
SANDIA REPORT 
SAND86-2972 • UC-13 
Unlimited Release 
Printed November 1987 

Kinematic and Dynamic Analyses 
of the Stanford/ JPL Robot Hand 

Victor J. Johnson, Gregory P. Starr 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico 87185 and Livermore, California 94550 
for the United States Department of Ener9Y 
under Contract DE·AC04·76DP00789 

SF2900Q(S·S1 ) 

When printing a copy of any digitized SAND 
Report, you are required to update the  

markings to current standards.



Issued by Sandia National Laboratories, operated for the United States 
Department of Energy by Sandia Corporation. 
NOTICE: This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States Govern- 
ment nor any agency thereof, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or pro- 
cess disclosed, or represents that  its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring 
by the United States Government, any agency thereof or any of their 
contractors or subcontractors. The views and opinions expressed herein do 
not necessarily state or reflect those of the United States Government, any 
agency thereof or any of their contractors or subcontractors. 

Printed in the United States of America 
Available from 
National Technical Information Service 
U S .  Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161 

NTIS price codes 
Printed copy: A04 
Microfiche copy: A01 



Distribution 
Category UC-13 

SAND 86-2972 
Unlimited Release 

Printed November 1987 

KINEMATIC AND DYNAMIC ANALYSES 
OF THE 

STANFORDIJPL ROBOT HAND 

Victor J. Johnson 
Switching Devices Division 
Sandia National Laboratories 

Albuquerque, NM 87185 

Gregory P. Starr, Professor 
Department of Mechanical Engineering 

University of New Mexico 
Albuquerque, NM 87131 

Abstract 
This report develops the kinematic and dynamic equations for one 
finger of the three-fingered Stanford/JPL robot hand and 
documents the physical parameters needed to implement the 
equations. The equations can be used in control schemes f o r  
position and force control of the Stanford/JPL robot hand. 
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KINEMATIC AND DYNAMIC ANALYSES 

OF TEE 

STANFORD/JPL ROBOT HAND 

Introduction 

A robot manipulator must be controlled before it can be used to 

perform useful tasks. This report documents the analyses used ta 

derive the kinematic and dynamic equations describing motion of a 

Stanford/JPL robot hand and also documents the physical 

parameters needed to apply the developed equations. The latter 

information can be found in Salisbury [1,2], but it is 

republished here for completeness, and to provide a basis for the 

software developed to control the hand. 

The Stanford/JPL dexterous hand, designed by Dr. J. Kenneth 

Salisbury Jr., is a three-fingered robotic hand containing nine 

joints (Figure 1). Each finger is identical; three revolute 

joints, with joint 1 rotating perpendicularly to joints 2 and 3 .  

The three fingers are positioned as two fingers and an opposing 

thumb. Thus, an analysis of one finger describes each of the 

three fingers. Only one finger is analyzed in this report. The 

results can be extended to all three. 



Figure 1. Stanford/JPL hand 

Successful completion of any task that the hand is commanded to 

perform is dependent on the ability to accurately control the 

fingertip position. This requires development of relationships 

between defined points in space and the angular joint positions. 

The equations that give the finger positions, based on a set of 

known joint angles, are called !'forward kinematics". The 

equations that give the finger joint angles, based on knowledge 

of the Cartesian location of the tip of the manipulator, are 

called the "inverse kinematic!' equations. 
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Kinematics is the study of motion and the interrelationships 

between acceleration, velocity, and position; the forces that 

cause the motions are not considered. However, motion is not the 

only concern for accurate position control; also important are 

the forces or torques required to impart the motion. The dynamic 

equations are derived in this report using the Newton-Euler 

technique because it yields the manipulator Jacobian in the 

derivation process. The Jacobian is a matrix that relates 

fingertip Cartesian velocity to joint velocities and can also 

relate fingertip forces to joint torques. 

Dynamic equations can be used to close a control loop internal to 

the lowest level position controller. Ideally, this technique 

decouples the inertial and positional nonlinearities of the 

system. However, the friction in the Stanford/JPL hand is a 

major contributer to the driver load, which negates the efforts 

of nonlinearity decoupling unless the friction loading can be 

mathematically modeled. This feat has not yet been 

satisfactorily accomplished. Another problem that needs 

addressing for successful implementation of this control scheme 

is development of a method that quickly performs the computations 

required to update the feedback model. 

Due to the difficulties, the hand is currently controlled by 

keeping the forward-path gains low enough to avoid exciting the 
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higher order frequencies of the system. This technique produces 

a system with a response that is quick enough to use in all our 

current research studies. Description of the dynamic equation 

derivation is the goal of this report. Solution to the problems 

of using the equations is not presented. 

The first section of this report introduces briefly the 

homogeneous transformations and frame assignments used to 

simplify the analyses. The conventions that were used are 

described in Craig [3]. In the second section the development of 

the forward kinematics for one finger is covered. Section three 

develops the inverse kinematic equations. Section four explains 

how the velocity, acceleration, and Newton-Euler dynamic 

equations are derived. The references used to develop the 

kinematics and dynamics were Craig [ 3 ] ,  and Asada and Slotine 

[ 4 ] .  Appendix A describes the physical parameters of the drive 

system of the Stanford/JPL hand. These parameters are needed to 

transform the equations developed in sections two and three into 

forms that can be implemented in the control system software. 

These parameters convert the equations derived in ttmanipulatortt 

space to tttendonlt and Itmotortt space. Major portions of the 
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information contained in Appendix A are a reprint of material 

from Salisbury [l]. Appendix B is the output file from the 

MACSYMAl* symbolic manipulation program that defines the 

dynamic equations of the fingers. 

* 

1.0 Homogeneous Transformations and Frame Assignments 

Standard practice in the field of robotics is to use homogeneous 

transformations to describe the position and orientation of 

objects and manipulator links relative to each other. The 

following two subsections describe how this convention has been 

applied to the Stanford/JPL robot hand. 

1.1 Coordinate Frame Conventions and Link Parameters 

In addition to manipulator position and orientation, descriptions 

of position and orientation of other objects may be necessary to 

perform useful tasks with a robot. Therefore, standardized 

conventions are desirable for representing positions and 

orientations in space. The conventions used here are those 

detailed in Craig [ 3 ] .  

l*MACSYMA is licensed by the Digital Equipment Corporation 
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Link parameters are defined using the  Denavit-Hartenberg 

notation.  This allows unique d e f i n i t i o n  of the relationship 

between t w o  j o i n t s  and two l i n k s  with four parameters: (1) the  

l i n k  length, (a), ( 2 )  the  l i n k  t w i s t ,  (a lpha) ,  ( 3 )  t h e  j o i n t  

o f f s e t ,  (d)  , and ( 4 )  the j o i n t  rotat ion,  (theta). See Figure 2. 

Figure 2. Denavit-Hartenberg parameters from Craig ( 3 1 .  



1.2 Finger Coordinate Frames 

The frame attachments used (Figure 3 )  follow the conventions 

outlined in Craig. Frame one is placed with z1 along its axis of 

rotation (the joint axis), with the x1 axis pointing in the 

direction of joint two. Frame two is placed with z2 along the 

axis of rotation of joint two, and x2 points in the direction of 

joint three. Now, frame 0 is placed coincident with frame 1 

where theta1 is zero, and the last frame (frame 3 )  is placed such 

that the x3 axis aligns with x2 axis and d3 is zero. The z3 axis 

is placed along the joint three axis. 

Figure 3 .  Finger-frame attachments 

An additional frame, called a tool frame, is conventionally 

placed at some arbitrary point on the The end of the last link. 

13 
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tool frame is placed at the center of the finger’s tip with the 

same axis orientation as frame 3 .  

The Denavit-Hartenberg parameters are shown in Table 1. 

Table 1. Denavit-Hartenberg parameters 

i 

0 

90 

0 

0 

ai-l 

0 

L1 

L2 

L3 

di thetai 

thetal 

thetaa 

theta3 

The transformation relating a position in frame i to the same 

position described in terms of frame i-1 is described using the 

Denavit-Hartenberg parameters in the following equation: 
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i-lT a position 

and orientation in frame i to the same 

position and orientation described in terms 

of frame i-1. 

= the transformation relating i where 

s(thi) 

c(thi) 

s(ali-l) = the sine of the link i-1 twist angle (alphai - l). 
c(ali-l) = the cosine of the link i-1 twist angle (alphai- 

= the sine of the link i joint angle (thetai). 

= the cosine of the link i joint angle (thetai). 

