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ABSTRACT

This self teaching curriculum on sensitivity analysis techniques
consists of three parts:

1) Use of the Latin Hypercube Sampling Program [Iman,
Davenport and Ziegler, Latin Hypercube Sampling
(Program User's Guide), SAND79-1473, January 1980].

2) Use of the Stepwise Regression Program [Iman,
et al., Stepwise Regression with PRESS and Rank
Regression (Program User's Guide) SAND79-1472,
January 1980].

3) Application of the procedures to sensitivity and
uncertainty analyses of the groundwater transport
model NWFT/DVM [Campbell, Iman and Reeves, Risk
Methodology for Geologic Disposal of Radioactive
Waste - Transport Model Sensitivity Analysis;
SAND80-0644, NUREG/CR~1377, June 1980: Campbell,
Longsine, and Reeves, The Distributed Velocity Method
of Solving the Convective-Dispersion Equation,
SANU80-0717, NUREG/CR-1376, July 1980].

This curriculum is one in a series developed by Sandia National Labora-
tories for transfer of the capability to use the technology developed
under the NRC funded High Level Waste Mathodology Development Program
(NRC FIN. No. A-1192). The technology transfer process is carried out
under NRC Fin No. A-1158.
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TUTORIAL ON THE LATIN HYPERCUBE SAMPLING PROGRAM

The Purpose of the Course

The purpose of this tutorial is to demonstrate how to draw multi-
variate random samples, using either Random Sampling or using Latin
Hypercube Sampling, where the multivariate random sample may have any
specified marginal distributions and any specified correlation matrix.
This tutorial shows how to obtain such a sample manually, and how to
use the lLatin hypercube computer program to accomplish the same task.
A comparison between Random Sampling and Latin Hypercube Sampling is
made to show some of the relative benefits of using a Latin Hypercube
Sample,

The Importance of Good Sampling Techniques

Some physical processes are difficult to study directly, for
various reasons, and are therefore observed indirectly through the use
of mathematica) models. The mathematical models are often so complex
that they are amenable to solution only through the use of numerical
methods on a computer. Lven then the solution may involve a consider-
able amount of computer time, so care is needed in selecting the input
variables in such a way that the most important information is obtained
concerning the output variable. This suggests the use of efficient
statistical methods for the design and anaiysis of pseudo-data generated
through the use of such models. Some of those methods are described in
detail in the following sections.

The Nuclear Waste Repository Model

Consider the model for simulating geologic conditions in a reposi-
tory for nuclear waste. The input variables may be random variables or
may be parameters whose values are unknown but may be known to lie in
given intervals with specified probabilities. In either case, the input
variables are subject to uncertainties that may be described by means
of a probability distribution. In Figure 1 a diagram of a hypothetical
nuclear waste repository is given, and four input variables are shown
along with their hypothesized probability distributions. Each prnba-
bility distribution is specified by name and by the lower 1imit a and
upper limit b. In the normal distribution a and b represent truncation
of the usual) norma) distribution at the .00T and .999 quantiles. The
upper 1imit for the lognormal and loguniform distributions are taken
to be the .999 quantiles. The convenience of working with a finite
range for each variable considerably outweighs the disadvantage of
working with a slightly truncated form of a standard distribution.




Several Types of Input Distributions

The normal distribution and the uniform distribution are well
known distributions which are symmetric. Typical density functions for
these two distributions are given in Figure 1. The lognormal distribu-
tion is a unimodal distribution, skewed to the right, which is often
used to represent random variables that assume only positive values.
The logarithm of a lognormally distributed random variable is a random
variable with a normal distribution. A loguniform distribution has
many of the same properties as a lognormal distribution, such as being
unimodal, skewed to the right, and nonnegative. The shape of the
distribution is slightly different, with the right tail of the distri-
bution being considerably heavier than the right tail of a lognormal
distribution. If a random variable has a loguniform distribution, its
logarithm has a uniform distribution. Instead of these four distribu-
tions, any probability distribution may be specified for the input

variables. These distributions are simply the ones used most frequently

in this type of model.

The Importance of Accurate Input Distributions

In any model such as the waste isolation model the output from the
model is the item of interest. There are uncertainties attached to the
output because there are uncertainties inherent in the input. Thus the
output is expressible only in terms of its probability distribution, or
properties such as the mean, standard deviation, median, quartiles or
other quantities. An accurate representation of the output requires an
accurate representation of the input. Therefore good answers to ques-
tions concerning the output require accurate representations of the
input distributions. Since the quantities represented by the input
variables may possess some correlation in nature, that same correlation
should be reflected in the selection of input variables for the model.
The requirements imposed thus far, i.e., specified distributions on

each variable and specified correlations between variables, require some

nonstandard statistical methodology. The methods presented in this
tutorial have been developed specifically for models such as this one,
so they will probably not be familiar to the reader.

The Simplified Black Box Model

In order to present the statistical methodology in a clear, unclut-

tered manner, details which are not relevant to the statistical method-
ology are suppressed in this tutorial. One such detail is the model
itself. Although the model is the most important link in the study of
a physical system, the proper development and verification of the mcdel
is the responsibility of geologists, physicists, engineers and other
experts. From the statistician's viewpoint the model is viewed as a

"black box," with many input variables and one or more output variables.

Figure 2 shows a diagram of the model from a statistician's viewpoint,

-2-




AN
. PN
f
1= Normal : X, = Uniferm i
Y
{Distribution
Unknown}
X_. = Lognormal : \ N
3 SN :
\ X, = Loguniform i

Figuce 1. Some Input variables for a Hypothetical Nuclear Waste Repository.
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where there are four input variables and where the input variables have
specified probability distributions, all normal in this case. The
statistician's job is to understand the desired objectives of the study,
and to use (and/or develop) methods for achieving those objectives.
Some of the desired objectives of this study are given as follows.

Objectives of a Simulation Study

To assess the probability of the output exceeding specified limits.

For some values of the input variables the output of a model may
exceed the 1imits of acceptability as imposed by regulatory agencies.
How likely is this to happen? Because the input variables have uncer-
tainties associated with them, the exceedance probability can only be
estimated on the basis of several runs in which input variables are
selected and the output variable is observed. A method for obtaining
a confidence interval on this prcbability is also needed. If several
valid methods are available for finding such a confidence interval,
the method that gives the smallest interval is obviously the best
method to use for achieving this objective.

To determine the sensitivity of the output to the various input
variabTles.

If some input variables are very influential on the output variable,
those input variables require close study in any actual site selection
decisions. Assumptions regarding the distributions of those variables
also need careful consideration. On the other hand any input variables
that show little or no influence on the output variable are not very
important to study from a cost effective standpoint, and assumptions
regarding their distributions are not as critical. Statistical methods
are needed for measuring the relative importance of the input variables
on the basis of several runs of the model. Note that some variables
may be important at some time points but not important at other time
points, so the mcthod of selecting input values for the various runs of
the model should be flexible enough to allow this determination. The
elimination of nonsignificant input variables may result in a substan-
tial simplification of the model, and a sharper focus on the more rele-
vant aspects of the model.

On the Latin Hypercube Sampling Program

The Latin Hypercube Sampling Program was written to enable a
researcher to select input variables according to any of several differ-
ent methods. It is necessary for the user of this program to specify
several items, including the input distributions, the correlation matrix
of the input variables, and the type of sampling procedure desired.

The program then takes care of obtaining numerical quantities to use as
input variables for the model, where those numerical quantities resemble

-5-




values of random variables with the specified probability dis-
tributions, with a correlatian structure as specified by the
user, and selected according to the specifieda sampling scheme.
As the name of the program suggests, one of the options for
sampling is Latin Hypercube Sampling, which is a very useful
sampling scheme developed specifically for problems such as
this one. However, the user may specify Random Sampling in-
stead, which is a frequently used sampling procedure. Varia-
tions of these sampling procedures are available as options 1in
this program, nowever, attention will be focused primarily on
these two options.

Options for Input Distributioné

The input distribution is specified separately for each
input variable. There are five options available for input
distributions; normal, uniform, lognormal, loguniform, and a
user-specified distribution. The first four distributions are
built into the program and are very easy to use. These were
discussed earlier. The user-specified distribution requires
that a subroutine be written to supply distributions other than
those four.

The Distribution Function vs. the Density Function

Although it is more usual in statistics to think in terms
of density functions when describing the distribution of a
random variable, there are definite advantages of considering
distribution functions (CDFs) in this tutorial. A CDF repre-
sents the cumulative probability associated with a random vari-
able. That is, if f(x) is the density function of a continuous
random variable X, then the distribution function F(x) repre-
sents the cumulative probability up to the value x,

- o0
While a random variable must be continuous in order to possess
a density function, all random variables possess distribution
functions, whether they are continuous, discrete, or some com-
biination of continuous and discrete. Figures 3, 4, 5 ana 6
illustrate distribution functions and density functions for
particular normal, uniform, lognormal, and loguniform distr -
butions. Figure 7 presents the estimated distribution func-
tion of the number of boreholes present in a randomly selected
1100 acre tract which is underlain by bedded salt and which has
at least one borehole present. Note that this is a discrete
distribution function.
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Drawing a Random Sample (I1lustration)

A hypothetical distribution function is given in Figure 8 for the
purposes of illustrating the principles behind drawing a random sample.
If a random sample of size N = 2 is to be drawn from F(x), the follow-
ing steps are followed.

1. Draw N = 2 random uniform values. A table of random digits such as
Table I may be used for this purpose. Enter the table at some randomly
selected row (suggestion: 1let the row number equal the last two digits
of your social security number) and a random column (perhaps the third
digit from the end of your social security number) and record two sets
of numbers, two digits each, reading across. If row 31, column 3 is
selected, the numbers are 87 and 91.

2. Convert these tc numbers between 0 and 1. The simplest way to do
this is to divide by 100, which converts 87 to .87 and 91 to .91.

3. Use Figure 8 to find F-1 for these numbers. The numbers .87 and

.91 are_found on the vertical axis in Figure 8, and the inverse func-
tion F-1 of F(x) is used to convert these to 2.13 and 2.34. These two
numbers 2.13 and 2.34 are the random sample of size 2 from the probabil-
ity distribution given by F(x).

Note that by chance both of the numbers in the random sample in
the example happened to be near the upper end of the range of possible
values of the random variatle being sampled, because the two numbers
from Table 1 happened to be close to 100. This is the nature of random
samples; no guarantee is given that the numbers in the sample will be
spread out over the range of possible values of the random variable.
For this reason, the following method of sampling, called stratified
sampling, is often preferred.

Drawing a Stratified Sample (Illustration)

A hypothetical distribution function F(x) (the same one used in
Figure 8) is given in Figure 9 to illustrate the principle behind
stratified sampling. For a stratified sample of size N = 2, one obser-
vation is sampled at random from the lower half (in a probability sense)
of the distribution and one value is sampled at random from the upper
hal f.

1. DOraw N = 2 random unifcrm values. For simplicity the same numbers
87 and 91 will be used again.

2. Convert the first numher to a number between 0 and .5 and the
second to a number between .5 and 1.0. TFirst, each number is converted
to a number between U and .5 by dividing by 200. Then .5 is added to
the second number.

-10-
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87
500 = .435

91
700 + .5 = .455 + .5 = 955

3. Use Figure 9 to find F-1 for these numbers. The numbers .435 and
.955 are found on the vertical scale in Figure 9, and the inverse
function F-1 of F(x) is used to convert these to a stratified sample
of size 2 from F(x). The sample consists of the two numbers 0.84 and
2.70. Note that the first number is in the lower half of the distri-
bution and the second number is in the upper half of the distribution,
in a probability sense. '

For a stratified sample of size N, the vertical axis of Figure 9
would be divided into N equal intervals between 0 and 1, one observa-
tion would be sampled at random from each interval using uniform random
numbers, and these would be converted to a random sample from F(x)
through the use of an inverse function.

More txact Normal Values from Table 2

The graphical method for finding x, given F(x), that was illustrated
in the preceding examples is simple and straightforward. It may be used
with the graph of any distribution function. The only limitation of
such a method is that graphical methods are good to 2 or 3 decimal place
accuracy at best. Of course, if the distribution function is discrete,
as in Figure 7, whole integer accuracy may be sufficient.

The distribution Tunction used in the illustrations happens to be
normal with mean 1 ard variance 1. Therefore, the exact values for
F'l, column (d) in rigures 10 and 12, may be found from Table 2. Round
the value in «uiumn (c) to three decimal places. Enter Table 2 to get
=1, the inverse for a standard normal distribution (=0, 0 = 1). Then
add 1 to get the inverse for F(x), because # = 1. In general, multipli-
cation by o and addition of u, in that order, converts from ¢-1 to any
normal random variable with mean u and variance o2,

The number .87 converts to 1.1264 in Table 2, and then to 2.1264
by adding 1.0. The number .91 converts to 2.3408 using the same
procedure, thus justifying the two numbers obtained in the random sample
of size 2. For the stratified sample of size 2, the numbers F(x) = .435
and F(x) = .955 convert to -.1637 + 1 = .8363 and 2.6954 respectively,
in agreement with the graphical results but with greater accuracy.
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EXERCISE 1

Use Table 1 and Figures 10 and 11 [columns (a) through (d) only], to
obtain a random sample of size 4 from the distribution F(x).

(a) (b) (c) (d) (e) (f)
Random
numbers
(2 digits) (c) = %% F-l(c) ¢-1(c) (e) +1
1.
2.
3.
4.

Figure 10. Worksheet for Drawing a Random Sample of Size N =4 from F(x).
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EXERCISE 2

Use Table 1 and Figures 12 and 13 [columns (a) through (d) only], to
obtain a stratified sample of size 4 from the distribution F(x).
Note how the stratified sample is spread over all four quarters of
the probability distribution.

{a) (b) (c) (d) (e) (f)

Random |
numbers (b)  (a)- :
(2 digits) () =g+~ ¢ FHe)  ele)  e7He) + |

Figure 12. Worksheet for Drawing a Latin Hypercube Sample of Size N = 4
from F(x).

QUESTION 1: For purposes of estimating the mean of the population, do
you think the average of a random sample or the average of a stratified
sample will tend to give a more accurate figure? ANSWER AT BOTTOM OF
PAGE 16. '

-16-
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EXERCISE 3

Use Table 2 and Figure 10, columns (e) and (f), to obtain more accurate
figures for the random sample from F(x), the normal distribution with
4 =1 and o= 1.

EXERCISE 4

Use Table 2 and Figure 12, columns (e) and (f), to obtain more accurate
figures for the stratified sample from F(x).

ANSWER TO QUESTION 1: It can be shown that the average from a stratified
sample will tend to be closer to the true population mean.
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Obtaining a Multivariate Random Sample

The usual model involves many input variables rather than just the
one input variable as was used in the previous examples. If four input
variables are involved, as in Figure 2, then one value needs to be
obtained for each input variable before an input to the model is com-
plete. Let K be the number of input variables; K = 4 in Figure 2.

Then K numbers are obtained as one input vector, where each number
represents one input variable. If N is the number of runs desired,
then N sets of K numbers each are obtained in all.

The Random Sampling method with K input variables is a simple
extension of the Random Sampling method for one input variable, if the
input variables are independent. The first observation on X; is simply
matched with the first observation on Xp, the first observation on X3,
and so on, for the first input vector. The second input vector consists
of the second values obtained for Xy, Xp, ..., X, and so on for all N
input vectors. The situation is not so simple 1§ some specified corre-
lation is desired on the input values, but that will he described later.

Obtaining a Latin Hypercube Sample

To obtain a Latin Hypercube Sample, when the input variables are
uncorrelated, the situation is almost as simple. First, stratified
samples of size N are obtained on each input variable, in the manner
previously described for finding stratified samples. Then the strati-
fied sample of size N on X; is permuted into a random order, using some
randomization method. The N observations on X are also permuted into
a random order, independent of the order on the values of Xy. The
values for each input variable are arranged in a randem order, indepen-
dent of the order of the other input variables.

Once the samples are permuted as described, the Latin Hypercube
Sample is easily constructed. The first value of X; is matched with
the first values of Xy, X3, ...., Xg for the first 1nput vector. The
second values of each are matched for the second input vector. This
matching procedure is followed until all N values of each variable are
used. The method for matching the observations to achieve some target
correlation values will be given later, for the non-independent case.

Comparing Latin Hypercube with Random Sampling

A Latin Hypercube Sample has observations that are spread over the
entire range of each input variable, and the spread is in a uniform
manner, in a probability sense. This is unlike the Random Sample which
may produce clusters of observations anywhere in the range of the vari-
ables. It is difficult to prove analytically that either method of
sampling is better than the other. However, some comparisons of the
two sampling methods have been made with actual models, and the Latin
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Hypercube Samples appear to give much better results where the goal is
to estimate the distribution function of the output variable. The
following exercises are designed to illustrate how to obtain Random
Samples and Latin Hypercube Samples with muitivariate input, when the
input variables are uncorrelated. Then comparisons will be made between
the two methods to see what kind of accuracy is obtained on estimates

of the output.

Obtaining a Multivariate Random Sample (Illustration)

Refer to Figure 2 where there are four input variables each with
a normal distribution function. In each run observations on these four
input variables go into a model, represented by a black box, and the
output is recorded. The following exercise takes the reader step by
step through the process of obtaining a random sample of size 10. The
subsequent exercise takes the reader through the steps in obtaining a
Latin Hypercube Sample of size 10. Later these samples will be entered
into a black-box type model and the outputs recorded and compared. But
first the samples are obtained.

EXERCISE 5 (Multivariate random sample of size 10)

1. In order to draw a 4-variate random sample of size 10, 40 random
numbers are needed from Table 1. Starting where you left off in
Exercise 2, choose 40 three-digit random numbers, reading across the
table row by row. Record these in the order drawn, down column (b) in
Figures 14-17.

2. The numbers in column (b) are converted to probabilities between
0 and | by dividing by 1000, for column (c).

2. The probabilities in column (c) are converted to random samples
from a standard normal distribution (4= 0, 0= 1) by entering Table 2
in the respective row and column, and recording the table entry in
column (d).

4. The standard normal values from column (d) are converted to normal
values with other means by adding the constant indicated in column (e)
of each figure.

5. Transcribe all 40 numbers in column (e) into the respective columns
of Figure 18. Each row of Figure 18 represents one input to the black
box model.

-20-




(a) (b) (c) (d) (e)
Obs. Uniform
Number Random (b) -1 (¢) Input
Number (c) =—yp5pp—  from Table 2 (e) = (d)+1
(3 digits)

10.

