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ABSTRACT 

This self teaching curriculum on sensitivity analysis techniques 
consists of three parts: 

1) Use of the Latin Hypercube Sampling Program [Iman, 
Davenport and Ziegler, Latin Hypercube Sampling 
(Program User's Guide), SAND79-1473, January 19801. 

2) Use of the Stepwise Regression P;rogram [Iman, 
et al., Stepwise Regression with PRESS and Rank 
Regression (Program User's Guide) SAND:9-1472, 
January 1980-J. 

3) Application of the procedures to sensitivity and 
uncertainty analyses of the groundwater transport 
model NWFT/DVM [Campbell, Iman and Reeves, Risk 
Methodology for Geologic Disposal of Radioactive 
Waste - Transport Model Sensitivity Analysis; 
SAND80-0644, NUREG/CR-1377, June 1980: Campbell, 
Longsine, and Reeves, The Distributed Velocity Method 
of Solving the Convective-Dispersion Equation, 
SANU80-0717, NUREG/CR-1376, July 19801. 

This curriculum is one in a series developed by Sandia National Labora- 
tories for transfer of the capability to use the technology developed 
under the NRC funded High Level Waste Methodology Development Program 
(NRC FIN. No. A-1192). The technology transfer process is carried out 
under NRC Fin No. A-1158. 
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TUTORIAL ON THE LATIN HYPERCUBE SAMPLING PROGRAM 

The Purpose of the Course 

The purpose of this tutorial is to demonstrate how to draw multi- 
variate random samples, using either Random Sampling or using Latin 
Hypercube Sampling, where the multivariate random sample may have any 
specified marginal distributions and any specified correlation matrix. 
This tutorial shows how to obtain such a sample manually, and how to 
use the Latin hypercube computer program to accomplish the same task. 
A comparison between Random Sampling and Latin Hypercube Sampling is 
made to show some of the relative benefits of using a Latin Hypercube 
Sample. 

The Importance of Good Sampling Techniques 

Some physical processes are difficult to study directly, for 
various reasons, and are therefore observed indirectly through the use 
of mathematical models. The mathematical models are often so complex 
that they are amenable to solution only through the use of numerical 
methods on a computer. Even then the solution may involve a consider- 
able amount of computer time, so care is needed in selecting the input 
variables in such a way that the most important information is obtained 
conce:ning the output variable. This suggests the use of efficient 
statistical methods for the design and analysis of pseuao-data generated 
through the use of such models. Some of those methods are described in 
detail in the following sections. 

The Nuclear Waste Repository Model 

Consider the model for simulating geologic conditions in a reposi- 
tory for nuclear waste. The input variables may be random variables or 
may be parameters whose values are unknown but may be known to lie in 
given intervals with specified probabilities. In either case, the input 
variables are subject to uncertainties that may be described by means 
of a probability distribution. In Figure 1 a diagram of a hypothetical 
nuclear waste repository is given, and four input variables are shown 
along with their hypothesized probability distributions. Each proba- 
bility distribution is specified by name and by the lower limit a and 
upper limit b. In the normal distribution a and b represent truxcation 
of the usual-normal distribution at the .OOT and T999 quantiles. The 
upper limit for the lognormal and loguniform distributions are taken 
to be the .999 quantiles. The convenience of working with a finite 
range for each variable considerably outweighs the disadvantage of 
working with a slightly truncated form of a standard distribution. 



Several Types of Input Distributions 

The normal distribution and the uniform distribution are well 
known distributions which are symmetric. Typical density functions for 
these two distributions are given in Figure 1. The lognormal distribu- 
tion is a unimodal distribution, skewed to the right, which is often 
used to represent random variables that assume only positive values. 
The logarithm of a lognormally distributed random variable is a random 
variable with a normal distribution. A loguniform distribution has 
many of the same properties as a lognormal distribution, such as being 
unimodnl, skewed to the right, and nonnegative. The shape of the 
distribution is slightly different, with the right tail of the distri- 
bution being considerably heavier than the right tail of a lognormal 
distribution. If a random variable has a loguniform distribution, its 
logarithm has a uniform distribution. Instead of these four distribu- 
tions, any probability distribution may be specified for the input 
variables. These distributions are simply the ones used most frequently 
in t1,i s type of model. 

The Importance of Accurate Input Distributions ~- 

output from the I In any model such as the waste isolation model the 
model is the item of interest. There are uncertainties 
output because there are uncertainties inherent in the 

attached to the 
input. Thus the 

output is expressible only in terms of its probability distribution, or 
properties such as the mean, standard deviation, median, quartiles or 
other quantities. An accurate representation of the output requires an 
accurate representation of the input. Therefore good answers to ques- 
tions concerning the output require accurate representations of the 
input distributions. Since the quantities represented by the input 
variables may possess some correlation in nature, that same correlation 
should be reflected in the selection of input variables for the model. 
The requirements imposed thus far, i.e., specified distributions on 
each variable and specified correlations between variables, require some 
nonstandard statistical methodology. The methods presented in this 
tutorial have been developed specifically for models such as this one, 
so they will probably not be familiar to the reader. 

The Simplified Black Box Model 

In order to present the statistical methodology in a clear, unclut- 
tered manner, details which are not relevant to the statistical method- 
ology are suppressed in this tutorial. One such detail is the model 
itself. Although the model is the most important link in the study of 
a physical system, the proper development and verification of the mcdel 
is the responsibility of geologists! physicists, engineers and other 
experts. Frown the statistician's viewpoint the model is viewed as a 
"black box," with many input variables and one or more output variables. 
Figure 2 shows a diagram of the model from a statistician's viewpoint, 
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where there are four input variables and where the input variables have 
specified probability distributions, all normal in this case. The 
statistician's job is to understand ,the desired objectives of the study, 
and to use (and/or develop) methods for achieving those objectives. 
Some of the desired objectives of this study are given as follows. 

Objectives of a Simulation Study 

To assess the probability of the output exceeding specified limits. 

For some values of the input variables the output of a model may 
exceed the limits of acceptability as imposed by regulatory agencies. 
How likely is this to happen? Because the input variables have uncer- 
tainties associated with them, the exceedance probability can only be 
estimated on the basis of several runs in which input variables are 
selected and the output variable is observed. A method for obtaining 
a confidence interval on this prcbability is also needed. If several 
valid methods are available for finding such a confidence interval, 
the method that gives the smallest interval is obviously the best 
method to use for achieving this objective. 

To determine the sensitivity of the output to the various input 
variables. 

If some input variables are very influential on the output variable, 
those input VdridbleS require close study in any actual site selection 
decisions. Assumptions regarding the distributions of those variables 
also need careful consideration. On the other hand any input variables 
that show little or no influence on the output variable are not very 
important to study from a cost effective standpoint, and assumptions 
regarding their distributions are not as critical. Statistical methods 
are needed for measuring the relative importance of the input variables 
on the basis of several runs of the model. Note that some variables 
may be important at some time points but not important at other time 
points, so the method of selecting input,values for the various runs of 
the model should be flexible enough to allow this determination. The 
elimination of nonsignificant input variables may result in a substan- 
tial simplification of the model, and a sharper focus on the more rele- 
vant aspects of the model. 

On the Latin Hypercube Sampling Program __-_-__- 

The Latin Hypercube Sampling Program was written to enable a 
researcher to select input variables according to any of several differ- 
ent methods. It is necessary for the user of this program to specify 
several items, including the input distributions, the correlation matrix 
of the input variables, and the type of sampling procedure desired. 
The program then takes care of obtaining numerical quantities to use as 
input variables for the model, where those numerical quantities resemble 
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values of random variables with the specified probability dis- 
tributio~ls, with a correlation structure as specified by the 
user, and selected according to the specifies sampling scheme. 
As the name of the program suggests, one of the options for 
sampling is Latin Hypercube Sampling, which is a very useful 
sampling scheme developed specifically for problems such as 
this one. Ho:qever, the user may specify Random Sampling in- 
stead, which is a frequently used sampling procedure. Varia- 
tions of these sampling procedures are available as options in 
this program, ilowever, attent'lon will be focused primarily on 
these two options. 

Options for Input Distributions -. 

The input distribution is specified separately for each 
input Vdridble. Ttlere are five options available for input 
distributions; normal, uniform, lognormal, loguniform, and a 
user-specifjed distribution. The first four distributions are 
built into the program and are very easy to use. These were 
discussed earlier. The user-specified distribution requires 
that a subroutine be wrltten to supply distributions other than 
those four. 

The Distribution Function vs. the Density Function _ 

Although it is more usual in statistics to think in terms 
of density functions when describing the distribution of a 
random variable, there are definite advantages of considering 
distribution functions (CDFS) in this tutorial. A CDF repre- 
sents the cumulative probability associated with a random vari- 
able. That is, if f(x) is the density function of a continuous 
random variable X, then the distribution function F(x) rrpre- 
sents the cumulative probability up to the value x, 

X 

F(x) = P(X$ x) = / f(t) dt 

While a random variable must be ciytinuous in order to possess 
a density function, all random variables possess distribution 
functions, whether they are continuous, discrete, or some com- 
bination of continuous and discrete. Figures 3, 4, 5 ana 6 
illustrate distribution functions and density functions for 
particular normal, uniform, lognormal, and loguniform distr'- 
butions. Figure 7 presents the estimated distribution func- 
tion of the number of boreholes present in a randomly selected 
1100 acre tract which is underlain by bedded salt and which has 
at least one borehole present. Note that this is a discrete 
distribution function. 
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F(x) 

figure 3. A :iormal Densitv Function f(x) and its 
Corresnonding Djstribution Function F(x). 
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figure 0. A Uniform Density Function f(x) and its 
Corresponding Distribution Furaction F(x). 

-7- 



Figure 5. A Lognormal Density Function f(x) and its 
Corresponding Distribution Function F(x). 

--- 

F(x) 

figure 6. A Loguniform Density Function f(x) and its 
Corresponding Distrlbutlon Function F(x). 
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Drawing a Random Sample (Illustration) 

A hypothetical distribution function is given in Figure 8 for the 
purposes of illustrating the principles behind drawing a random sample. 
If a random sample of size N = 2 is to be drawn from F(x), the follow- 
ing steps are followed. 

1. Draw N = 2 random uniform values. A table of random digits such as 
Table 1 may be used for this purpose. 
selected row (suggestion: 

Enter the table at some randomly 
let the row number equal the last two digits 

of your social security number) and a random column (perhaps the third 
digit from the end of your social security number) and record two sets 
of numbers, two digits each, reading across. If row 31, column 3 is 
selected, the numbers are 87 and 91. 

2. Convert. these tc numbers between 0 and 1. The simplest way to do 
this‘ is to divide by -- 100, which converts 8Fto .87 and 91 to .91. 

3. Use Figure 8 to find F-I for these numbers. The numbers .87 and 
.91 are found on the vertical axis in Figure 8, and the inverse func- 
tion F-I of F(x) is used to convert these to 2.13 and 2.34. These two 
numbers 2.13 and 2.34 are the random sample of size 2 from the probabil- 
ity distribution given by F(x). 

Note that by chance both of the numbers in the random sample in 
the e;tample happened to be near the upper end of the range of possible 
values of the random varia!-,le being sampled, because the two numbers 
from Table 1 happened to be close to 100. This is the nature of random 
samples; no guarantee is given that the numbers in the sample will be 
spread out over the range of possible values of the random variable. 
For this reason, the following method of sampling, called stratified 
sampling, is often preferred. 

Drawing a Stratified Sample (Illustration) 

A hypothetical distribution function F(x) (the same one used in 
Figure 8) is given in Figure 9 to illustrate the principle behind 
stratified sampling. For a stratified sample of size N = 2, one obser- 
vation is sampled at random from the lower half (in a probability sense) 
of the distribution and one value is sampled at random from the upper 
half. 

1. Draw N = 2 random unifcrm values. For simplicity the same numbers 
87 and 91 will be used again. 

2. Convert the first number to a number between 0 and .5 and the 
second to a number between .5 and 1 0 First, each number 
to a number between 0 and .5 by dividing by ZOO. 

is converted 
Then .5 is added to 

the second number. 

8 - 
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Figure 8. A Hypothetical Distribution Function F(x) 
ftlr' Use in Drawing a Random Samole of 
Size N =?. 
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& = .435 

g-$+.5= .455 + .5 = .955 

3. .,,,g;;eF;i;;; znt; div"cd,:T:afo:c~h~s~nnu~~~~~.g The numbers .435 and 

function F-1 of F(x) is used to convert these 
and the inverse 

of size 2 from F(x). 
to'a stratified sample 

The sample consists of the two numbers 0.84 and 
2.70. Note that the first n 
bution and the second number 
in a probability sense. 

For a stratified sample 
would be divided into N cqua 

mber is in the lower half of the djstri- 
is in the upper half of the distribution, 

of size N, the vertical axis of Figure 9 
intervals between 0 and 1, one observa- 

tion would be sampled at random from each interval using uniform random 
numbers , and these would be converted to a random sample from F(x) 
through the use of an inverse function. 

More Exact NolIla Values from Table 2 -. --- 

The graphical method for finding x, given F(x), that was illustrated 
in the preceding examples is simple and straightforward. It may be used 
with the graph of any distribution function. The only limitation of 
such a method is that graphical methods are good to 2 or 3 decimal place 
accuracy at best. Of course, if the distribution function is discrete, 
as in t:igure 7, whole integer accuracy may be sufficient. 

The distribution 'unction used in the illustrations happens to be 
normal with Imean 1 ar:d variance 1. 
F-l , column (d) i 

Therefore, the exact values for 
? figures 10 and 12, may be found from Table 2. Round 

t!y value in r;JIumn (c) to three decimal places. Ent.er Table 2 to get 
(11 the inicrse for a standard normal distribution (P = 0, (7 = 1). 
add'1 to get the inverse for F(x), because 1-1 = 1. 

Then 
In general, multipli- 

cation by (I and addition of I', in that order, converts from +-1 to any 
normal random variabl e with mean 1-1 and variance ~2. 

The number .87 converts to 1.1264 in Table 2, and then to 2.1264 
by adding 1.0. The number .91 converts to 2.3408 using the same 
procedure, thus justifying the two numbers obtained in the random sample 
of size 2. For the stratified sample of sire 2, the numbers F(x) = .435 
and F(x) = .955 convert tc -.1637 t 1 = .8363 and 2.6954 respectively, 
in agreement with the graphical results but with greater accuracy. 
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Flqure 9. A Hypothetical Dfstribution Function F(x) 
for Use in Drawing a Stratified Samole of 
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EXERCISE 1 

Use Table 1 and Figures 10 and 11 [columns (a) through (d) only], to 
obtain a random sample of size 4 from the distribution F(x). 

(a) (b) 
Random 
numbers 

(2 digits) 

(cl id) (4 (f) 

(b) 
(c) = 100 F-'(c) 4, - 1 ( c ) (4 + 1 

1. 

2. 

3. 

4. 

F igure 10. Worksheet for Drawing a Random Sample of Size N = 4 from F(x). 

-14- 



I 
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Figure 11. A Hypothetical Distribution function F(x) 
for Llsc in Drawing a Random Sample of 
Size N = 4. 



EXERCISE 2 

Use Table I and Figures 12 and 13 [columns (a) through (d) only], to 
obtain a stratified sample of size 4 from the distribution F(x). 
Note how the stratified sample is spread over all four quarters of 
the probability distribution. 

(4 (b) 
Random 
numbers 

(2 digits) 

1. 

2. 

3. 

4. 

(cl (d) (4 if) 

(b) (a)-1 -- 
(c) = 400 + r, F-l(c) c-'(c) +-‘(c) + 1 

Figure 12. \Jorksheet for Drawing a Latin Hypercube Sample of Size N = 4 
from F(x). 

QUEST13N 1: For purposes of estimating the mean of the population, do 
YOU tt link the average of a random sample or the average of a stratified 
sample will tend to give a more accurate figure? ANSWER AT BOTTOM OF 
PAGE 1B. 
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Fioure 13. A Hypothetical Distribution Function F(x) 
for Use in Drawing a LaKin tiypercube 
Sample of 5ize N = 4. 
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EXERCISE 3 

Use Table 2 and Figure 10, columns (e) and (f), to obtain more accurate 
figures for the random sample from F(x), the normal distribution with 
P= 1 and 0 = 1. 

EXERCISE 4 

Use Table 2 and Figure 12, columns (e) and (f), to obtain more accurate 
figures for the stratified sample from F(x). 

ANSWER TO QUESTION 1: It can be shown that the average from a stratified 
sample will tend to be closer to the true population mean. 

-18- 



Obtaining a Multivariate Random Sample 

The usual model involves many input variables rather than just the 
one input variable as was used in the previous examples. If four input 
variables are involved, as in Figure 2, then one value needs to be 
obtained for each input variable before an input to the model is com- 
plete. Let K be the number of input variables; K = 4 in Figure 2. 
Then K numbers are obtained as one input vector, where each number 
represents one input variable. If N is the number of runs desired, 
then N sets of K numbers each are obtained in all. 

The Random Sampling method with K input variables is a simple 
extension of the Random Sampling method for one input variable, if the 
input variables are independent. The first observation on Xi is simply 
matched with the first observation on X2, the first observation on X3, 
and so on, for the first input vector. The second input vector consists 
of the second values obtained for XI, X2, . . . . X 

r 
, and so on for all N 

input vectors. The situation is not so simple i some specified corre- 
lation is desired on the input values, but that will be described later. 

Obtaining a Latin Hypercube Sample 

To obtain a Latin Hypercube Sample, when the input variables are 
uncorrelated, the situation is almost as simple. First, stratified 
samples of size N are obtained on each input variable, in the manner 
previously described for finding stratified samples. Then the strati- 
fied sample of size N on XI is permuted into a random order, using some 
randomization method. The N observations on X2 are also permuted into 
a random order, independent of the order on the values of XI. The 
values for each input variable are arranged in a randcm order, indepen- 
dent of the order of the other input variables. 

Once the samples are permuted as described, the Latin Hypercube 
Sample is easily constructed. The first value of XI is matched with 
the first values of X2, X3, . . . . . XK for the first input vector. The 
second values of each are matched for the second input vector. This 
matching procedure is followed until all N values of each variable are 
used. The method for matching the observations to achieve some target 
correlation values will be given later, for the non-independent case. 

Comparing Latin Hypercube with Random Sampling 

A Latin Hypercube Sample has observations that are spread over the 
entire range of each input variable, and the spread is in a uniform 
manner, in a probability sense. This is unlike the Random Sample which 
may produce clusters of observations anywhere in the range of the vari- 
ables. It is difficult to prove analytically that either method of 
sampling is better than the other. However, some comparisons of the 
two sampling methods have been made with actual models, and the Latin 
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Hypercube Samples appear to give much better results where the goal is 
to estimate the distribution function of the output variable. The 
following exercises 3re designed to illustrate how to obtain Random 
Samples and Latin Hypercube Samples with multivariate input, when the 
input variables are uncorrelated. Then comparisons will be made between 
the two methods to see what kind of accuracy is obtained on estimates 
of the output. 

Obtaining a Multivariate Random Sample (Illustration) 

Refer to Fiyure 2 where there are four input variables each with 
a nurmal distribution function. In each run observations on these four 
input variables go into a model, represented by a black box, and the 
output is recorded. The following exercise takes the reader step by 
step through the process of obtaining a random sample of size 10. The 
subsequent exercise takes the reader through the steps in obtaining a 
Latin Hypercube Sample of size 10. Later these samples will be entered 
into a black-box type model and the outputs recorded and compared. But 
first the samples are obtained. 

EXERCISE 5 (Multivariate random sample of size 10) - 

1. In order to draw a 4-variate random sample of size 10, 40 random 
nutiers are needed from Table 1. Starting where you left off in 
Exercise 2, choose 40 three-digit random numbers, reading across the 
table row by row. Record these in the order drawn, down column (b) in 
Figures 14-17. 