1) 

= the length of link i-1. 

= the link offset of link i. 
ai-l 

di 

Using Equation (1) and the Denavit-Hartenberg parameters, the 

transformations to needed to describe the finger motions are 

those shown in Equations (2) through (5). 

1 
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- - 

O L3 

0 0  

1 0  

0 1  . 

r 

c3 

s3 

0 

0 

where si is the sine of thetai. 

ci is the cosine of thetai. 

Li is the length of link i. 

= 1  

These transformations are all that are necessary to find the 

forward kinematics of a finger of the Stanford/JPL hand. 

- 
0 

0 

0 - 
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2.0 Forward Kinematics 

The forward kinematic equations define the position and 

orientation of a fingertip when the joint rotation angles are 

known. That relationship is given by the transformation Tt, 

which is found by multiplying equations (2) through (5 )  together. 

0 

0 Equation (6) is the forward kinematic equation, Tt. 

LICl + L c c + L3c1c23 1 2 1 2  -c s S 1 23 c c  

s c  1 23 - s  1 s 23 -C 1 Llsl + L2s1c2 L3s1c23] 

0 0 0 1 

1 23 

23 0 L2s2 i- L3s23 C 23 S 

In Equation ( 6 ) ,  c23 is defined as cosine( theta2 + theta3) and 

similarly, s is sine( theta2 + theta3). The position and 

orientation vectors of the manipulator are determined for any 

given set of joint angles by putting the joint angles into matrix 

23 

Equation (6). The upper left 3x3 sub-matrix is the orientation 

matrix, and describes the tool-frame unit vectors in terms of the 

base-frame vectors. The first three entries in the last column 

are the components of the position vector: px, py, and p,. 
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3.0 Inverse Kinematics 

The inverse kinematic problem is, as would be expected, the 

inverse of the forward kinematics problem. Given an (x,y,z) 

positional value and a desired orientation, the joint angle 

values necessary to place the finger in that position and 

orientation must be determined. The derivation of the inverse 

kinematic equations requires solving the forward kinematic 

equations for joint angles. The equations are very nonlinear in 

terms of the joint angles, making solution difficult. For some 

manipulators, in fact, there is no closed-form solution. 

For the three-degree-of-freedom finger there is a solution. 

However, as the finger has only three degrees of freedom, either 

position, orientation, or combination of three positional 

coordinates. To grasp an object, the position of the point of 

contact of the fingers is required. Thus, the joint angles 

needed to place the fingertip in the desired position are the 

parameters of interest. 

and 

equations from the OTt transform: Equation ( 6 ) .  They are 
pY The three equations needed for the solution are the px, 

Pi5 
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reprinted here for easy reference as Equations (7), ( 8 ) ,  and (9). 

Px = L1Cl + L 2 ~ 1 ~ 2  + L 3 ~ 1 ~ 2 3  

= LISl + L2s1c2 + L3s1c23 pY 

(7) 

To find the solution for thetal, multiply Equation (7) by sl, 

Equation ( 8 )  by cl, and divide the results. The result is 

equation (10) . 

Equation (10) can be solved for thetal by using a two-sided 

arctangent function, as in Equation (11). 

thetal = ATAN2(p p ) Y' x 

Now, multiplying Equation (7) by c1 and Equation ( 8 )  by s1 and 

adding the two results gives Equation (12). 



is equal to (p, 2 + py 2)0m5, Equation (12) can 

(13). 

+ PyS1 Since pxcl 

be rewritten to obtain Equation 

- L1 = L3c23 + L2c2 2 2 0,5 a1 = (P, + Py 1 

Squaring equations (9) and (13), adding, and rearranging the 

results gives equation (14). 

The cosine function is an even function [f(x) = f(-x)], and is 

periodic; therefore, there are four unique solutions for theta3. 

See Equation (15). Because of physical constraints, two 

solutions are attainable. These two solutions correspond to 

flexing the finger or hyperextending it: theta3 negative, or 

theta3 positive (Figure 4). 

theta3 = ACOS[(al 2 + p, 2 - L3 2 - L2 2 ) / ( ~ L ~ L ~ ) ]  
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Figure 4. Flex and hyperextension of joint 3. 

N o w ,  by multiplying Equation (13) 

adding equation (16) results in: 

alc2 + pzs2 = L3c3 + L2 

Equation (16) can be rearranged 

theta2 : 

by c2, Equation (9) by s 2 ,  and 

(16) 

to obtain a form used to find 

-(L3c3 + L2) = -p 2 2  s + (-alc2) (17) 

Let p, = Rcos(psi), -a = Rsin(psi), W = (L3c3 + L,), R = (pZ2 + 
Substituting these expressions 

1 

2, Oo5, and psi = ATAN2 (-al,pz). al 

2 1  



into equation (17), equation (18) results: 

theta2 = ATAN2(-al,p,) - ATAN2[(L3c3 + La), 

Once again, there are multiple solutions. This time there are 

two solutions but one is not attainable because of physical 

constraints. Thus, the solution for theta2 is the one resulting 

from a positive value in the second argument of the second 

arctangent function call. 

4.0 Iterative Newton-Euler Dynamics 

The equations necessary to find the position and orientation of a 

robot manipulator were developed in the previous sections. This 

allows the next step, development of the equations of motion to 

be attacked. The velocity and static force equations are derived 

in subsections 4.1 and 4.2. The concepts discussed in those two 

subsections will be extended to an acceleration and force-of- 

motion analysis in subsection 4.3. 

22 



4.1 Velocity Equations 

For any open kinematic chain, such as a robot manipulator, the 

velocity of each successive link can be calculated by 

I1propagatingt1 the velocity of the previous link; Craig [3]. 

velocity of each link has a linear and a rotational component, 

equations (19) and (20). However, care must be taken to describe 

the components of velocity in the proper reference frame. 

The 

- i+lR, io i+lz 
1 i + tdi+l i+l - i+l 

Oi+l 

- - i+l 
Oi+l where the angular velocity of link i+l written in 

terms of the i+l reference frame. 

the rotational matrix relating frames i+l and i 

and is the upper left three by three matrix of 
i+lT 

the time derivative of thetai+l. 

the vector describing the axis of rotation of 
T joint i+l. It is usually the vector [ 0  0 13 

where signifies the transpose. 

i' 

Notice that the velocity vectors are free vectors. Therefore, a 

positional transformation to change descriptions from one 
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i+l~. is reference frame to the next is not required. Only 

needed to change the reference frame description, and not 
1 

i+lT 
i' 

i+l i i  - - Ri( ivi + 0.x Pi+l) i+l 1 
i+lv 

= the linear velocity of the origin of link i+lv 
i+l where 

frame i + 2  relative to reference frame i+l. 

iVi = the linear velocity of the origin of link frame 

i relative to reference frame i. 
i i  0 . x  Pi+l = the crws product of the angular velocity of 

link i and the position of the origin of frame 

i+l referenced to frame i. 

1 

Applying Equations (19) and (2Q) to each sequential link of the 

robot finger, the velocity equation describing the motion of the 

tip in terms of the tip reference frame can be determined. See 

Equations (21) and (22). 

tot = tR3303 + tdtZt = rs23tdl 

pd2+td3 
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Equation (22) can be rewritten as shown in Equation (23) to 

illustrate the relationship between the tip velocity and the 

joint velocities. The 3x3 matrix on the right-hand side of 

equation (23)is defined as the Jacobian matrix. 

L2s3 O 1  

The tip velocity is found in terms of the stationary base frame 
by premultiplying Equation (23) by 0 Rt. 

4.2 Static Forces 

Analyzing the static forces acting on a manipulator is not unlike 

analyzing the static forces on any structure. The structure of a 

manipulator suggests performing a force-moment balance on each 

link in terms of the locally defined link frames. Then, the 

joint torques required to maintain equilibrium can be determined. 

Figure 5 shows a generalized link with the forces acting on the 
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link. Equation (24) results from a force balance procedure: 

= o  i i 
fi - fi+l 

fi = the force exerted on link i by link i-1 i where 

referenced to frame i. 

Figure 5. Free-body diagram of one link [from Craig]. 

A torque summation relative to frame i, gives Equation (25). 

= o  (25) i i i 
- 'i+lX fi+l "i "i+l 

- i 
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i where ni = the torque exerted on link i by link i-1 

referenced to frame i. 

