POWFUEL/NPELLET
POWDENM=POWTOTAL /MFUEL
POWDENV=POWTOTAL /VOLCORE

BEGIMN STEPPING THROUGH EACH AXI1AL 20NE TO DETERMINE COOLANT. CLAD,
AND FUEL TEMPERATURES
TCOOL (1)=TIN

GUESS FOR AZIAL ZONE COOLANT TEMPERATURE INCREASE
TI=(TOUT-TIN)/NAX AL
DAP=8 .0
PRESN=PRES

TGG=0 . 0
TCL=0.0

TFU=Q .0
DELPTOT1=0.0
PWORKTOT1=06 ©
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DO 50 1A=1 NAXIAL
DXP=DXP+DX
POW( 1A)=POWFUEL +RELPOW( 1A)

IF(1FLAG.EQ. 1) THEN
TAaV=TOUT

TCOOLE1 =TOUT
7COOL (2)=TOUT

GO TO 6

TCOOL (1A+1)=TCOOL( 1A)+T!

CALL CSUBPCOOL(TCOOL(IA% IDCOOL , csuaptg
ITERATE 10 DETERMINE ZONE £X!7 TEMPERATUR
(ITERATION 1S NECESSARY WHEN CSUBP IS NOT CONSTANT)

DO 6@ I2=1,50

CALL CSUBPCOOL(TCOOL(IA+1) 1DCOOL , CSUBPO)

CPAVG={CSUBP 1 +CSUBPO )+ @

TCNEW=POW(|A)‘PTOAR/MDOTMAX/CPAVG+TCOOL(IA)

IF(ABS{TCNEW=TCOOL (1A+1)).LT TERR)GO T0 62
60 TCOOL( IA+1)=TCNE
62 TCOOLEIA+1;-(TCOOL(|A+1)+TCNEW)¢0.5

NOW DETERMINE ZONE PROPERTIES
TAV=(TCOOL (TA)+TCOOL{1A+1))*8.5

65 CONT INUE
CALL DVISCOOL(PRESN,TAV, IDCOOL,DVIS)
CALL DENCOOL (PRESN.TAV, iDCOOL,DEN)
IF(PRESN . LE.®.@)DEN=1.0
VEL(lA)-MDOTMAX/DEN/ACHAN
VS=VEL( |
RENUM:DEN*VELEIA)ODCHAN/DVIS
CALL CONDCOOL (TAV, 1DCOOL,COND)
CALL CSUBPCOOL§TCOOL§IA) 1DCOOL , CSUBP1
CALL CSUBPCOOL (TCOOL (1 A+1), IDCOOL,CSUBP2)
CSUBP=(CSUBP1+CSUBPZ2)+0.5
PRNUM=DV | S+CSUBP/CON

NOW CALCULATE CHANNEL WALL TEMPERATURE |TERATIVELY
TW=TAV+58. 0@
DO 7@ 13=1,25
CALL HTCC(TAV,DXP,COND,DCHAN, RENUM,PRNUM, TW, HTC(1A))
TWN=TAV+POW( | A) +PTOAR/WACHAN+NAX | AL/HTC(iA)
IF(ABS (TWN-TW) . LT TERR)GO TO 72

70 Tw=TWN

72 TWCHAN(1A)=(TW+TWN)+0.5

CALCULATE MODERATOR DELTA ¥
CALL CONDUCT (TWCHAN{ IA), iDMOD,COND)
FOR COMPOSITE FUEL, CALCULATE AVERAGE CONDUCTIVITY OF FUEL/MODERATOR

F(lCOMP.NE,e%THEN
CALL CONDUCT(TWCHAN( IA), IDFUEL ,CONDFUEL
COND=(MFUE L /DENFUEL » CONDFUEL+GMASS /DENMOD « COND )
1/(MEU L/DENFUEL+GMASS/DENMOD)
ELS