2. The nuder-s in column (b) are converted to probabilities between 
0 and 1 by dividing by 1000, for column (cl. 

7 The probabilities in column (c) are converted to random samples 
;iom a standard normal distribution (cc = 0, 0 = 1) by entering Table 2 
in the respective row and column, and recording the table entry in 
column (d). 

4. The standard nonnal values from column (d) are converted to normal 
values with other means by adding the constant indicated in column (e) 
of each figure. 

5. Transcribe all 40 numbers in column (e) into the respective columns 
of Figure 18. Each row of Figure 18 represents one input to the black 
box model. 
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(a) 
Obs. 

Number 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

(b) 
Unifonn 
Random 
Number 

(3 digits) 

(cl (d) 

(c) = ‘;&). 
4-l (cl 

from Table 2 

(4 

Input 
(4 = (d)+l 

Figure 14. Worksheet for Drawing a Random Sample of Size 10 for Xl 
where Xl is Normal, CI = 1, (r = 1. a 
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(a) 
Obs. 

Number 

(b) 
Uniform 
Random 
Number 

(3 digits) 

(cl 

(c) = l&d 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

(d) (4 

4-l (c) Input 
from Table 2 (e) = (d)+2 

Figure 15. Worksheet fcr Drawing a Random Sample of Size 10 for X2, 
where X2 is Normal, ~1 = 2, CJ = 1. 
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(a) 
Obs. 

Number 

(b) 
Uniform 
Random 
Number 

(cl 
(I>) 

(c) = m 

(d) 

4-l (c) 

(4 

(4 = jd) + 2 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Figure 16. Worksheet for Drawing a Random 
where Xg is Normal, P = 2, * = 

-23- 



(a) 
Obs. 

Number 

(b) 
Uniform 
Random 
Number 

(c) (d) (4 
(b) 

(c) = looo 4-l (c) (e) = (d) + 3 

8 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Figure 17. Worksheet for Drawing a Random Sample of Size 10 for X4, 
where X4 is Normal, v = 3, CJ = 1. 
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6. Using a pre-programmed calculator, or the equation 

Y = X1 t X2X3 - X2ln 
I I 
Xl + exp(X4/4) 

whichever is more convenient, find the output value Y for each of the 
10 input values (XI, X2, X3, Xq), and record these in column (f) of 
Figure 18. 

7. Plot the 10 values of Y on the abscissa of Figure 19, and draw an 
empirical distribution function. An empirical distribution function 
is a step function which equals zero on the left, and proceeding from 
left to right, rises a height of l/N at each of the N sample points, 
until it equals 1.0. This is an estimate of the true distribution 
function of the output. In this case, start at zero on the left and 
increase the height of the graph by l/10 at each observation on Y, as 
the graph proceeds from left to right. At the largest observed value 
of Y the graph should jump from a height of .9 to a height of 1.0. 

The Accuracy of the Gutput From a Random Sample 

The empirical distribution function in Figure 19 provides an esti- 
mate of the population distribution function of the output. The sample 
mean of the 10 values of Y provides an estimate of the population mean, 
and other sample values provide estimates of their corresponding popu- 
1a:ion values in the usual manner for random samples. 

In order to see how well these samples function as the basis for 
population estimates, five random samples of size 10 each were obtained 
using the Latin Hypercube Sampling Program, and were entered into the 
black box model to obtain outputs. The five empirical distribution 
functions are given in Figure 20, while Figure 21 presents a picture 
of the mean of all five e.d.f.'s together. In the background of Figures 
20 and 21 is an accurate estimate of the true distribution function of 
the output, obtained by using a random sample of size N = 1000. 

The mean of all five e.d.f.'s, averaged in the vertical direction, 
is plotted again in Figure 22. This is the same e.d.f. one would 
obtain if all 50 sample observations were treated as a random sample 
of size N = 50, which it actually is. Above and below the mean,curve 
in Figure 22 are curves that represent one standard deviation distance, 
where the standard deviation is computed vertically from the five 
curves in Figure 20, and smoothed using a three point moving average. 
The standard deviation is presented to give some idea of the accuracy 
involved in each individual random sample of size 10. 
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(a) (b) 
Obs. Values 

Nu&er for X1 

(c) 
Values 
for X2 

(d) 
Values 
for X3 

(4 
Values 
for X4 

(f) 
foulput) 

1. 

2. 

? . . 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Figure 18. The Multivariate Input Vectors Using a Random Sample, and 
the Corresponding Output. 
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Figure 19. An Empirical Distribution Function from the Random Sample 
of Figure 18. 
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figure 20. Five tmpirical Distribution Function (a) - (e) 
from Random Samples of Size IO, and an Estimate 
of Lhe Population Distribution Funct';on 
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Figurr 22. The Mean and One Standard Dcvlation Bounds of the Five 
EOFs frcm Figure 20. 
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Obtaining a Random Permutation 

Before drawing a Latin Hypercube Sample, one method for arranging 
numbers in a random order will be discussed. One way of obtaining a 
random permutation of the integers 1 to N is to draw N numbers from a 
random number table (or a computer program) and use the ranks of those 
numbers as the random permutation. For example, starting with row 41, 
column 1 in Table 1, ten consecutive 4-digit numbers are given as 
follows, along with their ranks. 

Random 
Numbers Ranks 

9842 10 
7075 5 
2333 
3626 5 
4270 4 
0163 
8924 i 
7766 6 
9699 9 
8420 7 

Since the random ncrmbers follow a random ordering, the ranks form a 
random permutation of the integers from 1 to 10. 

Obtaining a Latin Hypercube Sample (Illustration) - 

The following steps outline the procedure for finding a Latin 
Hypercube Sample. The situation described in Figure 2 is used. A 
sample of size N = 10 will be formed using K = 4 input variables, which 
are independent of each other, and normally distributed with cr2 = 1 and 
means /II = 1,q = 2,p3 = 2, ~14 - 3 respectively. The reader should 
follow through the steps, and Figures 23-28 to ensure an understanding 
of the process. 

Step 1. Obtain uniform random numbers in each of N strata. Select a 
random starting point in Table 1 and, reading across, select 40 two- 
digit random numbers. Write these in column (b) in Figures 23-26. 
Divide each of these numbers by 1000 and add the lower bound for the 
strata from column (a). Put the result in column (cl. These are the 
stratified sample values of F(x). 

Step 2. Arrange the values of F(x) in a random order. Draw an addi- 
tional 40 random numbers from Table 2 4 d- 't numbers to reduce 
the chances of ties and put these nurnl;e~:'7~ c,lLiA (d). In the case 
of ties, redraw until there are no ties. Rank each 10 of these from 
1 to 10 in each Figure and put the ranks in column (e). 
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(a) 
Lower (b) (c) id) (e) (f) 
Bound Uniform Uniform Ranks Random 

of Random F( xl Random of Order 
Stratum Numbers Numbers (d) of F(x) 

.O 31 
1 

:2 
93 
52 

.3 70 

.4 22 

.5 84 

.6 06 
7 

:8 
70 
54 

.9 62 

Figure 23. 

(a) 
Lower 
Bound 

of 
Stratum 

.O 
1 

:2 
.3 
.4 
.5 
.G 
.7 
.8 
.9 

.031 7216 
193 

1252 
3095 
3812 

.370 1510 

.422 6878 

.584 9190 

.606 3187 

.770 4934 

.854 4055 

.962 6087 

(b) 
Uniform 
Random 
Numbers 

35 
21 
61 
44 
86 
29 
89 
16 
86 
07 

A Stratified Samp e of Size 10 for X1 from a Normal 
Popu:a;;ion with F = 1 and .2 = 1. 

(cl (d) 

F(x) 
Uniform 
Random 
Numbers 

9 .854 
2 193 
4 :370 
1 .031 
8 .770 

10 .962 

6” 
.252 
,584 

5 .422 
7 .606 

(9) (h) 

+ -1 F-l = (g)+l 

1.05 2.05 
-0.87 0.13 
-0.33 0.67 
-1.87 - .0.87 

0.74 1.74 
1.77 2.77 

-0.67 0.33 
0.21 1.21 

-0.20 0.80 
0.27 1.27 

(4 (f) 
Ranks Random 

of Order 
id) of F(x) 

(9) (h) 

(1, -1 F-l = (9)x+2 

.035 
121 

:261 
.344 
.486 
.529 
.689 
716 

:886 
.907 

8279 8 .716 0.57 2.57 
0709 1 ,035 -1.81 0.19 
2565 3 .261 -0.64 1.36 
3900 4 .344 -0.40 1.60 
5224 6 .529 0.07 2.07 
7295 7 .689 0.49 2.49 
8286 9 ,886 1.21 3.21 
098:. 2 .121 -1.17 0.83 
4063 5 .486 -0.04 1.9G 
9147 10 .907 1.32 3.32 

Figure 24. A Stratified Sample of Size 1cI for X2 from a Normal 
Population with cc = 2 and (12 = 1. 
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(a) 
Lower (b) (c) 
Bound Uniform 

of Random Fix 
Stratum Numbers -- 

.0 
1 

:2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

Figure 2 

(4 
Lower (b) (cl id) (4 (f) (9) (h) 

Id) (e) (f) (9) (h) 
Uniform Ranks Random 

) Random of Order 6-l F-1 = (g)+2 
Numbers (d) of F(x) - 

41 .041 2554 
86 186 9485 
71 1271 4242 
49 .349 6274 
51 .451 5233 
91 .591 5720 
69 ,669 2946 
68 .768 1723 
50 .850 7720 
65 .965 7896 

2 
10 

; 
5 
6 
3 
1 
8 
9 

,186 -0.89 1.11 
.965 1.81 3.81 
.349 -0.39 1.61 
,669 0.44 2.44 
.451 -0.12 1.88 
.591 0.23 2.23 
,271 -0.61 1.39 
.041 -1.74 0.26 
.768 0.73 2.73 
,850 1.04 3.04 

5. A Stratified Sample of Size 10 for X3 from a Normal 
Population with F = 2 and a2 = 1. 

Bound Uniform Uniform Ranks Random 
of Random F(x) Random of Order + -1 F-1 = (g)+3 

Stratum Numbers Numbers (d) of F(x) 

.O 50 
1 

12 
00 
13 

.3 81 

.4 40 

.5 66 

.6 32 

.7 11 

.8 99 

.9 24 

.050 2750 

.lOO 4961 

.213 3183 
.381 9444 
.440 1575 
.566 1057 
.637 3086 
711 

:899 
1964 
4827 

.924 3923 

4 
9 
6 

10 
2 
1 
5 

ii 
7 

.381 -0.30 2.70 

.899 1.28 A.28 

.566 0.17 3.17 
.924 1.43 4.43 
.lOO -1.28 1.72 
.050 -1.64 1.36 
.440 -0.15 2.85 
.213 -0.80 2.20 
.711 0.56 3.56 
.637 0.35 3.35 

Figure 26. A Stratified Sample of Size 10 for X4 from a Normal 
Population with ~1 = 3 and a2 = 1. 
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(a) (b) (cl Id) (4 if) 
Obs. Input Input Input Input output 
No. x1 x2 -A- -ii&- Y 

1 2.05 2.57 1.11 2.70 5.02 
2 0.13 0.19 3.81 4.28 4.16 
3 0.67 1.36 1.61 3.17 5.61 
4 -0.87 1.60 2.44 4.43 6.28 
5 1.74 2.07 1.88 1.72 6.02 
6 2.77 2.49 2.23 1.36 7.19 
7 0.33 3.21 1.39 2.85 10.39 
8 1.21 0.83 0.26 2.20 3.00 
9 0.80 1.96 2.73 3.56 9.02 

10 1.27 3.32 3.04 3.35 12.88 

Figure 27. A Latin Hypercube Sample of Size 10 and the Associated 
output Y. 
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Figure 28. An Empirical Distribution Function for the Output in 
Figure 27. 
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Now rearrange the numbers from column (c), putting the smallest number 
next to rank 1, the second smallest next to rank 2, and so on to the 
largest number which goes next to rank 10 in each Figure. These go in 
column If). 

Step 3. Convert the values of F(x) to a stratified sample from F(x). 
Since F(x) is 'a normal distribution function, enter the respective row 
and column of Table 2 as indicated by the value in column (fl, and 
record the table entry +-I in column (9). Add the mean of F(x) to 
column (g) to get the value of F-l, which goes in column (hl. Column 
(h) contains the stratified sample from F(x), arranged in random order. 

Step 4. Combine the individual stratified samples into a Latin 
Hypercube Sample. Transcribe the nutiers in column (hl of tigure 23 - 
into column (b) of Figure 27, without chanying the relative ordering. 
In a similar fashion the numbers in column (c) of Figure 27 come from 
Figure 24, column (d) comes from Figure 25 and column (e) comes from 
Figure 26. It is important to keep the same relative ordering of the 
numbers when transcribing them. 

Step 5. Obtain the outpu ? from the black box model using the Latin 
Hypercube Sample. The entries in row 1 of Figure 27 are enteredi:to 
a pre-progralnned calculator, or the function 

Y = X1 + X2X3 - X2lnlXI 1 + exp (X4/4) 

whichever is more convenient, to get the output Y of the black box 
model . Repeat this procedure for each row in Figure 27. 

Step 6. Plot an empirical distribution function. Plot the 10 values 
of Y from Figure 2/ onto the horizontal axis of Figure 28. Draw a 
step function, starting at zero on the left, and increasing in steps 

of l.O-at the largest value of Y. 
tion function of the output, obta 
The average of the 10 values of Y 
mean; the sample variance, sample 
the population counterparts. 

of height l/10 at each value of Y, un t 
Th i 

ined 
may 
med i 

il the graph reaches-a height 
s is an estimate of the distribu- 
using Latin Hypercube Sampling. 
be used to estimate the population 
an, etc., may be used to estimate 

EXERCISE 6. (Obtaining a Latin Hypercube Sample of size 101 

Follow the sdme steps used in the previous example, and obtain a 
Latin Hypercubc Sample of size N = 10. Use Figures 29-32 to record the 
steps involved in finding the stratified samples, and put them together 
in Figure 33 as a Latin Hypercube Sample. Obtain the output values and 
graph the empirical distribution function in Figure 34. 
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(a) 
Lower (b) (cl (d) (e) (f) 
Bound Uniform Uniform Ranks Random 

of Random F(x) Random of Order 
Stratum Numbers Numbers Id) of F(x) -- 
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.l 

(9) (h) 

-1 c#, F-1 = (g)tl 

.3 
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.7 

.8 

.9 

Figure 29. Student Problem: A Stratified Sample of Size 10 for X1 
from a Normal Population with I-I = 1 and u2 = 1. 
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(a) (b) (cl (d) (4 If) h) (h) 

Lower Uniform Uniform Ranks Random 
Bound Random I=( x) Random of Order 4-l F-1 = (g)+Z 
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Figure 30. Student Problem: A Stratified Sample of Size 10 for X2 
from a Normal Population with F = 2 and a* = 1. 
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(a) (b) (cl (d) (4 (f) (g) (h) 
Lower Uniform Uniform Ranks Random 
Bound Random F(x) Random of Order Q, -1 F-1 = (g)tz 

of Numbers Numbers (d) of F(x) 
Stratum -I 

.O 
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.7 

.8 

.9 

Figure 31. Student Problem: A Stratified Sample of Size 10 for X3 
from a Normal Population with p = 2 and 02 = 1. 
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(a) (b) (c) (d) (4 (f) (cl) (h) 
Lower Uniform Uniform Ranks Random 
Bound Random F( xl Randcmn of Order 4) -1 F-1 = (g)t3 

of Numbers Numbers (d) of F(x) 
Stratum 

.O 
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.2 

.3 

.4 

.5 

.6 

.8 

.9 

Figure 32. Student Problem: A Stratified Sample of Size 10 for X4 
from a Normal Population with CI = 3 and CJ~ = 1. 
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(a) 
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(b) 
Input 
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(cl 
Input 
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(d) 
Input 

.-EL 

(e) 
Input 

A 

(f) 
output 

Y 
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6 

7 
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9 

10 

Figure 33. Student Problem: Worksheet for a Latin Hypercube Sample 
of Size 10 and the Associated Output Y. 
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Figure 34. Student Problem: Worksheet for an Empirical Distribution 
Function for the Output in Figure 33. 
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Accuracy Obtained from Using a Latin Hypercube Sample 

In order to get some idea of how well a Latin Hypercube Sample of 
size 10 functions as a basis for estimation, the Latin Hypercube 
Sampling program was used to obtain five Latin Hypercube Samples of 
size 10 each. The e.d.f.'s for these five samples appear in Figure 
35, L+(e). The mean of these five graphs, computed in a vertical 
direction, appears in Figure 36. In the background of Figures 35 and 
36 is an estimate of the population distribution function, obtained 
using a Latin Hypercube Sample of size N = 1000. This estimate coincides 
almost perfectly with the estimate in Figures 20 and 21 which was 
obtained from a Random Sample of size N = 1000. This close agreement 
confirms the fact that both methods of sampling are providing unbiased 
estimates of the population distribution function. 

The mean EDF is plotted again in Figure 37, along with curves plot- 
ted one standard deviation above and below the mean curve. These three 
curves collectively give some idea of the spread involved using Latin 
Hypercube Samples of size 10 as estimators of the population distribu- 
tion function. The standard deviation is computed vertically from the 
five curves in Figure 35, and smoothed using a three point moving 
average. 

A Comparison of Latin Hypercube with Random Sampling 

A comparison of Figures 36 and 37 with Figures 21 and 22 shows 
that, in this case, the five Latin Hypercube Samples provide a better 
composite estimate of the population distribution function than do 
the five random samples obtained earlier. Because of sampling vari- 
ability, there is no guarantee that Latin Hypercube samples are always 
better than random samples, but all of the simulation studies we are 
aware of indicate a definite tendency in this direction. 

The Replicated Latin Hypercube Sample - - 

When five random samples are pooled together as in Figure 21 the 
result is another random sample, whose size is equal to the total pooled 
sample size. However, when five (or any number) Latin Hypercube Samples 
are pooled together as in Figure 36, the result is called a Re licated 
Latin Hypercube Sample. --T+m- Actually the inputs are more correct y ca 
the replicated Latin FTypercube Sample. Replication allows standard 
devia-tions to be computed. These standard deviations should be divided 
by/r, where r is the number of replications, to get an estimate of the 
standard errorlof the estimate of the mean c.d.f. In the previous 
example, the standard deviations would be divided byfi. The estimate 
of the true output distribution function obtained from a random sample 
of size 50, and the standard error of the estimate, is given in Figure 
38. This is different than Figure 22 which illustrated the error 
involved when using a random sample of size 10. The corresponding 

__--_I__ 
1 

Standard error refers to the standard 
deviation of an estimate 
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Figure 35. Five EDF's Obtained from Latin Hypercube Samples 
of Sire 10 Each, and an Estimate of the Population 
Uistribution Function 
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Figure 36. The Mean of the Five EDF's from Figure 35, and an 
Estimate of the Population Distribution Function 
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Figure 37. The Mean of the Five EDF's from Figure 35, and One 
Standard Deviation Bounds 

-46- 



AS AVGCDF +/- (ONC ST0 DEV/SORT(5.0)) 

i 
.3000 - 

. ;‘ooo ! 
I .I000 - 

0. 0 0 0 1 ----L 
-?. 00 

Figure 30. 

