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RECOVERY OF SEISMIC SIGNALS
IN NOISE BY ADAPTIVE PROCESSING

Glenn R. Elliott
Sandia National Laboratories
Albuquerdque, New Mexico 87185

ABSTRACT

This paper describes techniques for use
in improving the signal-to-noise ratio
of electrical signals buried in noise
from seismic sensors. Often not enough
information is available about the
characteristics of either the signal or
the noise to permit the use of more
classical detection methods, i.e.,
matched filtering, likelihood detectors,
array averaging, etc. Adaptive process-—
ing can be of benefit in these cases.
Examples of Sandia‘'s work in improved
performance of perimeter intrusion
detection systems is presented.
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Abstract

This paper describes techniques for use in
improving the signal-to-noise ratio of electrical
signals buried in noise fram seismic sensors.
Often not enough information is available about
the characteristics of either the signal or the
noise to permit the use of more classical detec-
tion methods, i.e., matched filtering, likelihood
detectors, array averaging, etc. Adaptive
processing can be of benefit in these cases.
Examples of Sandia's work in improved performance
of perimeter intrusion detection systems is
presented,

Introduction

Frequently in seismic measurements, the desired
signal is heavily corrupted with various types
of seismic or electric/magnetic noise. Many
techniques are available toc the experimenter/
engineer to remove the effects of the noise.

Most of these use relatively large arrays employ-
ing several sensors. This paper deals with
methods of data processing for the enhancement
of signal-to-noise ratios (SNR) or for event
detection using data from one, or at most, two
seismic sensors. Most of the information
presented stems fram work at Sandia National
Laboratories with perimeter intrusion detection
devices used in security systems. We have worked
extensively with a buried line sensor which
responds to magnetic and seismic disturbances and
with camrercially available broadband geophones,
While a substantial part of this effort invalves
the detection of singular events such as the
human footstep with an attendant low false alarm
rate, the basic approach used could possibly be
applied to other fields as well.

The intrusion detection problem is illustrated
in Figure 1 where high-valued items are protected
first by a secure fence and then by anti~-intru-
sion sensors; in this case buried line sensors.
Usually inside the protected area guards are

*This work was supported and funded by the
Physical Security Systems Directorate, Electronic
Systems Divison of the Air Force Systems Camnand,
Banscam Air Force Base, MA 01731,
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A REPRESENTATION OF
THE IITRUSION DETECTICH PROBLEM

posted to evaluate the alarms and respond to the
intruder, if necessary. Almost always there are
rumerous sources of seismic and electro/mechan-
ical noise such as roads, trains, heavy equip-
ment, and power lines which can create responses
in the sensors which completely mask the intruder
signal. Hence, the problem becamnes one of
detecting a signal buried in noise.

The Adaptive Approach

Early in our project, we were faced with a
problem in trying to characterize the noise and
intruder-generated signal. If sufficient
description of both noise and signal could be
obtained, then there are a number of classic
methods of removing the noise fram the signal
which produce excellent results, e.g., matched
filtering or pattern recognition. Mcet noise,
however, if not broadband was at best narrow
band with an undefinable center frequency which
varied from location to location and under
different soil conditions. 1Intruder signals are
generally broadband transients which cannot be
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characterized either. Same off line, after the
fact conventional processing procedures came to
mind; however none of these were suitable in our
real time, on-line processing enviromment. The
only cutoome fram our signal characterization
study was that the noise had more of the statis-
tical parameter of stationarity than the intruder
signal. Actually, the noise could not be consid-
ered stationary in any sense over the long term
at all; but, does exhibit same of the short-sense
stationary properties. The adaptive digital
filter capitalizes on such differences to improve
SNR and decorrelate the stationary camponents of
the noise response. These processes, generally
attributed in their modern form to Prof. B.
Widrow of Stanford University and othersl, are
illustrated in Figure 2,
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ADAPTIVE DIGITAL PREDICTOR (ADP)