= the cross product of the position vector of 

the origin of frame i+l and the force exerted 

on link i by link i-1, both referenced to 

frame i. 

i i 
'i+lX fi+l 

i i If Equations (24) and (25) are rewritten to find 
i+l using the known values of 

rotation matrices, Equations (26) and (27) are obtained. 

fi and ni, and 

and the appropriate i+l 
and "i+l i+l 

i+l 
fi = lRi+l i+l 

i i 
+ 'i+lX fi Ri+l ni+l 

i i+l in = i 

The form of these equations allows tlpropagationtt of the forces 

from the end link back to the base link. All components of the 

force and moment vectors are balanced by the structure of the 

mechanism, with the exception of the torqu'e about the joint axis. 

Thus, the joint torque required for stat1.c equilibrium is equal 

to the component of the torque on link i directed along the joint 

axis (the dot product of the joint axis vector with the moment 

vector). Equation (28) gives the joint torque. 

i TiZ 
i i  Taui = n 
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Using Equations (26), ( 2 7 ) ,  and (29) on the three-link finger 

results in a torque equation of the form: 

Tau = 0 [ L2s3 
0 

0 

L3+L2c2 

L3 

'(L c +L c +L1) 1 3 2 3  2 2  
0 

0 

where fx, f and fZ = the x, y, and z direction of a force 
Y' 

applied to the tip of a finger. 

The 3x3 matrix on the right-hanfl side of equation (29) is the 

transposition of the Jacobian. The remarkable fact about the 

Jacobian is that it relates the Cartesian forces and velocities 

to joint torques and angular velocities without performing an 

inverse transformation. 
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4.3 Iterative Newton-Euler Dynamics Equations 

Derivation of the dynamic equations of a manipulator can be 

accomplished using many different techniques. Each technique has 

both advantages and disadvantages. The technique chosen for this 

report is the iterative Newton-Euler method; it was selected 

because it is an intuitive approach for engineers with a 

mechanical background. 

4.3.1 Acceleration 88Propagation88 

Before calculating the inertial forces on each link, the 

rotational velocity, and the linear and rotational accelerations 

of the mass center of each link must be found. In subsection 4.1 

the rotational velocity equation, that propagates velocities from 

the base link to the last link, was presented (Equation (19)). 

Now, a similar technique will be used to propagate linear and 

rotational accelerations. Equation (30) is a reprint of equation 

(19), whereas Equations (31) and (32) are the rotational and 

linear acceleration equations, respectively. 

- i+lR. io i+lz 
1 i + tdi+l i+l i+lo - 

i+l 

29 



i+lz 
Odi+1 i+lRiiod. 1 + i+lRiioi x tdi+l i+l 

- - i+l 

i+lz 
i+l + tddi+l 

= the rotational acceleration of link i+l i+l 
where Odi+1 

referenced to frame i+l 

iodi = the rotational acceleration of link i referenced 

to frame i+l 

= the rotational acceleration of joint i+l tddi+l 

(32) 
i i i i + o x ( oi x Pi+l) + ail 

i 
- i+lRi[iodi x Pi+l i i+l 
- i+la 

= the linear acceleration of the origin of link i+l 
ai+l where 

frame i+l in terms of frame i+l 

= the position of frame i+l referenced to frame i i 

iai = the linear acceleration of the origin of link 
'i+l 

frame i in terms of frame i 

The last acceleration equation needed is one that describes the 

acceleration of the center of mass of each link: Equation ( 3 3 ) .  

( 3 3 )  
i i i i + ia = iodi x Pci oi x ( oi x pCi) + iai Ci 

30 



i where aci = the linear acceleration of the center of mass of 

link i relative to frame 0. 

= the position of the center of link frame i i 
'Ci 

referenced to frame i 

Equations (31), (32), and (33) have been written to propagate the 

accelerations from link 0 to the end link, since the acceleration 

and velocity of link 0 is known. The gravitational acceleration 

effects on the links are accounted for by letting the 

acceleration of link 0, 'ao, be that of gravity. 

4.3.2 Force 'IPropagationl@ 

The inertial force and torque acting at the mass center of each 

link can be found if the mass, the mass moments of inertia, and 

the linear acceleration of the center of mass are known. The 

acceleration is found using equations (31) and (32). The 

inertial force and torque of each link is given by Equations (34) 

and (35). 

i 
Fi = m i aCi ( 3 4 )  



where Fi 

i 

= the inertial force of link i 

= the mass of link i m 

= the linear acceleration of the center of link i in i 
aci 

terms of frame: i 

- i i Ni - Ici odi .t oi x Iciio i (35) 

where Ni = the inertial torque of link i 

= the moment of inertia tensor evaluated at the mass Ici 
center of link i 

Now, all that remains to compute the joint torques required for 

motion is determination of the forces and torques exerted by the 

joints on each other. The forces and torques can be found by 

performing a force balance on a generalized link. The free-body 

diagram of Figure 6 results in Equations ( 3 6 )  and (37). 

32 



Figure 6 .  Free body diagram of a generalized link [from Craig]. 

i + Fi i -  i i+l 
fi - Ri+l f i+i 

i where fi = the force exerted on link i by link i-1 

i i i+ln i x i Fi 
n = Ni + Ri.+l i+l + 'Ci i 
i 

' + i+l 
i+l + i 'i+l x 'Ri 

where ini = the torque exerted on link i by link i-1 

(37) 

i The joint torque is the component of ni along the link joint 

axis, Equation ( 3 8 ) .  
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i TiZ 
i i  Taui = n 

where Taui = the joint torque 

n = the transpose of i 
i 

of joint i 

the ini vector 

Equations (36) and (37) are written to propagate forces from the 

last link inward to link 1. 

4.3.3 Iterative Algorithm Application 

All equations necessary to find the joint torques were presented 

in the previous two subsections. The equations can be applied by 

iterating forward from the base link to the end link with 

Equations (30), (31), (32), (33), (34) and (35), and backward 

from the end link to the first link with Equations (36), (37), 

and (38). 

When applying the equations to the three-link Stanford/JPL hand, 

the solutions soon became too complex to compute by hand, so the 

MACSYMA symbolic manipulation program was used. The complete 

file generated representing the dynamic equations is contained in 

Appendix B. The resulting torques can be written in a vector 

equation as shown in Equation (39). 
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Tau(t,td,tdd) = M(t)tdd + V(t,td) + G(t) (39) 

where Tau 

Equations (40) 

analyses. 

= a vector of joint torques that is a function of 

theta (t), the first derivative of theta (td), 

and the second derivative of theta, (tdd) 

= an inertia matrix, (a function of theta) 

= a vector of velocity terms, containing 

centrifugal-force and Coriolis-force terms 

through (54) give the terms generated in the 

* s ~ ~ * s  - c *(L2/2) 2 *m3*s2*s3 

- c *I *s *s3 + c3*Ix3*s2*s + Ix2*s2 2 
+ c *c * c ~ ~ * ( L ~ / ~ )  2 *m3 + c * c ~ ~ * L ~ * ( L ~ / ~ ) * ~ ~  

+ ( ~ ~ / 2 )  *m3+c2 2 * ( ~ ~ / 2 ) ~ * m ~  + 2*c2*~1*(~2/2) *m2 

3 23 Mll = c *I 2 x3 

3 - c *L *(L2/2)*m3*s2*s - L1*(L2/2)*m3*s2*s 2 2  3 

23 y3 2 23 

2 3  2 

+ c22*c3*~ 2 *(~,/2) *m3 + c23*~1*(~2/2)*m3 
+ c2*c3*L1*(L2/2)*m3 + c2 2*L22*m3 + 2*c2*~1*~2*m3 

2 + c *c3*c *I + (L1/2)*m2 + (L1/2) *ml + Izl 2 23 y3 
2*1 

+ c2 y2 

MI2 = 0 



MI3 = 0 

M21 = 0 

M31 = 0 

M3 2 = (L2/2)2*rn3+C3*L2*(L2/2) *m3+1,3 
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V1 = 2*(L /2) 2 *m3*s * ~ ~ ~ * s ~ * t d ~ * t d ~  2 2 

*s3*tdl*td3 

* s 2 * s  *S *td *td3+c * ~ ~ ~ * I ~ ~ * s ~ * t d ~ * t d ~  
23 +I23 * s 2 * s  23 *s3*tdl*td3+Iy3*~2*~ 

-Ix3 23 3 1 2 
-c2*c *I *S *td *td3+C * ~ ~ ~ * I ~ ~ * ~ ~ * t d ~ * t d ~  23 y3 3 1 2 
-2*c *c3*(L2/2) 2 *m3*s *tdl*td3 