3 
-I’ 
~-.--L----l ~--I-.l----~ .--L----J---.1-. --J -_ 

?. 00 6.00 10.0 14.0 

The Mean of Five EDF's from Figure 20 
frror Bounds for a Random Sample of 5 

18.0 22.f 

and One Standard 
ze N = 50 

-47- 



figure for a Replicated Latin Hypercube Sample (5 samples of 10 each) is 
given in Figure 39, showing the estimated distribution function and the 
one standard error bounds. This may be contrasted with Figure 37 which 
illustrtited the standard error involved when using a single Latin 
Hypercube Sample of size 10. 

Estimating Other Population Parameters 

Other population quantities are estimated in the usual way from 
the sample outputs. For example, the sample mean is used to estimate 
the population mean. Each of the five random samples provides a sample 
mean, as does each of the five Latin Hypercube samples. These are 
listed below. 

True population mean ~1 = 7.585 

Random Sample Latin Hypercube Sample 
Estimates Estimates 

1. 8.504 1. 7.672 
2. 9.736 2. 7.682 
3. 10.778 3. 9.266 
4. 8.825 

54: 
7.735 

5. 10.029 7.867 
ave. 9.575 ave. 8.044 

Latin tiypercube Samples appear to provide better estimates of most, if 
not all, population parameters when compared with Random Samples. 
However, this observation is based only on empirical evidence, not 
theoretical proof, and may not be true in particular cases. 

Changes in the Input Distributions -----------___.- ______ ____ 

If the input distributions are changed, the output distribution 
will !)e changed also. Just how much the output distribution function 
will change depends on the degree of change in the input distributions 
and the strength of the association between the output and each input 
variable. For purposes of illustration, the input distributions in the 
example depicted in Figure 2 were changed from normal to uniform for 
each of the four variables. The range of each variable remained the 
same. Now the samples of observations from each distribution will not 
tend to be in the center of the range, as with a normal distribution, 
but will tend to be spread evenly from one end of the range to the 
other. This increased emphasis on values in the tails of the range can 
be expected to alter the output distribution somewhat, but the degree 
of change is difficult to predict. 
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Illustrating the Effect of a Change in Input Distributions 

To see how much change is induced by changing the four input 
distributions from normal to uniform, a Latin Hypercube Sample of 
size N = 1000 was obtained using the Latin Hypercube Sampling Program. 
The steps involved in finding such a sample are similar to those 
described earlier. That is, in Figures 23-26, columns (a) through (f) 
would remain unchanged, but to convert from F(x) to F-l, as given in 
column (h), the inverse function for a uniform distribution would be 
used instead of the inverse function for a normal distribution function. 
The result for a sample of size 1000 is given in Figure 40 (dark line) 
and contrasted with the previous case involving normal distributions 
(light line). The large sample size enables these graphs to be treated 
as if they were the true output distribution functions. The change in 
the distribution is considerable, which illustrates the importance of 
being as accurate as possible in specifying the input distribution 
functions. 

The Actual Correlation on the Input Values 

Recall that in drawing a multivariate random sample, the process 
depended on numbers from a random number generator or, in this case, 
Table 1. Since the numbers drawn in this way are supposed to be inde- 
pendent of one another, any correlation induced should be spurious 
correlation due simply to usual random fluctuation one might expect to 
encounter in random samples. 

The same is true for the Latin Hypercube Samples, which were depen- 
dent on random numbers for the pairing of values of X with X2 for 
instance. Since the values of XI and X2 were permute a at random, any 
correlation between XI and X2 should be spurious correlation. To see 
how much correlation actually exists between these randomly permuted 
values, the actual correlation coefficient was computed on the values 
of XI and X2 given in columns (b) and (cl of Figure 27. That correla- 
tion is rI 

f 
= .3595 which is much less than the 5% critical value .632, 

so a corre ation this large can easily be due to chance fluctuations. 
The entire correlation matrix for the columns in Figure 26 is given in 
Figure 41. 
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Xl X2 X3 
I 

X2 .3595 

X3 -.2822 -.1024 

X4 -.8535 -.3170 .5565 

I Figure 41. The Correlation Matrix for the Latin Hypercube Sample 
I in Figure 27. 

Note that five of the six correlation coefficients are nonsignificant 
at the 5% level. The correlation between X1 and X4 is -.8535, which 
exceeds in absolute value the critical value, but this is merely a 
chance occurrence, since the sampling method does not induce any system- 
atic correlation in the values. Also, the critical value .632 applies 
to random samples; the exact critical value for Latin Hypercube Samples 
is unknown. 

The Rank Correlation on the Input Values 

Since the exact behavior of the correlation coefficient from Latin 
Hypercube Samples is not known, and since its behavior even with random 
sampling is unknown, if the input distributions are not normal, it makes 
more sense to work with the rank correlation coefficient, known as 
Spearman's r)lo, and which is simply r computed on the ranks. of the data. 
The behavior of the rank correlation coefficient is the same for Latin 
Hypercube Samples as it is for random samples, and is the same for all 
types of input distributions. 

The ranks of the Latin Hypercube Sample of Figure 27 are given in 
column (e) of Figures 23-26, and are reproduced in Figure 42 for the 
reader's convenience. The rank correlation matrix for these ranks is 
given in Figure 43. The 5% critical value for the rank correlation 
coefficient is .6364. Note that, as before, the only correlation that 
exceeds this value in absolute value is the rank correlation between 
XI and X4. Some of the other correlations tend to be large also, such 
as "34 = 5121 between X3 and X4. 

Some Undesirable Effects of Spurious Correlation 

These large correlation coefficients that occur by chance after a 
randoln permutation of the input variables are annoying for several 
reasons. For one, the independence assumption bettieen input variables 
implies that the population correlations equal zero. Since the sample 
correlations act as estimates of the population values, it would be 



Run 
Number 

1 9 8 2 4 

2 2 1 10 9 

3 4 3 4 6 

4 1 4 7 10 

5 8 6 5 2 

6 10 7 6 1 

7 3 9 3 5 

8 6 2 1 3 

9 5 5 8 8 

10 7 10 9 7 

Figure 42. The Ranks of the Input Variables in the 
l.atin Hypercube Sample of Figure 27. 

Ll x2 - 3 

x2 .4788 

x3 -.2848 -.0667 

x4 - .8061 -.2848 .6121 

Figure 43. The Rank Correlation Matrix for the 
Ranks in Figure 42. 
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desirable for the sample correlations to be close to zero if possible. 
In this way, the sample input values would be more "typical" of the 
population, and this should be reflected in more c 
put being more typical of the population output. 

A second reason for wanting smaller correlati 
correlation tends to introduce an effect known as 
which is acceptable if the variables are actually 
be undesireable if the variables are actually 

onfibence in the out- 

on is that large 
multi-colinearity, 
related, but which may 
independent. For 

these reasons, a method for reducing sample correlations of input values 
is desirable. Such a feature is built into the Latin Hpercube Sampling 
Program. 

Reducing the Spurious Correlation 

The Latin Hypercube Sampling program does not obtain a random pair- 
ing of the input vectors in either the random sampling option or the 
Latin Hypercube option. Rather, it pairs the variables so they will 
have correlation coefficients closer to the population correlation 
coefficients, in order to reduce the undesirable effects associated with 
spurious correlation. For the first random sample of size 10, whose 
e.d.f. is given in Figure 20(a), the input variables were arranged so 
that their ranks matched the ranks given in Figure 44. That is, instead 
of being satisified with a random ordering such as in column (e) of 
Figures 14-17, the values are arranged so that their ordering agrees 
with the ordering in Figure 44. Then the rank correlations are given 
in Figure 45. Note that the largest rank correlation in Figure 45 is 
.2217, and that four of the six correlations are less than .l. These 
correlations as a group tend to be closer to the zero population value 
that is appropriate for independent input variables. Note also that 
the rank correlations in Figure 45 depend only on the ranks in Figure 44, 
and not in any way on the input distributions or the particular input 
values. 

An Illustration of Reducing the Correlation --- 

The same rank ordering given in Figure 44 was used on both the 
first ralidom sample and the first Latin Hypercube Sample, whose e.d.f. 
is given in Figure 35(a). To illustrate how this is accomplished, the 
example given in Figures 23-27 will be reworked so that the correlation 
matrix of the input values wiil be the same as in Figure 45. This means 
that the ranks of the input values need to agree with the columns of 
Figure 44. For variable X1 the original ordering and the new ordering 
are given in Figure 46. The original ordering was given in Figure 23, 
column (h) and the original ranks were given in the same figure, column 
(e). The new rank ordering for X1 is given in Figure 44, column (b). 
Since the new ordering has rank 8 in run number 1, the X1 value with 
rank 8, X1 = 1.!4, is now listed first. All of the values of X1 are 
thus arranged to agree with the new rankings, as illustrated in Figure 46. 
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(a) 
Run 

Number -- 

(b) (cl 

x1 -52 

(d) 

-53 

(4 

-id 

1 8 6 1 9 

2 7 7 10 5 

3 2 2 6 6 

4 4 5 3 7 

5 9 10 5 3 

6 6 4 9 1 

7 1 9 2 2 

8 10 3 4 8 

9 5 1 7 4 

10 3 8 8 10 

Figure 44. The Rank Ordering Induced on the Random Sample of Size 
N = 10, Whose Output EDF is Given in Figure 20(a). 

x2 - .0944 

x3 .0938 .0200 

x4 .2217 -.0252 -.2046 

Figure 45. The Rank Correlation Coefficients for the Ranks in 
Figure 44. 
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(4 
Run 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Figure 46 

(b) 
Original 
Ordering 
Fig. 23, 
col. (h) 

2.05 

0.13 

0.67 

-0.87 

1.74 

2.77 

0.33 

1.21 

0.80 

1.27 

(cl 
Original 

Ranks 
Fig. 23 
col. (e) 

9 

2 

4 

1 

8 

10 

3 

6 

5 

7 

Cd) 
New 

Ranks 
Fig. 44 
col. (b) 

8 

7 

2 

4 

9 

6 

1 

10 

5 

3 

(4 
New 

Ordering 

1.74 

1.27 

0.13 

0.67 

2.05 

1.21 

-0.87 

2.77 

0.80 

0.33 a 
Changing the Order of the Values of X1 to Reduce the 
Spurious Correlation. 
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Similarly the values of X 
f 

are arranged in the ordering suggested 
by the ranks in column (c) of igure 44. Columns (d) and (e) of Figure 
44 define the new orderings of the values of X3 and X4. When all of 
the input variables are arranged in the order specified by Figure 44, 
the'ir rank correlation matrix will be the same as the one in Figure 45. 
Of course, the output values Y will not be the same as before since the 
combinations of input values are now different. However, these new 
output values are treated the same as any other output values; e.d.f.'s 
are plotted as they were in Figures 20 and 35, sample means and sample 
standard deviations are computed, and so on. 

Simulating Correlated Input Variables ____.- -.- 

The same principle that is used to make the sample correlations 
close to zero is used by the Latin Hypercube Sampling program to make 
the sample correlation close to any target correlation. That is, first 
the pairings of ranks are found that result in a desired sample rank 
correlation coefficient, and then the sample values are arranged in the 
order suggested by the ranks. These sample correlation coefficients 
will not equal exactly their target correlations, just as the sample 
correlations in the previous example did not equal exactly zero, but 
they will usually be fairly close. The Latin Hypercube Sampling program 
furnishes a matrix of ranks to use for the ordering of the sample values, 
and also furnishes the sample correlation matrix associated with those 
ranks. If the sample correlation matrix is unsatisfactory for any 
reason, the program can be used again and again to furnish new rank 
orderings until a rank ordering with a satisfactory sample rank correla- 
tion matrix is found. (See Iman and Conover, 1980). 

Illustration of Correlating Input Variables -- 

Suppose the target correlation matrix is given by Figure 47. These 
values are supplied to the Latin Hypercube Sampling program, and a 
matrix of ranks that may be used is supplied. One such matrix is given 
in Figure 48. Note that any sample of size 10 for each of four input 
values may be arranged in the order suggested by Figure 48. It does 
not matter if a random sample is used, or if a Latin Hypercube Sample 
is used, or wh:t types of input distributions are used. When the sample 
values have the ordering of Figure 48, they will have the sample rank 
correlation coefficients given in Figure 49. 

The sample values from the Latin Hypercube sample given in Figure 27 
are rearranged in the order suggested by Figure 48. First the XI values 
are rearranged so that their rank ordering is changed from the former 
order, 9, 2, 4, 1, 8, 10. 3, 6, 5, 7, as given in column (e) of Figure 23, 
to the new order 1, 9, 8, 3, 7, 4, 2, 6, 5, 10, as given in column (b) 
of Figure 48. This is the same type of procedure that was illustrated 
in Figure 46, only the new ordering is different, since now the objective 
is to achieve correlations close to zero, as was formerly the case. 
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x1 2 x3 - - 
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Figure 47. A Target Correlation Matrix for Four Input Variables. 

(a) 
Run 

Number 

(b) 
Xl 

(cl 
x2 

(d) 
x3 

(e) 
x4 

1 1 
2 9 
3 a 

; : 
6 4 
7 2 
a 6 
9 5 

10 10 

2 2 
10 9 
a a 
3 10 
9 7 
7 3 
1 6 
5 4 
4 1 
6 5 

3 
LO 
a 
6 
9 
7 
2 
5 

i 

Figure 48. Rank Orderings to Achieve Correlations Close to Those in 
Figure 47. 

3 52 
x2 x2 .7939 .7939 

x3 x3 .3212 .3212 .3576 .3576 

x4 x4 .5152 .5152 .a545 .a545 .6606 

Figure 49. Figure 49. Sample Rank Sample Rank Correlation Matrix for Ranks Correlation Matrix for in Figure 48. 
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After rearranging the order of the sample values for X1 through X4 
into the order suggested by the ranks given in Figure 48, the new 
arrangements are given in Figure 50. The values given in columns (b) 
through (e) of Figure 50 are obtained from column (h) of Figures 23 
through 26 respectively. The ranks in Figure 50 are the ranks in 
Figure 48, so the sample rank correlation matrix of the data given in 
Figure 50 is given by Figure 49. 

Note that even though this example happened to use a Latin Hypercube 
Sample, a random sample could have been used just as well. All that is 
reauired is that the values have the same orderinq a; qiven in Figure 

in iigure 49. 48,' and the sample rank correlation matrix will be thelone 

A New Output Distribution Function 

For the sake of illustration, the new combinations of input values 
shown in Figure 50 were entered into the black box model. The output 
values are listed in column If) of Figure 50. These are d ifferent out- 
put values than those given in Figure 27, because the inpu t values occur 
in different combinations than before. The e.d.f. is therefore differ- 
ent than before. This is as it should be because the population distri- 
bution function being estimated is different than it was before. That 
is, the true output distribution function depends on what correlations 
the input variables have, as well as what the input distributions are. 
The difference in the output distributions due to the correlations 
structure, Figure 47, being assumed rather than assuming independence 
of the input variables is shown by the difference in the two curves in 
Figure 51. The darker curve in Figure 51 is the true output distribution 
when the inputs are correlated, and the lighter curve is the one which 
results from independent inputs. Because of this difference, it is 
important for the input variables to simulate the population correlation 
matrix, through the use of some device 
Latin Hypercube Sampling program. 

How Many Runs are Needed? 

One of the main advantages of the 
is that the number of runs can be very 
of variables involved. In fact, there 
of runs (input vectors) if the user is 
the statistical analyses that are avai 

To be able to use the correlation 

1 

such as the one built into the 

Latin hypercube sampling procedure 
small, regardless of the number 
s no lower limit to the number 
willing to sacrifice some of 
able with larger numbers of runs. 

reduction techniques, the number 
of runs needs to exceed the number of variables. This procedure is more 
stable if the number of runs exceeds the number of variables by approxi- 
mately 252. This is also a minimum requirement for stability in the 
regression procedures and partial correlation coefficients described in 
the next part of this tutorial. Of course, more runs than this results 
in even more stability, and for best results, the number of runs should 
be about two or three times the number of variables involved if time 
and money permit. 
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(a) 
Run 

Number 

1 

2 

3 

4 

5 

6 

7 

a 

9 

10 

(b) (cl (d) (4 
Input I np I.: ̂, Input Input 
-Ll.--- (rank) x2 (rank) X 3 (rank) x4 (rank) 

-0.87 (1) 0.83 (2) 1.11 (2) 2.20 (3) 

2 .i)5 (9) 3.32 (10) 3.04 (9) 4.43 (10) 

1.74 (8) 2.57 (a) 2.73 (8) 3.56 (a) 

0.33 (3) 1.36 (3) 3.81 (10) 3.17 (6) 

1.27 (7) 3.21 (9) 2.44 (7) 4.28 (9) 

0.67 (4) 2.49 (7) 1.39 (3) 3.35 (7) 

0.13 (2) 0.19 (1) 2.23 (6) 1.72 (2) 

1.21 (6) 1.96 (5) 1.61 (4) 2.85 (5) 

O.LO (5) 1.60 (4) 0.26 (1) 1.36 (1) 

2.77 (10) 2.07 (6) 1.88 (5) 2.70 (4) 

(f) 
output 

Y -- 

1.90 

12.79 

9.77 

9.23 

11.25 

7.44 

2.48 

6.03 

2.98 

6.52 

Figure 50. New Input Values with Rank Correlation Matrix Given by 
Figure 49. 
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TUTOR 

The Pur_pose of the Course -- .___ 

IAL ON THE REGRESSION PROGRAM 

This is a tutorial on rcgressioti methods. It introduces and discusses 
the topics of regression on one variable, rank regression on one variable, 
and then proceeds to the case of regression on several variables, using raw 
data or ranks. Stepwise regression is discussed as a means of selecting 
important variabies. Other regression pr(Jcedures known as forward regression 
and backward regression are also mentioned. At the conclusion of this tutorial 
the reader should be able to understand better the regression program described 
in "Stepwise Regression with PRESS and Rank Regression (Program Users Guide)" 
by Iman, Davenport, Frost and Shortencarier (1980). 

The Need for Regression Methods 

Regression methods arc useful for identifying and/or defining the 
relationship between a variable of interest Y and one or more observable 
variables, called independent variables and denoted by X1, X2, etc. Although 
regression methods are used in a variety of ways, their primary importance 
on the study of geologic models is for identifying the input variables XI, 
x2, . . . which are the most influential on the output variable Y. For this 
specific goal of identification of important variables, some regression 
methods are particularly useful. These include rank regression and stepwise 
regression. To lead into these topics, simple regression <s introduced 
first. 

';imp!e Linear Regression -- -- 

Simple regression refers to the case where only 
able is considered. Observations (~1, xl), (~2 9 x2) I 
random variable (Y, X) are analyzed to see what We 
exist between Y and X. In all but artificial s ituat 
ship between Y and X cannot be expressed mathematics 

one independent vari- 
. 0 . " on the bivariate 

of relationship may 
ons, the exact relation- 
ly, so regression methods 

are directed toward aooroximatina the exact relationship between Y and X 
with mathematical es=. The simplicst mathematical equation is a straight 
line, so a straight line is the most popular equation to fit to a set of - 
points such as the observations (~1, xl), (~2, x2), . . . . (yn, xn). 
The equation of a straight line is 

y=a+bx 

The ,$nalysis using linear regression begins with finding estimates a* 
and h so that the straight line yill ayree well with the data. The-most 
popular method of finding 2 and b is called the method of least squares. - 

The Method of Least Squares ___--__I 

When an est imdted regression equ;ltion is obtained, the observed 
values of X may be substituted into the regression equation Lo get values of 
Y which are call ed predicted values of1 and are denoted by Y. In the case 0 
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of simp iven by 

where ^a 

le linear regression the predicted values are g 

Q = "a t ^bx 

and ^b arc sample estimates. The least squares method for 
findin; i ana b chooses the numbers that minimize the sum of squares - - 

ss = C(Y - Q)2 

This method assures that the predicted values ? will be as close as pos- 
sible (in the least squares sense) to the observed values Y. 