END)
BELTATsPOW(JA)/NCHAN.PTOAR-ALOG((SCHAN'° B+DCHAN) /DCHAN )0 . 5/P |
1/0x/
TG(1A)=TWCHAN( 1 A)+DELTAT
UPDATE THERMAL CONDUCTIVITY AND RE CALCULATE TG
TNEW=(TW"HANE +TG6(1A)) /2.0
CALL CONDUCT ( TNEW IDMO .COND)
IF(ICOMP.NE.G%THEN
CALL CONDUCT(TNEW, IDFUEL,CONDFUEL)
COND=(MFUEL /DENFUE L+ CONDFUE L+GMASS /DENMOD*COND)
1é(gEUEL/DENFUEL+GMASS/DENMOD)
L

ENDIF
DELTAT:POW(IA)/NCHAN»PTOARaALOG((SCHAN.?.0+DCHAN)/DCHAN)¢0.5/PI
1/DX/COND
TG(IA)=TWCHAN(IA)+DELTAT

CALCULATE CLAD (OR COATING) DELTA T
POWPE L=POW( | A)/NPELAX
RFUEL=DFUEL 8"

DELTAT=0.0
tF(\COMP.EO.G%
CALL CONDUCT(
DELTAT=POWPEL

1éRFUEL+THCLAD)
LSE

ENDIF
TCLAD( 1A)=TG( tA)+DELTAT

CALCULATE FUEL DELTA T
DELTAT=0.0
IF(ICOMP.EQ.Q)THEN

THEN
G(IA&,IDCLAD‘CONDCLAD&
PTOAR*THCLAD+@.25/P 1 /RFUEL/CONDCLAD/

CALL CONDUCT(TCLAD(1A), IDFUEL,CONDFUEL)

EE%EAT:POWPEL‘PTOAR/S O/PI RFUEL/CONDFUEL
L

ENDIF

TFUEL(1A)=TCLAD(1A)4+DELTAT

IF(IFLAG.EQ.9)GO _TO 75

AVERAGE FOR CALCULATING DP
TAV=(TIN+0.97+TOUT)+@.5
CALL DVISCOOL (PRES,TAV, IDCOOL,DVIS)
CALL DENCOOL (PRES,TAV, 1DCOOL . DEN)
VEL{1A)=MDOTMAX /DEN/ACHAN
RENUM= ENtVEL?IA)tDCHAN/DVlS
CALL CONDCOOL({TAV, IDCOOL,COND)
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CALL CSUBPCOOL(TAV, 1DCOOL,CSUBP)
PRNUM=DVS+*CSUBP/COND

DETERMINE PRESSURE DROPS AND PUMP WORK

75 CONTINUE
F=FF(RENUM.PRNUM&
DELTAP(IA)=FsDX/OCHAN*DEN*B S«VEL(IA)Y+VEL(IA)
PWORK (1 A)=DELTAP(1A) s ACHANVEL (1A)
DELPTOT1=DELPTOT1+DELTAP(I1A)
PWORKTOT 1=PWORKTOT 1+PWORK (| A)

DETERM{NE MAXIMUM TEMPERATURES CONSIDERING ALL ZONES
TGG=AMAX1(TGG,TG(1A))
TCL=AMAX1{TCL,TCLAD IA;%
TFU=AMAX1(TFU,TFUEL(IA

PRESN=PRESN-DELTAP(1A)
5¢ CONTINUE

{F(NPASS.GT.1)GO TO 11@

FOR SiINGLE PASS FLOW
FIRST CALCULATE PWORK FOR CANM
MDOTCAN=G @
DELTAPCAN=Q .0
DPTURN=0. @
PWORKCAN=G.@

CALL DV!SCOOLEPRES,TIN'IDCOOL.DVIS)
CALL CONDCOOL T|N,IDCOOL.COND%
CALL CSUBPCOOL(TIN, IDCOOL,CSUBP)
PRNUM=DV I S+ CSUBP/COND
CALL DENCOOL (PRES,TIN, IDCOOL,DEN)