2 23 

2 23 -2 *c  *L2* (L2/2) *m3*s *tdl*td3 

-2*L1*(L2/2)*m3*s *td *td3-c2*c3*I * ~ ~ ~ * t d ~ * t d ~  23 23 1 
- ~ ~ * ~ ~ * I ~ ~ * ~ ~ ~ * t d ~ * t d ~ + ~ ~ * ~ ~ * I ~ ~ * ~ ~ ~ * t d ~ * t d ~  

+c 3 *c23*Iz3 *s2*tdl*td3-C3*~23*Iy3*~2*tdl*td3 

+ ~ ~ * c ~ ~ * I ~ ~ * s ~ * t d ~ * t d ~  
+2*(L2/2) 2 *m3*s2*s23*s3*tdl*td2 

* s 2 * s  *s3*td *td2+I *s * ~ ~ ~ * s ~ * t d ~ * t d ~  
+I23 23 1 Y3 2 
-Ix3*s2*s 23*~3*tdl*td2 

+2*L 2 * (L2/2) *m3*s22*s3*tdl*td2 
+C * c ~ ~ * I ~ ~ * s ~ * ~ ~ ~ * ~ ~ ~ - c ~ * c  *I *s3*tdl*td2 2 23 y3 
+ ~ ~ * c ~ ~ * I ~ ~ * s ~ * t d ~ * t d ~  
-2*c2*c3*(L2/2) 2 *m3*s23*tdl*td2 

- 2 * ~ ~ * ~ ~ * ( L ~ / 2 ) * m ~ * s ~ ~ * t d ~ * t d ~  

-2*L1*(L2/2)*m3*~23*tdl*td2-c2*c3*1z3 * ~ ~ ~ * t d ~ * t d ~  

-c2*c *I * ~ ~ ~ * t d ~ * t d ~ + c ~ * ~ ~ * I ~ ~  * ~ ~ ~ * t d ~ * t d ~  

-2*c2*c3*L2*(L2/2)*m3*s2*td *td2 

- ~ * c ~ * L ~ ~  *m3 *s *tdl*td2-2*L *L2*m3*s2*tdl*td2 

3 Y3 

1 

2 1 
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-2*c2*(L2/2) 2 *m2*s2*tdl*td2 

-c3*c23 y3 2 Y2 

-2*L *(L2/2)*m2*s2*tdl*td2+c3*c23*Iz3*s2*tdl*td2 1 

*I *s2*tdl*td2-2*c *I *s2*tdl*td2 

+c * ~ ~ ~ * I ~ ~ * s ~ * t d  *td2+2*c2*Ix2*s2*tdl*td2 3 1 

V2 = -L2* (L2/2) *m3*s3*td32-2*L2* (L2/2) *m3*s3*td2*td3 
+c *L 2*m * s 2 * s  2*td12+L1*L2*m3*s2*s32*tdl 2 

+c *L * (L2/2) *m3*s3*tdl 2 + c ~ ~ *  (L2/2) 2*m3*s23*tdl 2 

+ C ~ * C ~ ~ * L ~ * ( L ~ / ~ ) * ~ ~ * S ~ ~ * ~ ~ ~  2 + ~ ~ ~ * I ~ ~ * s ~ ~ * t d ~  2 

-c *I *td12+c2*c3*L2* (L2/2) *m3*s2*tdl 2 

+c3*L1* ( L2/2) *m3*s2*td12+c2*c32*L22*m3*s2*tdl 2 

+c3 2*L 1 *L 2 *m3*s2*td12+c2* (L2/2) 2*m2*s2*td 1 
+L1* (L2/2) *m2*s2*td12+c2*I *s2*td12-c2*Ix2*s2*tdl 2 

2 2  3 3 
2*~2* (L2/2) *m3*s3*tdl +c2 2*L2*(L2/2) *m3*s3*tdl 2 

-c2 3 

2 1  

23 x3*'23 

2 

Y2 

2*L *(L2/2) *m3*s3*tdl 2 
v3 = L2*(L2/2) *m3*s3*td2 +c2 2 

+c2*L1*(L2/2)*m3*s3*tdl 2 + c ~ ~ * ( L ~ / ~ )  2 *m3*s23*tdl 2 

+ c ~ * c ~ * L ~ *  (L2/2) *m3*s2*td12+c3*L1* (L2/2) *m3*s2*tdl 2 

2 2 
+c23*Iy3*~23*tdl - c ~ ~ * I ~ ~ * s  23*tdl 

G1 - - -n *s *s +f *L *s 
4 y 2  3 4 2  3 2 

3 2 2  4Y 2 
+c *n4x*s +c *c3*n -c * ~ ~ * f ~ ~ * L ~ - c ~ * f ~ ~ * L ~  

'f4z*L1 
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G2 
= c2*g*L *m3*s32-g*(L2/2)*m *s2*s3+f4x*L *s3+n4z 

2 3 2 
+C *C * g + ( ~ ~ / 2 ) * m ~ + c ~ * c ~ ~ * g * L  2 3  *m +c2*g*(L2/2)*m2 2 3  
+f4y*L3+C3*f4y*L2 

(53) 

G~ = - g * ( ~  2 /2)*m 3 *s2*s3+n4z+c2*c3*g*(L2/2)*m3+f4y*L3 ( 5 4 )  

Included in the gravity terms are forces and moments applied to 

the end of the last link. 
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APPENDIX A - Physical Parameters of the Stanford/JPL Hand 

The equations developed for the Stanford/JPL hand in sections 2., 

3., and 4. are written in llmanipulatorll space: the derived 

torques are the torques required by the manipulator at the 

joints, and the derived joint angles and velocities are the 

angles of the finger joints. The fingers are driven by electric 

motors through a gear train and a series of pulleys. The 

position and velocity controls must be accomplished at the 

motors, not the joints, and thus the calculated torques, 

positions, and velocities must be converted to units applicable 

to the motors. 

Between the following dotted lines is information reprinted from 

Salisbury[lJ defining the relationships necessary to transform 

joint space terms to tendon space. 

PROCEDURE FOR DETERMINING TENDON TENSIONS, (Tl,T2,T3,T4) GIVEN 

JOINT MOMENTS (Ml,M2,M3): 

4 0  



Tmin = 0.0; : set min tendon tension 

a = 0.147082081; : constants a and b 

b = 0.227833027; 

fl = 0.351757117*M1 + 0.4403178320*M2 - 0.415855728*M3 
f2 = -0.227083653*Ml - 0.0233141675*M2 + 0.751094470*M3 
f3 = -0.227083653*Ml - 0.0233141675*M2 - 0.707056610*M3 
f4 = 0.351757117*M1 - 0.3680896100*M2 + 0.347640183*M3 
y = max( (Tmin-fl)/a, (Tmin-f2)/b, (Tmin-f3)/b, (Tmin-f4)/a) ; 

T1 = a*y + fl; ;compute cable tensions 

T2 = b*y + f2; 
T3 = b*y + f3; 
T4 = a*y + f4; 

SUMMARY OF MATRICES: 

-1 M = R.T and T = R .M (joint moments derived from tendon tensions 

and vice-versa), where M = (M1,M2,M3,Y)t, T = (T1,T2,T3,T4)t and 

R =  

- 
0.86763 -0.6477 -0.6477 1.1303 

1.237 0.6477 -0.6477 -1.237 

0.0 0.6858 -0.6858 0.0 

1.0 1.54902 1.54902 1.0 



1 0.351757117 0.440317832 -0.415855728 0.147082081 

R-’ = -0.227083653 -0.0233141676 0.75109447 0.227833027 

-0.227083653 -0.0233141676 -0.70705661 0.227833027 

1 0.351757117 -0.36808961 0.347640183 0.147082081 

NOTES : 

Dimensions are in cm. For example if T is in grams M = R.T will 

be the joint moments in gm-cm (except Y which will be in gms) .  

indicates transpose (vector or matrix) 
-1 R indicates R inverse matrix 

R.T indicates matrix vector product 

Tmin (minimum cable tension) should be set sufficiently positive 

to keep noise in the system from causing it to attempt to exert 

negative tensions. 

The fourth row in R is orthogonal (by construction) to the other 

3 rows. Any value of T with elements proportional to the 

elements in row 4 will cause no net moment (Ml,M2,M3) to be 

exerted at the joints; it will only increase the internal tension 

in the system. 