The Least Squares Equations ~___ 

In this case of one independent variable the least squares solu- 
tions ;lor 2 and h are simple to express - 

n 
1: Xiyi 

$ = i=l 
- (zXi)(cYi)ln 

- 
n 
I: Xi ' - (XXi)*/ll 

i-1 

h 

a = h (Cyi - bcxi) 

(1) 

(2) 

and may be computed on a h,?nd calculator. When there arc two or more 
independent variables the calculations become much more difficult and are 
usually performed 011 a computer. 

Example 

A simple exampie is used to illustrate the computations involved in 
the least squares solution to simple linear regression. The same example 
wi:l then be used to introduce rank regression. Suppose five observations 
on (Y, X) are obtained as given in Figure 1. The least squares coefficients 
are found using Equations (1) and (2). 

j z $29.0 - (1.226)(28.4)) = -1.164 
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A graph of the five observations and the least squares regression line 

? = -1.164 + 1.226X 

are given in Figure 2. 

Obs. 
Pair Y X X2 XY 

1 1.4 2.3 5.29 3.22 
2 5.3 4.1 16.81 21.73 
3 4.8 5.6 31.36 26.88 
4 6.5 7.2 51.84 46.80 
5 11.0 9.2 84.64 101.20 

Total 29.0 m -7i-m-a 799.83 

Figcre 1. Worksheet for Finding 1 and 6 Using Least Squares. 

The linear regression model appears to fit the points in Figure 2 
fairly well. The residuals (Y - Y) are a measure of how well the linear 
regression model acrx?ith the data points 

residual -- ‘i - ? = Y - (-1.164 + 1.226X) 

This choice of coefficients, i = -1.164 and 6 = 1.226, results in the 
smallest possible sum of squares achievable using a straight line to fit the 
d?ta. In this case the minimum value !s SS = 5.0803, as given in Figure 3. 

Ohs. 
Pair Y X ? Residual (Y-Q)2 

1 1.4 2.3 1.6558 -0.2558 .0654 

2 5.3 4.1 3.8626 1.4374 2.0661 

3 4.8 5.6 5.7016 -0.9016 .8129 

4 6.5 7.2 7.6632 -1.1632 1.353c 

5 11.0 9.2 lU* 1152 0.8848 .7829 
m 

Figure 3. The Residuals and Sum of Squares from Figure 2. 

Rank Regression I. --- 

For the =ct of data given in Figure 1 the linear regression model 
appears to bc satisfactory, so no further analysis would usually be 
required. However, merely for the sake of illustration, rank regression 
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Ficlurc 2. ., A Graph of the Data in Figure 1, and 
the Least Squares ReGression Line. 
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is used on the same set of data and comparisons are made with regression on 
the raw data. 

Rank regression involves simply the usual regression methods applied 
to the ranks of the data rather than to the data themselves. The smallest 
observation has rank 1, the second smallest has rank 2, and so on to the 
largest of n observations which has rank n. In case several observations in 
a group are all exactly equal to each other (tied), the rank assigned to 
each is the average of the ranks that would have been assigned to them had 
they not been tied. This is called the average ranks method of handling 

, ties. In rank regression each variable is ranked by itself; that is, the 
observations on Y are ranked separately from the observations on Xl, which 
are in turn ranked separately from the observations on X2, and so on. The 
ranks of the data in Fiqure 1 are given in Figure 4. Note that the ranks ry 
of the Y's are obtained-independently of the ranks rx of the X’S. 

The least squares equation on the ranks is obtained using Equations 
(1) and (2) <just as on the original data. 

ir = Cr, r y - (Cr,)Pry l/n (3 

):r 2 
X 

- (1:rx)2/n 

= 54 - (15)(15)/5 = 2 = .g -- 
55 - (15)2/5 IU 

(4) Gr = 1 (Lr 
n Y 

- bcr,) 

=5 
1 (15 - (.9)(15)) = .3 

Therefore ttie least squares equat ion on the ranks is given by 

h 
ry = ir + ^br rx 

= .3 + .9 rx 

(5) 

Ohs. 
Pair Y X ry TX rx 

2 
rxry 

1 1 1 1 
3 2 4 6 
2 3 3 6 
4 4 16 16 
5 5 25 25 - - - - 

1 1.4 2.3 
2 5.3 4.1 
3 4.8 5.6 
4 6.5 7.2 
5 11.0 9.2 

Total 15 15 55 54 

Figure 4. Worksheet for Least Squares on the Ranks 

-7o- 



2 
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I+ -+---rx 
1 2 3 4 5 

Figure 5. A Graph of the Hanks from Figure 4 and 
the Least Squares Line on the Ranks. 
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A graph of the ranks of the data, and the least squares straight 
line computed for the ranks is given in Figure 5. Again note that the linear 
model fits the ranks fairly well, just as the linear model fit the data 
fairly well in Figure 2. This is a typical relationship between rank regres- 
sion and ordinary regression. If the simple linear regression model fits 
the data well, it usually works well on the ranks also. However, rank regres- 
sion is useful in situations where simple linear regression does not work 
satisfactorily with the data. This point will be illustrated in a later 
example, but first the residuals from the rank regression procedure will be 
computed. 

Converting Predicted Ranks to Predicted Values 

There are two types of residuals from rank regression. One type 
of residual is the difference between the predicted ranks of Y and the actual 
rank of Y, which is obtained in the same way ? was obtained in ordinary 
regression, as in Figure 2, but using ranks ry and rx instead of Y and X, 
and using the equation for rdnks Equation (5) instead of the least squares 
line for the data. These are called rank residuals and are not useful because 
they convey no information on how well the data are being fitted, only infor- 
mation on how well the ranks are being fitted. 

To see how well the data are being fitted, the predicted rank r^ of 
each observation Y is obtained from-Equation (5). These predic ed r 

ranks are converted to predicted values Y of Y by comparing the predicted 
ranks with the actual ranks of the five observations on Y, and ob-taining 
predicted values of Y on the basis of this comparison, using interpolation 
if necessary. 

Obs. 
Pair 

1 

2 

3 

4 

5 

Tota 

rY rX 

1 1 

3 2 

2 3 

4 4 

5 5 

h 

rY 

1.2 

2.1 

3.0 

3.9 

4.8 

A A ,. 

Y Y Residual (Y-Yy 

I?.08 1.4 .68 .4624 

4.85 5.3 -.45 .;LO25 

5.30 4.8 .50 .2500 

6.38 6.5 -.12 .0144 

10.10 .O -.90 .!-I103 -- 

ss = 1.7393 

11 

1 s from Rank Regression Figure 6. Worksheet for, Finding Residua 

-'[ ?- 

- 

a 



10 - 

5 

I 
5 

Figure 7. A (rslh of the Data in Figure 
I;n A I - tie Rank Regression Curve 
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For example, to find the i corresponding to the first 
vations (~1, xl) =.(1.4,, 2.3), enter the rank of x1, rx = 

pair of obser- 
1, into Equation 

to get the prcdlcted ranK of ~1; 

h 
ry = .3 + .9 rx 

= .3 + (.9)(l) 

= 1.2 

The predicted Y corresponding to a predicted rank 1.2 is found by inter- 
polating between the actual observed Y with rank 1, Y = 1.4, and the actual 
observed Y with rank 2, Y = 4.8; 

; = 1.4 t 1.2 - 1.0 (4.8 - 1.4) = 2.08 
2.0 - 1.6 

This predicted value j = 2.08 is compared with the observed value in the 
first pair Y = 1.4 to get the residual 0.68. A summary of the calculations, 
including the residuals and the sum of squares is given in Figure 6. 

The Residuals Sum of Squares (SS) 

Note that the residuals in Figure 6 tend to be smaller than the 
residuals found from the least squares fit to the origirlal data, given in 
Figure 3. The sum of squares from Figure 6 

is much smaller than 

The residuals sum of 
obtained from a stra 
give a straight line 
rank regression pred 
sion equation adapts 

squares from Figure 3 is the smallest that can be 
ght line fit to the data. But rank regression does not 
fit to the data. To show this, a graph of all possible 
ctions is given in Figure 7. Note that the rank regres- 
itself to the points observed, but is steadily increacing 

as x increases. Rank regression equatlons are monotonically increasing or 
decreasing, and therefore work very well with data that tend to show a monoto- 
nic relationship, even though the relationship may be nonlinear. 

ss = 1.7393 (Rank Regression) 

the sum of squares from Figure 3. 

SS = 5.0803 (Regression on Data) 
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Exercise 1 

1. 

2. 

3. 

4. 

Use the following steps to find the predicted value j = 4.85, for 
the second pair of observations (~2, x2) = (5.3, 4.1), as given In 
Figure 6 front rank regression. See Figure 4 for the original data. 

Find the rank of x2 = 4.1. 

Substitute the rank of x2 into Equation (5) to get a predicted rank 
for ~2. Compare with the value from Figure 6. 

Find the two observed values of Y whose ranks straddle (just above 
and just below) the predicted rank for y2. 

Interpolate between the two observed values for Y from step 3, to 
get a predicted value for y2 that corresponds to the predicted rank 

OF y2 from step 2. This predicted value should match the value 
= 4.85 from Figure 6. 

The Flexibility of Rank Regression for Fitting Monotonic Data -. 

The ability of the rank regression curve to adapt to a set of points 
which exhibit a nonlinear, but monotonic relationship is shown more dramati- 
cally in Figure 9. Jn Figure 8 nine points are obtained from the equation 
y = ex, with no error of measurement added. The basic premise her-e is that 
a good regression technique should work well if the conditions are ideal. 
Here the conditions for rank regression are ideal, since the relationship 
between X and Y is monotonic. Because of this monotonic relationship between 
X and Y, the ranks of X show an exactly linear relationship with the ranks 
of Y. That is, \'.he smallest X is paired with the smallest Y, so rank 1 for 
X is paired with rank 1 for Y. The second smallest X is paired with the 
second smallest Y so rank 2 for X is plottel' against rank 2 for Y, and so on 
for all Of the ranks. The ranks for the data in Figure 8 are graphed in 
Figure 10. This result- in a rank regression equation in Figure g which 
consists of a series of line segments connecting the observed points. The 
fit is excellent. The least squares straight line is shown also, to drama- 
tize the limitations of that method. 

An Example with Real Data 

The first %wo examples both involve artificial data. The first 
example serves merely to introduce the methodology of simple linear regres- 
sion and rank regression. The second example illustrates a monotonic rela- 
tionship between X and Y, and shows the ability of rank regression to adapt 
to data of this type. A third example will now be presented. It involves 
real data, where the independent variable X represents chemical measurements 
obtained using a relatively inexpensive titration method, and the dependent 
variable Y represents corresponding measurements obtained by a more expensive 
extractir,n and weighing technique. Twenty samples were obtained, and each 
sample was thoroughly mixed just before being split and analyzed by both 
methods. 

This set of data is presented and thoroughly analyzed by Daniel and 
Wood (1971). Other authors have used these data in their papers on new 
regression methods, so this set of data is now a classical standard on which 
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x: -2 -1.5 -1 -0.5 0 0.5 1. 1.5 2 

Y = ex: .14 .22 .31 .61 1.00 1.65 2.72 4.48 7.39 

Figure 8. Nine Values from the Function Y = ex. 

/ 
i 

y = 2.063 + 1.584x / 

- 
I / 1 1 1 

-2 -1 0 ---r---T 
, 

Figure 9. Rank Regression Curve and the 
Least Square Line for 9 Points 
from the Relationship ‘I = ex. 
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Figure IO. Graph of the Ranks of X and Y 
as Given in Figure 9. 
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new regression methods are tested. The data are somewhat unrealistic in 
that they follow a linear relationship very closely, with a correlation 
coefficient of .997. Most bivariate data sets encountered in applied work 
have a smaller correlation, are somewhat nonlinear in appearance, and contain 
occasional outliers which cannot be discarded because they represent legiti- 
mate measurements. Rank regression is more suited to the messy types of 
data, with nonlinearities and outliers, than to this type of data which is 
adequately explained by ordinary linear regression. Rut merely for the sake 
of illustration, rank regression is applied to this set of data and the 
results are comoared with the fit from ordinary reqression. The data and 
the residuals are given in 'igure 1 

Obs. 
No. 

1 
2 

Y - 

76 
70 

X ; -- 

75.02 
7G.51 

Residual 

123 
109 

-98 
- .51 

3 55 62 55.40 - .40 
4 71 104 68.91 2.09 

5 55 57 53.79 1.2i 
6 48 37 47.36 .64 

7 50 44 49.61 .39 
a 66 100 67.62 -1.62 

9 41 16 40.60 .40 
10 43 28 44.46 -1.46 

11 82 138 79.a4 2.16 
12 68 105 69.23 -1.23 

13 
14 

aa 
58 

159 
75 

06.59 
59.58 

1.41 
-1.58 

15 64 a8 63.76 .24 
16 88 164 88.20 - .20 

17 
ia 

19 
20 

a9 169 89.81 
aa 167 89.17 

84 149 a3.38 
a8 167 89.17 

- .a1 
-1.17 

.G2 
-1.17 

Least Squares 

SS = 27.23 ss = 21.94 

Rank Regression 
I\ 
Y Residual 

75.85 .15 
70.98 - .9a 

56.11 -1.1.1 
68.01 2.99 

55.00 0.00 
48. ia - .la 

50.26 - .26 
66.04 - .04 

41.23 - .23 
43.51 - .51 

al.75 .25 
69.99 -1.99 

85.49 2.51 
,58.25 - .25 

64.06 - .06 
88.00 0.00 

88.95 .05 
aa. 0.00 

83.89 .ll 
88.00 0.00 

Figure 11. A Comparison of Least Squares Linear Regression on the Data with 
Regression on the Ranks, Using Data from Daniel and Wood (1971). 
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Comparing Rank Regrcss;on With 0rdinar:y Regression -- 

A comparison of the residuals in Figure 11 shows that the residuals 
from the rank regression are smaller than the residuals from ordinary linear 
regression for 15 out of the 20 points. The sum of squares of the residuals 
is only 21.94 for rank regression, compared with 27.23 for ordinary linear 
regression. The point to be made with this example is tht rank regression 
works well even with data thdt follow a close linear pattern. 

The analysis of the data in Figure 11 was performed using the regres- 
sion program described in Iman et al (1980). The slight difference in these 
results and the results reported in Iman and Conover (1979) is due to a 
difference in the method of handling ties. 

Multiple Regression 

The regression examples with one independent variable are useful 
for illustrating the principles behind ordinary regression and rank regres- 
sion. When the number of independent variables is two or more these same 
principles apply but they become very difficult to illustrate. With two 
independent variables the least squares method on the data is used to fit a 
plane to data in the three dimensional space spanned by Y, X1 and X2. The 
rank regression method uses the least squares method to fit a plane to the 
ranks of the data, in the three dimensional space spanned by the ranks of Y, 
the ranks of X1, and the ranks of X2. When this plane is translated back 
to the three dimensional space spanned by Y, X1 and X2, %he result is a 
series of connected mini planes that adapt to the data, in a monotonic manner, 
just as the series of line segments adapted to the data in the case of cne 
independent variable. The extension to include more than two independent 
variables is simple in concept, but impossible to visualize because the 
discussion involves hyperplanes in many dimensional space. 

An Example of Multiple Regression --- 

An example is now presented which illustrates the results of ordinary 
multiple regre::sion and multiple regression on the ranks. The data given in 
Figure 12 are from BrownTee (1965), and have become somewhat of a standard 
set of data for use in comparing new regression methods with old methods. 
The.y follow a linear regression pattern cl 

s 
sely, with R2 = .914. The measure 

of fit for a regression model is l~sually H-, which states the pro>ortion of 
varidbility of Y that is explained by the regression model. !? An R of ,914 
means that 91.4% of the variation in Y is explained by regression on th 
variables X1, X2 and X This figure is much closer to 100% than the R 5 

? 
. 

values normally encoun ered in applied work, 

The datd in Figure 12 represent 21 successive days Of operation of 
a plant oxidizing ammonia to nitric acid. The variables in Figure 12 are as 
follows: 

Y = 10 times the percentage of the ingoing ammonia that is lost as 
unabsorbed nitric oxides; it is an indirect measure of the yield of 
nitric acid. 

x1 = the flow of air to the plant 
-79- 



Ohs. 
No. 

1 

2 

3 

4 

5 

6 

7 

a 

9 

10 

11 

12 

I. 3 

14 

15 

16 

17 

18 

19 

20 

21 

F i gure .2 

Y Xl x2 x3 

42 80 27 a9 

37 80 27 88 

37 75 25 90 

28 62 24 a7 

18 62 22 a7 

18 62 23 a7 

19 62 24 93 

20 G2 24 93 

15 58 23 a7 

14 58 la a0 

14 58 18 a9 

13 58 17 aa 

11 58 18 a2 

12 58 19 93 

8 50 ia a9 

7 50 ia 86 

a 50 19 72 

a 50 19 79 

9 50 20 80 

15 56 20 a2 

15 70 20 91 

Multivariate Data From Brownlee (1965 



- 

8 

Obs. 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

l@ 

11 

12 

13 

14 

15 

16 

17 

ia 

19 

20 

21 

Y - 

42 

37 

37 

28 

18 

18 

19 

20 

15 

14 

14 

13 

11 

12 

8 

I 

8 

8 

9 

15 

15 

Least Squares 
A 
Y Residual- 

38.77 3.23 

38.92 -1.92 

33.44 4.56 

22.30 5.70 

19.71 -1.71 

21.01 -3.01 

21.34 -2.39 

21.39 -1.39 

18.14 -3.14 

12.73 1.27 

11.36 2.64 

10.22 2.78 

12.43 -1.43 

12.05 -0.05 

5.64 2.36 

6.09 .91 

9.52 -1.52 

8.46 -!I.46 

9.60 -0.60 

13.59 1.41 

22.24 -7.24 

ss = 178.83 

Rank Regression 
h 
Y Residual -- 

41.64 0.36 

41 .a3 -4.83 

37.00 0.00 

19.01 a.99 

18.00 0.00 

18.36 -0.36 

18.85 u.15 

18.85 1.15 

15.00 0.00 

12.47 1.53 

12.21 1.79 

11.11 i.a9 

12.43 -1.43 

13.43 -1.43 

a.00 0.00 

8.00 -1 .oo 

8.87 4.87 

8.86 -0.86 

10.70 -1.70 

12.s 2.m 

18.66 -3.66 

ss = 142.63 

Fig;:re 13. Predicted Val:les and Residuals Using Least Squares Regression 
and Rank Regression, on the @ata from Figure 12, Using the Varia- 
bles X1, X2 and X3. -al- 



x2 = The temperature of the cooling water entering the countercurrent 
nitric oxide absorption tower 

x3 = the concentration of nitric acid in the absorbing liquid 

Ordinary Multiple Regression lllustrated 

The model used to fit the data is 

y = 00 + 61x1 + 62x2 + l33x3 (6) 

The method of least squares is used to find the values of BO, 01, I32 
and ~3 that minimize the residual sum of squares. The equations for 
findin the least sqL,.l-es coefficients are very complex and are not pre- 
sented. The actual values for the coefficients appear as part of the computer 
printout, and are given in Equation (7). 

y = -39.92 + .7156x1 + 1.2953x2 - .1521x3 (7) 

In order to evaluate the goodness of fit of this model, values for Xlr, 
X2 and X3 are substituted into Equation (7) to get a predicted value Y 
for Y. For examnie, in observation number 1 in Figure 12, XI = 80, X2 = 
27 and X3 = 89. ihese are substituted into Equation (7) as follows, 

C = -39.92 + (.7156)(80) t (i.2953)(27) - (.1521)(89) = 38.76 

to get 38.76 as the predicted value for Y. This is compared with the 
observed value for Y, 42, given in Figure 12. The residual (42 - 38.76) = 
3.24 agrees with the value given in Figure 13, except for differences caused 
by roundinq off the coefficients in Equation (7). The sum of squares of 
residuals is a measure of the goodness of fit of the model. In this case it 
is given by 

ss = C(Y - 9)2 

= 178.83 

as shown in Figure 13. This is the smallest value of SS possible using 
the model given by Equation (6). 