MUST I TERATE TO DETERMINE VELOCITY IN CANS

VELMI =0 . 8xVELMAX
DO 80 i4=1,15
RENUM=DEN*VELMI +DIM/DVIS
FmfF (RENUM, PRNUM)
VELMINEW=(2.@+D1MsDELPTOT1/F/HCORE /DEN)*#+© .25
\F(ABS(VELMINEW—VELMI)/AMAX1(@.85,VELMI) LT.0.085)G0 10 82
0 VELMI=VELMINEW
2 VELMI=(VELMINEW+VELMI }+@.5
MDOTCAN=MDOTCAN+DEN«VELM| « ACANM
PWORK CAN=PWORKCAN+DELPTOT1sACANMsVELMI
NOW REPEAT FOR HOLES
VELMH=VELMI
DO 9@ 15=1,15
RENUM=DEN*VELMH*DHOLES/DVIS
F=FF (RENUM, PRNUM)
VELMHNEW= (2. @«DHOLES+DELPTOT1/F/HCORE /DEN)e+0.25
:F(ABS(VELMHNEW—VELMH)/AMAX1(0,05,VELMH).LT.e,GS)GO 70 ¢2
96 VEULMH=VELMHNEW
9z vELMH=(VELMHNEw+VELMHgt® 5
MDOTCAN=MDOTCAN+DEN+*VELMH2AHOLES
PWORK CAN=PWORKCAN+DELPTOT 14 AHOLES+ VELMH

8
8

AND FINALLY FOR UNMODERATED CANS
VELU=VELMI
DO 1e@ 16=1.15
RENUM=DEN+VELU»HDCANU,/DVIS
F=FF (RENUM, PRNUM)
VELUNEW=é2 @*HDCANU#*DELPTOT 1/F /JHCORE /DEN)#+0.25
(FFABS(VELUNEW—VELU),//AMAX1(@.65,VELU).LT.8.85)G0 TO 102
180G VELU=VELUNEW
102 VELU=(VELUNEW+VELU)«0.5
MOOTCAN=MOOTCAN+DEN VELU*ACANU
PWORK CAN=PWORKCAN+DE LPTOT1+ACANU*VELU
VMAXM=AMAX1(VELMI . VELMR, VELU)

GO TO 140
11@ CONT!INUE
FOR TWQ PASSES
{F(NPASS . GT.2)G0 TO 12@
MOOTCAN=MDOTMAX
CALL DENCOOL(PRES,TIN, IDCOOL,.DEN)
CALL DVISCOOLEPRES,TIN,IDCOOLJDVlS)
CALL CONDCOOL TIN.IDCOOL.CONDé
CALL CSUBPCOOL(TIN, IDCOOL,CSUBP)
PRNUM=DV | S+CSUBP/COND
DMU=EDIM/HDCANu)t.0A5
DHU= DHOLES/HDCANUQ‘-@.5
FIRST GUESS ASSUMING F'S ARE EQUAL
VU=MDOTMAX /DEN/ (ACANU+ACANMe DMU+AROLES+DHU )
VM=VU» DMU
VH=VU*DHU
REU=DEN«VU*HDCANU/DVIS
REM=DEN*VM+DIM/DVIS
REH=DEN*VH*DHOLES/DVIS
FU=FF (REU.PRNUM
FM=FF (REM.PRNUM
FH=FF (REH, PRNUM
CALCULATE NEW VELOCITY ESTIMATE
VU=MDOTMAX /DEN/ (ACANU+ACANM*DMU« (FU/FM)»+@ .5+
1 AHOLES*DHU*{(FU/FH)*+0.5)
REU=DEN*VU*HDCANU/DVIS
REM=DEN*VM«D IM/DVIS
REH=DENsVH*DHOLES/DVIS
FU=FF (REU.PRNUM
FM=FF (REM, PRNUM
FH=FF {REH, PRNUM
VM=VU~DMUtEFU/FM +*0.5
VH=VU+DHU* (FU/FH)}*+0.5
DELTAPCAN=FU+HCORE /HDCANU#DEN+3 . 5+VU#*VU
ADD IN DP DUE TO TURNING LOSSES
DPTURN=FU*50 . 0+DEN#B.5+VUsVU
DELTAPCAN=DEL TAPCAN+DPTURN
FPWORKCAN=DEL TAPCAN=* (ACANU* VU+ACANM» VM+AHOLES+VH)
VMAXM=AMAX1(VU, VM, VH)
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GO TO 148