Figure 14. Worksheet for Drawing a Random Sample of Size 10 for X,
where Xy is Normal, u =1, o = 1.
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(a) (b) (c) (d) (e)
Obs. Uni form
Number Random (b) 7l (¢) Input
Number (c) = {000 from Table 2 (e} = (d)+2
(3 digits)

10.

Figure 15. Worksheet fcr Drawing a Random Sample of Size 10 for Xp,
where X, is Normal, u =2, 0 = 1.
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(a) (b) (c) (d) (e)

Obs. Uniform (b)

Number Random (¢} = To00 ¢+ (c) (e) = {d) + 2
Number

10.

Figure 16. Worksheet for Drawing a Random Sample of Size 10 for X3,
where X3 is Normal, u =2, 0 = 1.
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(a) (b) (c)
Obs. Uniform b)
Number Random
Number

where X4 is Normal, u = 3, ©
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(d) {(e)

-1 (¢) (e) = (d) + 3

I
| 4.
| 5.
6. |
7. .
8. |
9.
10.
Figure 17. Worksheet for Drawing a RandoT ?amp]e of Size 10 for Xa,
= 1. 1'II




6. Using a pre-programmed calculator, or the equation
[ . .
Y = X] + XpX3 - X21n|X1 |+ exp{X4/4)

whichever is more convenient, find the output value Y for each of the
10 input values (X1, X2, X3, X4), and record these in column (f) of
Figure 18.

7. Plot the 10 values of Y on the abscissa of Figure 19, and draw an
empirical distribution function. An empirical distribution function
is a step function which equals zero on the left, and proceeding from
left to right, rises a height of 1/N at each of the N sample points,
until it equals 1.0. This is an estimate of the true distribution
function of the output. In this case, start at zero on the left and
increase the height of the graph by 1/10 at each observation on Y, as
the graph proceeds from left to right. At the largest observed value
of Y the graph should jump from a height of .9 to a height of 1.0.

The Accuracy of the Cutput From a Random Sample

The empirical distribution function in Figure 19 provides an esti-
mate of the population distribution function of the output. The sample
mean of the 10 values of Y provides an estimate of the population mean,
and other sample values provide estimates of their corresponding popu-
la’ion values in the usual manner for random samples.

In order to see how well these samples function as the basis for
population estimates, five random samples of size 10 each were obtained
using the Latin Hypercube Sampling Program, and were entered into the
black box model to ootain outputs. The five empirical distribution
functions are given in Figure 20, while Figure 21 presents a picture
of the mean of all five e.d.f.'s together. In the background of Figures
20 and 21 is an accurate estimate of the true distribution function of
the output, obtained by using a random sample of size N = 1000.

The mean of all five e.d.f.'s, averaged in the vertical direction,
is plotted again in Figure 22. This is the same e.d.f. one would
obtain if all 50 sample observations were treated as a random sample
of size N = 50, which it actually is. Above and below the mean curve
in Figure 22 are curves that represent one standard deviation distance,
where the standard deviation is computed vertically from the five
curves in Figure 20, and smoothed using a three peint moving average.
The standard deviation jis presented to give some idea of the accuracy
involved in each individual random sample of size 10.
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(a) (b} (c) (d) (e) (f)
Obs. Values Values Values Values Y
Number for Xi for Xo for X3 for X4 (Output)

10.

Figure 18. The Multivariate Input Vectors Using a Random Sample, and
the Corresponding Qutput.
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An Empirical Distribution Function from the Random Sample
of Figure 18.
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Fagure 21. A Graph of the Mean of the Five EDF's from Figure 20,
and an tstimate of the Population Distribution Function
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Figure 22. The Mean and One Standard Deviation Bounds of the Five

EOFs from Figure 20.
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Obtaining a Random Permutation

Before drawing a Latin Hypercube Sample, one method for arranging
numbers in & random order will be discussed. One way of obtaining a
random permutation of the integers 1 to N is to draw N numbers from a
random number table (or a computer program) and use the ranks of those
numbers as the random permutation. For example, starting with row 41,
column 1 in Table 1, ten consecutive 4-digit numbers are given as
follows, along with their ranks.

Random
Numbers Ranks

9842
7075
2333
3626
4270
0163
8924
7766
9699
8420

—
~NOO O Wl O

Since the random numbers follow a random-ordering, the ranks form a
random permutation of the integers from 1 to 10.

Obtaining a Latin Hypercube Sample (I1lustration)

The following steps outline the procedure for finding a Latin
Hypercube Sample. The situation described in Figure 2 is used. A
sample of size N = 10 will be formed using K = 4 input variables, which
are independent of each other, and normally distributed with o2 = 1 and
means Ky = 1, Hp = 2, u3 = 2, Ka = 3 respectively. The reader should
follow through the steps, and Figures 23-28 to ensure an understanding
of the process.

Step 1. Obtain uniform random numbers in each of N strata. Select a
random starting point in Table 1 and, reading across, select 40 two-
digit random numbers. Write these in column (b) in Figures 23-26.
Divide each of these numbers by 1000 and add the lower bound for the
strata from column (a). Put the result in column (c). These are the
stratified sample values of F{x).

Step 2. Arrange the values of F(x) in a random order. Draw an addi-

tional 40 random numhers from Table 2, using 4-digit numbers to reduce
the chances of ties and put these numbers in column (d). In the case
of ties, redraw until there are no ties. Rank each 10 of these from

1 to 10 in each Figure and put the ranks in column {e).
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(a)

Lower (b) (c) {a) (e) (f) (g) (h)

Bound Uniform Uniform  Ranks  Random
of Random F(x) Random of Order p-1 F-1 (g)+1

Stratum  Numbers Numbers (d) of F(x)
.0 31 .031 7216 9 .854 1.05 2.05
1 93 .193 3095 2 .193 -0.87 0.13
.2 52 .252 3812 4 .370 -0.33 0.67
3 70 .370 1510 1 .031 -1.87 -0.87
.4 22 422 6878 8 .770 0.74 1.74
.5 84 .584 9190 10 .962 1.77 2.77
.6 06 .606 3187 3 .252 -0.67 0.33
. 70 770 4934 6 .584 0.21 1.21
.8 54 .854 4055 5 422 -0.20 0.80
.9 62 .962 6087 7 .606 0.27 1.27

Figure 23. A Stratified Sample of Size 10 for X; from a Normal
Population with # = 1 and ol =1,

(a) (b) (c) (d) (e) (f) (g) (h)

Lower Uniform Uniform  Ranks Random

Bound Random F(x) Random of Order ¢l F-1 = (g)+2
of Numbers Numbers (d) of F(x)

Stratum
.0 35 .035 8279 8 716 0.57 2.57
. 21 121 0709 1 .035 -1.81 0.19
.2 61 .261 2565 3 .261 -0.64 1.36
.3 44 .344 3900 4 .344 -0.40 1.60
.4 86 .486 5224 6 .529 0.07 2.07
.5 29 .529 7295 7 .689 0.49 2.49
.6 89 .689 8286 9 .886 1.21 3.21
.7 16 716 0981 2 121 -1.17 0.83
.8 86 .886 4063 5 .486 -0.04 1.96
.9 07 .907 9147 10 .907 1.32 3.32

Figure 24. A Stratified Sample of Size 10 for X from a Normal

Population with # = 2 and a?
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(a)

Lower (b) (c) (d) (e) (f) (q) (h)

Bound Uniform Uniform  Ranks Random
of Random F(x) Random of Order ¢l F-l = (g)+2

Stratum  Numbers Numbers (d) of F(x)
.0 41 .041 2554 2 .186 -0.89 1.11
.1 86 . 186 9485 10 .965 1.81 3.81
.2 71 271 4242 4 .349 -0.39 1.61
.3 49 .349 6274 7 .669 0.44 2.44
4 51 .451 5233 5 .451 -0.12 1.88
.5 91 591 5720 6 591 0.23 2.23
.6 69 .669 2946 3 271 -0.61 1.39
.7 68 .768 1723 1 .041 -1.74 0.26
.8 50 .850 7720 8 .768 0.73 2.73
.9 65 .965 7896 9 .850 1.04 3.04

Figure 25. A Stratified Sample of Size 10 for X3 from a Normal
Population with 4 = 2 and 062 = 1.

(a)

Lower (b) (c) (d) (e) (f) (g) (h)

Bound Uni form Uniform Ranks Random
of Random F(x) Random of Order -1 F-1 =

Stratum  Numbers Numbers (d) of F(x)
.0 50 .050 2750 4 .381 -0.30 2.70
.1 00 .100 4961 9 .899 1.28 4,28
.2 13 213 3183 6 566 0.17 3.17
.3 81 . 381 9444 10 .924 1.43 4.43
.4 40 .440 1575 2 .100 -1.28 1.72
.5 66 .566 1057 1 .050 -1.64 1.36
.6 32 637 3086 5 .440 -0.15 2.85
. 11 711 1964 3 213 -0.80 2.20
.8 99 .899 4827 8 11 0.56 3.56
.9 24 .924 3923 7 .637 0.35 3.35

Figure 26. A Stratified Sample of Size 10 for X4 from a Normal
Population with # = 3 and o2 = 1.
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(a) {(b) (c) (d) (e) (f)
{ Obs. Input Input Input Input Output

-

§ No. X X X3 Xq Y
1 2.05 2.57 1.11 2.70 5.02
2 0.13 0.19 3.81 4.28 4.16
3 0.67 1.36 1.61 3.17 5.61
4 -0.87 1.60 2.44 4.43 6.28
5 1.74 2.07 1.88 1.72 6.02
6 2.77 2.49 2.23 1.36 7.19
7 0.33 3.21 1.39 2.85 10.39
8 1.21 0.83 0.26 2.20 3.00
9 0.80 1.96 2.73 3.56 9.02
10 1.27 13.32 3.06 3.35 12.88

Figure 27. A Latin Hypercube Sample of Size 10 and the Associated
Output Y.

-34-




lII' 1.000 T l T T T T T ~T T T T T T

LBO0O -
L0000
L4000 -

. .3000 |-

L2000 |-

.IOUU — _— -

0.000 ‘oo edee bl J L i RGN VUSRS ISR R I S
0.co0 2.00 4.00 .00 8.00 10.0 12.0 14,0

Figure 28. An Empirical Distribution Function for the Output in
Figure 27.
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Now rearrange the numbers from column (c), putting the smallest number
next to rank 1, the second smallest next to rank 2, and so on to the
largest number which goes next to rank 10 in each Figure. These go in
column (f).

v )

C+nam 2 (Canuanwy + +hn ualiine nf L_Iv\ +n a2 ctwn
L (] Ao

JLt‘p Do LUIIVCI L (
Since F{x) is a normal distribution function, enter the respective row
and column of Table 2 as indicated by the value in column ), and
record the table entry ¢-1 in column (g). Add the mean of F(x) to
column (g) to get the value of F-1, which goes in column (h). Column
(h) contains the stratified sample from F(x), arranged in random order.

am £
(0111
C

O

Step 4. Combine the individual stratified samples into a Latin
Hypercube SampTe. Transcribe the numbers in column (h} of Figure 23
into coTumn (b} of Figure 27, without changing the relative ordering.
In a similar fashion the numbers in column (c) of Figure 27 come from
Figure 24, column (d) comes from Figure 25 and column (e) comes from
Figure 26. It is important to keep the same relative ordering of the
numbers when transcribing them.

Step 5. Obtain the output from the black box model using the Latin
Hypercube SampTe. The entries in row 1 of Figure 27 are entered into
a pre-programmed calculator, or the function

Y = X[+ XpX3 - Xoln|Xq | + exp (Xq/4)

whichever is more convenient, to get the output Y of the black box
model. Repeat this procedure for each row in Figure 27.

Step 6. Plot an empirical distribution function. Plot the 10 values

of Y from Figure 27 onto the horizontal axis of Figure 28. Draw a

step function, starting at zero on the left, and increasing in steps

of height 1/10 at each value of Y, until the graph reaches a height

of 1.0 at the largest value of Y. This is an estimate of the distribu-
tion function of the output, obtained using Latin Hypercube Sampling.
The average of the 10 values of Y may be used to estimate the population
mean; the sample variance, sample median, etc., may be used to estimate
the population counterparts.

EXERCISE 6. (Obtaining a Latin Hypercube Sample of size 10)

Follow the same steps used in the previous example, ard obtain a
Latin Hypercube Sample of size N = 10. Use Figures 29-32 to record the
steps involved in finding the stratified samples, and put them together
in Figure 33 as a Latin Hypercube Sample. Obtain the output values and
graph the empirical distribution function in Figure 34.
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(a)
Lower (b) (c) (d) (e) (f) (g) (h)
Bound Uniform Uniform  Ranks Random

of Random F(x) Random of Order o F-1 = (g)+1
Stratum  Numbers Numbers (d) of F(x)

Figure 29. Student Problem: A Stratified Sample of Size 10 for X
from a Normal Population with # = 1 and o2 = 1,




(a) (b) (¢) (d) (e) (f) (9) (h)
Lower Uni form Uniform Ranks  Random

Bound Random F(x) Random of Order $-1 F-1 = (g)+2
of Numbers Numbers (d) of F(x)

Stratu_n_x

(@]

Figure 30. Student Problem: A Stratified Sample of 3ize 10 for X3
from a Normal Population with &« = 2 and ol = 1, ‘




(a)

{(b) (c) (d) (e) (f) (g)

Lower Uniform Uniform Ranks Random
Bound Random F(x) Random of Order g1
of Numbers Numbers (d) of F(x)

Stratum

(h)
F-1 = (g)42

Figure 31.

Student Problem: A Stratified Sample of Size 10 for Xj

from a Normal Population with 4 = 2 and ol =
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(a) (b) (c) (d) (e) (f) (9) (h)
Lower Uniform Uniform Ranks Random
Bound Random F(x) Random of Order $p=1 F-1 = (g)+3
of Numbers Numbers (d) - of F(x)
Stratum

Figure 3Z2. Student Problem: A Stratified Sample of Size 10 for X,
from a Norma) Population with » = 3 and 02 = 1,
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(a) (b) (c) (d) (e) (f)
Obs. Input Input Input Input OQutput

o -

Figure 33. Student Problem: Worksheet for a Latin Hypercube Sample
of Size 10 and the Associated Output Y.
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Figure 34. Student Problem: Worksheet for an Empirical Distribution
Function for the Output in Figure 33.
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. Accuracy Obtained from Using a Latin Hypercube Sample

In order to get some idea of how well a Latin Hypercube Sample of
size 10 functions as a basis for estimation, the Latin Hypercube
Sampling program was used to obtain five Latin Hypercube Samples of
size 10 each. The e.d.f.'s for these five samples appear in Figure
35, (a)-{e). The mean of these five graphs, computed in a vertical
direction, appears in Figure 36. In the background of Figures 35 and
36 is an estimate of the population distribution function, obtained
using a tatin Hypercube Sample of size N = 1000. This estimate coincides
almost perfectly with the estimate in Fiqures 20 and 21 which was
obtained from a Random Sample of size N = 1000. This close agreement
confirms the fact that both methods of sampling are providing unbiased
estimates of the population distribution function.

The mean EDF is plotted again in Figure 37, along with curves plot-
ted one standard deviation above and below the mean curve. These three
curves collectively give some idea of the spread involved using Latin
Hypercube Samples of size 10 as estimators of the population distribu-
tion function. The standard deviation is computed vertically from the
five curves in Figure 35, and smoothed using a three point moving
average.

A Comparison of Latin Hypercube with Random Sampling

. A comparison of Figures 36 and 37 with Figures 21 and 22 shows
that, in this case, the five Latin Hypercube Samples provide a petter
composite estimate of the population distribution function than do
the five random samples obtained earlier. Because of sampling vari-
ability, there is no guarantee that Latin Hypercube samples are always
better than random samples, but all of the simulation studies we are
aware ¢of indicate a definite tendency in this direction.

The Replicated Latin Hypercube Sample

When five random samples are pooled together as in Figure 21 the
result is another random sample, whose size is equal to the total pooled
sample size. However, when five (or any number) Latin Hypercube Samples
are pooled together as in Figure 36, the result is called a Replicated
Latin Hypercube Sample. Actually the inputs are more correctly called
the replicated Latin Hypercube Sample. Replication allows standard
deviations to be computed. These standard deviations should be divided
by /7, where r is the number of replications, to get an estimate of the
standard errorl of the estimate of the mean c.d.f. In the previous
example, the standard deviations would be divided by,/5. The estimate
of the true output distribution function obtained from a random sample
of size 50, and the standard error of the estimate, is given in Figure
38. This is different than Figure 22 which illustrated the error
involved when using a random sample of size 10. The corresponding

1
. Standard error refers to the standard
deviation of an estimate
-4 3-
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of Size 10 Each,
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Five EDF's Obtained from Latin Hypercube Samples
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Figure 36. The Mean of the Five EDF's from figure 35, and an
Estimate of the Population Distribution Function
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Tigure for a Replicated Latin Hypercube Sample (5 samples of 10 each) is

given in Figure 39, showing the estimated distribution function and the
one standard error bounds. This may be contrasted with Figure 37 which
illustruted the standard error involved when using a single Latin
Hypercube Sample of size 10.

Estimating Other Population Parameters

Other population quantities are estimated in the usual way from
the sample outputs. For example, the sample mean is used to estimate
the population mean. Each of the five random samples provides a sample
mean, as does each of the five Latin Hypercube samples. These are
listed below.

True population mean p = 7.585

Random Sample Latin Hypercube Sample
Estimates Estimates
1. 8.504 1.  7.672
2. 9.736 2. 7.682
3. 10.778 3. 9.266
4. 8.825 4. 7.735
5. 10.029 5. 7.867
ave. 9.575 ave. 8.044

Latin Hypercube Samples appear to provide better estimates of most, if
not all, population parameters when compared with Random Samples.
However, this observation is based only on empirical evidence, not
theoretical proof, and may not be true in particular cases.

Changes in the Input Distributions

[f the input distributions are changed, the output distribution
will be changed also. Just how much the output distribution function
will change depends on the degree of change in the input distributions
and the strength of the association between the output and each input
variable. For purposes of illustration, the input distributions in the
example depicted in Figure 2 were changed from normal to uniform for
each of the four variables. The range of each variable remained the
same. Now the samples of observations from each distribution will not
tend to be in the center of the range, as with a normal distribution,
but will tend to be spread evenly from one end of the range to the
other. This increased emphasis on values in the tails of the range can
be expected to alter the output distribution somewhat, but the degree
of change is difficult to predict.
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Figure 39. The Mean of Five EDF's from Flgure 35 and One Standard

Error Bounds for a Replicated latin Hypercube Sample
of Total Size N = 50
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I1lustrating the Effect of a Change in Input Distributions

To see how much change is induced by changing the four input
distributions from normal to uniform, a Latin Hypercube Sample of
size N = 1000 was obtained using the Latin Hypercube Sampling Program.
The steps involved in finding such a sample are similar to those
described earlier. That is, in Figures 23-26, columns_{a) through (f)
would remain unchanged, but to convert from F(x) to F-l, as given in
column (h), the inverse function for a uniform distribution would be
used instead of the inverse function for a normal distribution function.
The result for a sample of size 1000 is given in Figure 40 (dark line)
and contrasted with the previous case involving normal distributions
(1ight 1ine). The large sample size enables these graphs to be treated
as if they were the true output distribution functions. The change in
the distribution is considerable, which illustrates the importance of
being as accurate as possible in specifying the input distribution
functions.