Exercise 2 

Substitute the values for XI, X 
P 

and X3, given in Figure 12 under 
observation number 2, into Equation 7) to verify that the predicted value 
in Figure 13 is indeed correct. 
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Rank Multiple Regression Illustrated 

If the model in Equation (6) is used on the Ranks instead of the 
data it becomes 

rY = a0 + blr, + 82rx + f33r~ 
1 2 3 

where r 
J 

represents the ranks of the observations on Y, rx represents 
the ran ,s of the observations on X1, and so on, just as in'the simpler 
examples given earl ier. The ranks for the data in Figure 13 are given in 
Figure 14. The least squares method is used to find the values of the coef- 
ficients DO through 43, which appear as part of the computer output. 
For the data in Figure 12 the coefficients are 

rY 
= -0.31 t .6650r, + .3859r, - .0226rx 

1 2 3 

The predicted rank for each observation is obtained by substituting the 
respective ranks of the independent variables into Equation (9). As an 
example the ranks of Xl, X2 and X3 for observation number 1 are given in 
Figure 14 as rx = 20.5, rx = 20.5 and rxj = 15 respectively. These 
are substituted'into Equatizn (9) to get 

(15) 
h 
ry = -0.31 + (.6650)(20.5) + (.3859)(20.5) - (.0226) 

= 20.89 

in agreement with the number given inn Figure 14 for observation number 
1. To convert this predicted rank, ry = 20.89, to a predicted value for Y 
the two values of Y whose ranks straddle 20.89 are found from Figure 14. 
These are Y = 42, whose rank is 21, and Y = 37, whose rank is 19.5. Interpo- 
lation gf':es the predicted value of Y, 

= 41.G3 

which agrees with the value from Figure 13, except for differences caused 
by using rounded-off values of the coefficients in Equation (9). 

Exercise 3 I 

Obtain the predicted rank in observation number 4 by substituting 
the ranks from f'igure 14 into Equation (9). See if this agrees with the 
predicted rank given in Figure 14. 
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Exercise 4 I 

Use the predicted rank Fy for observation number 4 from Figure 14 
to obtain a predicted value for Y. See if this agrees with the number given 
in Figure 13. 

Comparing Ordinary Regression and Rank Regression 

A measure of the goodness of fit of th$ rank regression model is 
obtained by comparing each predicted value Y with the corresponding observed 
value Y. The sum of squares of the residuals is 

ss = C(Y - ?)2 

= 142.63 

which is less thdrl the value 178.83 obtained using ordinary regression. 
Although ordinary regression finds the best fitting hyperplane, rank regres- 
sion is not restricted to working with a single hyperplane. Actually a 
series of connected hyperplanes is obtained using rank regression, so the 
model can adjust to the data with some degree of flexibijity, within the 
constraint of being monotone in each of its variables. Any disagreement 
betwcer the residuals in Figure 13 and the residuals reported in Iman and 
Conovcr (1979) is due to a difference in the method of handling ties. 

Sensitivity Analysis - _ 

It is aI;narent from the relative size of the coefficients in Equations 
(7) arId (9) that the output is more sensitive to changes in some independent 
variables than to changes in others. For example, X1 ranges from 50 to 80, 
a change of 30 units. The coefficient of X1 in Equation (7) is .7156, so 
the maximum change in Y due to changes in X1 fs (30)(.7156) = 21.5 units. 
On the o%her hand X3 ranges from 72 to 93, a distance of 21 units, and has 
a coefficient of -,.1521 in Equation (7). The maximum change in Y due to 
changes in X3 is only 3.2 units, less than one-sixth of the total influence 
of Xl. The situation is further complicated by the fact that X1 and X3 
have a positive correlation coefficient of r-13 = .500. This suggests that 
if X3 were dropped from the regression model, the coefficient of X1 might 
increase somewhat to account for some of the variability in Y that was formerly 
accounted for by X3. Thus X3 might not be making a significant contribution 
in the model, and perhaps should be omitted. Statistical tests are available 
for aiding in the decision of whether or not to omit variables from the 
model. 

A similar line of reasoning may be used on the least squares fit 
to the ranks, only here the analysis is simpler because all of the ranks 
have approximately the same range. Only the coefficients in Equation (9) 
need to be examined. The coefficient of rx3 -.0226 is about one-thirtieth 
the size of the coefficient of rx,, .6650, again suggesting that the rank 
of Y is much less sensitive to changes in the rank of X3 than to changes in 
the rank of X1. 
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(b - 

Obs. 
No. Y rY 

h 
rY Xl 

1 42 21 20.89 80 

2 37 19.5 20.95 80 

3 37 19.5 19.27 75 

4 28 18 16.01 62 

5 la 14.5 14.47 62 

6 18 14.5 15.04 62 

7 19 16 15.77 62 

8 20 17 15.77 62 

9 15 12 11.39 58 

10 14 9.5 7.47 58 

11 14 9.5 7.21 58 

12 13 8 6.11 58 

13 11 6 7.43 58 

14 12 7 8.64 58 

15 i? 3 2.89 50 

16 7 1 3.07 50 

17 a 3 4.75 50 

18 8 3 4.73 50 

19 9 5 5.85 50 

20 15 12 7.80 56 

21 15 12 15.50 70 

TX 
1 

20.5 

20.5 

19 

15 

15 

15 

15 

15 

9.5 

9.5 

9.5 

9.5 

9.5 

9.5 

3 

3 

3 

3 

3 

6 

ia 

x2 

27 

27 

25 

24 

22 

23 

24 

24 

23 

18 

ia 

17 

18 

19 

18 

18 

19 

19 

20 

20 

20 

r 
x2 

20.5 

20.5 

19 

17 

13 

14.5 

17 

17 

14.5 

4 

4 

1 

4 

8 

4 

4 

a 

8 

I1 

II 

11 

x3 

89 

88 

90 

87 

87 

a7 

93 

93 

87 

80 

89 

88 

a2 

83 

89 

86 

72 

79 

80 

a2 

91 

TX 
3 

15 

12.5 

17 

9.5 

9.5 

9.5 

20 

20 

9.5 

3.5 

15 

12.5 

5.5 

20 

15 

7 

1 

2 

3.5 

5.5 

18 

Figure 14. The Ranks of the Data in Figure 13 and the Predicted Ranks from 
Equation (9). 



On Deciding What Variables to Include in the Model --- ___--___--_ 

The inclusion of many variables in the regression model may result 
"overfitting" the data. That is, the effect of having many variables is 

:: force the regression surface into wilrlly erratic patterns just so it will 
pass closer to the observed points and tIave smaller residua'ls. Some system- 
atic method is needed to assist in deciding whether variables shou?d be 
included or excluded from the analysis. With such a tool to aid in the 
decision makin 9, one may consider other variables related to X1, X2 and 

x3, such as X1 or X1X , because it is possible that these other variables 
are more useful than t e 2 simple ones that have been considered so far. 
Three of these decision-assisting tools will be introduced and compared. 
Rut first the concept of partial correlation needs to be explained. 

Simple Correlation -- --- -- 

The strength of a simple linear relationship between two variables 
in usually meas~rcd with r, called Pearson's product moment correlation 
coefficient, or simply, the correlation coefficient for short. The cor- 
relation coefficient between X and Y is given by 

2(X; - Q(Yj - V) 
r z _- _ ._ _-.- - ._.. -~--.- _--____ (10) 

-------_-__- ___.__ 

d 
~(Xi - ~)2 ~(Yi - U)2 

for paired observations observations (X1, Yl), . . . . (Xn, Yn), where x and 
Y are the sample means. The statistic r may be used to test the hypothesis 
of no correlation, but only if the variables have a particular distribution 
called bivariate normal distribution. This condition is often assumed, but 
rarely met, in practice. 

When more than two variables are involved subscripts are USed to 
show which two variables are being correlated. Thus r-12 refers to the 
correlation between XI, and X2, 

X(X1, - Xi)(Xzi - X2) 
r-12 = -- . .._._ - _~._.__.. ~. -. __--- .-__.__ 

~------.-~------.-..-----~-------- ~ (X1.i - Xl)’ C(X2i - X2)2 

(11) 

while ryl refers to the correlation between Y and X1. 

Rank Correlation 

The strength of a monotonic relationship between two variables, as 
opposed to a linear relationship, is usually measured using r, but computed 
on the ranks of the variables instead of the variables themselves. It is 
customary to use either rs or p (rho) to denote the rank correlation coeffi- 

-86- 



cient, sometimes called Spcarman's rho. We will try to minimize problems 
with subscripts by using P, such as ~12 

p I2 = 
I(!“xli - ?;1)(!-x2i - y) 

---__ ---- ------ 
j/ -(rxlj - q) 2+x*i - F) 

to denote the correlation between the ranks rx of X1 and the ranks rx 
of x2, All of the calculations and interpretation of results using the 
correlation on the data may be applied to the ranks of the data as well. 
'I-he regression program described by Iman, et al (1980) handles all of the 
calculations on the data or the ranks of the data, the calculations just 
described and the calculations in the following pages. Spearman's rho may 
be used to test the hypothesis of independence, without requiring any 
distributional assumptions. Special tables may be found in Conover (1980). 

Partial Correlation 

Sometimes the apparent correlation between two variables may be due 
in part to the indirect influence of a third variable on both of the other 
variables. For example, the weekly average municipal bond yield X1 may 
appear to be correlated with the average utility bond yield X2 for the same 
week. Yet both may be heavily influenced by the average interest rate charged 
by the Federal Reserve, X3, for that week. How can the influence of the 
variable X3 be removed from the relationship between X1 and X2? 

One way to do this is to use a simple linear regression of each 
variable X1 and X2 separately on X3. The least squares method is used 
to fit coefficients to 

21 = 80 + 81 x3 

to get,the residuals (X1 - &). In a similar manner the residuals 
(X2 - X2) are also obtained by a regression of X2 on X3. Thus the 'inear 
influence of X3 on bQth X1 and X2 's removed, and the correlation between 
the residuals (X1 - X1) and (X2 - E 2) can be computed using Equation 
(lo), but where r is computed using (X1 - X1) instead of X1, and (X2 - %2) 
instead of X2. 

An Equation --. for Computing Partial Correlation -- 

Such a correlation coefficient is called the partial correlation 
coefficient between X1 and X2, given X3 and is denoted by r-12.3. An 
easy way to compute r-12.3 is with the equation 

rlZ - r13 r23 
r12.3 = ---___ (13) 
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wh w-e r12, r-13 and r23 are the simple linear correlatior. coefficients 
be tween X1 and X2, X1 and X3, and X2 and X3 respectively. The relationship 
gi ven by Equation (13) obtains the same partial correlation coefficient as 
would be obtained by going through the process of correlating residuals 
described earlier. 

Partial Rank Correlation 

The use of rank regression, and the rank correlation coefficients ~12, 
~13, and ~23 gives ~12.3, which measures the strength of the linear 
association between the ranks of X1 and the ranks of X2, after the 
linear effect of the ranks of X3 is removed from the ranks of X1, and the 
ranks of X2. The equation 

p12 - n13n23 
p12.3 = 

(14) 

may be used to find the partial rank correlation coefficient. 

Partial Correlation Given Several Variables -- 

The concept of partial correlation is easily extended to measure the 
strength of the linear relationship between two variables X1 and X2, after 
the linear effects of several variables, say X3, X4 and X5, have been 
removed. One way of looking at thiz partial corrglation is to compute the 
correlation on the residuals (X1 - Xl) and (X2 - X2) as before, but 
where X1 and X2 are obtained from a linear regression on X3, X4, and X5. 
That is, the model 

^xl q no + 01x3 + 02x4 + 03X5 

is fitted using least squares, and so is the model 

?2 = 0’0 + 0'1x3 + D'2X4 + 0'3x5 

in order to remove the unwanted influence of X3r, X4 and X5 on-the varia- 
bles X1 and X2. The correlation between (X1 - X1) and (X2 - X2) is 
denoted by r12.345. The corresponding treatment on the ranks is denoted 
by ~12.345. 

Another way of finding r12.345 is by the equation 
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which 

r12.45 - r13.45 r23.45 
'12.345 = , 

J (1 - rf3.45)(1 - 63.45) 

is analogous to Equation (13). 

Three Multiple Regression Procedures 

Correlation coefficients and partial 
used in several different ways to assist 
include in a regression model involving Y 
Three such methods will be described. 

(15) 

correlation coefficients are 
in deciding which variables to 
and several independent variab les. 

1. The forward procedure. The regression model starts with no vari- 
ables in it. Variables are then added, one at a time, to the regression 
model until a decision is reached that no new variables will contribute 
significantly to the improvement of the fit of the model to the data. 

2. The backward procedure. The regression model starts with all of the 
variables in it. Then variables which are considered not making a 
significant contribution to the fit are dropped one by one until all 
insignificant variables have been removed from the model. 

3. The stepwise procedure. The regression model starts with no vari- 
ables in it. Variables are then added, one at a time, as in the forward 
procedure. Each time a variable is added, the backward procedure is used 
to delete all variables previously added to the model but which are now 
considered to he insignificant in the presence of the new variable. 
This combination of the forward and backward procedures is the most 
commonly used method of determining which set of variables belongs in 
the model. 

The Variables Being Considered 

These methods for assisting in deciding which variables to include 
enable many more variables to be considered than one would normally use in a 
model. In the backward procedure the number of variables must be less than 
the number of data points being fitted, but in the forward and stepwise 
procedures no such limitation exists. For the example introduced earlier, 
the orig'nal 

' 
X2 and X3 will be considered, plus the squared 

terms X1 , X 
Thus nine 

'ar~a'le~n~l~he cross products X X X1X3 
in epen ent variables will bc consi 8' d' a eF;d 

and X2X3. 
in Chis re ression mode 

F Many other variables could be included, such as l/Xl, X1/X2, X3, In X2, 
1. 

and so on. Any variab 
in the r,ituation being 
consider only the nine 
convenience the variab 
in Figure 15. 

es which may have a real physical interpretation 
modeled should be considered. In our example we will 
first and second order terms, as mentioned. For 
es, including Y, are numbered from 1 to 10, as shown 
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The Forward Procedure _____ 

The forward procedure starts with a mode? that has no variables. 
The first variable chosen to be included in the model is the one that has 
the largest correlation with Y. The largest value of r for the data in 
Figure 12 and involving Y as one of the variables is the correlation coeffi- 
cient between Y and X1X2 

t-18 = .9588 

so X1X2 is the first variable considered for inclusion in the model. 

A Test of Significance -~ 

At this point a test of significance is conducted to see if the 
inclusion of X1X2 in the model reduces the unexplained variation of Y a 
significant amount. The statistical test used is exact only if several 
assumptions regardirlg the distribution of Y are true. These assumptions are 
well explained in textbooks which present regression methods (see Draper and 
Smith, 1966), so they are not repeated here. In practice these assumptions 
are, at best, only approximately true, so this test and al? subsequent 
statistical tests are only approximate. Still they serve as a useful objective 
method for assisting in making the decision as to whether or not a variable 
should be included. The test indicates (at a = .05) that X1X2 should be 
included, so the forward procedure continues. 

UsinAPartial Correlation in Forward Regression -- - 

The partial correlation coefficients of each variable with Y, given 
X1X2, are compared and the largest one is selected. Partial correlations 
are computed using Equation‘(l3) in conjunction with the correlations given 
in Figure 15. 

For example, the partial correlation of Y with Xl', given XIX2 is 

r15 - r18 r58 
r15.8 T-r 

= .9251 - (.9588)(.9500) _--- ~- 

j/ (1 - (.9588)2) (1 - (.9500)*) 

= .I605 

Exercise 5 __----- 

Use Equation 13 and the correlation coefficients given in Figure 
to find the partial correlation coefficient of Y and X1, given X1X2. 
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Variable 
Number 

1 

2 

3 

4 

5 

6 

7 

a 

9 

10 

le Variab 
Name 

Y 

Xl 

x2 

X3 

x1* 

X*2 

x32 

X1X2 

X1X3 

x2x3 

Correlation Correlation 
With Y With X1X2 

1.0000 .95aa 

-9197 .9453 

.a755 .9378 

.3998 .4508 

.9251 .9500 

. a934 .9499 

.3958 .4497 

.95aa 1.0000 

.a712 .9094 

.a554 .9239 

Rank 
Correlation 

With Y 

1 .oooo 

.9180 

.a521 

.4974 

. a896 

.a897 

.4161 

.9224 

.7892 

.8276 

, 

Rank 
Correlation 

With X1X2 

.9224 

.9099 

.91aa 

.4985 

.9519 

.9628 

.4352 

1.0000 

.a249 

.a862 

Figure 15. Some Correlation Coefficients for the Data from Figure 12 and the 
Ranks from Figure 14. 

Adding Another Variable to the Model 

The largest partial correlation coefficient is found, and that vari- 
able is examined using the test of significance, to see if including it in 
the model reduces the variation of Y a significant amount. In this case the 
test shows nonsignificance, so no additional variables are included in the 
model. 

The Forward Regression Model 

Only the variable X1X2 is included in the model, of the nine vari- 
ables examined, for the data in Figure 12. The least squares fit results 
the model 

in 

? = -15.29 + .025315 X1X2 (16 

The R2 value is .919 for this model, indicating that 91.9% of the varia- -.. 
tion in Y is accounted for by a linear regression on X1X2. This is about 
the same as the R2 = .914 obtained for the model in Equation (7) which used 
the variables X1, X2 and X3. The inclusion of additional variables autom- 
atically increases the value of R2, generally, a model with only 
variable is preferred over a model with the same value of R 8 

ne 

but with three variables. 
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Obtaining Predicted Values in Multiple Regression 

To obtain a predicted value from Equation (16) the value of X1 is 
multiplied by X2, and the product is placed in the equation. For example, 
in observation number 1 in Figure 12, X1 = 80 and X2 = 27. Then Equation 
(16) becomes 

q = -1 5.29 t .025315 X1X2 

= -15.29 + (.025315)(80)(27) 

= 39.39 

in agreement with the predicted value given in Figure 16. The sum of 
squares of residuals for this model is 

SS = 116.846 

which is considerably better (smaller) than the value 178.83 given in 
Figure 13 for the model with variables X1, X2 and X3. This forward regression 
method has found a better model, with fewer variables, than the model 
examined earlier. 

The Forward Rank Regression Procedure 

Forward rank regression proceeds just as described for ordinary 
forward regression, except X1, X2 and X3 
initially. Then terms corresponding to X 

ase replaced by their ranks 
or X1X become the square of 

the rank of X1, or the rank of X1 times t e rank o k f X2. 

The largest simple rank correlation is 

so the rank'analogue to X1X2 is selected for possible inclusion in the 
model. The test of significance indicates, at a = .O5, thJt this variable 
should be included in the model. 