126 CONTINUE

FOR THREE PASSES

MDOTCAN=MDOTMAX
CALL DENCOOL (PRES,TIN, 1DCOOL ,DEN)
CALL DVISCOOLEPRES TIN, IDCOOL , DVIS)
CALL CONDGOOL(TIN, IDCOOL , COND
CALL CSUBPCOOL(TIN, 1DCOOL,CSUBP)
PRNUM=DV | S CSUBP /COND
FUi=1.90
FU2=1.0
FM=1.0
FH=1. 0
DMU=( Fu1/o1U+Fu2/HDCANu°‘(ACANU1/ACANuzg «2)/
1 FM/D IM+FH/DHOLES* (ACANM/AROLES j*+2))¢s0 5

VU1=MDOTMAX /DEN/ ( ACANU 1+ACANM+ DMU )
VM=VU1+DMU

VU2=VU1sACANU1 /ACANUZ

VH=VMs ACANM/AHOLES

REUT=DEN+
REU2=DEN«

VU1#DIU/DVIS
VU2 +HDCANU2/DVIS

REM=DEN*VM*DIM/DVIS
REH=DEN+VH+DHOLES/DVIS

FU1=FF(RE
FU2=FF(RE

U1,PRNUM;
UZ.PRNUM

FM=FF (REM, PRNUM
FH=FF (REH, PRNUM

DMU=( (FU1
1 FM/

/DIU+FU2/HDCANU2‘(ACANUI/ACANUZ%#’Z)/
DiIM+FH/DHOLES* (ACANM/AHOLES )92 ))»+0

VU1=MDOTMAX /DEN/ (ACANU 1+ACANM+DMU )
VM=VU 1«DMU

VU2=VU1+ACANU1 /ACANU2
VH=VM+ACANM/AHOLES

REU1=DEN#
REUZ=DEN«

VU1+DIU/DVIS
VU2+HDCANUZ2/DVIS

REM=DEN+«VM+DIM/DVIS
REH=DEN+VH+«DHOLES/DVIS

FUT=FF (RE
FU2=FF (RE

Ui, PRNUM
U2, PRNUM

FM-FF§REM,PRNUM

FH=FF

REH, PRNUM

DELTAPCAN1=FU1+HCORE/DIUsDEN+Q .5+VU1sVU1
DELTAPCANZ2=FUZ«HCORE /HDCANUZ +DEN+8.5+VU2sVU2

ADD IN TURN
DPTURN1=F
DPTURNZ=F
DPTURN=DP
DELTAPCAN
DELTAPCAN

DELTAPCAN
PWOR#CAN
2
3
VMAXM=AMA
140 CONTINUE
ADD iIN CAN D

DELPTOTZ=
PWORKTOTZ

DP’S

U1+50 @+DEN*O . S+VUI+VUL
UZ+50 . @+DEN*G . 5+VU2»VU2
TURN1+DPTURNZ
1=DELTAPCAN14DPTURN1
2=DELTAPCANZ+DPTURNZ

=DELTAPCANT+DELTAPCANZ
DELTAPCANT»ACANUT#VUT+
DELTAPCANTZ «ACANUZ s VU2 +
DELTAPCANT + ACANM* VM+
DELTAPCANZ » AHOLE S+ VH
X1(VU1,VUZ, VM, VH)

ELTA P AND PUMP WORK TO THOSE OF CHANNELS
DELPTOT1+DELTAPCAN
=PWORKTOT 1+PWORKCAN

FRACPP=PWORKTOTZ /POWTOTAL

FRACSP=DE
FSON I CM=V
FSONIC=VE
IF(IFLAG.

NOW CHECK TO
AND REDO ALL

IF(TGG.LT.
1FRACPP [T,
2FRACSONIC.