The Actual Correlation on the Input Values

Recall that in drawing a multivariate random sample, the process
depended on numbers from a random number generator or, in this case,
Table 1. Since the rumbers drawn in this way are supposed to be inde-
pendent of one another, any correlation induced should be spurious ‘
correlation due simply to usual random fluctuation one might expect to
encounter in random samples.

The same is true for the Latin Hypercube Samples, which were depen-
dent on random numbers for the pairing of values of X} with X, for
instance. Since the values of X and X; were pennuteé at random any
correlation between X and X, should be spurious correlation. To see
how much correlation actually exists between these randomly permuted
values, the actual correlation coefficient was computed on the values
of X; and X given in columns (b) and (c) of Figure 27. That correla-
tion is rl% = .3595 which is much less than the 5% critical value .632,
so a correlation this large can easily be due to chance fluctuations.
The entire correlation matrix for the columns in Figure 26 is given in
Figure 41.
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Figure 40. The Output Distribution Function When the Inputs are
Uniformly Distributed, Contrasted With the Case of
Normal Input Yariables.
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X1 X2 X3
X9 .3595
X3 -.2822 -.1024
X4 -.8535 -.3170 .5565

Figure 41. The Correlation Matrix for the Latin Hypercube Sample
in Figure 27.

Note that five of the six correlation coefficients are nonsignificant

at the 5% level. The correlation between X1 and X4 is -.8535, which
exceeds in absolute value the ciritical value, but this is merely a
chance occurrence, since the sampling method does not induce any system-
atic correlation in the values. Also, the critical value .632 applies
to random samples; the exact critical value for Latin Hypercube Samples
is unknown.

The Rank Correlation on the Input Yalues '

Since the exact behavior of the correlation coefficient from Latin
Hypercube Samples 1s not known, and since its behavior even with random
sampling is unknown, if the input distributions are not normal, it makes
more sense to work with the rank correlation coefficient, known as
Spearman's rhtio, and which is simply r computed on the ranks of the data.
The behavior of the rank correlation coefficient is the same for Latin
Hypercube Samples as it is for random samples, and is the same for all
types of input distributions.

The ranks of the Latin Hypercube Sample of Figure 27 are given in
column (e) of Figures 23-26, and are reproduced in Figure 42 for the
reader's convenience. The rank correlation matrix for these ranks is
given in Figure 43. The 5% critical value for the rank correlation
coefficient is .6364. Note that, as before, the only correlation that
exceeds this value in absolute value is the rank correlation between
X} and X4. Some of the other correlations tend to be large alsc, such
as P34 = 5121 between X3 and Xg.

Some Undesirable Effects of Spurious Correlation

These large correlation coefficients that occur by chance after a
random permutation of the input variables are annoying for several
reasons. For one, the independence assumption between input variables
implies that the population correlations equal zero. Since the sample
correlations act as estimates of the population values, it would he ‘
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Number X1 X2
1 9 8

2 2 1

3 4 3

4 1 4

5 8 6

6 10 7

7 3 9

8 6 2

9 5 5
10 7 10

Figure 42.

X X2
X7 .4788
X3 -.2848 -.0667
X4 -.8061 -.2848

[

10

.6121

The Ranks of the Input Variables in
l.atin Hypercube Sample of Figure 27.

the

Figure 43. The Rank Correlation Matrix for the

Ranks in Figure 42.
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desirable for the sample correlations to be close to zero if possible.
In this way, the sample input values would be more "typical" of the
population, and this should be reflected in more confidence in the out-
put being more typical of the population output.

A second reason for wanting smaller correlation is that large
correlation tends to introduce an effect known as multi-colinearity,
which is acceptable if the variables are actually related, but which may
be undesireable if the variables are actually independent. For
these reasons, a method for reducing sample correlations of input values
is desirable. Such a feature is built into the Latin Hpercube Sampling
Program.

Reducing the Spurious Correlation

The Latin Hypercube Sampling program does not obtain a random pair-
ing of the input vectors in either the random sampling option or the
Latin Hypercube option. Rather, it pairs the variables so they will
have correlation coefficients closer to the population correlation
coefficients, in order to reduce the undesirable effects associated with
spurious correlation. For the first random sample of size 10, whose
e.d.f. is given in Figure 20(a), the input variables were arranged so
that their ranks matched the ranks given in Figure 44. That is, instead
of being satisified with a random ordering such as in column (e) of .
Figures 14-17, the values are arranged so that their ordering agrees:
with the ordering in Figure 44. Then the rank correlations are given
in Figure 45. Note that the largest rank correlation in Figure 45 is
.2217, and that four of the six correlations are less than .1. These
correlations as a group tend to be closer to the zero population value
that is appropriate for independent input variaoles. Note also that
the rank correlations in Figure 45 depend only on the ranks in Figure 44,
and not in any way on the input distributions or the particular input
values.

An I1lustration of Reducing the Correlation

The same rank ordering given in Figure 44 was used on both the
first random sampie and the first Latin Hypercube Sample, whose e.d.f.
is given in Figure 35(a). To illustrate how this is accomplished, the
example given in Figures 23-27 will be reworked so that the correlation
matrix of the input values wiil be the same as in Figure 45. This means
that the ranks of the input values need to agree with the columns of
Figure 44. For variaple Xj the original ordering and the new ordering
are given in Figure 46. The original ordering was given in Figure 23,
column (h) and the original ranks were given in the same figure, column
(e). The new rank ordering for X; is given in Figure 44, column (b).
Since the new ordering has rank 8 in run number 1, the Xj value with
rank 8, Xy = 1.74, is now listed first. All of the values of Xy are
thus arranged to agree with the new rankings, as illustrated in Figure 46. ‘
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(a) (b) (c) (d) (e)
Run

Number S X X3 X

1 8 6 1 9

2 7 7 10 5

3 2 2 6 6

4 4 5 3 7

5 9 10 5 3

6 6 4 9 1

7 1 9 2 2

8 10 3 4 8

9 5 1 7 4

‘ 10 3 8 8 10

Figure 44. The Rank Ordering Induced on the Random Sample of Size
N = 10, Whose Qutput EDF is Given in Figure 20{a).

X1 22 X3
Xy -.0944
X3 .0938 .0200
‘ X4 2217 -.0252 -.2046

Figure 45. The Rank Correlation Coefficients for the Ranks in
Fiqure 44.
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(a) (b) (c) (d) (e)
Run Original Original New New

Number Ordering Ranks Ranks Ordering
Fig. 23, Fig. 23 Fig. 44
col. (h) col. (e) col. (b)
1 2.05 9 8 1.74
2 0.13 2 7 1.27
3 0.67 4 2 0.13
4 -0.87 1 4 0.67
5 1.74 8 9 2.05
6 2.77 10 6 1.21
7 0.33 3 l -0.87
8 1.21 6 10 2.77
9 0.80 5 5 0.80
10 1.27 7 3 0.33

Figure 46. Changing the Order of thé Values of Xj to Reduce the
Spurious Correlation.
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Similarly the values cf X, are arranged in the ordering suggested
by the ranks in column (c) of gigure 44, Columns (d) and (e) of Figure
44 define the new orderings of the values of X, and X,. When all of
the input variables are arranged in the order Specified by Figure 44,
their rank correlation matrix will be the same as the one in Figure 45.
0f course, the output values Y will not be the same as before since the
combinations of input values are now different. However, these new
output values are treated the same as any other output values; e.d.f.'s
are plotted as they were in Figures 20 and 35, sample means and sample
standard deviations are computed, and so on.

Ch Tatin Cnr 1
Stmuiating CLOJ related Input Var‘-ab]es

(L.

The same principle that is used to make the sample correlations
close to zero is used by the Latin Hypercube Sampling program to make
the sample correlation close to any target correlation. That is, first
the pairings of ranks are found that result in a desired sample rank
correlation coefficient, and then the sample values are arranged in the
order suggested by the ranks. These sample correlation coefficients
will not equal exactly their target correlations, just as the sample
correlations in the previous example did not equal exactly zero, but
they will usually be fairly close. The Latin Hypercube Sampling program
furnishes a matrix of ranks to use for the ordering of the sample values,
and also furnishes the sample correlation matrix associated with those
ranks. If the sample correlation matrix is unsatisfactory for any
reason, the program can be used again and again to furnish new rank
orderings until a rank ordering with a satisfactory sample rank correla-
tion matrix is found. (See Iman and Conover, 1980).

I1lustration of Correlating Input Variables

Suppose the target correlation matrix is given by Figure 47. These
values are supplied to the Latin Hypercube Sampling program, and a
matriy of ranks that may be used is supplied. One such matrix is given
in Figure 48. Note that any sample of size 10 for each of four input
values may be arranged in the order suggested by Figure 48. It does
not matter if a random sample is used, or if a Latin Hypercube Sample
is used, or whet types of input distributions are used. When the sample
values have the ordering of Figure 48, they will have the sample rank
correlation coefficients given in Figure 49.

The sample values from the Latin Hypercube sample given in Figure 27
are rearranged in the order suggested by Figure 48. First the X, values
are rearranged so that their rank ordering is changed from the former
order, 9, 2, 4, 1, 8, 10, 3, 6, 5, 7, as given in column (e) of Figure 23,
to the new order 1, 9, 8, 3, 7, 4, 2, 6, 5, 10, as given in column (b)
of Figure 48. This is the same type of procedure that was illustrated
in Figure 46, only the new ordering is different, since now the objective
is to achieve correlations close to zero, as was formerly the case.
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L3\ X2 23
Xo 8
X3 .3 4
X4 .6 9 7
Figure 47. A Target Correlation Matrix for Four Input Variables.
(a) (b) (c) (d) (e)
Run X1 X2 X3 X4
Number L . . L
1 1 2 2 3
2 9 10 9 10 '
3 8 8 8 8
4 3 3 10 6 '
5 7 9 7 9 ‘II'
6 4 7 3 7
7 2 1 6 2
8 6 5 4 5
9 5 4 1 1
10 10 6 5 4
Figure 48. Rank Orderings to Achieve Correlations Close to Those in
Figure 47.
A X2 *3
X2 .7939
X3 3212 .3576
Xa 5152 .8545 .6606
Figure 49. Sample Rank Correlation Matrix for Ranks in Figure 48.
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4
After rearranging the order of the sample values for Xj through X,

into the order suggested by the ranks given in Figure 48, the new
arrangements are given in Figure 50. The values given in columns (b)
through (e) of Figure 50 are obtained from column (h) of Figures 23
through 26 respectively. The ranks in Figure 50 are the ranks in
Figure 48, so the sample rank correlation matrix of the data given in
Figure 50 is given by Figure 49.

Note that even though this example happened to use a Latin Hypercube
Sample, a random sar“p’uc could have been used just as well. All that is
required is that the values have the same ordering as given in Figure
48, and the sample rank correlation matrix will be the one in Figure 49.

A New Output Distribution Function

For the sake of illustration, the new combinations of input values
shown in Figure 50 were entered into the black box model. The output
values are listed in column (f) of Figure 50. These are different out-
put values than those given in Figure 27, because the input values occur
in different combinations than before. The e.d.f. s therefore differ-
ent than before. This is as it should be because the population distri-
bution function being estimated is different than it was before. That
is, the true output distribution function depends on what correlations

’ the input variables have, as well as what the input distributions are.
The difference in the output distributions due to the correlations
structure, Figure 47, being assumed rather than assuming independence
of the input variables is shown by the difference in the two curves in
Figure 51. The darker curve in Figure 51 is the true output distribution
when the inputs are correlated, and the lighter curve is the one which
results from independent inputs. Because of this difference, it is
important for the input variables to simulate the population correlation
matrix, through the use of some device such as the one built into the
Latin Hypercube Sampling program.

How Many Runs are Needed?

One of the main advantages of the Latin hypercube sampling procedure
is that the number of runs can be very small, regardless of the number
of variables involved. In fact, there is no lower limit to the number
of runs (input vectors) if the user is willing to sacrifice some of
the statistical analyses that are available with larger numbers of runs.

To be able to use the correlation reduction techniques, the number
of runs needs to exceed the number of variables. This procedure is more
stable if the number of runs exceeds the number of variables by approxi-
mately 25%. This is also a minimum requirement for stability in the
regression procedures and partial correlation coefficients described in
the next part of this tutorial. Of course, more runs than this results
in even more stability, and for best results, the number of runs should
be about two or three times the number of variables involved if time
and money permit.
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(a) (b) (c) (d) (e) (f)
Run Input Input Input Input Qutput

Number X3  (rank)  _Xp (rank) X3 (rank) Xq  (rank) Y
1 0.87 (1) 0.83 (2) 111 (2) 2.20  (3) 1.90
2 2.05  (9) 3.32 (10 3.04  (9) 4.43  (10) 12.79
3 1.74 (8) 2.57 (8) 2.73 (8) 3.56 (8) 9.77
4 0.33  (3) 1.36 (3) 3.81  (10) 3.17  (6) 9.23
5 1.27 (1) 3.21 (9) 2.44  (7) 4.28  (9) 11.25
6 0.67 (4) 2.49 (7) 1.39 (3) 3.35 (7) 7.44
7 0.13 (2 0.19 (1) 2.23  (6) .72 (2) 2.48
8 121 (6) 1.9 (5) 1.61  (4) 2.85  (5) 6.03
9 0.C0  (5) 1.60 (4) 0.26 (1) 1.36 (1) 2.98
10 2.77  (10) 2.07 (6) 1.88  (5) 2.70  (4) 6.52

Figure 50. New Input Values with Rank Correlation Matrix Given by
Figure 49.

-60-
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Figure 51. An Example of the Differences in Output Distributions
Obtained, Assuming input Variable Independence and
Assuming a Correlation Between Input Variables.
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.5651
. 5948
. 6250
6557

.6871
7192
.7521
.7858
. 8204

.8560
.8927
.9307
L9701
1.0110

1.0537
1.0985
1.1455
1.1952
1.2481

1.3047
1.3658
1.4325
1.5063
1.5893

1.6849
1.7991
1.9431
2.1444
2.5121

The Cumulative
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.005

L0125
L0376
L0627
.0878
. 1130

.1383
L1637
. 1891
L2147
, 2404

L2663
L2924
.3186
L3451
L3719

. 3989
L4261
.4538
L4817
.5101

. 5388
. 5681
.5978
.6280
.6588

.6903
L7225
7554
.7892
.8239

. 8596
8965
L9344
L9741
1.0152

1.0581
1.1031
1.1503
1.2004
1.2536

1.3106
1.3722
1.4395
1.5141
1.5982

1.6954
1.8119
1.9600
2.1701
2.5758

Standard Normal

.006

.0150
. 0401
. 0652
.0904
1156

. 1408
1662
<1917
L2173
L2430

. 2689
. 2950
3212
.3478
L3745

L4016
L4289
L4565
L4845
L5129

5417
.5710
. 6008
6311
. 6620

. 6935
.7257
.7588
.7926
.8274

.8633
. 95002
. 9385
.9782
1.0194

1.0625
1.1077
1.1552
1.2055
1.2591

1.3165
1.3787
1.4466
1.5220
1.6072

1.7060
1.8250
1.9774
2.1973
2.6521

.007

L0175
L0426
L0677
.0929
1181

1434
.1687
L1942
.2198
L2456

L2715
L2976
.3239
.3505
L3772

L4043
L4316
L4593
L4874
L5158

L5446
L5740
.6038
L6341
6651

6967
.7290
L7621
.7961
.8310

8669
. 3040
L9424
.9822
1.0237

1.0669
1.1123
1.1601
1.2107
1.2646

1.3225
1.3852
1.4538
1.5301
1.6164

1.71689
1.8384
1.9954
2.2262
2.7478

.008

.0201
L0451
.0702
0954
. 1206

L1459
L1713
. 1968
22224
L2482

L2741
. 3002
. 3266
. 3531
.3799

L4070
L4344
L4621
L4902
.5187

. 5476
L5769
. 6068
.6372
. 6682

.6999
L7323
«7655
.7995
.8345

.8705
.9078
L0463
. 9863
1.0279

1.0714
1.1170
1.1650
1.2160
1.2702

1.3285
1.3917
1.4611
1.5382
1.6258

1.7279
1.85%522
2.0141
2.2571
2.8782

.009

L0226
L0476
.0728
.0979
L1231

1484
.1738
. 1993
L2250
.2508

L2767
.3029
.3292
. 3558
.382¢

L4097
L4372
L4649
.4930
L5215

L5505
L5799
.6098
L6403
L6713

L7031
.7356
.7688
. 8030
.8381

L8742
L9116
.9502
. 9904
1.0322

1.0758
1.1217
1.1700
1.2212
1.2759

L3346
.3984
1.4684
1.5464
1.6352

1.7392
1.8663
2.0335
2.2904
3.0902

Distribution




TUTORTAL ON THE REGRESSION PROGRAM

The Purpose of the Course ‘

This is a tuterial on regression methods. 1t introduces and discusses
the topics of regression on ¢ne variable, rank regression on one variable,
and then proceeds to the case of regression on several variables, using raw
data or ranks. Stepwise regression is discussed as a means of selecting
important variabies. Other regression prucedures known as forward regression
and backward regression are also mentioned. At the conclusion of this tutorial
the reader should be able to understand better the regression program described
in "Stepwise Regression with PRESS and Rank Regression {Program Users Guide)"
by Tman, Davenport, Frost and Shortencarier {1980).

The Need for Regression Methods

Regression methods are useful for identifying and/or defining the
relationship between a variable of interest Y and one or more observable
variables, called independent variables and denoted by Xj, X», etc., Although
regression methods are used in a variety of ways, their primary importance
on the study ¢f geologic models is for identifying the input variables Xi,
X5, ... which are the most influential on the output variable Y. For this
specific goal of identification of important variables, some regression
methods are particularly useful. These include rank regression and stepwise
regression. To lead into these topics, simple regression 75 introduced
first.

Simple Linear Regressicn .