These same matrices also relate joint and tendon velocities. If 

V = (vector of tendon velocities) and W = (vector of joint 
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t angular velocities and "bearing velocity") then V = R .W can be 

used to find the tendon rates necessary for a given set of joint 

rates. 

The conversion from tendon space to motor space is simply a 

matter of considering the radius of the capstan that the tendons 

wrap onto, the gearing between the motor and capstan, and the 

motor encoder resolution. These values follow. 

Capstan radius = .375 in. 

Gearing reduction = 25/1 

Encoder resolution = 2000/rev. 



APPENDIX B - MACSYMA Output 

This appendix is the output file of the MACSYMA symbolic manipulation 
program which gives the dmrivation of the Newton-Euler dynamic equations. 

( ~ 6 )  ROl:matrix( [cl,-sl,O], 
[Sl,Cl,O] 6 

[ O ,  0,lI) $ 

r ora, -11 , 
[s2 I c2 * 01 $ 

[S3,C3,01, 
[O,O,ll)$ 

(c9) R34:matrix([l,O,O], 
r0,1,01 I 
[ O ,  0,111 Q 

( ~ 7 )  R12:matrix( [c2,-s3,0], 

(c8) R23:matrix([c3,-~3,0], 

(cl0) R10: transpose(RO1) $ 

(cll) R21:transpose(R12) $ 

(c12 ) R32 : transpose (R23 ) $ 

(c13) R43 : transpose (R34) $ 

(c14) OoO:matrix([O],[O],[gl)S 

(c15) ODOO:matrix([O],[O],[gl)S 

(c16) VDOO:matrix( [ O ] ,  [O], [g]) $ 

(c17) Zll:matrix( [ 01, [ 01, [ 13) $ 

(c18) 222:matrix([O],[O],[l])$ 

(c19) Z33:matrix( [ O ] ,  [O], [I]) $ 

(c20) 244:matrix([O],[O],[l])$ 

(c21) POl:matrix([o],[o],[O])$ 
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(c22) P12:matrix([Ll],[o],[01)$ 

(c23) PlCl:matrix([Ll2],[0],[0])$ 

(c24) ~23:matrix([L2],[0], [Ol)$ 

(c25) ~2~2:matrix([L22], [O], [O])$ 

(c26) P34:rnatrix([L3],[0], [a])$ 

( ~ 2 7 )  ~ ~ ~ ~ : m a t r i x ( [ ~ ~ ~ ] , [ ~ 1 , [ 0 1 ~ $  

(c28) c1I1:matrix([IX1,0,0], 
[O,IY1,01, 
r o t  0, IZ11) $ 

[ O f  IY2,OI I 
[ O f  0, I221 1 $ 

[O,IY3,01, 
[ O r  0 I Iz3 I) $ 

(c29) C212:matrix([IXZ,O,O], 

(c30) C313:matrix([IX3,0,0], 

(c31) cross(a,b):=matri~([a[2]*b[3]-a[3]*b[2]]~ 

(c32) lf44:matrix([f4~], [f4y], [f4z])$ 

(c33) I n 4 4 : m a t r i x ( [ n 4 ~ ] , [ n 4 y l , [ n 4 z ] ) $  

(c34) Oll:R10.000+TD1*Zll; 

~ ~ ~ ~ l * ~ ~ ~ l - ~ ~ ~ l * ~ ~ ~ l l f  ~ a [ 1 1 * ~ ~ ~ 1 - a [ 2 1 * ~ ~ ~ 1 1 ~ ~  

[ tdl 1 
(c35) ODll:R10.000+cross(RlO.OOO,TDl*Zll)+TDDl*2ll: 
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VD1Cl:cross(OD11,P1Cl)+cross(Oll,cross(Oll,PlCl))+VDll; 

[ 2 1  

r 2 1  
[ [ [ -  112 ml tdl I] 3 
[ 1 
[ [[112 ml tddl]] 3 

1 

[ s2 tdl 3 

1 

OD22:R21.ODll+cross(R21.011,TD2*Z22)+TDD2*Z22; 

[ [s2 tddl + c2 tdl td2] 3 
[ 1 
[ [c2 tddl - ~2 tdl td21 ] 
r 1 

4 6  

[ tdd2 ] 1 



(c42) VD22:R2l.(cross(OD11,P12)+cross(Oll,cross(Oll,Pl2))+VDll); 

[ 2 1  
[ [[g ~2 - ~2 11 tdl ]] 3 
[ 1 

2 1 
[ [[ll s2 tdl + c2 g]] 3 

1 
1 J 

[ [ -  11 tddl]] 1 
(c43) VD2C2:cross(OD22,P2C2)+cross(O22,cross(O22,P2C2))+VD22: 

2 2 2 2 1 
[ [ -  122 td2 - ~2 122 tdl - c2 11 tdl + g S2]] 1 

[ 

1 
[ 

2 2 1 
[ 

(d43) [ 
[[122 tdd2 + c2 122 s2 tdl + 11 s2 tdl + c2 g]] 1 

1 
[ 

[ [ [ -  122 ( ~ 2  tddl - ~2 tdl td2) - 11 tddl + 122 ~2 tdl td2]] 3 

(c44 ) F22 : M2 *VD2C2 : 

2 2 2 2 1 
[ [[m2 ( -  122 td2 - ~2 122 tdl - ~2 11 tdl + g ~2)]] 1 

1 1 1 
(d44) 2 2 1 

[[m2 (122 tdd2 + c2 122 s2 tdl + 11 s2 tdl + c2 g)]] 1 
r 1 1 [[m2 ( -  122 (c2 tddl - s2 tdl td2) - 11 tddl + 122 s2 tdl td2)]] ] 

(c45) N22:C212.OD22+cross(O22,C212.022); 

[ [ix2 (s2 tddl + c2 tdl td2) + c2 iz2 tdl td2 - c2 iy2 tdl td2] 3 
[ 1 

(d45) [ [iy2 (c2 tddl - s2 tdl td2) - iz2 s2 tdl td2 + ix2 s2 tdl td2] 3 
1 

2 2 1 
[ 

[iz2 tdd2 + c2 iy2 s2 tdl - c2 1x2 s2 tdl ] 1 
[ 
[ 

(c46) 033:R32.022+TD3*233; 

[ c2 s3 tdl + c3 s2 tdl 3 
[ 1 
[ c2 ~3 tdl - ~2 ~3 tdl ] 

1 
[ td3 + td2 1 



(c47) 033:matrix([s23*TDl], 
[co23*TD1], 
[TD2+TD3]) $ 

(c48) OD33:R32.OD22+cross(R32.02~,~D3*~~~)+TDD3*233; 

(d48) matrix([[c3 (s2 tddl + c2 tdl td2) + s3 (c2 tddl - s2 tdl td2) 
+ (c2 c3 tdl - s2 s3 tdl) td3]], [ [ -  8 9  ( ~ 2  tddl + c2 tdl td2) 

+ c3 (c2 tddl - ~2 tdl td2) - ( ~ 2  ~3 tdl + ~3 ~2 tdl) td3]], [[tdd3 + tdd2]]) 

(c49) OD33:matr ix([s23*TDDl+co23*TD1*TDa+c023*TDl*TD3]~ 
[ C O ~ ~ * T D D ~ - S ~ ~ * T D ~ * T D ~ - ~ ~ ~ * T R ~ * T D ~ ] ,  
[ TDD2+TDD3 ] ) : 

[ s23 tddl + co23 tdl. t43 + c023 tdl td2 ] 
1 

(d49) [ C023 tddl - ~ 2 3  tdl td? - S23 tdl td2 3 
[ 1 
[ tdd3 -+ tdd2 1 

(C50) VD33 : R32. (cross (OD22 , P23 ) +cross (022, eross (022, P23) ) +VD22) ; 
2 2 

(d50) matrix([[[s3 (12 tdd2 + c2 12 s2 td1 t 11 s2 tdl + c2 g) 
2 2 2 2 

+ ~3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g sZ)]]], 
2 2 

[ [[c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) 

2 2 2 2 - ~3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g s2)]]], 

[ [ E -  12 ( ~ 2  tddl - ~2 tdl td2) - 11 tddl + 12 S2 tdl td2]]]) 

(c51) VD3C3 :cross (OD33 , P3C3) +cross (033, cross (033, P3C3) ) +VD33 ; 
2 2 

(d51) matrix([[[s3 (12 tdd2 + c2 12 s2 tdl + 11 92 tdl + c2 g) 
2 2 2 2 2 

- 122 (td3 + td2) + c3 ( -  12 td2 - ~2 12 tdl - C2 11 tdl + g S2) 