3G0 TO 100
1800 G=0.985+C

10682 CONTINUE
C

O 0000 OO0

RETURN
END

SUBROUT t
SUBROUT INE

IF HCOREMIN
HCOREMIN
| F(HCOREM

Dx=0 .4
H1=HCOREM
H2=H1+DX

CALL FUN(H1

=

LPTOT2/PRES
MAXM/SONIC1
L{ILOC)/SONIC

EQ. 1)FSONIC=VS/SONIC

SEE IF ANY LIMITS ARE EXCEEDED: |F SO THEN REDUCE G
CALCULAT IONS

TGMAX . AND.TCL LT .TCLADMAX.AND.TFU.LT TFUELMAX . AND.
FRACPPMAX . AND . FRACSP . LT FRACSPMAX .AND.FSONICM.LT.
AND.FSONIC. LT FRACSONIC)

2

NE XINT(HCOREMAX ,HCOREMIN, H1 LFH1,FH2)
TO FIND AN INTERVAL CONTAINING A ROOT

'S NEGATIVE, CALCULATE POWDEN FOR HCORE BETWEEN
AND HCOREMAX lNCREMENTED By DEL

IN.LT.0.@)G0 TO 10

IN

LFHT)

@
5 CALL FUN(HZ,FHZ2)

[t=1141

IF(FH1+FHZ2 . LE.@®.8)RETURN

H1=HZ
H2=H2+DX

HZ=AMIN1(R2, HCOREMAX)
FF(H1.GE. H2)

H1=H2
RETURN



a0

O OO0 00

o000 O

o0 o0

00 OO0

o

o0

RETURN

10 HCOREMIN=ABS(HCOREMIN)
DELX=(HCOREMAX—HCOREMIN)/15.0
x=HCOREMIN
DO 15 J=1,15
CALL PDEN(X,FX)
WRITE(6,50)X,FX

50 FOEMQT(; "% "HCORE (M) = ' ,F8.4,4X, SPECIFIC POWER (W/KG) =
11PE12. 4

50 FORMAT(" ' .4%,F8.4,4X,1PE12 4)

15 x=X+DELX
H1=H2
RETURN
END

SUBROUTINE MRF(H1,H2,F,G,HERR ROOTN)
USING MODIFIED REGULA FALS! METHOD TO GET ROOT

ROOTO=H1

NN=28

DO 25 IM=1,NN

GMF =G—F
IF(ABSEGMF).LT41.0E—15)GO TO 50
ROOTN=(G*+H1—F «H2

/GMF
FOR FUNCTIONS THAT %ONT ALLOW NEG OR ZERO ARGUMENTS
IF(ROOTN.LE.0.0)GO TO 60

CHECK FOR ERROR
IF(ABSE(ROOTN—ROOTO)%.GE.E)GO T0 6
| F(ABS{ (ROQTN—ROOTO) /ROOTN) . GE . HERR ) GO 70 6
CALL FUN(ROOTN,FN
IF%ABS(FN),GT.Q.E GO T0 790
RETURN

6 CALL FUN(ROOTN,LFROOT)
|F(F+FROOT.GT.0.2)G0O TO 10
H2=ROOTN
G=FROOT
F=_ SsF
GO 10 z2e

1¢ H1=ROOIN
F=FROOT

G=.5+G
20 CONTINUE
RQOOTO=ROOTN
25 CONTINUE

50 IERR=12
60 IERR=22
76 IERR=32

SUBROUT INE HTCC(TA,XL.CON,HD,RE.PR, TW HTC)
TAYTLOR EQUATION FOR HEAT TRANSFER

CFe(TW/TA)»#(1.58/XLsHD=6.57)

HTC=0. @23¢CON/HD+REs+0 B+PR++0 4+CF

RETURN

END

SUBROUT INE DENCOOL(P,T, 1D, DEN)
IDEAL GAS EQUATION OF STATE FOR HE AND HZ
WM=4 .0
IF(1D EQ.2)WM=2 .0
DEN=P/T+WM/8314 .5
RETURN
END

SUBROUT INE CSUBPCOOL(T.1D,CP)
COOLANT CSUBP
D=1 FOR HE AND 1D=2 FOR HZ
CP=5200 .0
[F(1D.EQ.1)RETURN

CP=5.76+5.78E—4+T+1.8+20.0/(1.8+7)%¢0.5
1F(T.GT.2222.2)CP=CP=3 3E-4+(T*1 £-4000.0)
CP=0.5+CP/2.38846E~4

RETURN

END

SUBROUT I NE DVISCOOL(P,T.ID,DV%
DYNAMIC VISCOSITY OF HE AND HZ AT 1 ATM

\F(ID.EQ. 1) THEN

DV-%.48826—5~(1 204+6.00132+(T+1.8-459.67))