Simpte regression refers to the case where only one independent vari-
able is considered. Observations {yy, x1}., (y2, x2}, ..., on the bivariate
random variable (Y, X} are analyzed tc see what type of relatiorship may
exist hetween Y and X. In all but artificial situations, the exact relation-
ship between Y and X cannot be expressed mathematically, so regression methods
are directed toward approximating the exact relationship between Y and X
with mathematical equations. The simpliest mathematical equation is a straight
line, so a straight Tine is the most popular equation to fit to a set of
points such as the observations (y1, x1), {y2. %2}, ««+v (¥p, %n).
The equation of a straight line is

y = a + bx

The gnalysis using linear regression begins with finding estimates 3
and h so that the straight Tine will agree well with the data. The most
popular method of finding 3 and b fs called the method of least squares.

The Method of least Squares

When an estimated regression equation is obtained, the observed
values of X may be substituted into the regression equation Lo get values of
Y which are called predicted values of Y and are denoted by Y. In the case ‘
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of simple lirear regression the predicted values are given by

re sample estimates. The least squares method for
chooses the numbers that minimize the sum of squares

| oot

§s = z(Y - ¥)2

This method assures that the predicted values Y will be as close as pos-
sible {in the Teast squares sense) to the observed values Y.

The Least Sguares Equations

In thls casg of one independent variable the least squares solu-
tions for & and b are simple to express
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and may be computed on a hand calcutator. When there are two or more
independent variables the calculations become much more difficult and are
usually performed on a camputer.

Example

A simple exampie is used to illustrate the computations involved in
the least squares solution to simple linear regression. The same example
will then be used to introduce rank regression. Suppose five observations
on (Y, X) are obtained as given in Figure 1. The Jeast squares coefficients
are found using Equations (1)} and (2).

0 - 199.83 - (29.0)(28.4)/5 - 35.110 = 1 226
189.94 - (28.4)2/5 28.628

=%
i

%(29.0 - (1.226){28.4)) = -1.164
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A graph of the five observations and the least squares regression line

¢ = -1.164 + 1.226X
are given in Fiqure 2.
Obs.
Pair % X X2 XY
1 1.4 2.3 5.29 3.22
2 5.3 4.1 16.81 21.73
3 4.8 5.6 31.36 26.88
4 6.5 7.2 51.84 46.80
5 11.0 9,2 84.64 101.20
Total 29.0 28.4 189,94 199.83

Figure 1. Worksheet for Finding a and ﬁ_Using Least Squares.

The linear rogression model appears to fit the points in Figure 2
fairly well. The residuals (Y - Y) are a measure of how well the linear

regression model agrees with the data points
residual = Y - ¥ = Y - (-1.164 + 1.226X)

This choice of coefficients, a = -1.164 and b = 1.226, results in the ‘
smallest possible sum of squares achievable using a straight line to fit the
data. In this case the minimum value is SS = 5.0803, as given in Figure 3.

Obs.

Pair Y X ¢ Residual  (Y-1)2
1 1.4 2.3 1.6558  -0.2558 . 0654
2 5.3 4.1 3.8626 1.4374  2.0661
3 4.8 5.6 5.7016  -0.9016 .8129
4 6.5 7.2 7.6632  -1.1632  1.353C
5 11.0 9.2 1u.1152 0.8848 .7829

5,0803
Figure 3. The Residuals and Sum of Squares from Figure 2.

Rank Regression

For the set of data given in Figure 1 the linear regression model
appears to be satisfactory, so no further analysis would usually be
required. However, merety for the sake of illustration, rank regression ‘
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Fiaure 2. A Graph of the Data in Figure 1, and
the Least Squares Rearession Line.
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is used on the same set of data and comparisons are made with regression on

the raw data.

Rank regression involves simply the usual regression methods applied ‘
to the ranks of the data rather than to the data themselves. The smallest
observation has rank 1, the second smallest has rank 2, and so on to the
largest of n observations which has rank n. In case several observations in
a group are all exactly equal to each other (tied), the rank assigned to
each is the average of the ranks that would have been assigned to them had
they not beern tied. This is called the average ranks method of handling
. ties. In rank regression each variable is ranked by itself; that is, the
observations on Y are ranked separately from the observations on Xi, which
are in turn ranked separately from the observations on Xp, and so on. The
ranks of the data in Figure 1 are given in Figure 4. Note that the ranks ry
of the Y's are obtained independently of the ranks ry of the X's.

The least squares equation on the ranks is obtained using Equations
(1) and (2) just as on the original data.

~

br = ry ry - (Zry)(Zry)/n (3)
erz - (er)z/n
_ 54 - (15)(15)/5 - 9 = .9

55 - (15)2/5 1

Al . )
ap = - (Lry - bir,) (4) .

= %.(15 - (.9)(15)) = .3

Therefore the least squares equation on the ranks is given by

;‘y = 37" + Br rx (5)
= .3+ .9 ry

Obs. )
Pair Y X ry Ty L Ty
1 1.4 2.3 1 1 1 1
2 5.3 4.1 3 2 4 6
3 4.8 5.6 2 3 9 6
4 6.5 7.2 4 4 16 16
5 11.0 9.2 5 5 25 25
Total 15 15 55 54
Fiqure 4. Worksheet for Least Squares on the Ranks ‘
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Fiqure 5. A Graph of the Ranks trom Figure 4 and

the Least Squares Line on the Fanks.
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A graph of the ranks of the data, and the least squares straight ‘
line computed for the ranks is given in Figure 5. Again note that the linear
model fits the ranks fairly well, just as the linear model fit the data
fairly well in Figure 2. This is a typical relationship between rank regres-
sion and ordinary regressicn. If the simple linear regression model fits
the data well, it usually works well on the ranks also. However, rank regres-
sion is useful in situations where simple linear regression does not work
satisfactorily with the data. This point will be illustrated in a later
example, but first the residuals from the rank regression procedure will be
computed.

Converting Predicted Ranks to Predicted Values

There are two types of residuals from rank regression. One type
of residual is the difference between the predicted ranks of Y and the actual
rank of Y, which is obtained in the same way ? was obtained in ordinary
regression, as in Figure 2, but using ranks ry and ry instead of Y and X,
and using the equation for ranks Equation (5)” instead of the least squares
line for the data. These are called rank residuals and are not useful because
they convey no information on how well the data are being fitted, only infor-
mation on how well the ranks are being fitted.

To see how well the data are being fitted, the predicted rank ry of

each observation Y is obtained from Equation (5). These predicted
ranks are converted to predicted values Y of Y by comparing the predicted
ranks with the actual ranks of the five observations on Y, and obtaining
predicted values of Y on the basis of this comparison, using interpolation
if necessary.

Pair ry ry ;y Y Y Residual (Y-Y)2
1 ] 1 1.2 2.08 1.4 .68 .4624
2 3 2 2.1 4,85 5.3 -.45 .2025
3 2 3 3.0 5.30 4.8 .50 .2500
4 4 4 3.9 6.38 6.5 -.12 .0144
5 5 5 4.8 10.10 11.0 -.90 _.8100
Total SS = 1.7393
Figure 6. Worksheet for Finding Residuals from Rank Regression ‘
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For example, to find the Y corresponding to the first pair of obser-
vations (y], x1) = (1.4, 2.3), enter the rank of x3, ry = 1, into Equation
(5) to get the predicted rank of y);

N

Ty

]

34 .9 ry

3+ (.9)(1)
1.2

The predicted Y corresponding to a predicted rank 1.2 is found by inter-
polating between the actual observed Y with rank 1, Y = 1.4, and the actual
observed Y with rank 2, Y = 4.8;

Y- 1.4+ 1.2 -1.0 (4.8 -1.4)=2.08
7.0 - 1.0 ( )

This predicted value Y = 2.08 is compared with the observed value in the
first pair Y = 1.4 to get the residual 0.68. A summary of the calculations,
including the residuals and the sum of squares is given in Figure 6.

The Residuals Sum of Squares (SS)

Note that the residuals in Figure 6 tend to be smaller than the
residuals found from the least squares fit to the original data, given in
Figure 3. The sum of squares from Figure 6

SS = 1.7393 (Rank Regression)
is much smaller than the sum of squares from Figure 3.
SS = 5.0803 (Regression on Data)

The residuals sum of squares from Figure 3 is the smallest that can be
obtained from a straight line fit to the data. But rank regression does not
give a straight line fit to the data. To show this, a graph of all possible
rank regression predictions is given in Figure 7. Note that the rank regres-
sion equation adapts itself to the points observed, but is steadily increacing
as x increases. Rank regression equatfons are monotonically increasing or
decreasing, and therefore work very well with data that tend to show a monoto-
nic relationship, even though the relationship may be nonlinear.
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Exercise 1

Use the following steps to find the predicted value Y = 4.85, for
the second pair of observations (y», x2) = (5.3, 4.1), as given in
Figure 6 from rank regression. See Figure 4 for the original data.

1. Find the rank of xp = 4.1.

2. Substitute the rank of xp into Equation (5) to get a predicted rank
for yp. Compare with the value from Figure 6.

3. Find the two observed values of Y whose ranks straddle (just above
and just below) the predicted rank for yo.

4, Interpolate between the two observed values for Y from step 3, to
get a predicted value for yp that corresponds to the predicted rank
$or yp from step 2. This predicted value should match the value

= 4,85 from Figure 6.

The Flexibility of Rank Regression for Fitting Monotonic Data

The ability of the rank regression curve to adapt to a set of points
which exhibit a nonlinear, but monotonic relationship is shown more dramati-
cally in Figure 9. Jn Fiqgure 8 nine points are obtained from the equation
y = eX, with no error of measurement added. The basic premise here is that
a good regression technique should work well if the conditions are ideal.
Here the conditions for rank regression are ideal, since the relationship
between X and Y is monotonic. Because of this monotonic relationship between
X and Y, the ranks of X show an exactly linear relationship with the ranks
of Y. That is, the smallest X is paired with the smallest Y, so rank 1 for
X is paired with rank 1 for Y. The second smallest X is paired with the
second smallest Y so rank 2 for X is plotted against rank 2 for Y, and so on
for all of the ranks. The ranks for the data in Figure 8 are graphed in
Figure 10. This result- in a rank regression equation in Figure 9 which
consists of a series of line segments connecting the observed points. The
fit is excellent. The least squares straight line is shown also, to drama-
tize the limitations of that method.

An Example with Real Data

The first two examples both involve artificial data. The first
example serves merely to introduce the methodology of simple linear regres-
sion and rank regression. The second example illustrates a monotonic rela-
tionship between X and Y, and shows the ability of rank regression to adapt
to data of this type. A third example will now be presented. It involves
real data, where the independent variable X represents chemical measurements
obtained using a relatively inexpensive titration method, and the dependent
variable Y represents corresponding measurements obtained by a more expensive
extractinn and weighing technique. Twenty samples were obtained, and each
sample was thoroughly mixed just before being split and analyzed by both
methods.

This set or data is presented and thoroughly analyzed by Daniel and
Wood (1971). Other authors have used these data in their papers on new
regression methods, so this set of data is now a classical standard on which
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Figure 10. Graph of the Ranks of X and Y
as Given in Figure 9.
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new rearession methods are tested. The data are somewhat unrealistic in ‘
that they follow a linear relationship very closely, with a correlation
coefficient of .997. Most bivariate data sets encountered in applied work
have a smaller correlation, are somewhat nonlinear in appearance, and contain
occasional outliers which cannot be discarded because they represent legiti-
mate measurements. Rank regression is more suited to the messy types of
data, with nonlinearities and outliers, than to this type of data which is
adequately explained by ordinary linear regression. But merely for the sake
of illustration, rank regression is applied to this set of data and the
results are compared with the fit from ordinary regression. The data and

the residuals are given in Figure 11.

Least Squares Rank Regression
Obs. A N

No. v X Yy ~ Residual \ Residual
1 76 123 75.02 .98 75.85 .15
2 70 109 7G.5 - .51 70.98 - .98
3 55 62 55.40 - .40 56.11 -1.11
4 71 104 68.91 2.09 68.01 2.99
5 55 57 53.79 1.21 55.00 0.00
6 48 37 47.36 .64 48.18 - .18

7 50 44 49.61 .39 50.26 - .26 ‘
8 66 100 67.62 -1.62 66.04 - .04
9 41 16 40.60 .40 41.23 - .23
10 43 28 44 .46 -1.46 43.51 - .51
11 82 138 79.84 2.16 81.75 .25
12 68 105 69.23 -1.23 69.99 -1.99
13 88 159 86.59 1.41 85.49 2.51
14 58 75 59.58 -1.58 -58.25 - .25
15 64 88 63.76 .24 64.06 - .06
16 88 164 88.20 - .20 88.00 0.00
17 89 169 89.81 - .81 88.95 .05
18 88 167 89.17 -1.17 88.00 0.00
19 84 149 83.38 .62 83.89 11
20 88 167 89.17 -1.17 88.00 0.00
SS = 27.23 SS = 21.94

Figure 11. A Comparison of Least Squares Linear Regression on the Data with ‘

Regression on the Ranks, Using Data from Daniel and Wood (1971).
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Comparing Rank Regression With Ordinary Regression

A comparison of the residuals in Figure 1l shows that the residuals
from the rank regression are smaller than the residuals from ordinary linear
regression ‘or 15 out of the 20 points. The sum of squares of the residuals
is only 21.94 for rank regression, compared with 27.23 for ordinary linear
reqression. The peint to be made with this example is tht rank regression
works well even with data that follow a close linear pattern.

The analysis of the data in Figure 11 was performed using the regres-
sion program described in Iman et al (1980). The slight difference in these
results and the results reported in Iman and Conover (1979) is due to a
difference in the method of handling ties.

Multiple Regression

The reqression cxamples with one independent variable are useful
for i)llustrating the princinles behind ordinary regression and rank regres-
sioen. When the number of independent variables is two or more these same
principles apply but they become very difficult to illustrate. With two
independent variables the least squares method on the data is used to fit a
plane to data in the three dimensicnal space spanned by Y, Xy and Xp. The
rank regression method uses the least squares method to fit a plane to the
ranks of the data, in the three dimensional space spanned by the ranks of Y,
the ranks of Xy, and the ranks of Xp. When this plane is translated back
to the three dimensional space spanned by Y, X1 and X2, the result is a
series of connected mini planes that adapt to the data, in a monotnnic manner,
just as the series of line segments adapted to the data in the case of cne
independent variable. The extension to include mere than two independent
variables is simple in concept, but impossible to visualize because the
discussion involves hyperplanes in many dimensional space.

An Example of Multiple Regression

An example is now presented which illustrates the results of ordinary
multiple regrecsion and multipte regression on the ranks. The data given in
Figure 12 are from Brownlee (1965), and have become somewhat of a standard
set of data for use in comparing new regression methods with old methods.
They follow a linear regression pattern c]gse!y, with RZ = .914. The measure
of fit for a regression model is usually K¢, which states the proportion of
variability of Y that is explained by the regression model. An R¢ of .914
means that 91.4% of the variation in Y is explained by regression on thg
variahtes X,, X, and X+. This figure is much c¢loser to 100% than the R
values normally encountered in applied work.

The data in Figure 12 represent 21 successive days of operation of
a plant oxidizing ammonia to nitric acid. The variables in Figure 12 are as
follows:

Y = 10 times the percentage of the ingoing ammenia that is lost as
unabsorbed nitric oxides; it is an indirect measure of the yteld of
nitric acid.

Xy = the flow of air to the plant
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Obs.

No. Y X1 X2 X3
] 42 80 27 89
2 37 80 27 88
3 37 75 25 90
4 28 62 24 87
5 18 62 22 87
6 18 62 23 87
7 19 62 24 93
8 20 62 24 93
9 15 58 23 87

10 14 58 18 80
11 14 58 18 89
12 13 58 17 88
13 11 58 18 82
14 12 58 19 93
15 8 50 18 89
16 7 50 18 86
17 8 £G 19 72
18 8 50 19 79
19 9 50 20 80
20 15 56 20 82
21 15 70 20 91

Figure 12. Multivariate Data From Brownlee (1965).
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‘II'} Figure 13.

Obs.
No.

10
1]
12
13
14
15
16
17
18
19
20
21

Least Squares Rank Regression

Y ; Residual ? Residual
42 38.77 3.23 41.64 0.36
37 38.92 -1.92 41.83 -4.83
37 32.44 4.56 37.00 0.00
28 22.30 5.70 19.01 8.99
18 19.71 -1.71 18.00 0.00
18 21.01 -3.01 18.36 -0.36
19 21.39 -2.39 18.85 U.15
20 21.39 -1.39 18.85 1.15
15 18.14 -3.14 15.00 0.00
14 12.73 1.27 12.47 1.53
14 11.36 2.64 | 12.21 1.79
13 10.22 2.78 11.11 1.89
11 12.43 -1.43 12.43 -1.43
12 12.05 -0.05 13.43 -1.43
8 5.64 2.36 8.00 0.00
] 6.09 ) 8.00 -1.00
8 9.52 -1.52 8.87 -5.87
8 8.46 -0.46 8.86 -0.86
9 9.60 -0.60 10.70 -1.70
15 13.59 1.41 12.80 2.20
15 22.24 -1.24 18.66 -3.66
S5 = 178.83 SS = 142.63

Predicted Values and Residuals Using Least Squares Regression
and Rank Regression, on the Data from Fiqgure 12, Using the Varia-
bles Xy, Xp and X3. 81




Xp = The temperature of the cooling water entering u u
nitric oxide absorption tower
X3 = the concentration of nitric acid in the absorbing liquid
Ordinary Multiple Regression lllustrated
The model used to fit the data is
y = 80 + B1x] * B2x2 + B3X3 (6)

The method of least squares is used to find the values of 8g, 8], 82

and £3 that minimize the residual sum of squares. The equations for

finding the least squ.rces coefficients are very complex and are not pre-
sented. The actual values for the coefficients appear as part of the computer
printout, and are given in Equation (7).

y = -39.92 + .7156x] + 1.2953xp - .1521x3 (7)

In order to evaluate the goodness of fit of this model, values for Xy,

Xo and X3 are substituted into Equation (7) to get a predicted value Y

for Y. For example, in observation number 1 in Figure 12, X3 = 80, Xp = u
27 and X3 = 89. These are substituted into Equation (7) as follows,

—<

= -39.92 + (.7156)!80) + (1.2953)(27) - (.1521)(89) = 38.76

to get 38.76 as the predicted value for Y. This is compared with the
observed value for Y, 42, given in Figure 12. The residual (42 - 38.76) =
3.24 agrees with the value given in Figure 13, except for differences caused
by rounding off the coefficients in Equation (7). The sum of squares of
residuals is a measure of the goodness of fit of the model. In this case it
is given by

ss = (Y - 9)2

178.83

as shown in Figure 13. This is the smallest value of SS possible using
the model given by Equation (6).