Figure 2a shows a two~input system where signal
plus noise is fed to one input while a source of
correlated noise is available at the second
input. This configuraton can be especially use-
ful if there are two sensors available, the
signal source is much clcser to one, and the
noise source is distant to both, This has proven
to be quite useful for intrusion detection
systems where the seismic censor can be consid-
ered as a single point receiver. We have used
this configuration quite successfully even when
the two sensors are of completely different
types. For example, a microphone (noise input)/
geophone (signal plus noise) canbination can be
used to significantly reduce noise effects gener-
ated fran low flying airplanes. For the typical
buried cahle sensor employed in intrusion
systems, however, the performance of the two-
input version is poor. The responses of both
cables are essentially uncorrelated, probably

due to the distributed nature of the sensor.
Pigure 2b illustrates the single input Adaptive
Digital Predictor (ADP) which reduces the effect
of stationary camponents in the input. As the
name implies, by looking at the incoming signal
continuously, the system predicts the future
ou;gxt. It is this AIP which we have widely

used in our intrusion detection work, and in the
remainder of the paper we will concentrate

primarily on it. A basic understanding of the
ADP suffices also to be able to work succcess-
fully with two-input systems.

Several different forms of the ADP are availahle
now along with several processing algorithms.

We will discuss same of these in the rest of the
paper. Regardless of form or mathematical pro-
cess, all generally follow similar prirciples,
The filter itself has an adjustable transfer
function accamplished by using variable weights.
These weights are adjusted by an algorithm which
attempts to minimize the square of the expected
value of the output or error signal, e in Figure
2. This is accamplished by expressing Ele2,

the expected value of the square in terms of the
filter weights, taking the partial derivative
with respect to each weight, setting those egual
o zere, and sclving the resulting simdltanecus
differential equations for the weights., Several
different methods are available for solving the
equations. The most popular involves exprescing
the error surface in a multi-dimensional weight
space; ard then sclving for the weights that
yield the minimum error, using a steepest decent
method. Although the derivation can get rather
involved with vector and matrix algebra, the
resulting computational algorithms are relatively
simple and implementable on present microcom
puters. In the next section, we shall cover a
few of the various structures and corresponding
camputational algorithms.

Transverse Structure

The most simple and straightforward of all of
the ADP's is based upon the transverse structure
as shown in Figqure 3, If the noise is typically
narrow band and very stationary, then the delay
could be several samples with a correspondirg
high system delay in the filter; however, for
broadband, less stationary data the delay is best
fixed at the minimum of one sample as shown.

Output, e, for a filter length M at time n is
calculated by:

M
e(n) = x5 (n)—Zlam (n) X (n) (1)
an

Where n is the time step and m is the filter
stage. This is a moderate change in namencla-
ture fram that presented in Reference 1; however,
it is consistent with that presented in the
remainder of the paper. Using the method of
steepest descent, as mentioned in the previous
section, the weight update equation is

an(ntl) = 3p(n) + ve(n)xm(n) (2)
where u is a convergence constant.

One will note that an and xp are vectors of
length N while e is scaler. If the filter is to
run continuously for long periods of time, then
an additional factor is needed in equation 2 to
prevent a long-term stability problem where the
system becomes a no-pass filter2,
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FIGURE 3
TRANSVERSE ADAPTIVE DIGITAL PREDICTOR

ap(ntl) = way (n) + ve(n)xy(n) (3)
where w is a constant usually slightly less than
one. Reference 1 contains considerable discus~
sion pertaining to the selection of u and its
dependence upon the degree of correlation and
power in the input signal. Larger u's result in
faster convergence; however, an upper limit
exists where the filter becames numerically
unstable especially when it encounters a burst
of high level input.

An examination of equations 1, 2, and 3 reveals
a fairly uncamplicated algorithm requiring only
M multiplications and a similar number of
additions. Programming in high level languages
which use floating point representations for
mumeric values is straightforward; however,
cading in fixed point systems such as camonly
found in microcarputers requires same special
care, We have successfully run 16 weight ADP's
of this configuraton at rates as high as 400
samples per second in several microcamputers,