The largest partial correlation with the rank of Y, given the rank 
analogue of X1X2, involves the rank of the variable X1 
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Obs. 
No. -- 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Observed 
Value Y 

Model 
h 
Y 

Least Squares 

: XIX2 

Residual 

42 39.39 

37 39.39 

37 32.17 

28 22.38 

18 ICI.24 

18 20.81 

19 22.38 

20 22.38 

15 18.48 

14 11.14 

14 11.14 

13 9.67 

11 11.14 

12 12.60 

8 7.49 

7 7.49 

8 8.76 

8 8.76 

9 10.02 

15 13.06 

15 20.15 

2.61 

-2.39 

4.83 

5.52 

-1.24 

-2.81 

-3.38 

-2.38 

-3.48 

2.86 

2.86 

3.33 

-0.14 

-0.60 

0.51 

-0.49 

-0.76 

-0.76 

-1.02 

1.94 

-5.15, 

SS = 116.846 

Rank Regression 

Model: Xl, X2*, X1X2 

; -2 fjesidua'l- 

40.40 1.6C 

40.40 -3.40 

33.95 3.05 

19.80 8.20 

16.59 1.41 

18.00 0.00 

19.80 -2.30 

19.80 0.20 

16.37 -1.37 

12.70 1.30 

12.70 1.30 

13.44 -0.44 

12.70 -1.70 

13.10 -1.10 

7.34 0.66 

7.34 -0.34 

8.00 0.00 

8.OC 0.00 

11.81 ,-2.81 

13.13 1.87 

17.06 -2.06 

SS = 119.176 

Figure 16. Predicted Values and Residuals from the Forward Regression Models 
on the Data and on the Ranks. 
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= *91W - (.9224)(.9099) __- 

;T’-( .9224)2) (1 - (.9- 

= .4912 

and this 1s :arge cnouqh to 1,~: declared significant, using the same 
s t a t ! s t, i c a ; t P s t t. h <I t ; s II scd for r 12 . 8 . Therefore the variable X1 is 
dddt!d to the Illode . 

The next step cotlsists of examining all partial correlations with 
the rank of Y, given the rank analogues to X1 and X1X2. The largest 
l~artial rarlk corrclatiorl coefficir?nt belongs to the rank analogue of X22, 
and thdt term is included iri the model after a statistical test determines 
its significaricc. No 1;13re tems are found to be significant. The least 
scluarr,s methorl is used to obtain the coefficients, with the result 

2 
P y = -2.11 t 1.1938 rx + .06227 rx - .06666 rx rx 

1 2 1 2 
(17) al 

Usiriq Rank Regrcssiorl to Predict Values of Y - -- 

To find <I prt?dict.cd rdllk for Y, the correspondinq ranks for X1 and 
X2 arc substi t:!tcd into I:quatiori (17). for example, ; n observation nmber 
1 of 1 igure 14 the ratlks are rx = 20.5 and rx = 20.5. This gives 

1 2 

F. 

Y 
= -2.11 + 1.1938(20.5) + .Of1227(20.5)~ - .06666(20.5)(20.5) 

The two r,?rlks which str*~tdti 

(Y = 42) and 19.5 (Y = 31) 
1~: the val uc 20 5% are . from Figure 
. Interpolation gives' 

j = 21 t jXl-.5% - 19.5 (42 _ 3/) 
T---i-m 

wh ich is in agrecnlcnt with the value given in 

-0 Ii- 

Figure 16. 
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Exercise 6 

Use the ranks of X1 and X2 for observation number 9,,in Figure 14 to 
find Fy from Equation 17. (The computer printout gives ry = 13.14.) 

Exe 7 --- - 

U?e interpolation in figure 14 to obtain a predicted value for Y, 
given ry 2 13‘14 for observation number ?, and see if your answer agrees 
with the predicted value given in Figure 16. 

Comparinn Rank Regression with Ordinary Regression - - 

The sum of squares of residuals 
by Equation (17) is 

s 

for the rank regression model given 

S = 119.176 

which is about the same as the value found using forward regression on 
the data. Of the two models found using forward regression, the model based 
on the data is prcfcrrcd, because it has about the same value for SS as the 
model based on ranks, and it has only one variable as opposed to three vari- 
ables for the model based on ranks. 

Backward __-- Uegression -- 

The backward reqrcssion procedure begins with the model containing 
al1 of the variables, fitted using the least squares method. Then the partial 
correlation coefficients of each variable with Y, given all of the other 
variables in the model, are compared to see which one is the smallest. The 
variable corresponding to this smallest partial rank correlation coefficient 
is then tested to see if its presence in the model contributes significantly 
in accounting for the variation in Y. If the test is significant the variable 
remains in the model and the procedure is finished. If the variable does 
not test as significant, it is dropped from the mcdcl, and the entire proce- 
dlJr-c is r-cpoatletl for the rcma ining variables. At each stage the partial 
correlations involve only the variables remaining in the model. This bdck- 
ward regt-esxion procedure has a tendency to include more variables in the 
final model than if forwtlrd regression is used. 

A Useful Procedure for Finding Partial Correlation Coefficients -- ----___-___ 

At this point a very useful technique will be introduced and illus- 
trated. The method for finding partial correlation coefficients by building 
steo by ste11 from the simple correlation coefficients, as described earl ier, 
works we1 1 for forwat-ti reqression. This is an awkward way of hdndlirig back- 
wdrd regress1ori however, since bdckward regression starts with the full 
mod C' 1 , al 1 vdridbles included, and requires knowledge of the partial correla- 
tion coefficients given all but one of the independent variables. There is 
a very simple way to do this. 

l.et R be the correlation matrix; that is, the matrix containing the 
sirrll)le pairwise correlation coefficients where row i, column j contains rij. 
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Let R-I be the inverse matrix of R, which is the matrix that can be multiplied 
by R to get the identity matrix I. 
R-1. 

Many softwarelpackages exist for finding 
Denote the element in row i, column j of R by b... The partial 

correlation of variable i with variable j, gi.;en all of'ihe other variables 
represented in the correlation matrix, is obtained very simply from R-l as 

bij 
rij.(all others) = - - 

I 
(18) 

J bii bjj 

When a variable is eliminated from the model because it is not signifi- 
cant, the row and column in R, which represent correlations involving that 
variable, arc remove 

R1* 
Y 

from R to obtain a new and smaller correlation matrix 
The inverse RI- of II 

A 
is found and the new partial correlation 

coefficients of each vsria 1zIwith Y, given the variables still remaining in 
the model , are found from RI using Equation (18). 

An Illustration of the Procedure 

This procedure for finding partial correlation coefficients could be 
illustrated using the full model, with Y and nine independent variable!;. 
This would involve a correlation matrix R with 10 rows and 10 columns, and 

its inverse R-l also with 10 rows and 10 columns. Such an example is 
so large that it may confuse the illustration of the procedure, so the 
dure will be illustrated using only Y and the original independent var 

proce- 
iables 

Xl* 
X2 and X3. 

for the data in figure 12 the correlation matrix is given by 

Xl x2 x3 Y 

1 . 0000 .7819 .5001 .9197 
R = 7819 

:5001 
1.0000 .3909 .8755 

.3909 l.OOO@ .3998 
.9197 .8755 .3998 1.0000 

where row 4 (and column 4) contains the correlation coefficients of Y 
with XI, XT and X3 and itself, respectively. 

The inverse matrix is found from a computer program as 

Xl x2 x3 Y 

7.7241 .9922 -1.2655 -7.4665 
R-1 = .3922 4.44G9 -.3727 -4.6568 

-1.2655 -.372? 1.4078 .9274 
-7.4665 -4.6568 .9274 11.5732 

Note that both R and R-I are sylrrnetric matrices. 
-gG- 
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The partial correlation coefficients are found using Equation (18). 
Only the partial correlations involving Y are of interest, since these reprc- 
sent the amount of influence each independent variable has on Y, when the 
linear influence of the other variables is removed. These are 

Y and X 
-b41 7.4665 

1: r41.23 = =- = .7897 
d b44 bll J (7.7241)(11.5732) 

-b42 4.6568 
Y and X2: r42.13 =----= - .6491 

d b44 b22 ,/(4.4469)(11.5732) - 

-b43 -.9274 
Y and X3: r43.12 q .-.-______-z _ -= -.2298 

J-i&F;;- dK4078)(11.573?) 

n a backward regression procedure the variable X3 would be selected 
for testing because it has the lowest partial correlation coefficient (in 
absolute value). If the test showed that X3's contribution to the model 
were insignificant it would be dropped from the model. Row 3 and column 3 
would be removed from the correlation matrix R, the new inverse matrix found, 
and the new partial correlation coefficients found with X3 eliminated from 
all further consideration. This procedure would be repeated until all vari- 
bles remaining in the model are significant. 

Measuring the Importance of Variables -- 

A direct interpretation of the partial correlation coefficients 
found from the full model is very useful. The three variables X1, X2 and 
X3 may be ranked in order of importance on the basis of their partial 
correlation coefficients. Variable X1 is the most important because its 
partial correlation coefficient, r41.23 = .7897, is the largest in 
absolute value. The variable X2 is the second most important variable and 
X3 is the least important variable. Although a rough analysis was made 
wh,en this model was introduced in Equation (7), and resulted in these same 
conclusions, this method of analysis removes from consideration the indirect 
influence of the other variables, and thus isolates the effect of each varia- 
b'ie on Y in a more precise manner. 

The Results Using Backward Regression -.- 

The backward regre sion procedure on all nine independent variables 
removed the variable Xr 3 in its first step. 
by one, k 

2Subs$quent steps removed, one 
the variables X X1, X3, X1X3, X3 , X1 

X1X;, as the only signif?ciAt variable. 
and X , leaving 

Thus the backwar ii regression procedure 
ended up with the same model as was obtained from the forward regression 
procedure. This is merely a coincidence that happened to occur in this 
CdSC. The predicted values, the residuals, and the residual sum of squares 
are thus given in Figure 16. This lends further support to the conclusion 
thdt the model involving only X1X2 is a good model for the ddtd. 
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Backward Rank Regression 

Backward regression on r;he ranks follows the same steps as backward 
regression on the data. The only difference is that the ranks of Y, X1, X2 
and X3 are substituted for the actual values of those variables. The 
partial rank correlations are found by inverting the matrix of simple rank 
correlations and using 

-bij 
Pi.j.(all others) = r--7----- 

* (19) 

J bii "jj 

in 3 manner entirely analogous to the procedure described previously. 

The backward regression procedure 
results in thr: elimination of variable 

on the ranks given in Figure 14 
X2 on the first step. 

analysis 
Nose that the 

on the actual data differed in this respect, because X2 was 
removed on the first step, and the variable X2 was the last one to be removed. 

Bear in mind that. regression on ranks is based on monotonic relationships, 
while regression or1 the data is bdsed on linear relationships, so remova120f 
X2 usin<] rank regression is not entirely different than the removal of X2 
iJSifl(j ordinary regression. 

The Model frorl Backward Rank Regression -_-____--- 

Subsequent steps in the backward rank regression prosedure removed, 
otic at d time, : This 
left the variables X1, X1 interesting 
things happened. The variable X:X? was removed on the fourth step. This 
ii; ~nc of the three variables which remained in the model using forward 
rcqrcssion on the ranks, Lurid t.he only variable which remained in the model 
usin<) both forward r-e rcssion 
Also, the variable X B 

dnd backward regression on the dctudl da td. 

f 
remains in the model for backwdrd regression on the 

ranhS. This is the irst time this variable has appeared in a regression 
mo 

$ 
e 1 . It. iS interesting to see what effect the replacement of X1X2 with 

X1 has on the rank regression model, as this represents the only difference 
bctwcen the forward regression model on the ranks and the backward regression 
model on the ranks. The final model is given as 

r’ -= -2.02 + 
Y 

1.41 
rx 

- .04410 
1 

r-%x + .02781 r2 
1 x2 

lhe ;~red ictcd v3 1 IIC~S of Y and t.hc residudls appear in I-.igure 17. 

A Corrtpari son of the Several Models _.__ _._.. .---. ~..__.__ __--- -_.- . .._. --- 

lhc r11oric1 qivclrl by lIqul~tion (20) appears to be the best model 
Obtd ifi?tl so far, as meas\urcd by the sizes of the residuals given in Figure 
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17. When compared with forward rank regression, the backward rank regression 
model resulted in smaller residuals for 10 of the 21 points, larger residuals 
for 9 of the 21 points, and ties in 2 cases. However, the important measure 
of goodness of fit, the sum of squares of residuals, is reduced by about 23 
percent, to 

ss = 91.677 

which is by far the smallest value for SS yet obtained. This is smaller 
than the value 116.846 obtained using the model using X1X2 on the actual 
data. One model ha: a smaller SS, while the other model has fewer variables. 
It is difficult to choose between these two models at this point. 

Stepwise Regression 

The stepwise regression procedure is the procedure that is used 
most often in obtaining a regression model. It begins as a forward regres- 
sion procedure, but each time a variable is added to the model it becomes a 
backward regression procedure until all insignificant variables have been 
el iminated from the model . When a new variable is added to the model, the 
partial correlation coefficients consider this new variable in addition to 
the previous variables, and they may be different than the previous partial 
correlation coefficients. This is why a variable that was previously consid- 
ered significant usirlg forward regression may become insignificant after a 
new variable is added, in which case it would be dropped using backward 
regression. This does not preclude that variable from being added again at 
some later point, if it again becomes significant after additional variables 
have entered the model. 

The application of the stepwise regression procedure to the data 
in Figure 12 and the ranks in Figure 14 is not interesting, because in those 
cases no variables are eliminated from the model as insignificant. Therefore 
the resulting models, predicted values, and residuals are the same as those 
obtained using forward regression, and given in Figure 16. 

Discussion - 

Several regression procedures have been introduced and described 
for constructing a regression model involving several variables. Partial 
correlation is discussed as a tool for identifying important variables. The 
computations have been explained so that a better understanding of the powers 
and limitations of the various procedures can be obtained. 

All of these pFOCedUreS are merely aids in the decision making 
process. They should be considered in addition to expert advice, not instead 
of expert advice. Amateur statisticians often make the mistake of having 
either too little OF too much faith in the methods of regression analysis. 
Professional statisticians often make the same mistake, but to a lesser 
extent. The better these regression methods are understood, the more likely 
it is that the results of a regression analysis will be given its proper 
weight in the final decision making process. 
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Obs. 
No. 

8 

9 

10 

11 

12 

13 

14 

15 

16 

II 

18 

13 

20 

21 

I’i’Jure 17 . 

Observed 
Value Y 

Regression: X1,X2',XlX2 
h 
Y Residual 

42 40.40 

37 40.40 

31 33.95 

28 19.80 

18 16.59 

18 18.00 

19 19.80 

20 19.80 

15 16.37 

14 12.70 

14 12.70 

13 13.44 

11 13.44 

12 13.10 

0 7.34 

7 7.34 

8 8.00 

8 8.00 

3 11.81 

15 13.13 

15 17.06 

Forward Rank 

1.60 

-3.40 

3.05 

8.20 

1.41 

0.00 

-0.80 

0.20 

-1.37 

1.30 

1.30 

-0.44 

-1.70 

-1.10 

0.66 

-0.34 

0.00 

il.00 

-2.81 

1.87 

-2.06 

ss = 119.176 

Backward Rank 

Regression: Xl,Xl2,X22 

t Residual 

38.92 3.22 

38.92 -1.92 

33.54 3.46 

22.18 5.82 

17.32 0.68 

18.39 -0.39 

22.18 -3.18 

22.18 -2.18 

16.51 -1.51 

12.86 1.14 

12.86 1.14 

12.44 0.56 

12.86 -1.86 

14.00 -2.00 

8.00 0.00 

8.00 -1.00 

8.00 0.00 

8.00 0.00 

9.37 -0.37 

13.15 1.85 

15.00 0.00 

ss = 91.677 

Predicl.eti Values and Residuals Using Forward Rank Regression and 
liC~i:kward Rank Regression. 
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EXAMPLE OF SETTING UP AND EXECUTING THE 

LATIN HYPERCUBE SAMPLING PROGRAM ALONG 

WITH OUTPUT FROM A TRANSPORT MODEL 

This part of the course demonstrates the techniques of the 
first two sections on the NWFT/DVM model. The NWFT/DVM model 
uses 17 input variables, 4 of which are correlated. 

Page 104 shows the parameter cards used to generate the Latin 
hypercube sample as described in SAND79-1473. 

Page 105 gives the user specified subroutine as required on 
cards 14 to 21 on page 104. 

Pages 106-108 give the actual LHS for 17 variables and a 
sample of size 35. 

Pages 109-111 give the ranks from 1 to 35 for each of the 17 
input variables on pages 106-108. 

Page 112 contains the output from running the 35 input vectors 
through NWFT/DVM. The output is in he form of total integra- 
ted discharge for 7 isotopes over 10 k years on a per vector 
basis. 
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Card No. --- 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
ii. 
14. 
15. 
16. 
1 7 . 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
3 7 
38: 
13. 
40. 
41. 
42. 
43. 
44. 
45. 
4 6 . 
47. 

PARAMETER CARDS USED TO GENERATE A LATIN 

HYPERCUBE SAMPLE AS DESCRIBED IN THE 

PROGRAM USER's GUIDE 

624576?76;651657 LHS SCENAQIOS NUFT OVH 
TITLE-LHS NYFT CVH FOR NRC SHORT CCLRSt 

17 35 1 1 c 
LCGNORt’AL KO FCiR CW(A’l) 

.r1 1.55 
LOGh’ORHAL KO FOR PU 

.Cl 1 .E4 
LCGNCRi’AL KO FOR U 

.Cl 1.E4 
LCGNCRt!AL KO FOR Tti 

.Cl 1 .E 4 
LCGNCRHP L KO FOR NP 

.Ol 50. 
USER-IKPUT SOL LIMIT FOR PcJ(LOG 10, 

-7.1 2. 
USER-IhFUT SOL LIIIIT FOR U!LOG 10) 

-5.7 1 C 
USER-IhplJT SOL LIMIT FOR TH(L06 10) 

-7.1 .6 
USER-IhFUT SOL LIMIT FOR N?<LCS 10) 

-14.4 3. 
UhIFCqf’ D ISP- RSI VI T Y 

t I 
50. 500. 

LCGUNIFOR)? LEACH TIME 
1 

l.fOS 1 .EC7 
LCGNCRt’PL KtlJPPER AOUlFERl 

.c)l s!! . 
NCRflAL POROSITY(UPPEfi AQUIFER) 

.CE .30 
LOGUNIFCRP K OF THE FEATUR-(S) 

1 

1 .C5 25. 
NCRNAL POROSITY OF Ti-E FEAl'URCtS) 

.@?I .30 
UhIFORr TIME OF ONSET 0” MIGRATION 

f 
100. 1.E4 

UKIFORr NUMBER OF ROOHS 
1 

1.c 1100. 
4 

12 13 14 15 
1.0 0.7 1.0 0.0 0.0 1.0 0.0 0.0 
0.7 1 .o 

OUTPUT vOAlA,PLOT ,CORR 
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EXAMPLE OF A USER SUPPLIED SUBROUTINE FOR USE WITH 

THE LATIN HYPERCUBE SAMPLING PROGRAM TO GENERATE A 

SAMPLE FROM A DISTRIBUTION NOT INCLUDED IN THE PRO- 

GRAM - THE IMPLEMENTATION OF THIS SUBROUTINE IS 

EXPLAINED IN THE PROGRAM USER'S GUIDE 

SURRCUTINE USHDIST<I~NIINS~T~IRS,L~,L~,L') 
COMrON LClOO~r\) 
COHl'CN/A/Xtl0030C) 
CCHt'ON/P/XX(lOOOSO) 
LEVEL 2,X,Xx 
LOC(I,d)=(J-l)*N+I 
PLPIbiC=O.95/N 
PEAC(B~llC)A,B 

110 FORWAT(2G1@.4) 
C A IS Tt-L HEAh ON A LOG10 SCALE FCR NORHAL DISTRIBUTION 
C I5 IS ThE ST CEV ON A LOGlC SCALE FOR A kORtlAL OISTRIBUTION 
C FOR TtiII DISTRI6UTION A UILL 6E TREATED AS THE G.325 OUANTILE 
C Ah0 t3 UILL 81 TREATtO AS THE C.915 OUANTILC 

CELlb=.C;25 
co 10 K=l,N 
P=ALPINC*UOGEN(O.)*OELTA 
X(LOC(K,I))=l0.‘~(FINVNOR~R)~~+A) 
CtLlL=CELlA*ALPINC 

10 CQNTINUE 
IF(INSFT.hE.l)GO TO 20 
FRINT 12C,I,A,B 
FRIhT 13O,LltL2eL3 

20 CONTINUE 
120 FORrAT(~C~~llW,I3,12X~~USER SUPPLIED HEAh=*,lPGlG.3( 

l l Sl OEv=~,l~GlO.S) 
130 FCRPAT(lH+,75XvJA10) 

RETURN 
END 
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ll?~C-1~s hUfT DV# FOR WC SHOP1 Coc'~Sc 

RANKS OF 

RUN ho. 