Exercise 2
Substitute the values for Xy, Xp and X3, given in Figure 12 under
observation number 2, into Equation %7) to verify that the predicted value

in Figure 13 is indeed correct.
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Rank Multiple Regression Illustrated

[f the model in Equation (6) is used on the Ranks instead of the
data it becomes

ry = Bp * Blry + 82ry * B3ry (8)
1 ? 3

where ry represents the ranks of the observations on Y, ry represents

the ran{s of the observations on Xj, and so on, just as in'the simpler
examples given earlier. The ranks for the data in Figure 13 are given in
Figure 14. The least squares method is used to find the values of the coef-
ficients 8p through 83, which appear as part of the computer output.

For the data in Figure 12 the coefficients are

ry = <031 ¢ .6650r .3859r - .0226rx, (9)

The predicted rank for each observation is obtained by substituting the
respective ranks of the independent variables into Equation (9). As an
example the ranks of Xl, X2 and X3 for observation number 1 are given in
Figure 14 as x, = 20.5, rx, = 20.5 and ry_ = 15 respectively. These
are substituted’ 1nto Equation (9) to get

~

Fy = -0.31 + (.6650)(20.5) + (.3859)(20.5) - (.0226)(15)

"

20.89

in agreement with the number given 1n Figure 14 for observation number

1. To convert this predicted rank, fv = 20.89, to a predicted value for Y
the two values of Y whose ranks straddle 20.89 are found from Figure 14.
These are Y = 42, whose rank is 21, and Y = 37, whose rank is 19.5. [Interpo-
lation ¢ives the predicted value of Y,

= 37 + 20.89 - 19.5 (42 - 37)
21 - 19.5

—< 3
'

41.03

which agrees with the value from Figure 13, except for differences caused
by using rounded-off values of the coefficients in Equation (9).

Exercise 3

Obtain the predicted rank in observation rumber 4 by substituting
the ranks from Figure 14 into Equation (9). See if this agrees with the
predicted rank given in Figure 14.
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Exercise 4 1""

Use the predicted rank rv for observation number 4 from Figure 14
to obtain a predicted value for Y. See if this agrees with the number given
in Figure 13.

Comparing Ordinary Regression and Rank Regression

A measure of the goodness of fit of the rank regression model is
obtained by comparing each predicted value Y with the corresponding observed
value Y. The sum of squares of the residuals is

$S = (Y - Y)2

142.63

which is Tess than the value 178.83 obtained using ordinary regression.
Although ordinary regression finds the best fitting hyperplane, rank regres-
sion is not restricted to working with a single hyperplane. Actually a
series of connected hyperplanes is obtained using rank regression, so the
model can adjust to the data with some degree of flexibility, within the
constraint of being monotone in each of its variables. Any disagreement
between the residuals in Fiqgure 13 and the residuals reported in Iman and .
Conover (1979) is due to a difference in the method of handling ties.

Sensitivity Analysis

It is apparent from the relative size of the coefficients in Equations
(7) and (9) that the output is more sensitive to changes in some independent
variables than to changes in others. For example, Xj ranges from 50 to 80,
a change of 30 units. The coefficient of Xy in Equation (7) is .7156, so
the maximum change in Y due to changes in Xy is (30)(.7156) = 21.5 units.
On the other hand X3 ranges from 72 to 93, a distance of 21 units, and has
a coefficient of -.1521 in Equation (7). The maximum change in Y due to
changes in X3 is only 3.2 units, less than one-sixth of the total influence
of X1. The situation is further complicated by the fact that X; and X3
have a positive correlation coefficient of ry3 = .500. This suqgests that
if X3 were dropped from the regression model, the coefficient of Xj might
increase somewhat to account for some of the variability in Y that was formerly
accounted for by X3. Thus X3 might not be making a significant contribution
in the model, and perhaps should be omitted. Statistical tests are available
for aiding in the decision of whether or not to omit variables from the
model .

A similar line of reasoning may be used on the least squares fit
to the ranks, only here the analysis is simpler because all of the ranks
have approximately the same range. Only the coefficients in Equation (9)
need to be examined. The coefficient of ry. -.0226 is about one-thirtieth
the size of the coefficient of ry , .6650, again suggesting that the rank ‘
of Y is much less sensitive to changes in the rank of X3 than to changes in
the rank of Xj. 8




Obs.

No.

11
12
13
14
15
16
17
18
19
20
21

Figure 14.

42
37
37
28
18
18
19
20
15
14
14

13

9

15

21

19.

19.

18

14.°¢

14.
16
17

12

(&2

12
12

20
20.
19.

14.
15.
15.
15.
11.

7

15.

The Ranks of
Equation (9).

.89

95
27

01

47
04
77
717
39

47
.21
.11
.43
.64
.89
.07
.75
.73
.85

.80

50

X1

80
80
75
62
62
62
62
62
58
58
58
58
58
58
50
50
50
50
50
56
70

20.5
20.5
19
15
15
15
15

15

18

X2

217
27
25
24
22
23
24
24
23
18
18
17
18
19
18
18
19
19
20
20
20

20.5
20.5
19
17
13
14.5
17
17

14.5

11
11

11

X3

89
88
90
87
87
87
93
93
87
80
89
88
82
83
89
86
72
79
80
82
91

15
12.

17

20
20

15
12.

20
15

[$)]
)

18

the Data in Figure 13 and the Predicted Ranks from
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On Deciding What Variables to Include in the Model

The inclusion of many variables in the regression model may result
in "overfitting" the data. That is, the effect of having many variables is
to torce the regression surface into wildly erratic patterns just so it will
pass closer to the observed points and have smaller residuals. Some system-
atic method is needed to assist in deciding whether variables should be
included or excluded from the analysis. With such a tool to aid in the
decision makwng one may consider other variables related to X}, X2 and

\% Vil Y N s+ 3 3 3
X5, such as X% or Xy g, because it is possible that these other variables

are more usefu1 than the simple ones that have been considered so far.
Three of these decision-assisting tools will be introduced and compared.
Rut first the concept of partial correlation needs to be explained.

Simple Correlaticn

The strength of a simple linear relationship between two variables
in usually measured with r, called Pearson's product moment correlation
coefficient, or simply, the correlation coefficient for short. The cor-
relation coefficient between X and Y is given by

L(X5 - X)(Y - Y)
ro= e (10)

Jz(xf-‘Yﬁ P - T)?

for paired observations observations (X1, Y1), ..., (Xn, Yp), where X and
Y are the sample means. The statistic r may be used to test the hypothesis
of no correlatlon, but only if the variables have a particular distribution
called bivariate normal distribution. This condition is often assumed, but
rarely met, in practice.

When more than two variables are involved subscripts are used to
show which two variables are being correlated. Thus ri2 refers to the
correlation between X} and Xp,

Xy - X1)(‘?1 - X2)
P e e O (11)

\& (Xyq - Xi)z Z(XZi - Yz)z
while ryy refers to the correlation between Y and Xj.

Rank Corrclation

The strength of a monotonic relationship between two variables, as
opposed to a lTinear relationship, is usually measured using r, but computed
on the ranks of the variables instead of the variables themselves. It is
customary to use either r¢ or p (rho) to denote the rank correlation coeffi-
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cient, sometimes called Spearman's rho. We will try to minimize problems
with subscripts by using p, such as pj?

. Zfr - Dfi r - g_t_l_
(XU )(Xzi 2

2
o1y = ot S

? 7
4 E(r - D_ﬂ) E(t"x - _r]ii_
19 2 2i 2

to denote the correlation between the ranks ry of X and the ranks ry

of Xp. A1l of the calculations and interpretation of results using the
correlation on the data may be applied to the ranks of the data as well.
The regression program described by Iman, et al (1980) handles all of the
calculations on the data or the ranks of the data, the calculations just
descrihed and the calculations in the following pages. Spearman's rho may
be used to test the hypothesis of independence, without requiring any
distributional assumptions. Special tables may be found in Conover (1980).

(12)

Partial Correlation

Sometimes the apparent correlation between two variables may be due
in part toc the indirect influence of a third variable on both of the other
variables. For example, the weekly average municipa) bond yield X| may
appear to be correlated with the average utility bond yield X for the same
week. Yet both may he heavily influenced by the average interest rate charged
by the federal Reserve, X3, for that week. How can the influence of the
. variable X3 be removed from the relationship between Xj and X7

One way to do this is to use a simple linear regression of each
variable X1 and Xp separately on X3. The least squares method is used
to fit coefficients to

X1 = 8p + 8] X3

to get.the residuals (X - X1). In a similar manner the residuals

(Xp - Xp) are also obhtained by a regression of Xp on X3. Thus the Yinear
influence of X3 on bgth Xy and X7 s removed, and the correlation between
the residuals (X} - X;) and (Xp -~ X2) can %e computed using Equation

{10), but where r is computed using {X; - Xj) instead of X7, and (X - ?2)
instead of Xp. '

An Equation for Computing Partial Correlation

Such a correlation coefficient is called the partial correlation
coefficicnt between X and Xp, given X3 and is denoted by riz 3. An
easy way tc compute rip 3 is with the equation

riz - r3 ora3
rjg.3 = - -




where rip, r13 and rpa3 are the simple linear correlatior coefficients .
between X1 and X, Xi and X3, and X7 and X3 respectively. The relationship

given by Equation (13) obtains the same partial correlation coefficient as

would be obtained by going through the process of correlating residuals

described earlier.

Partial Rank Correlation

The use of rank regression, and the rank correlation coefficients o012,
P13, and pp3 gives pp,3, which measures the strength of the linear
assaciation between the ranks of X; and the ranks of X2, after the
linear effect of the ranks of X3 is removed from the ranks of Xy, and the
ranks of X2. The equation

P12 - P13P23

v/(l - 0132)(1 - O232) (14)

may be used to find the partia)l rank correlation coefficient.

P12.3 7

Partial Carrelation Given Several Variables

strength of the linear relationship between two variables Xy and Xz, after
the linear effpcts of several variables, say X3z, X4 and Xg, have been
removed. One way of looking at this partial correlation is to compute the
correlation on the residuals (X} - Xy) and (X2 - Xp) as before, but

where Xy and X are obtained from a linear regression on X3, X4, and Xg.
That is, the mode!

The concept of partial! correlation is easily extended to measure the .

Fal

X1 = Bg + 8143 + BaXg + B3Xg

is fitted using least squares, and so is the model
A . .
Xp = B0 + 871X3 + B 2Xq + £73X5

in order to remove the unwanted influence of X3, X4 and X5 on_the varia-
bles X] and Xp. The correlation between (Xy - Xy) and (Xp - Xp) is
denoted by rip_345. The corresponding treatment on the ranks is denoted

bY p12.345-
Another way of finding ryz, 345 is by the cquation
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r12.45 - r'13.45 r23.45
ri2.345 = — (15)
? 2
(1 - r13.45)(1 - r23.45)

which is analogous to Egquation {13).

Three Multiple Regression Procedures

Correlation coefficients and partial correlation coefficients are
used in several different ways to assist in deciding which variables to
include in a regression model involving Y and several independent variables.
Three such methods will be described.

1. The forward procedure. The regression model starts with no vari-
abTes in it, Variables are then added, one at a time, to the regression
mode! until a decision is reached that no new variables will contribute
significantly to the improvement of the fit of the model to the data.

2. The backward procedure. The regression model starts with all of the
variables in 1t. Then variables which are considered not making a
significant contribution to the fit are dropped one by one until all
insignificant variables have been removed from the model.

3.  The stepwise procedure. The regression model starts with no vari-
ables in it, Variables are then added, one at a time, as in the forward
procedure. Fach time a variable is added, the backward procedure is used
to delete al) variables previously added to the model hut which are now
considered to be insignificant in the presence of the new variable.
This combination cf the forward and backward procedures is the most
commonly used method of determining which set of variables belongs in
the model,

The Variables Being Considered

These methods for assisting in deciding which variables to include
enable many more variables to be considered than one would normally use in a
model. In the backward procedure the number of variables must be Tess than
the number of data points being fitted, but in the forward and stepwise
procedures no such limitation exists. For the example introduced earlier,
the orig§nal 5ar1a91es X1, X2 and X3 will be considered, plus the squared
terms Xl , Xo%, X2%, and the cross products X XZ’ X1X3, and X?X3.

Thus nine ingepengent variables will be considered 1n this regression model.
Many other variables could be included, such as 1/Xy, X1/Xp, 7X3, In Xp,

and so on. Any variables which may have a real physical interpretation

in the ~ituation being modeled should be considered. In our example we will
consider only the nine first and second order terms, as menticned. For
convenience the variables, including Y, are numbered from 1 to 10, as shown
in Figure 15.
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The Forward Procedure : .

The forward procedure starts with a model that has no variables.
The first variable chosen to be included in the model is the one that has
the largest correlation with Y. The largest value of r for the data in
Figure 12 and involving Y as one of the variables is the correlation coeffi-
cient between Y and XjX2

rig = .9588

so X1Xp is the first variable considered for inclusion in the model.

A Test of Significance

At this point a test of significance is conducted to see if the
inclusion of X1X2 in the model reduces the unexplained variation of Y a
significant amount. The statistical test used is exact only if several
assumptions regarding the distribution of Y are true. These assumptions are
well explained in textbooks which present regression methods (see Draper and
Smith, 1966), so they are not repeated here. In practice these assumptions
are, at best, only approximately true, so this test and all subsequent
statistical tests are only approximate. Still they serve as a useful objective
method for assisting in making the decision as to whether or not a variable
should be included. The test indicates (at a = .05) that X1X2 should be
included, so the forward procedure continues.

Using Partial Correlation in Forward Regression

The partial correlation coefficients of each variable with Y, given
X1X2, are compared and the largest one is selected. Partial correlations
are computed using Equation (13) in conjunction with the correlations given
in Figure 15.

For example, the partial correlation of Y with Xlz, given X;X, is

15 - 18 r58
r15.8 7 == 5=

\/<1 - rig)t - rsg

= .9251 - (.9588)(.9500)

Vv (1 - (.9588)2) (1 - (.9500)2)

= .1605
Exercise 5

Use Equation 13 and the correlation coefficients given in Figure 15 '

to find the partial correlation coefficient of Y and Xy, given X1Xp.
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. Rank Rank
Variable Variable Correlation Correlation Correlation Correlation
Number Name With Y With X1X2 With Y With XjXp

1 Y 1.0000 . 9588 1.0000 .9224

2 X1 .9197 L9453 .9180 X .9099

3 12 .B755 L9378 .8521 .9188

4 %3 .3998 .4508 4974 4985

5 x,° .9251 .9500 8896 .9519

6 Xp' .8934 .9499 .8897 .9628

7 X32 . 3958 .4497 L4161 L4352

8 X1Xo .9588 1.0000 .9224 1.0000

9 X1X3 8712 .9094 .7892 .8249

10 X2X3 .8554 .9239 .8276 .8862

Figure 15. Some Correlation Coefficients for the Data from Figure 12 and the
Ranks from Figure 14.

Adding Another Variable to the Model

The largest partial correlation coefficient is found, and that vari-
able is examined using the test of significance, to see if including it 1in
the mede)l reduces the variation of ¥ a significant amount. In this case the
test shows nonsignificance, so no additional variables are included in the
model.

The Forward Regression Model

Only the variable XiXp is included in the model, of the nine vari-
ables examined, for the data in Figure 12. The least squares fit results in
the model

¥ = -15.29 + .025315 X X2 (16)

The R2 value is .919 for this model, indicating that 91.9% of the varia-
tion in Y is accounted for by a linear regression on X1X2. This is about
the same as the RZ = .914 obtained for the model in Equation (7) which used
the variables Xj, Xp and X3. The_inclusion of additional variables autom-
. atically increases the value of RZ, generally, a model with only 8ne
variable is preferred over a model with the same vajue of R

but with three variables. 91




Obtaining Predicted Values in Multiple Regression ‘

To obtain a predicted value from Equation (16) the value of X is
multiplied by Xo, and the product is placed in the equation. For example,
in observation number 1 in Figure 12, X7 = 80 and X2 = 27. Then Equation
(16) becomes

—-<>
$i

-15.29 + .025315 X1Xp

-15.29 + (.025315)(80)(27)

"

39.39

in agreement with the predicted value given in Figure 16. The sum of
squares of residuals for this model is

SS = 116.846

which is considerably better (smaller) than the value 178.83 given in

Figure 13 for the model with variables X}, Xz and X3. This forward regression

method has found a better model, with fewer variables, than the model ‘
examined earlier.

The Forward Rank Regression Procedure

Forward rank regression proceeds just as described for ordinary
forward regression, except Xj, X2 and X3 aEe replaced by their ranks
initially. Then terms corresponding to X;° or xlx become the square of
the rank of Xy, or the rank of Xy times t%e rank of Xp.

The largest simple rank correlation is
p1g = .9224

so the rank analogue to XjXp is selected for possible inclusion in the
model. The test of significance indicates, at a = .05, that this variable
should be included in the model.

The largest partial correlation with the rank of Y, given the rank
analogue of X1Xp, involves the rank of the variable X
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Obs.
No.

® -

11
12
13
14
15
16
17

19
20

21

. Figure 16.

Cbserved

Value Y

42
37
37
28
18
18
19
20
15
14
14
13
11

12

l.east Squares

Model : xlxz
Y Residual
39.39 2.61
39.39 -2.39
32.17 4.83
22.38 5.52
19.24 -1.24
20.81 -2.81
22.38 -3.38
22.38 -2.38
18.48 -3.48
11.14 2.86
.14 2.86
9.67 3.33
11.14 -0.14
12.60 20.60
7.49 0.51
7.49 20.49
8.76 0.76
8.76 -0.76
10.02 S1.02
13.06 1.94
20.15 2515
55 = 116.846

Maod

M

40
40
33

19

16.
18.
19.
19,
16.
12.
12.

13

12.
13.

11.
13.
17.

Rank

el:

.40
.40
95
.80
59
00
80
80
37
70
70
.44
70
10
.34
.34
.00
.0C
81
13
06

Regression
Xys %p0 X(X;

Residual

1.60
-3.40
3.05
8.20
1.41
0.00
-C.30
0.20
-1.37
1.30
1.30
-0.44
-1.70
-1.10
0.66
-0.34
0.00
0.G0
-2.81
1.87
-2.06
SS = 119.176

Predicted Values and Residuals from the Forward Regression Models
on the Data and on the Ranks.
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P12.8 *© P12 - P18 P28 ('II

Jio - - oo

= 9180 - (.9224)(.9099)

J (1 - (.9224)2) (1 - (.9099)2)

= .4912

and this 1s Yarge enough to be declared significant, using the same
statisticai test that is used for ryz_ g. Therefore the variable Xy is
added to the model.