Figure 4 is an example of how this version of
the ADP can be used to eliminate slowly varying
narrow band noise and yet respond to transient
signals. The input consists of two additive
sinusoids; one is a constant 10 Hz, which con
tinues throughout the record, the second of the
same amplitude starts at 21 Hz and rises to
nearly 45 Bz at the end of the record. At
slightly under six seconds, a sudden burst of 55
Bz, also of equal amplitude, is applied lasting
for about 1/4 second. The bottam trace shows
the output, e of the ADP. There is a period of
adaptation lasting for a couple of seconds and
fram then on the ADP not only has adapted to
eliminate the 10 Hz constant signal, but is
oontinuing to adapt and change its response to
remove the varying frequency sine. However,
when the sudden burst occurs, it cannot adapt
that fast and responds with a large signal on
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its cutput. Thus, one can see how the ADP can

remove noise that is of unknown fregquency or a
combination of frequencies which may be changing
in freguency (and amplitude) and serve as a
detector for a sudden, transient event. One
should also observe that the detected signal is
considerably altered as it passes through the
ADP making these systems much more usable for
event detectors than signal enhancers. The two-
input adaptive filter of Figure 2a preserves the
character of the detected signal better than the
ADP and could be used providing a separate sensor
is available which responds to noise only.

Lattice Structures

In cases where the noise is broadband and not
very stationary, the transverse structure and
its algorithm do not perform as well as for the
narrow band stationary case. For these we turn
to the more camplex ADP based upon lattice
structures as shown in Figure 5. The lineage of
the lattice is difficult to trace with several
contributors to its developrent. We use the
methods and implementation presented by Griffiths
in Reference 3,
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FIGURE 5
LATTICE ADAPTIVE DIGITAL PREDICIOR



As indicated in Figure 5, these ADP's have two
error sequences represented as a forward predic-
tion error fn(n) and a reverse or backward
prediction error by(n). Normally, we use

fn(n) as the output of the ADP which is com-
puted by the following recursive relationship:

fre1 (N) = £(N) = Ky ()b (n-1) 4
Biney () = =kg(n) £q(n) + by (n-1) (5)

Using an analysis similar to that for the trans-
verse form but samewhat expanded to correct a
few difficulties arising fram the typically
poorly conditioned input data, the weight update
equation is:

kptml) = dom) + 2 ey mibginl) +
ofin |

£ () By ()] )

Note that now the weights, k, at each stage are
updated on the basis of error cutputs fram that
stage rather than fram a final error.
convergence constant and 02is a smoothed estimate
of power at that stage which is made by the
follawing recursive estimate:

2 Y P - 2
o2 = pie-1) + 0-p) |2 (1) + £2(n) )

B is the filter coefficient for the low
pass filter and as a rule is set at l-a,

As can be seen fram equations 6 amd 7, the
lattice algorithm makes a stage-by-stage lccal
estimate of the incaming signal at that stage,
and it uses a dynamic convergence coefficient
which varies inversely in response to a smoothed
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power estimate at each stage. This results in
an ADP which not only handles relatively nom-
stationary inputs but which is inherently stable
over a wide range of 's, The lattice structure
has an additional advantage for implementation
in fixed point systems in that it is inherently
less susceptible than the transverse structure
to fixed word length problems such as round-off
error and limit cycle oscillations,

An example of the operation of the lattice ADP
is shown in Figure 6. Here we have a large
freight train passing on tracks that are located
about 1 Km fram a buried cable seismic sensor.
At about 37 seconds into the record, an intruder
creeps slowly across the sensor. The top trace
represents the raw data into the lattice ADP,
and the seond trace; the output. The improve-
ment in SNR is quite apparent. Another feature
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PONER DENSITY SPECTRA BEFORE AND AFTER
THE LATTICE ADAPTIVE DIGITAL FILTER

of the ADP is shown in Figure 7. The top curve,
Figure 7a, is the Power Density Spectrum (PIS)
of the input data, and Figure 7b is the PDS of
the output of the ADP. Note the "whitening”
effect as the correlated components are removed
fran data. It is this characteristic of
whitening which makes the operation of event
detectors as described in the next section so
successful.

As in the case of the transverse ADP, the signal
is substantially changed by the process so the
ADP is primarily used as an event detector. 1If
one wishes to better preserve the character-



istics of the signal, then, there are two-sensor
input lattice filters available. The operation
and camputing algorithms are described in
Reference 3 and will not be covered here. They
generally follow the form of the lattice ADP
with a small additional carplexity and computa—
tion requirement.