2 2 - ~ 0 2 3  122 tdl I]], [[[122 (tdd3 + tdd2) 
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2 2 
+ c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) 

2 2 2 2 2 
- ~3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g s2) + C023 122 s23 tdl I]], 

[ [ [ -  122 (C023 tddl - ~ 2 3  tdl td3 - S23 tdl td2) - 12 (c2 tddl - s2 tdl td2) 
- 11 tddl + 122 S23 tdl (td3 + td2) + 12 ~2 tdl td2]]]) 
(c52) F33 :M3*VD3C3 : 

(d52) matrix([[[m3 (s3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) 
2 2 

2 2 2 2 2 
- 122 (td3 + td2) + ~3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g s2) 

2 2 
- co23 122 tdl )]]Ir [[[m3 (122 (tdd3 + tdd2) 

2 2 
+ c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) 

2 2 2 2 2 
- s3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~ 2 )  + C023 122 ~ 2 3  tdl )]]I, 

[[[m3 (- 122 (co23 tddl - s23 tdl td3 - s23 tdl td2) 
- 12 (c2 tddl - ~2 tdl td2) - 11 tddl + 122 ~ 2 3  tdl (td3 + td2) 

+ 12 s2 tdl td2)]]]) 
(c53) N33:C313.0D33+cross(033,C313.033) : 

(d53) matrix([[ix3 (s23 tddl + ‘2023 tdl td3 + co23 tdl td2) 
+ c023 iz3 tdl (td3 + td2) - C023 iy3 tdl (td3 + td2)]lr 

[[iy3 (C023 tddl - s23 tdl td3 - s23 tdl td2) - iz3 s23 tdl (td3 + td2) 

2 
+ ix3 s23 tdl (td3 + td2)]], [[iz3 (tdd3 + tdd2) + c023 iy3 s23 tdl 

2 - co23 ix3 s23 tdl I]) 
(c54) lf33:R34.lf44+F33; 



2 2 
(d54) matrix([[[m3 (s3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 9) 

2 2 2 2 2 - 122 (td3 + td2) + ~3 ( -  12 td2 - ~2 12 tdl - C2 11 tdl + g S2) 

2 2 - c023 122 tdl ) + f4x]]], [[[m3 (122 (tdd3 + td 
2 2 

+ c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g 

2 2 2 2 
- ~3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~2 

+ f4y]]], [[[m3 ( -  122 (C023 tddl - S23 tdl td3 - 

2 
+ co23 122 s23 tdl ) 

s23 tdl td2) 

- 12 (c2 tddl - ~2 tdl td2) - 11 tddl + 122 s23 tdl (td3 + td2) 
+ 12 s2 tdl td2) + f4z]]J) 
(c55) ln33:N33+R34.ln44+cross(P3C3,F33)+cross(P34,~34.lf44); 

(d55) matrix([[[[ix3 (s23 tddl + C023 tdl td3 + C023 tdl td2) 

+ co23 iZ3 tdl (td3 + td2) - c023 iy3 tdl (td3 + td2) + n4xl111, 

[ [ [ [ -  122 m3 ( -  122 (C023 tddl - ~ 2 3  tdl td3 - S23 tdl td2) 
- 12 ( ~ 2  tddl - ~2 tdl td2) - 11 tddl + 122 ~ 2 3  tdl (td3 + td2) 

+ 12 s2 tdl td2) + iy3 (co23 tddl - s23 tdl td3 - s23 tdl td2) 
- iZ3 s23 tdl (td3 + td2) + ix3 s23 tdl (td3 + td2) + n4y - f4z 13]]]1, 

2 2 
[[[[122 m3 (122 (tdd3 + tdd2) + c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl 

2 2 2 2 
+ ~2 9) - ~3 ( -  12 td2 - c2 12 tdl - c2 11 tdl + g S2) 

2 2 
+ C023 122 s23 tdl ) + iZ3 (tdd3 + tdd2) + co23 iy3 s23 tdl 

- C023 ix3 s23 tdl + n42 + f4y 131111) 
2 
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(c56) TAU3:grind(ratexpand(transpo~e(ln33).233)): 

[[[122A2*m3*tdd3+iz3*tdd3+122A2*m3*tdd2+c3*l2*l22*m3*tdd2+~z3*tdd2 
+12*122*m3*s3*td2A2+c2A2*12*122*m3*s3*tdlA2 
+c2*ll*122*m3*s3*tdlA2+co23*122A2*m3*s23*tdlA2 
+co23*iy3*s23*td1A2-co23*ix3*s23*tdlA2 
+c2*c3*12*122*m3*s2*tdlA2+c3*ll*l22*m3*s2*tdlA2-g*l22*m3*s2*s3 
+n4z+c~*c3*g*122*m3+f4y*l3]]]$ 

(d56) done 

(c57) lf22:R23.lf33+F22: 

(d57) matrix([[[- s3 (m3 (122 (tdd3 + tdd2) 
2 2 

+ c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) 
2 2 2 2 2 - s3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~ 2 )  + C023 122 ~ 2 3  tdl ) + f4y) 

2 2 2 
+ c3 (m3 (s3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) - 122 (td3 + td2) 

2 2 2 2 2 2 
+ C3 ( -  12 td2 - ~2 12 tdl - c2 11 tdl + g ~ 2 )  - C023 122 tdl ) + f4x) 

2 2 2 2 
+ m2 ( -  122 td2 - c2 122 tdl - c2 11 tdl + g s2)]]], 

2 2 
[[[c3 (m3 (122 (tdd3 + tdd2) + c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) 

2 2 2 2 2 - S3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~ 2 )  + C023 122 S23 tdl ) + f4y) 
2 2 2 

+ s3 (m3 (s3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) - 122 (td3 + td2) 

2 2 2 2 2 2 
+ ~3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~ 2 )  - C023 122 tdl ) + f4x) 

2 2 
+ m2 (122 tdd2 + c2 122 s2 tdl + 11 s2 tdl + c2 g)]]], 

[[[m3 ( -  122 (C023 tddl - s23 tdl td3 - s23 tdl td2) 
- 12 (c2 tddl - ~2 tdl td2) - 11 tddl + 122 s23 tdl (td3 + td2) 



+ 12 s2 tdl td2) + m2 ( -  122 ( 0 2  tddl - s2 tdl td2) - 11 tddl 
+ 122 s2 tdl td2) + f4z]]]) 

(c58) ln22:N22+R23.ln33+cros~(P2~2,~~2)+cross(P23,R23.lf33): 

(d58) matrix([[[[- s3 ( -  122 m3 ( 9  172 (C023 tddl - s23 tdl td3 - s23 tdl td2) 
- 12 ( ~ 2  tddl - ~2 tdl td2) - 11 tdQ1 + 122 ~ 2 3  tdl (td3 + td2) 

+ 12 s2 tdl td2) + iy3 (co23 tddl = 823 tdl td3 - s23 tdl td2) 
- iz3 s23 tdl (td3 + td2) + ix3 s2.3 tdl (td3 + td2) + n4y - f4z 13) 
+ c3 (ix3 (s23 tddl + co23 tdl td3 .t eo23 tdl td2) + c023 iz3 tdl (td3 + td2) 

- co23 iy3 tdl (td3 + td2) + n4x) + ix2 (s2 tddl + c2 tdl td2) 

+ c2 iz2 tdl td2 - c2 iy2 tdl td2]]]], 
[[[[c3 ( -  122 m3 ( -  122 (co23 tddl - 823 tdl td3 - s23 tdl td2) 
- 12 (c2 tddl - ~2 tdl td2) - 11 tddl + 122 ~ 2 3  tdl (td3 + td2) 

+ 12 s2 tdl td2) + iy3 (co23 tddl - g23 tdl td3 - s23 tdl td2) 
- iz3 s23 tdl (td3 + td2) + ix3 a23 tdl (td3 + td2) + n4y - f4z 13) 
- 12 (m3 ( -  122 (C023 tddl - S23 tdl td3 - S23 tdl td2) 
- 12 (c2 tddl - ~2 tdl td2) - 11 tddl + 122 s23 tdl (td3 + td2) 

+ 12 s2 tdl td2) + f4z) + s3 (ix3 (s23 tddl + co23 tdl td3 + co23 tdl td2) 

+ C023 iz3 tdl (td3 + td2) - C023 iy3 tdl (td3 + td2) + n4x) 

- 122 m2 ( -  122 ( ~ 2  tddl - ~2 tdl td2) - 11 tddl + 122 S2 tdl td2) 