The next step consists of examining all partial correlations with
the rank of Y, given the rank analogues to X1 and X;X2. The largest
partial rank correlation coefficient belongs to the rank analogue of XZ ,
and that term is included in the model after a statistical test determines
its significance. No more terms are found to be significant. The least
squares method 1s used to obtain the coefficients, with the result

. 2

ry = -2.11 + 1.1938 X, + .06227 X, " . 06666 ", (17) ‘

Using Rank Regression to Predict Values of Y

To find a predicted rank for Y, the corresponding ranks for Xy and
Xp are substituted into Lquation (17). For example, in observation number

1 of Iigure 14 the ranks are ry = 20.5 and ry = 20.5. This gives
1 2
?y = -2.11 + 1.1938(20.5) + .06227(20.5)2 - .06666(20.5)(20.5)
= ¢0.57

The two ranks which straddle the value 20.52 are, from Figure 14, 21
(Y = 42) and 19.5 (Y = 37). Interpolation gives

S .5y 4 20.52 - 16.5 (42 - 37
21 - 19.5 ( )
= 40.40
which is in agreement with the value given in Figure 16. ‘
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Exercise 6

Use the ranks of X; and Xp for observation number 9 in Figure 14 to
find £y from Equation 17. (The computer printout gives ry = 13.14.)

Exe 7

Use interpolation in Figure 14 to obtain a predicted value for Y,
given ry = 13.14 for observation number 9, and see if your answer agrees
with the predicted value given in Figure 16.

Comparing Rank Regression with Ordinary Regression

The sum of squares of residuals for the rank regression model given
by Equation (17) is

SS = 119.176

which is about the same as the value found using forward regression on

the data. Of the two models found using forward regression, the model based
on the data is preferred, hecause it has about the same value for SS as the
model based on ranks, and it has only one variable as opposed to three vari-
ables for the model based on ranks.

Backward Regression

The backward regression procedure begins with the model containing
all of the variables, fitted using the least squares method. Then the partial
correlation coefficients of each variable with Y, given all of the other
variables in the model, are compared to see which one is the smallest. The
variable corresponding to this smallest partial rank correlation coefficient
is then tested to see if its presence in the model contributes significantly
in accounting for the variation in Y. [If the test is significant the variable
remains in the model and the procedure is finished. [If the variable does
not test as significant, it is dropped from the mcdel, and the entire proce-
dure is repeated for the remaining variables. At each stage the partial
correlations involve only the variables remaining in the model. This back-
ward regression procedure has a tendency to include more variables in the
final mode! than if forward regression is used.

A Useful Procedure for Finding Partial Correlation Coefficients

At this point a very useful technique will be introduced and illus-
trated. The method for finding partial correlation coefficients by building
step by step from the simple correlation coefficients, as described earlier,
works well for forwara reqression. This is an awkward way of handling back-
ward regression however, since backward regression starts with the full
model, all variables included, and requires knowledge of the partial correla-
tion coefficients given all but onc of the independent variables. There is
a very simple way to do this.

Let R he the caorrelation matrix; that is, the matrix containing the
simple pairwise correlation coefficients where row i, column j contains ryj.
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Let R-1 be the inverse matrix of R, which is the matrix that can be multiplied

by R to get the identity matrix 1. Many software packages exist for finding
R-1 Denote the element in row i, column j of R™" by by;. The partial
correiation of variable i with variable j, given all of %he other variables
represented in the correlation matrix, is obtained very simply from R-1 as

b..
i (18)

Tij.{all others) = ~

\/bﬁ b3

When a variable is climinated from the model because it is not signifi-

cant, the row and column in R, which represent correlations involving that

variabie, are removed from R to obtain a new and smaller correlation matrix

Ry. The inverse Ry™* of Ry is found and the new partial correlation

coefficients of cach variable with Y, given the variables still remaining in
) -1 : s 3

the model, are found from R,7° using Equation (18).

An [1lustration of the Procedurc

This procedure for finding partial correlation coefficients could be
illustrated using the full model, with Y and nine independent variable:.
This would involve a carrelation matrix R with 10 rows and 10 columns, and

ite inverse R-1 also with 10 rows and 10 columns. Such an example is

so large thet it may confuse the i1llustration of the procedure, so the proce-
dure will be illustrated using only Y and the original independent variables
X1, X2 and X3.

For the data in Figure 12 the carrelation matrix is given by

X Xo X1 Y
C.0000 L7819 L5001 9197

Ro- | L7819  1.0000  .3909  .8755
5001 3909 1.0000  .3998
| L9187 LaJS5 L3998 1,0000 |

where row 4 {and column 4) contains the carrelation coefficients of Y
with Xy, Xy and X3 and 1tself, respectively.

The inverse matrix is found from a computer program as

X X2 %! Y
/.724] L9922 -1.265%  -7.4665
R-1 = L3922 4.4408 -.3727  -4.6568
-1.2655  -.3727 1.4078 .9274
L-7.4665  -4.6568 L9274 11.5732

Note that both R and R-1 are symmetric matrices.
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The partial correlation coefficients are found using tquation (18).
Only the partial correlations involving Y are of interest, since these repre-
sent the amount of influence each independent variable has on Y, when the
Vinear influence of the other variables is removed. These are

-bgy 7.4665
Y and X1: r41.23 = = .7897
\/b44 by \/ 7.7241)(11.5732)
-bgp 4.6568
Y and Xp: r4p.13 = = .649]
\/b44 bo \/ 4.4469)(11.5732)
-b43 -.9274
Y oand X3: rg43.1? = -.2298

\/ bag b33 \/ 1.4078)(11.5732)

In a backward regression procedure the variable X3 would be selected

for testing because it has the lowest partial correlation coefficient (in

absolute value). [f the test showed that X3's contribution to the model

were insignificant it would be dropped from the model. Row 3 and column 3

would be removed from the correlation matrix R, the new inverse matrix found,

and the new partial correlation coefficients found with X3 eliminated from
“ all further consideration. This procedure would be repeated until all vari-

bles remaining in the model are significant.

Measuring the Importance of Variables

A direct interpretation of the partial correlation coefficients
found from the full model is very useful. The three variables X;, X2 and
X3 may be ranked in order of importance on the basis of their partial
correlation coefficients. Variable Xy is the most important because its
partial correlation coefficient, rqyp,.p3 = .7897, is the largest in
absolute value. The variable X7 is the second most important variable and
X3 is the least important variable. Although a rough analysis was made
when this model was introduced in Equation (7), and resulted in *hese same
conclusions, this method of analysis removes from consideration the indirect
influence of the other variables, and thus isolates the effect of each varia-
ble on Y in a more precise manner.

The Results Using Backward Regression

The backward reqre§s1on procedure on all nine independent variables
removed the variab in its first step. Subssquent steps removed, one
by one, the var1ab1es 2X3 Xl' X3, X1X3 X3 , and X leaving
X1X» as the only significant variable. Thus the backwarg regression procedure
ended up with the same model as was obtained from the forward regression
procedure. This is merely a coincidence that happerned to occur in this
case. [he predicted values, the residuals, and the residual sum of squares
are thus given in Figure 16. This lends further support to the conclusion
that the model involving only X1Xp is a good model for the data.
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Backward Rank Regression

Backward regression on the ranks follows the same steps as backward
regression on the data. The only difference is that the ranks of Y, Xy, X7
and X3 are substituted for the actual values of those variables. The
partial rank correlations are found by inverting the matrix of simple rank
correlations and using

-by; - (19)

Pij.(all others) = T
\[b11 by

in a manner entirely analogous to the procedure described previously.

The backward regressicn procedure on the ranks given in Figure 14
results in the elimination of variable Xp on the first step. Note that the
analysis on the actual data differed in this respect, because X,° was
removed on the first step, and the variable X2 was the last one to be removed.

Bear in mind that regression on ranks is based on monotonic relationships,
while regression on the data is based on linear relationships, so removal _of
X, using rank regression is not entirely different than the removal of X22
using ordinary regression.

The Model from Backward Rank Regression

Subsequent steps 1n the backward rank regression progedure removed,
one at a time, the var1ab%es X X ? 3 and X This
left the variables X and X, in %he mo el Severa? interesting
things happened. The var}able XIX? was removed on the fourth step. This
is one of the three variables which remained in the model using forward
regression on the ranks, and the only variable which remained in the model
using both forward rvgression and backward regression on the actual data.
Also, the variable X remains in the model for backward regression on the
ranks. rh1s is the ¥1rst time this variable has appeared in a reqression
moge t is interesting to sce what effect the replacement of X)Xy with
has on the rank reqression model, as this represents the only difference
hotween the forward regression model on the ranks and the backward regression
model on the ranks. The final model is given as

P2 L2.02 + 1.41 r. - 08410 ro_ + 02781 rl (20)
Y ) ) %

The predicted values of Y and the residuals appear in Figure 17.

A Comparison of the Several Models

The model given by Fquation (20) appears to be the best model
obtained so far, as measured by the sizes of the residuals given in Figure
-8~




17. wWhen compared with forward rank regression, the backward rank regression
model resulted in smaller residuals for 10 of the 21 points, larger residuals
for 9 of the 21 points, and ties in 2 cases. However, the important measure
of goodness of fit, the sum of squares of residuals, is reduced by about 23
percent, to

§S = 91.677

which is hy far the smallest value for SS yet obtained. This is smaller

than the value 116.846 chtained using the model using X)X on the actuatl
data. (One model has a smaller SS, while the other model has fewer variables.
[t is difficult to choose between these two models at this point.

Stepwise Regression

The stepwise reqression procedure is the procedure that is used
most often in ohtaining a regression model. It begins as a forward regres-
sion procedure, hut each time a variable is added tc the model it becomes a
hackward regression procedure until all insignificant variables have been
eliminated from the model. When a new variable is added to the model, the
partial correlation coefficients consider this new variable in addition to
the previous variables, and they may be different than the previous partial
correlation coefficients. This is why a variable that was previously consid-
ered significant using forward regression may become insignificant after a
new variable is added, in which case it would be dropped using backward
regression. This does not preclude that variable from being added again at
some later point, if it again becomes significant after additional variables
have entered the model.

The application of the stepwise regression procedure to the data
in Figure 12 and the ranks in figure 14 is not interesting, because in those
cases no variables are eliminated from the model as insignificant., Therefore
the resulting modets, predicted values, and residuals are the same as those
obtained using forward regression, and given in Figure 16.

Discussion

Several regression procedures have been introduced and described
for constructing a regression model involving several variables. Partial
correlation is discussed as a tool for identifying important variables. The
computations have been explained so that a better understanding of the powers
and limitations of the various procedures can be obtained.

A1l of these procedures are merely aids in the decision making
process. They should be considered in addition to expert advice, not instead
of expert advice. Amateur statisticians often make the mistake of having
either too tittle or too much faith in the methods of regression analysis.
Professional statisticians often make the same mistake, but to a lesser
extent. The better these regression methods are understood, the more likely
it is that the results of a regression analysis will be given its proper
weight in the final decision making process.
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Forward Rank Backward Rank .

Regression: Xl,XZZ,Xlxz Regression: Xl,Xlz,XZ2

Obs. Observed A A
No. Value Y Y Residual Y Residual
1 42 40.40 1.60 38.92 3.068
2 37 40.40 -3.40 38.92 -1.92
3 37 33.95 3.05 33.54 3.46
4 28 19.80 8.20 22.18 5.82
5 18 16.59 1.41 17.32 0.68
6 18 18.00 0.00 18.39 -0.39
7 19 19.80 -0.80 22.18 -3.18
8 20 19.80 0.20 22.18 -2.18
9 15 16.37 -1.37 16.51 -1.51
10 14 12.70 1.30 12.86 1.14 ‘
11 14 12.70 1.30 12.86 1.14
12 13 13.44 -0.44 12.44 0.56
13 11 13.44 -1.70 12.86 -1.86
14 12 13.10 -1.10 14.00 -2.00
15 8 7.34 0.66 8.00 0.00
16 7 7.34 -0.34 8.00 -1.00
1/ g 8.00 0.00 8.00 0.00
18 8 8.00 0.00 8.00 0.00
19 9 11.81 -2.81 9.37 -0.37
20 15 13.13 1.87 13.15 1.85
21 15 17.06 -2.06 15.00 0.00
SS = 119.176 SS = 91.677
Figure 17. Predicted Values and Residuals Using Forward Rank Regression and ‘

Backward Rank Regression.
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EXAMPLE OF SETTING UP AND EXECUTING THE
LATIN HYPERCUBE SAMPLING PROGRAM ALONG
WITH QUTPUT FROM A TRANSPORT MODEL

This part of the course demonstrates the techniques of the
first two sections on the NWFT/DVM model. The NWFT/DVM model
uses 17 input variables, 4 of which are correlated.

Page 104 shows the parameter cards used to generate the Latin
hypercube sample as described in SAND79-1473.

Page 105 gives the user specified subroutine as required on
cards 14 to 21 on page 104.

Pages 106-108 give the actual LHS for 17 variables and a
sample of size 35.

Pages 106-111 give the ranks from 1 to 35 for each of the 17
input variables on pages 106-108.

Page 112 contains the output from running the 35 input vectors
through NWFT/DVM. The output is in the form of total integra-
ted discharge for 7 isotopes over 10" years on a per vector

basis.
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PARAMETER CARDS USED TO GENERATE A LATIN
HYPERCUBE SAMPLE AS DESCRIBED IN THE
PROGRAM USER's GUIDE

Card No.
1. £245762762631657 LHS SCENARIOS NWFT DVM
2. TITLE=-LHS NWFT CVM FOR NRC SHORT CCLRSCE
3. 17 29 1 1 e
4. LCGNORPMAL KO FGR CM(AM)
5. «C1 1.5
6. LOGNORMAL KD FOR PU
7. «C1 l1.64
8. LCGNCRFMAL KO FOR U
9. o C1 1.€4
10. LCGNCRMAL KD FOR TH
11. « 01 1.F4
12. LCGNCRMAL KD FOR NP
13. « 01 S50
14. USER=-INPUT SOL LIMIT FOR PU(LOG 10)
],5. '7.1 2.
16. USER-IANFUT SOL LIMIT FOR ULLOG 10)
17. -5a7 1
18. USER=-INFUT SOL LIMIT FOR TH(LQOG 10)
19 '701 .6
20. USER-IANFUT SOL LIMIT FOR NPCLCG 10)
21. ~-149.4 3
22. UNIFCRY¥ DISPZRSIVITY
23. 1
24. S0. 500C. .
25. LCGUNIFORWN LEACH TIMc
26. 1
27. 1.E603 1.5C7
28. LCGNCRMAL K(UPPER AQUIFER)
29. « 01 ST e
30. NCRMAL POROSITYC(UPPER AQUIFER)
31. « (8 «30
32. LOGUNIFCRYV K OF THE FEATUR_(S)
33, 1
34. 1 «CS 25
35, NCRMAL POROSITY OF THE FEATUREZ(S)
316. « 05 «30
37. UNIFORY¥ TIME OF ONSET OF MIGRATION
38. 1
39, 100. l.E4
40. UNIFORYPV NUMBER OF ROOMS
41. 1
42 . 1.0 1100,
43, 4
44. 12 13 14 15
45 . 1.0 0.7 1.0 0.0 0.0 1.0 0.0 0.0
46. 0.7 1.0
47 . OUTFPUT 9DATALFLOTH,CORR
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C
C
C
C

£ XAMPLE OF A USER SUPPLIED SUBROUTINE FOR USE WITH

THE LATIN HYPERCUBE SAMPLING PROGRAM TO GENERATE A

SAMPLE FROM A DISTRIBUTION NOT INCLUDED IN THE PRO-
T

GRAM - THE IN
EXP D

LAINE

SUBRCUTINE USKDISTCI¢NoINSETsIRSoLIsL20LT)
COMMON L C1000D)

COMMCN/A/XC100200)

CCMMON/B/XX(100Q0060)

LEVEL 2e¢X XX

LOC(Iou)d=Cd=1)aNe+]

ALPINC=0495/N

REAC(B411CHYA4B

110 FORMAT(2G10.4)
A IS THE MEAN ON A LOG1O SCALE FCR NORMAL DISTRIBUTION

5 IS THE ST CEV ON A LOG1C SCALE FGR A NORMAL DISTRIBUTION
FOR THIS DISTRIBUTION A WILL BE TRIZIATED AS THE 0.325 QUANTILE
AND B WILL BE TREATED AS THE 4975 QUANTILEC

(ELT#=.025

CO 10 K=14N

R=ALPINC*UDGENC(O.)+DELTA

XCLOC (K yI))=10.s4C(FINVNOR(R) &4 4A)

[ELTA=CELT A«ALPINC
10 CONTINUE

IF(INSY TaNEL1DGO TO 20

FRINT 12Cs1sAsB

FRINY 1304L10L20L3

20 CONTINUE
120 FORMAT( (e 11X s13,12XyeUSER SUPPLIED MEAR=4,41PGLl0e3y

. +ST DEV=4y1PG103)
130 FCRMAT(1H+ 475Xy 3A10)
RE TURN
END
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TITLE-ULHS NNFY DYY FOR NRC

RUN NO,

20

21

22

23

24

31

32

33

Ja

33

INPUT VYFCTORS

x€) 3

123

147

164
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141
16n

212

159

192

127t -02

187
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242

175

132

e x(15)
.03 «16R
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LR P 1A 2
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2492 19}
4.7 1%
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.« 320 s 161
1et? e 192
SoAh .tar
}b.' «190
+ 642 T.714E-02
10. 4 «?234
A.l .20n
24. 4 « 255

SHORT CCURSE

X(16)
1511703
66 3719E403
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A.576F 03
S.6ATE+0)
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350,
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QANKS OF IANPUT VECTNRS
PUN KO, X(1) 1(2) X¢y) Y(s) Y{%) Y(5) X¢1) x¢(e)y Xt9) X(10) ¥ty x(12)
1 32. 23, 19. 25. 23. 1. 2. 16e 27. 21. 1. 2.
2 25. 29. 13. 5. 3. 30. 26. 10. 20. 18. 6. 1.
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—
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SAMPLE OUTPUT GENERATED FROM A TRANSPORT
MODEL USING THE PREVIOUS LATIN HYPERCUBE SAMPLE
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.809E-05
.807E-02
.066E-07
.083E-06

.576E-04
.907E-05
.516E-07

.740E-06

.311E-05

.823E-04
.064E£-06
.677E-06

.139£-06

.175E-05
.133E-05
.759£-03

.227E-06
.045E-05

.666E-05
.007E-05

.215€-04
.404E-06
.526€£-02
.162E-02
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Total Integrated Discharge to 104 Years

233y

.997E£-09
.110E-04
.740E-08
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AN EXAMPLE OF SENSITIVITY ANALYSIS
RESULTS BASED ON THE PARTIAL RANK
CORRELATION COEFFICIENT

Page 114 contains a summary of the partial rank correlation
coefficients as given in Equation (19) on page 98 on Part
Twe of this course. Listed down the lett hand side of the
table are the 17 input variables from page 104. The heading
across the top of the columns identifies 6 output variables,
3 of which are listed on page 112. The numerical entries in
in the body of the table can be used to identify the input
variables which are dominate in influencing the cutput. For
example the entry of 70 for KD U and U233 means that the ab-
solute value of the partial rank correlation coefficient was
at least .70 at sometime during the 10% year period.