FIGURE 8

USING THE ADAPTIVE DIGITAL LATTICE FILTER
FGR REMOVINS AIRCRAFT KQISE
FROM A GEOPHORE

We have investigated an interesting apolication
of the two input lattice filter, Many times we
would like to use a geophone for intrusion detec-
tion in areas where there is high coupling of
accoustically-generated noise into the soil
resulting in significant response fram the geo-
phone. This situation is often found near air
bases where low overflying aircraft generate
seismic signals which make the use of geophones
for intrusion detection impossible without
signal processing. Here we place a microphone
mounted directly above the geophone to pick up
the accoustic signal and feed it to the noise
input of a lattice adaptive filter. The geo-
phone output goes to the signal plus noise input.
This configuration is represented by Figure 8,
and in Figure 9, we have the output along with
the two inputs to the filter.

KW DAT?, GiDPHO;iE

1 i

OUTPUT, TeT 1NPUT LATTICE FILTER
-0 o
] 2 ] ¢ ! (
TIKE (seconos)
FIGURE 9
PERFORMANCE OF TWO- INPUT ADAPTIVE DIGITAL FILTER
AIRCRAFT MOISE

There are additional forms of the lattice
structure with coorespondingly different
computational algorithms. One version, termed
the exact least squares lattice has been used
with some success for sensor processingd,
This form allows the two weights at each stage,
m's in Figure 5, to be numerically different
ich results in very rapid conversion times, a
useful characteristic for data which are essen-
tially non-stationary. In this class of algor-
ithms, conversion time is so short that little
signal appears as error at the output. Event
detection is usually accamplished by manipula-
tion of the weight vector.

Detectors

In intrusion detection and other applications,
we are interested primarily in event detectiom.
A powerful method of event detection exploits
the decorrelation abilities of the ADP as was
noted in Figuure 7. This appears to be a much
more reliable characteristic of these devices
than improvements in SR's. The problem of
detection then becomes one of detecting signals
in white noise. Technigues for accarnplishing
this are many and have widely been reported on
in the literature for a number of years. We
frequently use an adaptive variance estimator.
A current estimate of variance based upon a few
samples of the ADP output is campered against a
past estimate of variance based upon a larger
set of samples and delayed a few samples, The
differences between the two variance estimates
can be used as a detector. An example is
represented by the third trace of Figure 6. One
will note the very low level fram the detector
until an intruder is present-—a conciderable
improvement in SNR over the input signal to the
ADP, the top trace.

The final design of our intrusion detection
system uses the standard lattice AP of Figure
5, the algorithm of equations 4-7, and a
variance detector based upon a ratio of the
present and past variance rather than the
differenceS, The ratio makes the whole system
sanewhat more independent of input signal
levels; but does add camplexity to the
canputations, expecially in the fixed point
version as implemented in a small microprocessor-
based system,
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A technique mentioned earlier which seems to
offer good detection possibilities is using the
weight vector itself, For the rapidly adapting
structure and algorithms, there usually is more
movement in weights than in the error signal.
One methad is a straightforward camputational
scheme as outlined in Pigure 10, Each weight is
subtracted fram a smoothed representation of its
previous values, the difference is squared, and
then the sum of all the squared values for all
weights is used as the cutput of the detector.
In Figure ‘11, the input data and detector output
from Figure 6 are reproduced far camparison with
the third trace, the output fram the smoothed
weight-change detector. The smoothed weight-
change detector clearly indicates the intruder
crossing, but also has significant output for
other events in the data. One probably would
not use it for intrusion detection, neverthe-
less, there are applications where its use can
be advantageous.
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This detection technique has recently been used
at Sandia for detecting time of arrivals in data
fram the national seismic station/, It appears
to have same distinct advantages when the more
camplex adaptive algorithms can be used, in off
line canmputational situations, for example.
Another difficulty does arise when using it for
intrusion detection. During periocds of very low
noise, the noise that is present may be essemr
tially white. If a weak intruder signal is also
randam and nearly white, then there will be
little change in the weights. 1In this case, the
error signal detectors appear to work better.

Conclusions

Adaptive signal processing techniques can be used
to advantage in processing seismic data to remove
the effects of certain classes of noise. Adap~
tive processing is especially advantageous where
the noise cannot be characterized or is of a

slowly varying character. A number of different
configurations are available for impkementing the
adaptive processing technology, most of which are
easy and straightforward to use. If event detec—
tion is needed, then a number of detectors are
available which, depending on the situation, can
produce good results.
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