I 

2 

J 

4 

6 

I 

lf 

v 

10 

II 

12 

13 

I4 

13 

16 

I1 

18 

17 

20 

21 

22 

23 

24 

2s 

26 

21 
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2V 

JO 
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3s 

II 13) 
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1. 
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34 * 

19. 

h. 
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21. 

1. 

29. 

IU. 

34. 

25. 

20. 

17. 

24. 

21. 

h. 

31. 

IJ. 

10. 

77. 

23. 

1. 

JJ. 

2n. 

JS. 

25. 

1. 

lh. 

i!o * 

19. 

12. 

2?. 

3. 

31. 

30. 

35. 

6. 

2R. 

7. 

15. 

13. 

1. 

32. 

24 * 

25. 

26. 

9. 

34. 

19. 

Il. 

22. 

71. 

Il. 
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2. 
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J5. 

34. 

23. 
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21. 

24. 

2. 
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20. 

16. 

52. 
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6. 

14. 

1R. 

1. 

4. 

19. 

3. 

10. 

7. 

31. 

2p. 

21. 

1.1. 

A. 

10. 

27. 

JJ. 

9. 

25. 

-lll- 



SAMPLE OUTPUT GENERATED FROM A TRANSPORT 

MODEL USING THE PREVIOUS LATIN HYPERCUBE SAMPLE AS INPUT 

Total Integrated Discharge to lo4 Years 

Run 
No. 23'Np 233u 229Th 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

0. 
4.809E-05 
5.807E-02 
4.066E-07 
8.083E-06 

5.576E-04 
7.907E-05 
9.516E-07 
0. 
3.740E-06 

0. 
0. 
3.311E-05 
0. 
0. 

8.823E-04 
6.064E-06 
4.677E-06 
0. 
l.l39E-06 

0. 
0. 
3.175E-05 
1.133E-05 
4.759E-03 

1.227E-06 
4.045E-05 
0. 
2.666E-05 
4.007E-05 

1.215E-04 
2.404E-06 
1.526E-02 
8.162E-02 
0. 

0. 
3.997E-09 
Z.llOE-04 
3.740E-08 
1.329E-04 

1.214E-06 
2.207E-08 
1.721E-11 
0. 
6.712E-13 

0. 
0. 
2.807E-06 
0. 
0. 

5.075E-07 
5.218E-06 
7.400E-10 
0. 
2.458E-06 

0. 
0. 
5.000E-08 
0. 
3.276E-05 

7.218E-07 
1.882E-05 
l.l38E-05 
1.888E-08 
1.443E-09 

2.401E-04 
0. 
1.349E-06 
5.781E-03 
0. 

0. 0. 
0. 0. 
8.775E-03 0. 
1.311E-06 0. 
2.863E-06 0. 

l.lOlE-06 2.403E-02 
8.621E-04 6.525E-05 
0. 0. 
0. 0. 
0. 0. 

0. 0. 
0. 0. 
3.090E-09 0. 
l.O54E-07 0. 
0. 0. 

0. 0. 
5.379E-07 4.088E-10 
5.223E-11 7.345E-06 
0. 0. 
6.329E-05 6.568E-05 

0. 
0. 
2.164E-09 0. 
0. 2.354E-03 
4.575E-03 0. 

4.092E-08 1.737E-04 
5.402E-08 0. 
1.549E-08 0. 
0. 0. 
0. 0. 

8.373E-06 0. 
0. 0. 
2.725E-02 0. 
3.261E-03 12.2 
0. 0. 
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0. 0. 0. 
0. 0. 0. 
0. 3.097E-05 0. 
0. 2.754E-10 0. 
2.385E-04 1.268E-05 0. 

9.049E-05 l.l87E-07 0. 
1.710t-08 0. 0. 
0. 0. 0. 
0. 0. 0. 
5.496E-08 0. 0. 

0. 0. 0. 
0. 0. 0. 
4.503E-06 7.751E-07 0. 
0. 0. 0. 
0. 0. 0. 

0. 0. 0. 
0. 6.111E-07 0. 
l.O52E-06 0. 0. 
0. 0. 0. 
6.829E-06 2.269E-07 0. 

0. 0. 0. 
0. 0. 0. 
0. 2.289E-10 0. 
3.387E-07 0. 0. 
1.372E-02 2.614E-06 0. 

3.003E-07 8.495E-08 0. 
0. 9.383E-07 0. 
0. l.O77E-06 0. 
0. 0. 0. 
1.936E-07 0. 0. 

0. 3.816E-05 0. 
0. 0. 0. 
8.097E-03 0. 0. 
1.471E-03 6.204E-04 0. 
6.242E-06 0. 0. 

. 

a 

a 
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AN EXAMPLE OF SENSITIYITY ANALYSIS 
RESULTS EASED ON THE PARTIAL RANK 

CORRELATION COEFFICIENT 

Page 114 contains a summary of the partial rank correlation 
coefficients as given in Equation (19) on page 98 on Part 
Two of this course. Listed down the left hand side of the 
table are the 17 input variables from page 104. The heading 
across the top of the columns identifies 6 output variables, 
3 of which are listed on page 112. The numerical entries in 
in the body of the table can be used to identify the input 
variables which are dominate in influencing the output. For 
example the entry of 70 for KD U and U233 means that the ab- 
solute value of the partial rank correlation coefficient was 
at least . 70 at sometime during the lo4 year period. 

While page 114 shows the PRCCs based on the 35 input vectors 
on pages 106-108, pages 115 and 116 show results for two 
additional sets of 35 input vectors. The results are simi- 
lar on pages 114, 115, and 116. 

Page 117 shows the summary for all 105 input vectors pooled 
together but the individual numerical entries show a PRCC of 
at least 50 rattler than 70 as on pages 114-116. On page 118 
the 105 vector results are repeated for PRCCs of at least .70. 

Pages 119-132 provide PRCC plots for each combination of input 
variable and output variable that have numerical table entries 
on page 117. 
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WHERE TABLE ENTRIES OCCUR THE PRCC BETWEEN 
THE INPUT VARIABLE (ROW) AND THE OUTPUT 
VARIABLE (COLUMN) ACHIEVED AT LEAST THE 
LEVEL 7 OR .8 IN ABSOLUTE VALUE AS INDI- 
CATED AT SOME POINT IN TIME OVER THE 10,000 

YEAR PERIOD 

PRCC LwS-YYFT-DV’I V< TID-S3- CH2 HLY<l.EI IRS) NRC SHORT COU3SE 

**t 

fnput 

Output Variables -~ 
IIOTOFE CI! PU AM NP u TH 

Variables 245 241 241 237 233 229 _---__-- .-- s-e- ----.--------_--_---------------I---------------------------- 

1 . KD CH(AM0 80 70 
‘1 L . KD PU 
3. Kll U 70 7n 
4. Kr) TH AD 
5. KD NP 

---------------------------------------------------------------- 

6. SOL LIH PU 
7. SOL LIH u 
8. SOL CIM TH 
9. SOL LTH NP 

10. DISPERSIV 
--------------------------------------~------------------------- 

1.1. LEACH TIf’E 
12. K UP AQ 70 
1. 3 . POR UP AQ 
14. K FEAT 
15. POR FEAT 

--_------------------------------..-------------------------_---_ 
16. PFlL TIME 70 SD 80 RU 
17. NUM RflS 
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A TABLE SIMILAR TO THE ONE ON PAGE 114 
BUT WITH A NEW LATIN HYPERCUBE SAMPLE 
FOR DEMONSTRATING CONSISTENCY IN IDEN- 

TIFICATION OF IMPORTANT VARIABLES 

PQCC LHS-‘dYFT-DVY VE TID-SJ-CHZ HLU(l.EI YRS) NRC SHORT COUqSF 

Output Variables --- 

Input ISOTOPE Cl’ PU AM NO U TH 

Variables 245 241 241 237 253 229 
-----------------------------..-------------------U_-----_-----I-- 

1. 
2. 
3. 
4. 
5. 

6. 
7 / . 
8. 
9. 

10. 

11. 
12. 
13. 
14. 
15. 

16. 
17. 

KD CH;At’) 80 70 70 
KD PU 
KD U 80 7n 
KD TH 70 
KD kP 70 70 
--^-------------_--_---------------------------------------------. 

SOL LIn PU 
SOL LTH u 
SOL LIM Tti 
SOL LttI NP 
01 SOCRSTV 
-----------------------------------------------------------------. 
LEACH TIME 80 
K UP AQ 70 70 
POR Uf’ AQ 
K FEAT 
POS FEAT 
-----------------------------------------------------------------. 
REL TIME 80 90 en 
NUF RfIS 
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RESULTS FROM A THIRD LATIN HYPERCUBE 
SAMPLE TO COMPARE WITH THE TABLES ON 

THE PREVIOUS TWO PAGES 

PRCC LHS-NYFT-DVtl YS TTD-.S3-CH2 HLW<1.E4 IRS) F;fiC SHORT CCU3SE 

..___ Output Vari ah-145 

Input 
ISOTOPE CM PU A’I NP U TH 

Variables ____ 
245 291 241 237 233 229 

---_____-_--_----------------------------------------------- 

1 . 
2. 
3. 
4. 
5 . 

6. 
7 . 
u . 
9. 

10. 

11. 
12. 
1 3 . 
1.4 . 
15. 

16. 
17. 

KD CtlCAM) 70 70 70 
KD PU 
KD U 
Kr) TH 

80 
70 

KD N* 70 
^------..----- --------_----------------------------------------- 

SOL cxn PU 9 

SOL Lit-l u 
SOL LIH TH 
SOL LIM NP 
DISPEPSIV 
w-w- ---------------.-------------------------------------------- 
LEACH TIYE 
K UP Aa 70 
POR UP AQ 
K FEAT 
POR FEAT 
V-B- ------_-----------------------------------------------------. 

REL TIME: 70 TO an 80 80 
NUM RtIS 

-116- 



0 

Input 
Variables 

1 . 
2. 
3. 
4. 
5. 

6. 
7. 
0. 
9. 

10. 

1 I . 
12. 
13. 
1 4 . 
15. 

16. 
17. 

COMPOSITE RESULTS FROM POOLING ALL 
COMPUTER RUNS FROM THE THREE PRECE- 
DING LATIN HYPERCUBE SAMPLES WHERE 
FILTERS WERE LOWERED TO .5 AND .6 

DUE TO THE INCREASED SAMPLE SIZE 

PPCC LHS-NYFT-DVq VS TED-SS-CH2 HLY(L.E4 Y'RS) NRC SHOPT COUISE 

Output Variables -- 
ISOTOPE CM PU Aq NP U TH 

245 24L 241 237 233 223 
---------------------B ------------------------------------------ 

KD CM(A)/) 60 50 60 
YD PU 
KD U 60 50 
KD TH 60 
KD NP 60 
---------------- ------------------------------------------------. 

SOL LIH PI! 
SOL CItl u 
SOL LIH TH 
SOL LIH NP 
DISPERSIV 
-------- ----- ---__---------------------------------------------- 
LFACH T IME 60 
K UP AO 50 50 60 
PaR UP AQ 
K FEAT 
Pd” FEAT 
-------------------_-------------------------------“------------ 
REL TIME 60 60 60 
NUH RMS 
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Input 
Variables ____.---- _ 

1. 
2. 
3. 
4 . 
5. 

6 . 
7. 
8 . 
9 * 

10. 

1 1 . 
12. 
13. 
14. 
15. 

16. 
1 ‘I . 

SAME COMPOSITE RESULTS AS ON PREVIOUS 
PAGE ONLY WITH THE FILTERS INCREASED 
TO . 7 AND .8 FOR PURPOSES ON PINPOINT- 

ING DOMINANT VARIABLES 

PRCC LHS-NYFT-DVq VS TID-SJ-CM2 HLU(l.E4 YRS) WhC SHORT COUqSE 

Output Variables ..___-_ 
I SOT 0 PE CM 03 A’! ND U 13 

245 241. 241 237 233 229 
-------------------_------------------------------------,-”------ 
KD CM(AP, 
Kr) PU 
KD U 70 
KD TH 
KD NP 
-------------------_-----------~----------------------- --------- 
SOL LIM PU 
SL)L LIW u 
SOL LIH TH 
SOL LIH NP 
DISPERSIV 
-mm--- .------------_-------------------------------~--- --m------ 
LEACH TIYE 
K UP A0 
POR UP AQ 
K FEAT 
POR FEAT 
---------------------------------------------------------------- 
REL TIME 80 80 80 
NUY RHS 
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PLOTS OF PRCC's f-OR ALL VARIABLES 
IDENTIFIED AS IMPORTANT ON PAGE 117 

PRCC LHS-NWFT VS TID S3 HLW KD CMlhMl CM245 
1.000 ['T 1 s 3 9 8 , 1 

6000 

.4000 

2000 
Z 
0 

I- 

I- 
< 0.000 - 
J 
w 
n 
ae 
0 
0 -.2000 

t 

TIflEtYEhRSl 
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1 L 000 

.BOOO 

. moo 

.400 

.2000 
Z 
0 
I- 
< 0.000 
J 
kc 
E w -.2000 

kT 
z 
< 
CL -. 4000 
-, 
< 
c 
CK 
3’ 

-.6000 

-. eooo 

-1.000 

PRCC LHS-NWFT VS TID S3 HLW KD CntAMl PU24 1 

a 

+2 ., 3 +4 
10 10 IO 

TlME(YEhRS1 
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1.000 

.8000 

6OGO 

.4000 

.2000 
Z 
0 

t- 
< 0.000 
_I 
W 
(Y 
z 
0 -.2000 

< 
@z -.4000 
-I 
< 
t 
CK 
< .-.6000 
a 

-.8000 

-1.000 
+3 +4 +2 

10 10 10 

TIflEtYEARSI 

pRCC LHS-NWFT VS TID S3 HLW KD CMtAM) AM24 1 

/ ’ ‘-“‘r’f- 
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1.000 

.OO@O 

.GOOO 

.‘I000 

.?OOO 

- , 0 0 0 0 

!. 01’0 

PRCC LtlS-NWFT VS TID S3 HLW KD NP NP237 

! 
- 
c 

,- , --?--1-t 1 , 

_. ~~. .-. --I - ._ I... _._ L. ..__ Le. ..L- ..s.-L~*--l----- .--- --2--_---L. --. I - -- A--L-L 

’ .I ‘3 +4 
10 I 0 I 0 

TItlE(YEARSJ 
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1.000 

.a000 

.6000 

.4000 

.2000 
z 
0 
k- 
< 0.000 
-J 
w 
CK 
CK 
0 ” -. 2000 
Y 
Z 
-I 
a: -. 4000 
A 
< .A 
L 
< -.6000 
a 

-. 8000 

-1.000 

PRCC LHS-NWFT VS 110 S3 HLU LEACH TIflE NP237 

+2 +3 +4 
10 10 IO 

TIflE(YEARSJ 
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1.000 

.a000 

.6000 

.4000 

.2000 
z 0 
c 
< 0.000 
J 
LL 
lx 
% U -.2000 

5 
-I 
cc -.4000 
J 
< 
b- 
cy 
;: 

-.6000 

-.QOOO 

-1.000 

PRCC LHS-NWFT 4s TIO S3 HLW K UP AQ NP237 

i 

I 
1 

+2 +3 +4 10 10 IO 

TIfIEtYEARSl 
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6003 

.4000 

,200o 
Z 
0 

I- 
< 0.000 
-. 
w 
cc 
(Y 
0 
U -. 2000 
\r .- 
z 
i 
a -. 4000 
i 
< 

ii 
< -. 6000 
(1 

-.QGOO 

-1.000 

PRCC LHS-NWTT VS TIO 53 HLW REL TIME NP237 

+2 +3 +4 
10 10 I 0 

TIME(YEARS1 
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1.000 

.QOOO 

.6000 

.4000 

-.6000 

-. 800 

PRCC LHS-NWFT VS TIO S3 HLW KO U U 233 
~- I 7 

-1.000 L I 1 

$2 +3 +4 
10 10 IO 

TIflECYEARSJ 
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PRCC LHS-NWFT VS TIC S3 HLW K UP AQ U 233 
1.000 I------- l 

.BOOO 

t 

.6000 
I 

4000 

-I- i 

2000 
Z 
0 

t- 
< 0.000 
-I 
W 
w 
s 
0 -. 2000 

Y 
z 
< 
c3z -. 4000 I 

+4 
10 

+3 
10 

Tll-lE(YEhRSl 
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1.000 

.QOOO 

.6000 

.4000 

.2000 
Z 
0 
+ 
< 0.000 
-I 
W 

FE 
0 
L-1 -.2000 

x 
Z 
< 

lx -.4000 
-I 
< 
t- 
cr 
< -.6000 
a 

-.8000 

-1.000 L 
+2 +3 +4 

10 10 IO 

TIMEIYEARSI 

PRCC LHS-NWFT VS TIO S3 HLW REL TIME U 233 
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PRCC LHS-NVTT Vs T10 63 t-ii-w KO U TH229 
1.000 I- I 

.8000 

.6000 

,400o : 

.2000 - 
t 

z 
0 
I- 
< 0.000 
-I 
W 
ix 
cc 
0 
U -. 2000 

Y 
Z 
i 
cr -.4000 
J 
< 
+- 

-.8000 

-1.000 I J 

+2 +3 +4 
10 10 IO 

TIMECYEARS) 
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1.000 

8000 

a6030 

.4000 

z 
0 

0 
U -.2000 

x 
z 
z -.4000 

CT 
a( 

-.6000 

PRCC LHS-NWFT VS TIO S3 HLW KO TH TH229 

I- 

TIMEtYEARSl 
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0 

TltIFCYEhRSl 
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1.00 0 

.8000 

.6000 

.4000 

.2000 
Z 
0 
I- < 0.000 
-J 
: 
:: CJ -.2000 

x 
2 
< 
cx -.4000 
-J 
< 
c- 
fY 
< -.6000 
CL 

-. 8000 

-1.000 

PRCC LHS-NWFT VS 110 S3 HLW REL TItIE TH229 

r 

L 
+2 +3 +4 

10 10 10 

TIflEtYEhRSl 
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STEPWISE REGRESSION ANALYSIS FOR THE 
PRtVIOUS EXAMPLE OF THIS SECTION USING 

ALL 105 OBSERVATIONS 

The remainder of the pages in this section contain the re- 
gression analysis results. Page 134 shows some transforma- 
tions made outside of the regression program to create new 
variables such as retardation factors. Page 135 shows trans- 
formations for variables made within the regression program. 
The regression parameter cards as described in SAND79-1472 
are listed on page 136. The results of the regression anal- 
ysis on raw data for U233 is given on page 137. Pages 138 
to 144 contain the results of regression on ranks for U233. 