While page 114 shows the PRCCs based on the 35 input vectors
on payes 106-108, pages 115 and 116 show results for two
additional sets of 35 input vectors. The results are simi-
jar on pages 114, 115, and 116.

Page 117 shows the summary for all 105 input vectors pooled
together but the individual numerical entries show a PRCC of
at least .50 rather than .70 as on pages 114-116. On page 118
the 105 vector results are repeated for PRCCs of at least .70.

Pages 119-132 provide PRCC plots for each combination of input

variable and output variable that have numerical table entries
on page 117.
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RO

Input

Variables

WHERE TABLE ENTRIES OCCUR THE PRCC BETWEEN
INPUT VARIABLE (ROW) AND THE QUTPUT
(COLUMN) ACHIEVED AT LEAST THE

THE

VARIABLE

LEVEL
CATED AT SOME POINT IN TIME OVER THE 10,000
YEAR PERIOQD

.7 OR

.8 IN ABSOLUTE VALUE AS INDI-

PRCC LHS~-NWFT-DVY V3 TID-S3-CH2 HLW(1.EA YRS) NRC SHORT COURSE

IS0

KD
KD
KD
KD

SOoL

TOFE

CHCAM)

pPuU

LIM

NP

DLSPERS1V

LEACH TIME

K U

P AQ

POR UP AQ

K F

POR FLAT

EAT

Output Variablies

cr PU AM NP U TH
245 241 2641 237 233 225
80 70
70 710
RD
70
10 30 80 80

REL TIME

NUM

RMS
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A TABLE SIMILAR TO THE ONE ON PAGE 114

BUT WITH A NEW LATIN HYPERCUBE SAMPLE

FOR DEMONSTRATING CONSISTENCY IN IDEN-
TIFICATION OF IMPORTANT VARIABLES

PRCC LHS-"NWFT-DVY VS TID-S3-CH2 HLW(1.EA4 YRS) NRC SHORT COUSKE
Qutput Variables

Input ISOTOPE CM PU AM NoO U TH

Variables ____ _______._ fff_fff,fff_ffl__ 233 229
1 KD CM(AV) 80 T0 70
2 KD PU
3 KD U 80 I0
| KD TH 70

' 5 KD NP 70 70

6 SOL LIM pPu .
7 SOL LIM U
8 SOL LIM TH
9., SOL LIM NP
10. DISOPERSTIV
11. LEACH TIME 80 T
12. K UP AQ 70 70
13. POR u® AQ
14. XK FEAT
15. POR FEAT
16. REL TIME 80 B0 8&n
17. NUM RMS

-115-




RESULTS FROM A THIRD LATIN HYPERCUBE
SAMPLE TO COMPARE WITH THE TABLES ON
THE PREVIOUS TWO PAGES

PRCC LMS~NWFY=-DVM ¥S TID-S3-CH2 HLWC(Y.EM4 YRS) ANRC SHORT CCURSE

) Qutput Variabhles
I1soToPE CM PU AM NP u TH

Vai?§g§es 245 241 241 237 233 229
1. KD CMCAM) T8 7o 70
2. KD PU
3. KD U 80
4. KN TH ™
5 KD NP 70
6. SoL LIM PU
7. SOL LIM U
8. SOL LIM TH
9. SOL LIM NP
10. DISPEPSIV
1. LEACH TIME
12, K UP AQ 70
173, POR UP AQ
14. K FEAT
15, POR FEAT
6 REL TIME 70 70 an 80 80
17. NUM RMS
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Input
Variables

(SR U I O

COMPOSITE RESULTS FROM POOLING ALL
COMPUTER RUNS FROM THE THREE PRECE-
DING LATIN HYPERCUBE SAMPLES WHERE
FILTERS WERE LOWERED TO .5 AND .6
DUE TO THE INCREASED SAMPLE SIZE

PRCC LHS-NMFT-DVY V3 TID-S3-CH2 HLW(1.EA YRS) NRC SHORT COUISE
Qutput Variables
IsoToOPE CM PU AM NP u TH

245 241 201 237 233 223
KD CHM(AV) 60 S0 60
XKD PU
KD U 60 50
KD TH 60
KD NP €90

- wn W Mm e e mm En e En G W EE b G Gm Al fe e AR Gh S AR s G e R S M A D W D A S G R W S O ED YR M R R YR W S D R W M AR W W W A e

SOL LIM NP

DISPERSIV

LEACH TIME 60

K UP AQ 50 S0 60
POR UP AQ

K FEAT

PO FEAT

REL TIME 60 60 60
NUM RMS
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Input
Variables

SAME COMPOSITE RESULTS AS ON PREVIOUS ‘

PAGE ONLY WITH THE FILTERS INCREASED

TO .7 AND .8 FOR PURPOSES ON PINPOINT-
ING DOMINANT VARTABLES

PRCC LHMS-NWFT-DvM VS TIND-S3-CH2 HLW(1.E4 YRSY WKC SHORY COURSE

B Qutput Variables
ISOTOPE CM PJ AM NP v T4

245 241 241 237 233 223
KD CMCAY)
KN PU
KD U 70

SOL LIM NP

LEACH TIME

K UP AQ

POR UP AQ

K FEAT

POR FEAY

REL TIME 30 80 80
NUM RMS
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PARTIAL RANK CORRELATION

1.000

.8000

.5000

.4000

.2000

0.000

-.2000

.4000

.6008

1

.B00O

t

-1.000
10

PLOTS OF PRCC's FOR ALL VARIABLES
IDENTIFIED AS IMPORTANT ON PAGE 117

PRCC LHS-NWFT V5 TID S3 HLW KD CM(AM) CM245

Ty T s

" " Y U I S S s \ U Y S G U

+2 +3
10 10

TIME(YEARS)




PARTIAL RANK CORRELATION

PRCC LHS-NWFT VS TID S3 HLW KD CM(AM)] PU241

1.000 . RS- . .

.B000

.B000

.4000

.2000 F

0.00¢0 -

-.2000 |

.4000

.6000

.8000 -

TIME(YEARS)
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PARTIAL RANK CORRELATION

1.000

.8000

.6000

.4000

.2000

0.000

.2000

.4000

-.6000

.800¢0

1.000
10

PRCC LHS-NWFT VS TID S3 HLW KD CMCAM)D AM241

T B Y T Y

Y T T T v

\4/\,\"/\

+2

TIMECYEARS)
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[ON

ORRELAT

(O]

RANK

TAL

.
(68

(

1.000

.6000

4000

L2000

0.000

-. 2000

~-.4000

-.6000

-.8000

~1.000

TIME(YEARS)

-127-

PRCC LHS-NWFT VS TID S3 HLW KO NP NP237
T A Al L T Bl - Y I T Y v
- —h - A SURPE | PR NN SHN WPRS W § l A ’e PSRN A
4+, + 3 + 4
10 10




RANK CORRELATION

PART [ AL

1.000

.8000

.6000

L4000

.2000

0.000

-.2000

-.4000

-.6000

-.8000

-1.000
10

PRCC LHS-NWFT VS TID S3 HLW LEACH TIME NP237

ASS T Y LR SRR IS S e §

" Y T

+2 +3

TIMECYEARS)

-123-




PARTIAL RANK CORRELATIQON

PRCC LHS-NWFT VS TID S3 HLW K UP AQ NP237

1.000 , S — . S —
.8000 4
L6000 | | i
L4000 }
L2000 F 4
0.000 . .
-.2000 -
-.4000 } 4
-.6000 | N
-.8000 | i
-1.000 . U | R R
10" ? 10t3 Lot

TIME(YEARS)
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CORRELATICN

FARTIAL RANN

1.000

L8000

.60090

. 4000

L2000

0.4090

-.200¢C

-.4000

-. 6000

PRCC LHS-NWFT VS TID 83 HLW REL TIMLC NP237
Y T T bl Al T T T T hd T T Al T T Tt
- ]
i |
L il
4 PR § " [ S W S | i 1 e I VT U R Sy
+2 +3 +4
10 1 0

TIME(YEARS)
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IAL RANK CORRELATION

PART

1.000

.8000

.6000

.4000

. 2000

0.00¢

.2000

.4000

-.6000

.8000

PRCC LHS-NWFT VS TID S3 HLW KD

U

N

W

w

——r T -
- -4
s —
b- -
b= |
b -
. A . " IS S | Y dd

+2 +3 +4
10 10

TIMECYEARS)
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PARTIAL RANK CORRELATION

1.000

.8000

L8000

L4000

.2000

0.000

.2000

.400¢0

1

.6000

i

. 8000

~1.,000

10

v 233

PRCC LHS~NWFT VS TID S3 HLW K UP AQ

T T T T Y T T Y T T ij
- N
. -
) L 5 PR " S S R
+2 +3 +4
10 10

TIMEC(YEARS)
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PRCC LHS-NWFT VS TID S3 HLW REL TIME

U 233

1.000 , —

.B00O

T

T

T

CORRELATION

PARTIAL RANK

.4000 }
.2000 |
0.000

-.2000 |
-.4000 +
-.6000 [
-.8000 |

~1.000 n . A A " PR {

+ 2 +3

10 10
TIMECYEARS)
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PARTIAL RANK CORRELATION

1.000

.8000

.6000

.4000

.20080

0.000

-.2000

-.4000

-.6000

-.8000

~1.000

PRCC LHS-NWFT VS TID S3 HLW KD U TH223

S T S T Y T - v

L _
L -
" " N NS G G S T z N N U
+2 +3 +4
10 10

TIMECYEARS)
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PARTIAL RANK CORRELATION

1.000

.8000

.4000

.2000

0.600

.2000

-.4000

-.6000

.8000

-1.000

PRCC LHS-NWFT VS TID S3 HLW KO TH

T T Y T YT T T T

TIMECYEARS)
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RELATION

COR

RANKH

t AL

[£4

(o8

1.000

L8000

.6000

.4000

.2000

.200¢C

LRG0

.8000

1.000

TIMECYEARS)

PRCC LHS-NWFT VS TID S2 HLW K UP AQ TH229
Y T T T Y L 'ﬁ‘T T T B T
- .
| 1
k
A A A A i A VY L A A, 1 A
+ 2 +3 + 4
10 10




CORRELATION

PARTIAL RANK

PRCC LHG-NWFT VS TID S3 HLW  REL TIME TH229
1.000 . e . N —

.8000 ~

.6000 K -

.4000 | -

.2000 -

0.000 -

-.2000
-.4000
-.6000 F
-.8000 K
~1.000 " " i i A iaa " i . 4 " i
+2 +3 +4
10 10 10

TIMECYEARS)
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STEPWISE REGRESSION ANALYSIS FOR THE
PREVIOUS EXAMPLE OF THIS SECTION USING
ALL 105 OBSERVATIONS

The remainder of the pages in this section contain the re-
gression analysis results. Page 134 shows some transforma-
tions made outside of the regression program to create new
variables sych as retardation factors. Page 135 shows trans-
formaticons for variables made within the regression program.
The regression parameter cards as described in SAND79-1472
are listed on page 136. The results of the regression anal-
ys1s on raw data for U233 1s given an page 137. Pages 138

to 144 contain the results of regression on ranks for UZ233.

Summaries of the regression results on raw and rank trans-
formed data are given on pages 145 and 146 respectively. An
examination of page 145 shows the analysis on raw data to lack
consistency of v3r1ab1e selection from set to set and to give

poor fits flow R¢ values) On the other hand the analysis an
ranks shown on page 146 does show consistency of variable se-
tection and provides improved fits to the data.
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AN EXAMPLE OF A PROGRAM FOR TRANSFORMING
SOME VARIABLES TO CREATE NEW VARIABLES
OUTSIDE THE REGRESSION PROGRAM - THESE
VARIABLES ARE STORED ON DISK 10 PRIOR TO
THE EXECUTION OF THE STEPWISE PROGRAM

e

10
10
15
20
25
3C 10C

PROGRAM STANC INPUT4OUTPUTTAPEL»TAPE10)
NDIMCNSION XINC23) 9X0UT(29)
N=105

DU 100 I=14N

READ(CYI) XIN
CO=2e7T32 (10~ XINCI3) I /XINCLD)
CEZ2.73Cia (=-XINCLIZYI/XINICLD)
D0 10 J=145

LO=24«J=1

LFE=2eJ
XOUT(LO)=1.CeXINTJ)eCC
XCUTCLED)=1e 0+ XINEUI«CE
CONTINUE

XOUT(11)=XINES)
XOUTCLl2Y=XINCT)
XOUTCL3D=XINCH)
XOUTCL4)=XIN(I)
XOUTC15)=XINC1))
XOUTCLE)=1a O/ XINCIL)
XQUTCL17a=XINC12)
XOUT(18)=1.0/XINC13)
XOUT(19)=XIH(14)
XOUT(20)=xXIN(1D)
XOUTC21)=XINC15)
XQUTCE22)=XINCLT)
X0UTC23)=XINC1IR)
XOUT(24)=XINC19)
XJ2UT(25)=XINC 2
WRITE(LODIXOUT

CONTINUE

RCWIND 10

END
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SUBROUTINE FOR MAKING TRANSFORMATIONS
WITHIN THE REGRESSION PROGRAM

SUBROUTINE TRANS(X)
COMMON/ZTHAN/NRAMGNTRANSyIDROPyIDUMy IRANK
DIMENSION X(49)
DO 1 I=1,22
1 XC1+25)=X(I1)ex(])
XCAa8)=X(1T7)*X (18)
X(A3)=X(19)+X (2C)
RETURN
£LND
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SANDI S LAHORATORIES <> STEPLIGE REGAOSSIIN FPOSOaM <> COURIESY OF OFPT, COF STATISTICS

PITLESSTEPWIST FOR NRC SHORT CGCUSRSE RAW CaATA VECT 1-1-9%

NATA 2542842

INPUT (HMECK OF FARAMETERS

NUMRER OF VARIAHLES RECAD IN - 25

NO. OF TRANSFORPED VARIABLES = 29

DATA DISPOSITION IS 2
LARCLELI=RF A CH4RF S (M RF & PU,RF S PUWRF A UsRF 5 11,RF A THRF S TH,
LABLLUIDI=RF A WPyRF S NP,5 LIN PUsS LIM UyS LIA TH,S LIN NPyOISP,LEACH T,
LABLLCLT)I=COND AQ4POR J3,COND SyPOR SeREL TIMEMUR RR5,7TI0 N2,TID UsTID TH,
LAAEL(25)=X1SQ o X2S5Qs X3S0+ XS0, X3SQeXASQAyXTSA9XBSQy XIS+ XI0SCyXI1SGeN125Q
LABELC3AY=X]13SQ,X145Q,5 ¥155Qsx16SQeX17SAeXIASAIXLIISQA4X20SQ,X215QyX225Q,
LABCLEOR)=XK1TeX1B4X19220
OUTPUTyCORR,STEPS
STEPWISELSIGIN=N.0S5,SIGOVT=0.
KODEL 2312840251035 7¢9011¢12+13014+15216417¢1B+19¢2Ce21425¢26428¢300324300
36+ 3T*3803964 0081002003408 405006247248049,
PRESS

END NF PARARLTERS

- XANSAS STATE UNIVERSITY

(STAT CONTROL CARD)

(STAT
€sSTaY
(STAT
(STAT
(STATY
(STATY
(STAY
C(STATY

(STAY

(3TAT

(STAY

CONTROL

COMTROL

CONTROL

COMTROL

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

COMTIRCL

CONTROL

CARC)
CARD)
CARD)
CARD)
CARD)
CARD)
CARD)
CARD)

CARD)

CARD)

CARD)

30IN9 S, ¥3ISN Wyy90ud 3IHL NI 039140530 SV
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TITLE,STEPWISE F(R NRC SHORT COURSE RAw DATA VECT 1-105

SANDIA LAHORA TORIES <DC> STEPUESE REGRESSICN  C<><> FROX KANSAS STATE UNIVERSITY

AOY TABLE
ANALYSIS OF REGRESSIONM FOR VARIABLE 24---i10 U
(TapnLe 12
SCURCE D.F. Ss L 1Y F SIENIFICANCE
REGRESSTION 1 - TA33)192€E-05 «78330192€-0°% 134.65"73%0 « 0002
FESICUAL 103 +55033RG6E-00 «53835792C-0¢
TCTAL 104 «62571885L <04
Ree2 IS «12430
INTERCEPT IS -.121433627-C0
STANDAPD ERPQR CF IMTERCFPT IS +808 323E-04
VARIARLE VARTABLE RECCRESSICN STANDARDIZED PARTIAL T-TEST Reo2
NURPE R NANE COEFFICIENTS REGRESSION SsSQ YALUES DELETES
COCFFICIENTS
1€ LEACH T 143577349 « 2952969 <0000 ).8287 0.0000
UNIGUE SEQUENCE WUMBER FOR THIS ANOVA = 108
PRESS IS «642735C-08

The Analysis on Raw Data Shows Only One
Variable (Leach Time) to be Significant.

PAGE 15

ALPHA
HATS

<0002

£€2N Y04 YLIVQ Mvy NO
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SANCIA LABCRATORILS <> STEPHISE REGHESSIIN FROGRA® (> (OURTESY OF CEPT.