+ iy2 (c2 tddl - s2 tdl td2) - iz2 s2 tdl td2 + ix2 s2 tdl td2]]]], 

2 2 
[[[[12 (c3 (m3 (122 (tdd3 + tdd2) + c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl 

2 2 2 2 
+ ~2 9) - ~3 ( -  12 td2 - ~2 12 tdl - c2 11 tdl + g s2) 

2 

+ c023 122 s23 tdl ) + f4y) + s3 (m3 (s3 
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2 2 2 
(12 tdd2 + ~2 12 ~2 tdl + 11 ~2 tdl + ~2 g )  - 122 (td3 + td2) 

2 2 2 2 2 2 
+ ~3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g s2) - C023 122 tdl ) + f 4 x ) )  

2 2 
+ 122 m3 (122 (tdd3 + tdd2) + c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) 

2 2 2 2 2 
- ~3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~ 2 )  + C023 122 S23 tdl ) 

2 2 
+ iz3 (tdd3 + tdd2) + 122 m2 (122 tdd2 + c2 122 s2 tdl + 11 s2 tdl + c2 g )  

2 2 2 
+ iz2 tdd2 + C023 iy3 s23 tdl - C023 ix3 s23 tdl + c2 iy2 s2 tdl 

- c2 ix2 s2 tdl + n4z + f4y 13]]]]) 
2 

(c59) TAU2:qrind(ratexpand(transpose(ln22).222)); 

[[[122A2*m3*tdd3+c3*l2*m3*tdd3+iz3*tdd3+iz3*tdd3+l2A2*m3*s3A2*tdd2+l22A2*m3*tdd2 
+2*~3*12*122*m3*tdd2+~3~2*12~2*m3*tdd2+122~2*m2*tdd2+~~3*~dd2 
+iz2*tdd2-12*122*m3*s3*td3”2-2*12*12*122*m3*s3*td2*td3 
+c2*12A2*m3*s2*s3A2*tdlA2+ll*12*m3*s2*s3A2*tdlA2 
-co23A2*12*122*m3*s3*td1A2+c2A2*12*122*m3*s3*td1A2 
+c2*ll*122*m3*s3*tdlA2+co23*122A2*m3*s23*tdlA2 
+c3*co23*12*122*m3*s23*tdlA2+co23*iy3*s23*tdlA2 
-co23*ix3*s23*td1A2+c2*c3*12*m3*s2*rn3*s2*td1A2 
+c3*ll*122*m3*s2*tdlA2+c2*c3A2*12A2*m3*s2*tdlA2 
+c3A2*ll*12*m3*s2*td1”2+c2*122”2*m2*s2*tdlA2 
+ll*122*m2*s2*td1A2+c2*iy2*s2*tdlA2-c2*~x2*s2*tdlA2 
+c2*g*12*m3*s3A2-g*122*m3*s2*s3+f4x*l2*s3+n4z+c2*c3*g*l22*m3 
+ c ~ * c ~ A ~ * g * 1 ~ * m ~ + c ~ * g * 1 2 2 * m ~ + f ~ y * l ~ + c 3 * f ~ y * l 2 ] ] ] $  

(d59) done 

(c60) lfll:R12.lf22+Fll; 

(d60) matrix([[[c2 ( -  s3 (m3 (122 (tdd3 + tdd2) 
2 2 

+ c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) 
2 2 2 2 2 - ~3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g s2) + C023 122 S23 tdl ) + f4y)  



2 2 2 
+ c3 (m3 (s3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) - 122 (td3 + td2) 

2 2 2 2 2 2 
+ C3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~ 2 )  - C023 122 tdl ) + f 4 x )  

2 2 2 2 
+ m2 ( -  122 td2 - c2 122 tdl - c2 11 tdl + g s2)) 

2 2 
- s2 (c3 (m3 (122 (tdd3 + tdd2) + c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl 

2 2 2 2 
+ c2 9) - ~3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~ 2 )  

2 
+ C023 122 S23 tdl ) + f 4 y )  + S3 (m3 (S3 

2 2 2 
(12 tdd2 + c2 12 ~2 tdl + 11 ~2 tdl + ~2 9) - 122 (td3 + td2) 

2 2 2 2 2 2 
+ c3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g s2) - C023 122 tdl ) + f 4 x )  

2 2 2 
+ m2 (122 tdd2 + c2 122 s2 tdl + 11 s2 tdl + c2 9)) - 112 ml tdl I ] ] ,  

[ [ [ -  m3 ( -  122 (C023 tddl - s23 tdl td3 - s23 tdl td2) 
- 12 ( ~ 2  tddl - ~2 tdl td2) - 11 tddl + 122 S23 tdl (td3 + td2) 
+ 12 ~2 tdl td2) - m2 ( -  122 ( ~ 2  tddl - ~2 tdl td2) - 11 tddl 
+ 122 s2 tdl td2) + 112 ml tddl - f 4 z ] ] ] ,  

[[[s2 ( -  s3 (m3 (122 (tdd3 + tdd2) + c3 
2 2 

(12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 9) 

2 2 2 2 2 
- s3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~ 2 )  + C023 122 S23 tdl ) + f4y)  

2 2 2 
+ c3 (m3 (s3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) - 122 (td3 + td2) 

2 2 2 2 
+ c3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g S2) 

2 2 - C023 122 tdl ) + f4X) 
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2 2 2 2 
+ m2 ( -  122 td2 - c2 122 tdl - c2 11 tdl + g s2)) 

+ c2 (c3 (m3 (122 (tdd3 + tdd2) + c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl 
2 2 2 2 

2 2 

+ ~2 9) - ~3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g s2) 
2 

+ co23 122 s23 tdl ) + f4y) + s3 (m3 (s3 
2 2 2 

(12 tdd2 + ~2 12 ~2 tdl + 11 ~2 tdl + c2 9) - 122 (td3 + td2) 

2 2 2 2 2 2 
+ C3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~ 2 )  - C023 122 tdl ) + f4X) 

2 2 
+ m2 (122 tdd2 + c2 122 s2 tdl + 11 s2 tdl + c2 9 ) )  + g m1Jll) 

(c61) lnll:Nll+R12.ln22+cross(PlCl,Fll)+cross(Pl2,Rl2.lf22): 

(d61) matrix([[[[c2 ( -  s3 ( -  122 m3 ( -  122 

(C023 tddl - ~ 2 3  tdl td3 - S23 tdl td2) - 12 ( ~ 2  tddl - ~2 tdl td2) - 11 tddl 
+ 122 s23 tdl (td3 + td2) + 12 s2 tdl td2) 
+ iy3 (co23 tddl - s23 tdl td3 - s23 tdl td2) - iz3 s23 tdl (td3 + td2) 

+ ix3 s23 tdl (td3 + td2) + n4y - f4z 13) 
+ c3 (ix3 (s23 tddl + 12023 tdl td3 + C023 tdl td2) + co23 iz3 tdl (td3 + td2) 

- c023 iy3 tdl (td3 + td2) + n4x) + ix2 (s2 tddl + c2 tdl td2) 

+ c2 iz2 tdl td2 - c2 iy2 tdl td2) - s2 
(c3 ( -  122 m3 ( -  122 (C023 tddl - ~ 2 3  tdl td3 - S23 tdl td2) 
- 12 ( ~ 2  tddl - ~2 tdl td2) - 11 tddl + 122 S23 tdl (td3 + td2) 

+ 12 s2 tdl td2) + iy3 (co23 tddl - s23 tdl td3 - s23 tdl td2) 
- iz3 s23 tdl (td3 + td2) + ix3 s23 tdl (td3 + td2) + n4y - f4z 13) 
- 12 (m3 ( -  122 (co23 tddl - s23 tdl td3 - s23 tdl td2) 



- 12 (c2 tddl - s2 tdl td2) - 11 tddl + 123 e23 tdl (td3 + td2) 

+ 12 s2 tdl td2) + f4z) + $3 (ix3 (s23 fddl  + co23 tdl td3 + co23 tdl td2) 
+ c023 iz3 tdl (td3 + td2) - 12023 iy3 t,d& (td3 + td2) + n4x) 

- 122 m2 (- 122 (c2 tddl .. s2 tdl td2) - 11 tddl + 122 s2 tdl td2) 

+ iy2 (c2 tddl - s2 tdl td2) - iz2 s2 t@l td2 + ix2 s2 tdl td2)]]]], 

[ [ [ [ -  11 (s2 ( -  s3 (m3 (122 (tdd3 + tdd2) 
2 2 

+ c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) 