ELS

IF(T.LT1.530.@)THEN

Ev=1 4882E-5+(0.5407+0. 000764+ (T+1.8-459.67))
LSE



o0

o0 00

o0

leXel

o0 o0 O

o0

DV=1 48B2E~54(~2.22592+40.49798+ALOG(T»1.8-459.67))
NDtF

ENDIF
RETURN
END

SUBROUT INE CONDCOOL T,
CONDUCT!ViTY (W/M/K) HE AND H7 AT 1 ATM
F(ID.EQ.1)THEN
CND=1 7296+ (0.08096+0.000076+(T+1.8-459.67))

ELSE
CND=1.7296+(0.105143+0.000096+(T»1.8-459.67))
F

SUBROUT INE CONDUCT(T,

CONDUCT IVITY OF FUEL. MODERA%OR AND CLADDING MATERIALS

GO T0(1,2,3,4,5.6.7,8,9,18,11),1D

RETURN
FUEL (UC) CONDUCTIVITY (W/M/K) P.104 OF NUCLEAR HEAT
EL waktL (POWER FIT OF TA

TRANSFER,

DA
1 Cm1.7307426.0+ (AMAX1(T+1.8-459.67,260.0))%+(-0.1093)

RETURN
UO2 FROM GLADSTONE AND SESONSKE
2 C=2308.5+7++(-0.916)
RETURN
uB4 (JUST USE UC FOR NOW!!1)
3 CONTINUE
GO TO 1

RETURN
TRANSVERSE GRAPHITE CONDUCTIVITY (W/M %
4 C=AMAX1(1.7307+(179.1-19.7+ALOG(1. 459.67)).,10@.
RETURN
B4C FROM LLL CONCEPT DOCUMENT
5 C=598.8+T*s(-0.52)
RETURN
BEO FROM P.767 If INCROPERA AND DEWITT, FUND. OF HT
6 C=2 523E6+¢T+s(—1.583)
RETURN
ZRC CONDUCTIVITY ;W/M/K) FROM P.131 OF LA-5044 VOL.2
7 C=22 .67+0.00867+T
7 C=3.54+40.0022+T 40% POROUS ZRC
RETURN
TUNGSTEN ( INCROPERA AND DEWITT)
8 C=734.29+T4+(-2.2621)
RETURN
MOLY { INCROPEFA AND DEWITT)
G C=477 . 44+ T2(-@3.21506)

RETURN

6Q%UCY — W

10 C=0 642308 . 52T+ (0. Q16)+0.4+734 29sTew(—-0.2621)
RETURN

6@7U02 ~ MO

11 g;$ 642308.5+T++(—0.016)+8.4+477 44sTe+(—0.21506)

END

SUBROUT INE DENSITY(T,1D,D)
DENSITY OF FUEL, MODERATOR AND CLADDING MATERIALS

GO T10(1,2,3,4,5.6,7,8,9,10,11),1D
RETURN
UC FUEL DENSITY (KG/CUB.M)
1 D=11060.0
OR D=13500.9
RETURN

uQ2
2 D=11000.0
RETURN

U84
3 D=12799.9
RETUR
GRAPHITE DENSITY (KG/CUB. M)
4 D=1700.0
RETURN
B4C (USE BEO FOR NOW!!1)
5 CONT)NUE
GO TO 6
RETURN
BEO
€ D=2883.0
RETURN

ZRC
7 D= 657@ 4
RET
TUNGSTEN (INCROPERA AND DEWITT)
8 D=193 .0
RETUR
MOL Y (INCROPERA AND DEWITT)
S D=10240
RETURN

1Q D-@.G *11000.040.4+19300.0
URN
60%U02 ~ MO

11 D=0.6+11000.6+0.4+10240.0
RETURN

8)
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