Summaries of the regression results on raw and rank trans- 
formed data are given on pages 145 and 146 respectively. An 
examination of page 145 shows the analysis on raw data to lack 
consistency of v riable selection from set to set and to give 
poor fits (low R 3 values). On the other hand the analysis on 
ranks shown on page 146 does show consistency of variable se- 
lection and provides improved fits to the data. 
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1r 

25 

SC 

AN EXAMPLE OF A PROGRAM FOR TRANSFORMING 
SOME VARIABLES TO CREATE NEW VARIABLES 

OUTSIDE THE REGRESSION PROGRAM - THESE 
VARIABLES ARE STORED ON DISK 10 PRIOR TO 

THE EXECUTION OF THE STEPWISE PROGRAM 

PROGRAH STAN( IYPUT,OU~PUT,TAPEl ,TAP!:lO) 
nIfiiNSlON X1N(25)9XOU1(25) 
rJ=llr5 
03 1oe I=l,hc 
REA3tl)XIN 
co-z. 734(1.0-XIN(13))/XIN(13) 
CE= ~.7J~(i.l-KINtlS))/XIN(~i) 
3r) :u J=1,5 
Lo= ?*J-1 
LF=?*J 
xOUT(LO)=l.I~+%IN1J)~CC 
XOUT(LE)=l.I’+XiN(J)~CE 

10 CONTINUE 
XOUT( 11 )‘=XIFJ( 1;) 
XOUT(lZ)=XIN(T) 
X3UT(13b=X1N(~\) 
xOuT~14)=xIt~(3) 
XOUTtlS)=X:N( I’)) 
xOlJT(16)=l.~/XIN(Il) 
XOUl(lT~=XIN(12) 
xOul(l0)=1.~/XIN(13) 
XOUT( 19)=XIlJ( 14) 
x3lJT(2o)=XIr~( 15) 
XOUT(21)=XIN( li) 
K3Ul(2?)=xlY( 17) 
XOU7(23)=XIN( 19) 

XOUT(24)=XIN( 14) 
x3UTt25)=XIN(L?) 
URI TE(lO)XdUT 

1OC CONTINUE 
RCbiIND 10 
END 
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SUGROUTINE FOR MAKING TRANSFORMATIONS 
WITHIN THE REGRESSION PROGRAM 

SUHROUTINE TR A’JS( X) 
COMHONIIHAN/NR4U,NTRAhS,I~R~P~~DUH,IR9NK 
OIMENSION X(49) 
DO 1 X=1,22 

1 X(I+25)=X(I~~X(I) 
xwwx(~7)~xW3) 
X(43)=X<19)*X(2Cb 
RETURN 
I: N 0 

0 
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IYPIJT CI(LCK OF FIRI’tCTERS 

IIV9ER Of V4RllHLfS PEA0 IN 25 

YO. OF TRAWSFORPtO VlRIABLES = 29 

DATA DlSPOSITIOh IS 2 

LARrLlli=RF A CqrRF 5 CC.RF I PUlRF 5 PU*RF A UlRF 5 tl,RF A TWtRC S TM, 

LIEILL(~)=AF A W’,IF 5 hP,i CT* PU,S LIM lJ,S LIN 1H.S ClR NP,OISP,LZACW T, 

LARCL(lI)=CG~3 LO.POR IJrCOW SIPOR StREL TI*t.NUlc RMT,TIO k2.110 U.710 TH, 

LLREL~26~=X1fO.X2SO~X~SO,X~SQ,X5SQ.X~SQ,X7SQ,X~SQ,X9S~,XlDSO,XllSO,Xl2SO~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

LABf’~4N~:Xl?~XI~,XI9*F20 

OU1PUr,COXR.STE~S 

STCPYISE.SIb1~=9.05,S~GOU~=Q. 

K00LLr2J,2I,25=I*~‘5~7~9~11*12~11~1~*15*16*1?*16*19*2C*21~22*26~2~*~0*~2*~~~ 

~6.)?*~b.J9o~C*~1*~2*~~~~~*~5*~6*47*4~*~9. 

PQfSS 

~5147 COWTPOL CAXO) 

tsr41 COlrTROL 

(Srrl COllTROL 

t STAT COM7ROL 

~STll COWlROL 

t STAT CONTROL 

I STL 1 CONTROL 

1 STll CONTROL 

(STAT CONTROL 

(STAT CO*lROL 

CARC) 

CAID) 

CARD) 

CAROB 

CARD) 

CARD) 

CARO) 

CAROB 

CARD) 

(STAT COWlRCL CAROB 

CSTAT CORTROL CllOl 
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w 
m 
cn 
c 
r 
--I 
v) 

w 
a3 

INPUT C~CCK OF PARAWETCRS 

rtU*HER OF VARIAPCCS READ IN = 25 

NO. OF TRAWSFORLEO V1RIABLfS : 2~ 

OATA olsPosITIoL IS 2 

oUTPUT,CORR.SILPS 

STfPYISE,SIGIY=o.05.sIcoul=~.lo 

*~0CLo2~~2~~2~~~*~*~*7~9*11~12*1~~1~*1~*16*17*1~~19~2~*2~*22~2~~2~~~0~~2~~~~ 

36~~1*~0*39*~0*~1*~2*~3*~~*~5~k6*~7*~~*~9. 

PRCSS 

RANK RECRZ SS 1ON 

EN0 OF PARA*fTCRS 

00 
z--l 

(STAI CONTROL CARGI 
WA 
DI 
zm 
7T 
CnW 

m 
-no 
OW 
Wm 

v, 
cv, 

(STAT CONTROL ClRD) Iv- 
WO 

(Sill COllTROL CARD) wz 

(STAT CO*TROL CMO) D 

z 
r- 
4 

(STA? CONTROL CARD) (n 
H 

(STAT CONTROL CARlI) ul 

tsrlr CONTROL CARD) 



. L cr 
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I 

P 
0 

CCNO AC 17 
PCR AC ie 
CCNC s 19 
Doa s 20 
RCl. IIN 21 
NLll RHS 22 
XISO 26 
X3S.C 2P 
x5sc JO 
I I.50 32 
1950 34 
XllSO JC 
r12S.o 37 
x13-50 3a 
x1450 39 
XlSSO 40 
XlbSQ -1 
r17S.o 42 
Ales0 43 
r19s.a 44 
X2CSQ 45 
XZlSG 46 
X22SQ 47 
x17*r1.3 48 
x19*x2" 49 
110 NP iJ 
110 lJ 24 
110 TN 2: 

1.0000 
-.670@ 

.0206 

.00*7 
-.0342 
-.0195 
-.016? 
-.09*e. 
-.C9Ab 
-.07ol3 
-.1348 
-.'?356 
-.OOkO 

.Obb4 

.0207 
-.0203 
-.ooc3 

.960.9 
-.6635 

.0647 
-.0032 

-0151 
-.OOlO 

.3616 

.OkO 7 
.*590 
. 47RI 
.5564 

No. 17 18 

NARC CON0 A0 POR A0 

Tl~LE*SlrPuISt FCQ hRC Sti3Rl COURSt RAN* TRANSFOPREO OAr4 VECI t-105 

SANOIA LAdORAT7RIES <><> STCPJISL RCGQESSI CN <><> FRO* KANSAS STATC UNIVERSITY 

CCRRELATIOY MATRIX 

1 .o’jcc 
-.5309 
-.3111 

.01A7 

.0036 

.‘)6*2 
.oso 7 
.llJl 
.0969 
-2465 

-.OlA3 
.0450 

-.0?13 
-.0290 

.0204 

.0503 
-.6450 

.9688 
-.0435 
-.0135 

.a249 

. OOR5 

.J209 
- .0354 
-.3396 
-.3315 
-.3605 

1.0003 
-7310 

-.0069 
-.0034 

.0722 

.0425 
-.0259 
-.OJ51 
-.0260 
-.0523 
-.0127 
-.OObJ 
-.0293 

.0093 

.02@3 
-0242 

-.0469 
.9688 
.6944 
.012$ 
.004b 
.0240 
.9068 
.2464 
.1791 
-2291 

1.3053 
.Ga54 
.01r5 
.0257 
.@269 

-.0052 
-0193 
.OOOk 

-.0131 
-0362 

-.08?b 
-.Ol*? 

.o 119 
-.Dl%? 

.OOLlT 
-.Olll 

.7033 

.9688 

.OlJT 

.02!l7 

.0439 

.a970 

.1619 
-1316 
.1629 

1.000'1 
.0411 

-.OllO 
-.Ol 76 

.0550 

.0054 

.0243 
-.0055 
-.0308 
-.0377 
-.0057 

.0150 
-.OBb3 
-.0152 

.0440 
-.OORB 
-.0043 

.9bW 

.0522 
-.0613 

.0021 
-.4800 
-.a618 
-.3992 

1.0009 
.0012 

-.0194 
.0328 
.OO?U 

-.0370 
-.0245 
-.0332 
-.0305 
-.0807 
-.0453 

.0652 

.OOOb 

.OkOS 

.0204 

.0617 

.0574 

.9618 
-.0624 

.0486 

.OJZI 

.0109 
-.01306 

1.0000 
-0835 

-.0252 
.0??2 

-.0597 
.0290 
.OO?l 

-.0236 
.0403 

-.0243 
.023? 

-.0083 
.06?1 
.050? 
.0400 
.0090 

-.O?i? 
.09x3 
.0559 

-.0179 
.0831 
.0185 

19 20 21 22 26 

COND s POR S RCL TIM NOM RRS XISO 

1.0000 
-.0536 
-.0294 

.0732 
-.030? 

.osn1 
-.0193 

.OOO? 
-.025cl 
-.0063 
-.0450 

.109? 
.0548 
.04?1 

-.0264 
-. 0048 
-.0556 

.068? 
-.086? 
-.04?3 
-.0131 

28 

X3Z.P 

1.0000 
.01?4 
.1125 

-.0127 
-.Obl.¶ 
-.0543 

.01?5 
.OJSfJ 

-.05?3 
-.1045 

.1482 
-.0364 
-.0026 

.lOlS 
.0260 

-.02so 
-.0186 
-.1670 
-.52?? 
-.3086 

30 

X5SE 

P46E l 

1.0000 

-.OltiB 
-0069 
.0620 
.0425 
.0138 
.0244 
.0123 

-.lOOl 
.I224 

-.05as 
.0146 

-.0102 
-.0519 

.0298 
-.0263 
-.0557 

.0212 
-.40%3 

32 

also 

1.0000 
.0¶42 
.006? 
.OlO? 
.0170 

-.0220 
-.037B 
-.092? 

-21120 
-.02Y)r 
-.0074 
-.0120 
-.0614 

.0478 
-.0164 
-.4934 
-.265l 
-.1834 

34 

x9sa 



PIGE S 

ZllSC 
xl250 
Ll.'SC 
Yl~SO 
UlSSR 
Xl6SC 
11750 
YlRSO 
x19so 
x2csc 
x;1sa 
X?253 
rl?*xlF 

I x19 l I‘? 

NAPE 

I . 2 0 G C 
-.;a41 
-.s175 

.oc3* 

.n275 
.')73', 

-.OJZO 
.0>22 

-.07'1* 
-.3Q6R 
-.-2's 

.CC"J 
-.I 314 
-.3511 
-.0159 
-.0035 
-.1071 

36 

XllSD 

i .bjG’ 
.c 17c 

-.OIhY 
.3117 
.?"?b 

- .r1094 
-.JL32 

. C295 
.P215 

-.03bj 
-.:545 

.131? 

.02*b 

.0241 

."502 

.07*7 

37 

KlZSO 

l.OOh 
-.0033 
-.0351 

.126d 

.Ob 13 
-.01-2 
-.007> 
--Oh51 
-.03<2 
-.07Ub 

.0255 
-.0250 

.OQ59 

. 05?5 

.05R3 

JR 

Xl JSQ 

r22sa *7 l.“OOG 
117*)rlE 48 -.i,+hl 
r19*rZO 49 .06Rl 
110 hF 23 .3433 
110 u 24 .0173 

TIC TM 25 -.rs12 

k0. *I 

NA?f )r?lSO 

1 .OOG” 
-0575 1 .OOCl 
.Illb .l~,Pl 
.?:41 .lJ54 
.?ROl .213* 

bl3 49 

XlI.rlR Xl QbX2C 

1.0230 
-.055* 

.0155 

.0115 
-.OIZd 
-.0389 
-.0052 
-.a157 
-.ObO* 
-.0193 
-.0152 
-.OJIl 
-.0213 
-.1298 

39 

x14sa 

1.0'101 
-.or1* 

. 3OP? 

.0132 
-.021? 
-.oo 18 

.0061 
-.0713 

.OOYb 
-.oo=* 

.06?1 

.oss* 

.12!7 

b0 

II1550 

1.0003 
.OOOJ 
.OR39 
-0185 

-.a212 
-.0917 

.0653 
-.0103 

.0065 

. 4Ob3 
-1968 
.1279 

1 .oooo 
-.6199 

.C6+7 
-.c139 

.0505 
.0233 
.264+ 
.037* 
.399* 
.1397 
.5271 

k2 

x17sa 

1.0000 
-.ofl*5 
-.0119 

.0286 

.0415 
.2055 

-.OII 1 
-.JIJl 
-.3'550 
-.3936 

43 

118S.O 

1 .oooa 
-6833 
.01*9 
.0346 
.0651 
.9223 
-2390 
.17r3 
.2516 

bb 

a19fa 

1 .oooo 
. iJOII 
.0850 
.0138 
.9020 
-1322 
-0961 
.1385 

b5 

VZOSO 

1.0000 
.0648 
.0091 
.O?lO 

-.b602 
-.464L 
-.3781 

xzisa 

FCR NRC SiiJRT COURSE RAYK TRANSF~RNEO OAT4 VfCT l-105 PL6E 6 

< ><> ST~P~ISE RCGPtSSlON <:<> FROM KANSAS STATE UNIVfP.SITT 

CCRRELAIION PATRIX 

l.OOu’) 
-1671 l.OOOrl 
-6766 . 75R7 1.0000 

23 24 25 

II0 UP 110 u 110 TM 



TITLE,SlC~UISC FCQ NRC Sr(DR, COURSC R4YK TRANSFqRMfO DA14 VECT 1-10s 

SINOIA LAHORI I’lRiEi < ><> STCPUISE RCGRCSSI CN <>O FROL KANSAS STATC UNIVtYRSIlT 

A3V TABLE 
AN4LlSlS OF RfGRfSSION FOR VbRIIBCt 2*---110 U 

trrHLE 1) 

COIJRCC 0.F. ss RS f 5 16MIF ICIWCE 

RfSRfSSION 1 31988.115 
PlSICUAL 103 62333. P15 
TCT4L lOI 94822. 000 

t?**z IS .33735 
INlEPCEPT IS R3.521R79 
Sl4NOAPO fPI(CR CF INlfRCEPT IS a.85538 

VAR IIBLE VAQlARCE Rf6RESSIOW 

NLREtp UP*: CCIEFFICIE*~S 

5 RF 4 ” -.?75865b* 

UNIOUC SfPUCWCL *UMBER FOR THIS ANOVI = 

31988.185 52.+3;*43 
610.0370* 

.oooo 

Sr4hObRoIzEo P4RT I4L 
RC6RfSSION ssa 

COEFFIClfNTS 
-.=58081R 3198R.lR1.9 

11p 

T-TEST 
VILUES 

-1.2413 

Ra.2 
0ELETf.S 

0.0000 

PLGE 14 

ALP@1 
HA 1.5 

.oooo 

RlNK FIT GlVfS A R4Y OAlA NORIIALIZfO R”2 = .27533492C-01 

COtFFICIEh! OF INTCRPOCATION = .27392919c-ni 

FRCSS IS 649*A. 

m m 



10 
“I 

Y 
II 

-u. 
lb”,‘: 
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t. 
. 

I- 
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T,Lk314 LIM3RLTORl’; <><> SlEP~ISC RCGUC SSI OH <><> FROM KAMS4.S ST4TC UMIVCRSIlT 

hOV 14HLE 
AWALrSii OF RE6RiSSlOY FOR VIRIAdLE 2I---II0 U 

(TIYLE 1) 

SOUPCF 0-F. ss MS F 

RfsRtSSIOk z 65061. J,6 21953.779 76.56\562 
RfSICUIL 101 28961). 654 2’36.13925 
TCT 4L lo* 9(322.000 

R*=? IS .65e5fl 
IhlERCCPl IS 6: .6*347+ 
Sl#hObRLl CRROP CF INTCRC’PT IS 5.40 647 

VbPllBLC V#DlbBLT RCSRCSSIOW STlhOARDILLD PlRTIAL 
*t*PC P NAME CO:FF ICIENIS RC CRESSIOY sso 

COEfFICIENTS 
v. RF 4 ” -.515eQ520 -.519929 2534 4. i 528 

17 ccwo b0 .4111157J . *I4671 1614J.0996 
21 PfC lIRE-.a1719551 -. 420 I*3 16729.6575 

UNIOUE SCOUENCC ~UI’IEER FOR THIS AMOVA = 12c 

RANK FII CIVfS 4 RAY 0414 ROR~ALI~ED R.02 : .507*8162 

COCFFICIENI OF lWltRPOL4TIOY = .ia35n3lrC-c2 

FRfSS IS 31211. 

T-TEST 
VALUCS 

-9.*015 
1.5034 

-7.63a* 

SISNIFICIWCC 

.oooo 

RI*2 
DCLCTCS 

PIGL 16 

4 LPN4 
nr TS 

.tooo 

.oooo 

.oooo 

m m m 



SUMMARY OF STEPWISE REGRESSION ON RAW DATA 

Vectors NP 237 R2 -- -___ 

l-35 Cond S .15 

36-70 (Por A)2 .66 
Por A 
Leach 

71-105 Rel Time .12 

l-105 Rel Time .2 
( Cond S 

(Cond S)2 
Leach T 

U233 R2 TH229 I?* 

Leach T .18 No. Rms. .33 
Rel Time 
Por S 

Leach T .55 Leach T .56 
S. Lim Np 
(Leach T)2 

So Lim Np 
(Leach T)2 

S. Lim Np .57 (S. Lim Th)* .97 
S. Lim Np 
S. Lim Th 
RF A Np 

Leach T .12 Por S .19 
Rel Time 
No. Rms 

Note the inconsistency of variable selection 
from one set of runs to the next for this 
analysis on raw data 
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Vectors 

1-35 

36-70 

71-105 

l-105 

IIMMARY OF STEPI+iISE REGRESSION ON RANKS S 

NP237 R* -____- 

Cond A .57(.74) 
Rel Time 
RF A Np 
Leach T 

Leach T .06(.86) 
Rel Time 
RF A Np 
Cond A 
Cond S 

RF A NP .41(.81) 
Rel Time 
Leach T 
Cond A 
Cond S 

RF A Np .48(.73 
Rel Time 
Leach T 
Cond A 

U233 R2 

Rel Time .99+( .78) 
Cond A 
RF A U 

RF A U .64(.82) 
Rel Time 
Cond A 
Por S 
Leach T 

RF A U .47(.74) 
Rel Time 
Cond A 
Cond S 
(RF A U)* 

RF A U .51(.69) 
Rel Time 
Cond A 

TH229 R* 

Cond A .94( .83) 
RF A TH 
Rel Time 

Cond A .89( .79) 
Rel Time 
RF A TH 
(RF A TH)2 

Cond A .41(.68) 
RF A TH 
Rel Time 
RF A Np 
(RF A TH)2 

Cond A .59( .75) 
RF A TH 
Rel Time 
RF A U 
Cond S 

These are the variables selected as important by the stepwise 
regression analysis on ranks. This selection agrees well with 
the variables identified as important by the PRCC on pages 114 
to 118. Note that the notation RF A used here means retardation 
factor (RF) in the aquifer and is calculated using the KD values 
listed with the PRCC. Likewise K UP AQ and Cond A both refer to 
conductivity in the upper aquifer. 
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