2 2 2 2 2 - s3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g s2) + C023 122 ~ 2 3  tdl ) + f4y) 

2 2 2 
+ c3 (m3 (s3 (12 tdd2 + c2 12 s2 tdl =+ 11 s2 tdl + c2 g) - 122 (td3 + td2) 

2 2 2 2 2 2 
+ C3 ( -  12 td2 - ~2 12 tdl - ~2 11 t;d1 + g S2) - C023 122 tdl ) + f4X) 

2 2 2 2 
+ m2 ( -  122 td2 - c2 122 t41 - c2 11 tdl + g s2)) 

2 2 
+ c2 (c3 (m3 (122 (tdd3 + tdd2) + c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl 

2 2 2 2 
+ ~2 9) - ~3 ( -  12 td2 - c2 12 tdl - c2 11 tdl + g S2) 

2 
+ co23 122 s23 tdl ) + f4y) + s3 (m3 (s3 

2 2 2 
(12 tdd2 + ~2 12 ~2 tdl + 11 62 tdl + c2 9) - 122 (td3 + td2) 

2 2 
+ ~3 ( -  12 td2 - c2 12 

2 
tdl 

2 - ~2 11 tdl + g ~ 2 )  
2 

C02 3 
2 

122 tdl ) + f4x) 

2 2 
+ m2 (122 tdd2 + c2 122 s2 tdl + 11 s2 tdl + c2 9))) 

- 12 (c3 (m3 (122 (tdd3 + tdd2) + c3 (12 tdd2 + c2 12 s2 tdl + 11 s2 tdl 
2 2 
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2 2 2 2 
+ ~2 9) - ~3 ( -  1 2  td2 - ~2 1 2  tdl - c2 11 tdl + g s2) 

2 
+ co23 122 s23 tdl ) + f4y) + s3 (m3 (s3 

2 2 2 
(12 tdd2 + ~2 12 s2 tdl + 11 s2 tdl + ~2 9) - 122 (td3 + td2) 

2 2 2 2 2 2 
+ c3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~ 2 )  - C023 122 tdl ) + f4x)) 

2 2 
- 122 m3 (122 (tdd3 + tdd2) + c3 ( 1 2  tdd2 + c2 12 s2 tdl + 11 s2 tdl + c2 g) 

2 2 2 2 2 - S3 ( -  12 td2 - ~2 12 tdl - ~2 11 tdl + g ~ 2 )  + C023 122 S23 tdl ) 

2 2 
- iz3 (tdd3 + tdd2) - 122 m2 (122 tdd2 + c2 122 s2 tdl + 11 s2 tdl + c2 g )  

2 2 2 
- iz2 tdd2 - co23 iy3 s23 tdl + C023 ix3 s23 tdl - c2 iy2 s2 tdl 

2 
+ c2 ix2 s2 tdl - n4z - g 112 ml - f4y 131111, 
[[[[s2 ( -  s3 ( -  1 2 2  m3 ( -  122 (co23 tddl - s23 tdl td3 - s23 tdl td2) 
- 12 (c2 tddl - ~2 tdl td2) - 11 tddl + 122 ~ 2 3  tdl (td3 + td2) 

+ 1 2  s2 tdl td2) + iy3 (C023 tddl - s23 tdl td3 - s23 tdl td2) 
- iz3 s23 tdl (td3 + td2) + ix3 s23 tdl (td3 + td2) + n4y - f4z 13) 
+ c3 (ix3 (s23 tddl + 1x23 tdl td3 + C023 tdl td2) + co23 iz3 tdl (td3 + td2) 

- co23 iy3 tdl (td3 + td2) + n4x) + ix2 (s2 tddl + c2 tdl td2) 
+ c2 iz2 tdl td2 - c2 iy2 tdl td2) + c2 
(c3 ( -  122 m3 ( -  122 (C023 tddl - s23 tdl td3 - s23 tdl td2) 
- 12 ( ~ 2  tddl - ~2 tdl td2) - 11 tddl + 122 ~ 2 3  tdl (td3 + td2) 

+ 12 s2 tdl td2) + iy3 (C023 tddl - s23 tdl td3 - s23 tdl td2) 
- iz3 s23 tdl (td3 + td2) + ix3 s23 tdl (td3 + td2) + n4y - f4z 13) 
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- 12 (m3 ( -  122 (C023 tddl - s23 tdl td3 - ~ 2 3  tdl td2) 

- 12 (C2 tddl - S2 tdl td2) - 11 tddl + 122 s23 tdl (td3 + td2) 
+ 12 s2 tdl td2) + f4z) + s3 (ix3 (s23 tddl + co23 tdl td3 + co23 tdl td2) 
+ c023 iz3 tdl (td3 + td2) - co23 iy3 tdl (td3 + td2) + n4x) 

- 122 m2 t- 122 ( ~ 2  tddl - ~2 tdl td2) - 11 tddl + 122 s2 tdl td2) 
+ iy2 (c2 tddl - s2 tdl td2) - iz2 s2 tdl td2 + ix2 s2 tdi td2) 
+ 11 ( -  m3 ( -  122 (C023 tddl - S23 tdl td3 - ~ 2 3  tdl td2) 

- 12 (c2 tddl - s2 tdl td2) - 11 tddl + 122 ~ 2 3  tdl (td3 + td2) 
+ 12 s2 tdl td2) - m2 ( -  122 (c2 tddl - s2 tdl td2) - 11 tddl 

2 
+ 122 s2 tdl td2) - f4z) + 112 ml tddl + izl tddl]]]]) 
(c62) TAU1:grind(ratexpand(transpose(lnll).Zll)): 

[ [ [ c2*~x3*s23*s3*tdd1-co23* l22A2*m3*s2*s3*tdd l -c2* l2* l22*m3*s2*s3*tdd l  
-ll*122*m3*s2*s3*tddl-~o23*iy3*s2*s3*tddl 
+~3*ix3*s2*s23*tddl+ix2*s2^2*tddl  
+c2*c3*co23*122A2*m3*tddl+c2*co23*12*122*m3*tddl 
+c2A2*c3*12*122*m3*tddl+co23*ll*122*m3*tddl 
+c2*c3*ll*122*m3*tddl+c2A2*12A2*m3*tddl 
+2*c2*l l*12*m3*tddl+l lA2*m3*tddl+c2”2*122A2*m2*tddl  
+2*c2*ll*122*m2*tddl+llA2*m2*tddl+ll2A2*ml*tddl+~zl*tddl 
+~2*~3*~023*iy3*tddl+c2~2*iy2*tddl 
+2*122A2*m3*s2*s23*s3*tdl*td3+iz3*s2*s23*s3*tdl*td3 
+iy3*s2*s23*s3*tdl*td3-i~3*s2*s23*s3*tdl*td3 
+~2*~023*iz3*s3*tdl*td3-~2*~023*iy3*~3*tdl*td3 
+c2*co23*ix3*s3*tdl*td3-2*c2*c3*l22A2*m3*s23*tdl*td3 
-2*~2*12*122*m3*s23*tdl*td3-2*ll*122*m3*~23*tdl*td3 
-~2*~3*iz3*s23*tdl*td3-~2*~3*iy3*s23*tdl*td3 
+c2*c3*ix3*s23*tdl*td3+c3*co23*iz3*s2*tdl*td3 
-c3*co23*iy3*s2*tdl*td3+c3*co23*ix3*s2*tdl*td3 
+2*122A2*m3*s2*s23*s3*tdl*td2+iz3*s2*s23*s3*tdl*td2 
+iy3*s2*s23*s3*tdl*td2-i~3*s2*s23*s3*tdl*td2 
+2*12*122*m3*s2A2*s3*tdl*td2+c2*co23*iz3*s3*tdl*td2 
-c2*co23*iy3*s3*tdl*td2+c2*co23*ix3*s3*tdl*td2 
-2*c2*c3*122A2*m3*s23*tdl*td2-2*c2*12*122*m3*s23*td1*td2 
-2*ll*122*m3*s23*tdl*td2-~2*~3*iz3*s23*tdl*td2 
-~2*~3*iy3*s23*tdl*td2+~2*~3*ix3*s23*tdl*td2 
-2*c2*c3*12*122*m3*s2*tdl*td2-2*c2*12A2*m3*s2*td1*td2 
-2*ll*12*m3*s2*tdl*td2-2*c2*122”2*m2*m2*~2*tdl*td2 
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