TETLELSTFPUISE FOR HRC SHOFRT COURSE RANX TRANSFORMED DATA VECT 1-10S

DATA 2540802,

QUTPUT ,CORR,STEPS

INPUT CHECK OF PARARMETERS
NUMBER QF YARIAPLES READ IN = 2%
NO. OF TRANSFORMED VWARIABLES = 2%

OATA DISPOSITION IS 2

STEPWUISE,SIGIN=0.05s51C0UT=0,.10

MODEL923924925214345479+11¢12+13414+150616417418019420421422426¢28430¢32+34+

3637438439484 0064]1042043008045445+474+48409,

PRESS
RANK REGRESSION

END OF PARAMETERS

OF STATISTICS - KANSAS STaTE UNIVERSITY

(STAT CONTROL CARG)

(STATY
(stay

CSTAY

(STAT
(S1A7

CSTATY

CONTROL

CONTROL

CONTROL

CONTROL
CONTROL

CONTROL

CARD)

CARD)

CARD)

CARD)

CARC)

CARD)

£€2N Y04 SHNVY NO
SISATUNY NOISS3Y93¥ 3IHL 40 SLINS3IY
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"
RF
RF U
RF TH
RF A NP
S Lim ru
S LI* v
S LIn TH
S Lim M
DiIsP
LEACH ¥
COND a5
FCR AC
CCND S
PCR S
PEL TIRE
hUP RRS
X1S6
X3S0
X956
X1SG
x9S0
X115y
x125C
¥13s0
x1450
x1%sQ
X16S50
xX17S@Q
x18S6G
X19SQ
x20s@
x2150
x2250
X17ex18€
X¥15ex2C
TI0 AP
TIC U
TIC TM

(L]
pU

- n e B

NARE

~ S (e

N

12
13
le
1<
16
17
1p
19
zt
21
22

2F
e

32
3a
36
37
38
39
AQ0
.1
a2
43
s
A5
af
a7
4R
a9
<3
24
25

NO .

1.000¢0
L0302
BURVA I
WCOSH
036w
.0263
«J 358
—.0267
<2357
2192
<317
-.0629
.393¢8
Q730
-J338¢C
~+0333
~+G13)
.968 3%
.1033
<2009
23117
.2025
0229
0075

.n382
L3038
L0316
0500
<1077
0609
<1579
-.0242
-+025A4
.0649
0670
.48}
.N3693
-0278

)

[,

1.03:02
L0148
-.9313
L0639
Lol
-.2111
-.0204
L0151
-.0057
L3019
-.283e
L0730
013
.o02¢7
-.0133
-.uct7
.G19¢C
.9688
-.02%0
-.C21R8
.C0R17
-.0300
L1l
-.06237
0265
-.3215%
-.0352
-.0382
.2917
.0323
LTA19
-.01%3
2102
-.0501
.N512
-.0383%
-.2597
-.0277

RF & PUy

RANK CORRELATION

A U

RF A TH

1.3007
«0155
-.0126
-+3C 51
«J153
=.0326
~.9181
-.1409
«2508
~.02131
«00Cé
-.20¢<8
-«0057
~.0213
.05295
<1065
+0059
«96€8
<0542
<0207
-«0143
«00¢€3
-.016%
-.0120
-.9983%
«2593
-.0228
-.0045
~«03%3
~-«0310
0424
-.0193
~.4711
-.2298
-.1573

q

RF A NP

MATRIX

1.09G60
-0492
~.C149
-.3086
.Ca07
.0S1¢€
-.0362
-.0200
-.0183
.0219
~-. 0439
-.010%
«0233
.0080
-.U12s
-« 0099
0240
+9688
+ 0499
«0015
-«003A
«047°%
.0266
-.0031
«0224
~.0288
«0353
-+ 05%7
.0081
-.0RS52
-.0U24
+0529
20372
-.0297

11

S LIm PU

1.00032

.Gc2¢C
-.0107
20115
.6253%
.0305
«0149
-.057S
.0312
.0323
<0323
« 0505
«03567
~.0268
<0456
«0233

«9688
<0181
-.0240
20201
0113
-016%
<0845
«0179
<0305
-.0302
«05867
<1544
-«0019
«0364
«0626
+0868

12

S LIm U

1.€390
.0146
-. 0536
-0387
«0117
~+C0514
«-0019
~. 0874
~.0174
-.0120
~.0213
-+ 0030
-.0700
+0353
<0245
~<0198
«02G8
9688
«0C19
~e 0043
. 0887
«0104
~«0621
-«0018
-.05)38
-+ 0291
~e 0464
-. 0014
-.0181
~=0174
«0235
«0229

13

S LIm TH

1.0000
-.043)

«0288
-.0103
«0111
+C084a
«0193
+0280
-.0237
.0102
+0095
«0106
-.0122
«0296
213
+0062
«0129
+3688
<0694
«0792
«0140
«0003
«0209
-+0038

0223
-.0038
~-.028%

-0032
-.0531
~«0412
-.1319

18

S LIN NP

1.3000
-.0200
-.0199
«0273
«0042
«0324
«0801
-.0580
-.00863
-.0064
+0808
.0061
-.0006
+0278
<0335
~+0414
-.0286
.9688
-.0582
.0159
«0277
~.0189
-.0013
«032¢0
~.0881
-.0013
-.0087
.0313
+0246
-1132

13

oise

1.0000
-00129
ALY
-0136

~=0166

-«0523
«0A47a
«0C42
«0031

-e0327
«0096

-.0%18
«0358

-<011%
-0778
.00672

~e0240
9688
-0138
«0668
«0102

-.8200

-«8586
8577

~.0218
«0047

«4146
«1886
1265

1Y 3

LEACH T
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TITLE»STEPWISE FCR NRC SHIRT COURSE RANK TRANSFORMED QATA VECT 1-10S ’ PiIGE 4
SANDIA LABORATNRIES <><> STIPJISE REGRESSICN  <><> FROM XKANSAS STATE UNIVERSITY

CCRRELATION MATRIX

CCND a6 17 1.0000

PGR 4C 18 -.6708 1.060C¢

CCNT S 19 0206 -.0309 1.0009

o0R S 20 0007 -.0111 .73186 1.9059

REL TimE 21 ~.0342 +0387 -.0069 G054 1.0009

NUR RMS 22 -.019% L0036 - .003% L0143 .0877 1.0000

x15Q 26 -.8167 0682 20722 L0257 -.0110 <0012 1.0000

x1sg 2F -.03a8 .0907 0425 0289 -+0116 ~.0194 «083% 1.0000

xs<g 30 -.C946 1131 ~.0259 -.0062 «0550 .0328 - 0252 “. 0536 1.0000

X150 32 -.0708 0989 -.0351 .0193 <0054 .0078 «0772 ~.029¢ 0174 1.0000

X959Q 34 ~.1348 2465 ~e0260 0000 <0243 -.0370 ~e0597 «0732 21125 ~.0128 1.0000

x11sQ 3¢ -."35¢ -+01R) =+0523 ~.0131 -+005S ~.0245% 0299 -« 0307 -.0127 <0069 «0342

X1250 37 -.0040 0450 ~.0127 0362 -.0308 -.0332 «007% «05A1 ~.0618 +0620 «0067

X13S0 38 0660 -.0713 ~.0063 ~.087% -.9377 -.030% - 0236 -«0193 ~+0543 <0A2% .0103

X1450 39 0207 ~-+0290 ~.029)3 ~.0187 -.009%7 -.0807 0403 «0007 0179 «0138 +0178

x15s4@ 40 -.0203 <0204 «0099 0319 +0150 -.0453 ~.0243 ~e 0258 <0338 20244 ~20220

xX1650 a -.000) L0503 «020) -.0137 -e0B863 «06%2 .0237 -« 0063 ~e0579 .0123 ~s0378

X17sQ 42 .9688 -.6450 «0242 .0007 -+0152 «0006 -+0083 ~«0450 ~.1045% -+1001 -.0927

X18sQ a3 -e6635 9688 ~.0869 -.0111 0440 <0409 <0677 «1097 «l1482 «122 «2%520

x19sQ LX) 0647 ~.0435 «9688 7033 -.0088 <0204 +0587 +0348 -.0384¢ -.058% ~a02548

x26saQ a8 ~.0032 ~.0135% <6944 .9688 ~.0043 +0617 «0400 «04T1 ~e0026 +0146 -.0078

x21s0 173 0351 +8249 0123 0137 «96 88 <0574 +0090 ~s 0264 «1015 ~«0102 ~+0120

X226 87 -.0010 NLLE <0046 0287 «0522 +9688 ~s0137 -« 0048 +0260 -« 03519 ~e0614

X17eX18 48 3616 3209 <0240 J0439 -.0643 ~e0624 .09%8 -+ 0556 -.0250 .0298 ~0478

X1Gex20 A9 0407 -+0354 +9068 8970 «0021 <0886 +05%9 «0687 -.0186 ~e0263 ~+0168

TID W 23 .433¢0 ~.3396 +28698 «1619 -+4800 «03%s ~e0179 ~. 0867 -.1670 -« 0557 - 4934

TI0 U 24 .4781 ~+3315 «1781 .1316 ~e4618 .0109 0831 -.0473 -.5217 «0212 ~e2651

TID TH 2" 5564 -.3605 «229 <1629 ~¢3992 -.0806 «0185 -.0131 -+3086 -.40%8 -.183¢

N0 o 17 18 19 20 21 22 26 28 30 32 34

KAME COND AQ POR AQ COND S POR § REL TIME NUM REMS X1sQ x3sa x5S4d X186 X9s€@
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x11s¢
xi2sQ
xX12s56
x1asg
1588
x165C
xirsg
xX1835Q
xX19sQ
x208¢
xXz1s@Q
X220
X]Texlf
Xi19ax,.*
TIC NP
T10 U
TID TH

NANE

x22s54
X17ex1E
X194x20
TIO WNF
110 v
TIC TH

NAPE

3¢
37
3n
3s
40
a1
a2
43
LX)
45
AE
a7
AR
49
)
24
25

hO.

a7
ap
a9
23
24
25

RO .

1.300¢
-.308
-.3999

0024

0275

<0739
-.03373
.0322
-.0717a
- 2N6R
=e"225
+8Crn3
-.1314
~.9511
-.0158
-.3035
-.1071

36

x11SQ

1.7031%
D487
«D6RT
.0429
NI T3
~«'512

a7

x2?2sa

TIILE ST ERW ST

FCR NHRC SHORT

SANOIA LAQORATIRIAS <>C¢> STIPwWw{ST

LeUdg!
L0807
-.016Y9
0117
AN e
-.00939
-.0132
.0295
0215
-.0363
«2545
+1307
1246
<0281
-"502
<0787

37

x123Q

1.00359
-.00C3
~.0357
1264
<0675
-.01722
-.007>
~.0651
-.03%2
~.07U8
.025%
~.0250
.0458
«0575
«05A0

38

x13se

TETLL sy sTiPWISE

SANDIA LABJORATIORIES

1.006"7
<0573
~1718
« 2387
«2R01

8

X17ex18

1.0007
<1781
«13548
«2134

49

X1eX27

COURSE RANK TRANSFRRMED QAYA VFCT

REGRFESSION

C(RRELATION MATRIX

1.05030
-.0504 1.008C0
«0455 -—.071¢
0445 «00F3
-.0428 <0132
-.0389 -.0217
-.00562 -.0018
~e0157 .0061
~.0604 -.0713
-.0183 «00 <A
-01952 -«00%4s
~«0371 <0631
-.0213 <0554
-.1298 «1227
39 AD
X145Q X15SQ

FCR NRC SHIRT COURSE RANK TRANSFOYRMED DATA VECT

<O<> STipPWlsSE

CCRRELATION MATRIX

1.00u72

«1671

+6766
23

TID NP

1.0009
«T73R7

Tio v

REGRESSION

1.0002
.0003
-0839
-0185

-.0212

-.0917
«0653

-.0103
<0065
+ 84043
-1968
«1279

.l

x145Q

1.0000

25

TID TH

1

-0900
-61989
68T
-C13%
«0505
«0233
« 2640
<037
«3394
«4397
«5271

42

x175Q

1-165

1.0000
~. 0645
-.0139
- 0286
« 0815
» 2055
—e 0447
-+ 3431
-+ 3550
-« 3936

L

X18s59Q

1-105

<>C> FROM KANSAS STATE UNIVERSITY

1.0000
-6833
<0149
.0346
<0651
«9223
«2390
<1743
«2576

LR

X19sQ

€><¢> FROM KANSAS STATE UNIVERSITY

»20SQ

PAGE 3
1.0000
«00a7 1.0000
.0830 +0648
«0838 «0097
«9020 «0210
«1322 -e8602
<0967 ~eh648
«1385 ~e3787
AS 46
x21s54@
PAGE 6
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TITLE.STEPYISE FCR NRC SHIRT CCURSE RANK

SANOIA LABORATNRIES <><> STEPYISE REGRCSSICN

TRANSFORMED OATA VECT

1-1053

C>¢> FROM KANSAS STATE UNIVERSITY

52835663

T-TEST
VALUES

~7+2413

AJY TABLE
ANALYSTI3 OF REGRESSION FOR VARIABLE 24---TIO U
(TanLe 1)
SOURCE D.F. SS S
REGRESSION 1 31988.135 31988.185
RESICUAL 103 62833, P15 610.03704
TCTaL 10s 94822,000
Ree2 IS 233735
INTEPCEPT IS R3.520R719
STANDARD ERRCR CF [MNTERCEPT TS 4.8553%8
VARIABLE VARIARLE REGRESSION STARNDARDIZED PART 1AL
NUMEER LELES COEFFICIENTS REGRESSION $SQ
COEFFICIENTS
< RF &4 U -.57586564 -.580818 31988.1848
UNTGUE SEQUENCE WUMBER FOR THIS ANOYVA = 11P

RANK FIVT GIVES A RAW DATA NORNWALIZED Ree2 = «27533482¢-01]

COEFFICIENT OF IMTLRPOLATION = «27082913C-01

FRESS IS 6894884,

SIGNIFICANCE

» 0000

Ree?2
DELETES

0.0000

PAGE

ALP#)
HATS

«0000

16




TITLEWSTEPWISE FCR NRC SHIRT

CCURSE RANK TRANSFTYRMEQD DATA VECT 1-10% PacE 15
SANDIA LABORATORIES <>¢> STIPWISE REGRESSION <>¢> FRO® KANSAS STATE UNIVERSITY
AJV TABLE
ANALYS L OF RFGRESZSION FOR VARIABLE 24--~71D U
CTARLD 1)
' SouRCE D.F. Ss L F STGNIF ICANCE
—
el REGRESSION ? 49717, 835 2485R.T1R 56.21 802 . 0000
w RESTOUAL 102 451G8.564 482,20161
J TCTAL 108 94R22.710
Ree2 IS « 55832
INTERCEPT IS 105.09772
ST1AMDARD ERPRCR (F INTERCEPT IS S.35730
VARIABLE ¥YARIABLC REGRESSION STAKDARDIZED PARTIAL T-TEST Ree2 ALPHD
NURFER NARE CNEFFICIENTS REGCRESSION SsSQ ¥YALUES DELETES HATS
- COLFFICIENTS
= RF A U =.553664856 ~+558845% 29492.8664 -8.1667 «2133 <9000
21 REL TIME~.42929127 -.432383 171723.2512 -63319 «3373 -2 000
UNTCUE SEQUENCE NUMBER FOR THIS ANOVA = 119

fANK F11 GIVES A RAw DATA NORMALIZED Res2 = «26372345€-01

COEFFICIENT CF INTERPOLATION = «21337096¢ -31

FRESS 1S 4761 3.




A

TITLE ST 2w (5] FCR NRC SHIRT CCURSGE RANXK TRANSFORMED OATA VECT

SANDIA LABORATORITS <DO<> STIPJISE RIGRESSION

1-105

C(>C> FROM KANSAS STATE UNIVERSITY

F

76.56'562

T-TEST
VALUES

~9.401%
T7.5034
=7+638¢

AOV TAaHLE
ANALYSIS OF REBRUSSION FOR VJIRIAGLE 24---T10 y
{TAWLE 1)
SOURCF 0.F. sS us
RFGRESSION 3 6%861. 3% 21953.7719
RESICUAL 101 28960. 654 286, 73925
TCT AL 104 94322.000
Res2 IS ob658%A
INTERCEPT IS EC 603470
SISNDARD ERRCR (F INTERCEPT IS S.806457
VARIIBLE VAR TABLF REGRESSION STANDARDIZED PARTIAL
NURPE R NAME COSFFICIENTS REGRESSION $SQ
COEFFICIENTS
< RF A U -.5154°520 -.%19929 25344.1328
17 CCND AQ  .41111573 . 414651 16143.899¢
21 FEL TIME-.41713551 -.4201A83 16729.6575%
UNIQUE SEQUENCE NUMBER FOR THIS ANOYA = 12¢
RANK FIT GIVES A RAW DATA NORNALIZED Ree2 = .50748162
COEFFICIENT OF INTERPOLATION = »18358317F-02
FRESS 31213,

SISNIFICANCE

+«0000

Rea2
DELETES

«84273
«5243
5181

PaGE 16

ALPHA
HATS

+£000
-0000
-0000




Yectors

1-35

36-70

71-105

1-105

SUMMARY OF STEPWISE REGRESSION ON RAW DATA

NP 237 RZ U233 R2 TH229
Cond S .15 Leach T .18 No. Rms.
Rel Time
Por S
(Por A) .66 Leach T .55 Leach T
Por A S. Lim Np So Lim Np
Leach (Leach T)2 (Leach T)2
Rel Time .12 S. Lim Np .57 (S. Lim Th)2
. S. Lim Np
S. Lim Th
RF A Np
Rel Time .27 Leach T .12 Por S
Cond S Rel Time
(Cond S)2 No. Rms
Leach T

Note the inconsistency of variable selection
from one set of runs to the next for this
analysis on raw data

-145-

.33

.56

.97

19




SUMMARY OF STEPWISE REGRESSION ON RANKS

Vectors  NP237  R%Z U233 R2 TH229 R2
1-35 Cond A .57(.74) Rel Time .99%(.78) Cond A .94(.83)
Rel Time Cond A RF A TH
RF A Np RF AU Rel Time
Leach T
36-70 Leach T .06(.86) RF AU .64(.82) Cond A .89(.79)
Rel Time Rel Time Rel Time
RF A Np Cond A RF A TH
Cond A Por S (RF A TH)Z
Cond S Leach T
71-105 RF A NP .41(.81) RF AU A7(.74) Cond A .41(.68)
Rel Time Rel Time RF A TH
Leach T Cond A Rel Time
Cond A Cond S RF A Np
Cond S (RF A U)2 (RF A TH)?Z
1-105 RF A Np .48(.73) RF AU .51(.69) Cond A .59(.75)
Rel Time Rel Time . RF ATH
Leach T Cond A Rel Time
Cond A RF AU
Cond S

These are the variables selected as important by the stepwise
regression analysis on ranks. This selection agrees well with
the variables identified as important by the PRCC on pages 114
to 118. Note that the notation RF A used here means retardation
factor (RF) in the aquifer and is calculated using the KD values
listed with the PRCC. Likewise K UP AQ and Cond A both refer to
conductivity in the upper aquifer.
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