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ABSTRACT 

The nonlinear copjugate gradient procedure is employed in the computer 
program JAC to solve quasi-static nonlinear mechanics problems. 
continuum equations is used that is very convenient for use with the 
conjugate gradient method and accurately describes nonlinear mechanics 
involving large rotation and strain. The method is exploited in a two- 
dimensional plane strain or axisymmetric setting while using various methods 
for accelerating convergence. Sliding interface conditions are also 
implemented. 
orthogonal hourglass viscosity to control the zero energy modes. Materials 
which can be modeled include temperature dependent elastic-plastic, s o i l s ,  
and secondary creep behaviors. 
CRAY 1 computer. 

A set of 

A four-node Lagrangian uniform strain element is used with 

The program is vectorized to perform on the 

Sample problems described are the bending of a thin beam, transverse 
crushing of a cylinder, extrusion o f  a plate and cylinder, bending of a 
laminated beam with interlaminear sliding and creeping of a cylinder. 
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I .  INTRODUCTION 

JAC is a finite element computer program for solving large deformation, 
temperature dependent quasi-static mechanics problems in two dimensions with 
the non-linear conjugate gradient (CG) technique. Either plane strain or 
axisymmetric geometry assumptions may be used with material descriptions 
which include temperature dependent elastic plastic, temperature dependent 
secondary creep and isothermal soil models. A four node Lagrangian uniform 
strain element i s  employed with orthogonal hourglass viscosity control of 
the zero energy modes 

Various schemes may be used to accelerate convergence of the CG method. 
One technique is to use as a starting vector some fraction of the velocity 
vector obtained from the previous load step A second scheme is to first 
solve a load step while using a linear geometry approximation to the equa- 
tions of motion Then the linear geometry solution is used as a starting 
vector to solve the non-linear geometry problem. 

For the calculation of the nonlinear quasi-static response of solids, 
there is a need for efficient and reliable solution methods. Obtaining 
finite element nonlinear solutions to static problems has represented a 
formidable task to engineers. The computer programs which are widely used, 
for example the ADINA code [ l ]  and the MARC code [2], rely on the stiffness 
approach, using either a modified or unmodified Newton-Raphson method to 
solve the nonlinear problem. Use of the stiffness approach is troublesome 
because of the difficulty in deciding when to reformulate the stiffness 
matrix to keep the solution from diverging or to accelerate the convergence 
On the opposite end of solution method types are explicit iterative methods 
which do not involve a stiffness matrix. 

The impetus to try iterative solvers comes from several sources. First, 
there is a need to solve three-dimensional problems efficiently without 
restrictions on the number of elements which can be used because of hardware 
limitations in storing and retrieving the stiffness matrix from a magnetic 
disk. Secondly, a case can be made for explicit methods based on experi- 
ences with implicit versus explicit methods for dynamic problems. The 
explicit techniques appear to be more reliable in obtaining good solutions. 
Implicit techniques for solving nonlinear dynamic problems suffer from some 
of the same problems as are experienced by static algorithms that use the 
stiffness method. When i t  was realized that explicit solution to dynamic 
problems was effective, as implemented for example, in such codes as HONDO 
[3], WLFF [ 4 ] ,  DYNAZD [5], DYNA3D [6] and SAMSON2 [i’] , then problems with 
the stiffness matrix could be circumvented. I t  can be argued that i f  an 
analyst knows his problem well enough to take large time steps and to make 
decisions about when to update the stiffness matrix and when to use 
equilibrium iterations, then a cheaper solution can be obtained using an 
implicit rather than an explicit technique. However, the analyst seldoms 
know enough about his problem in the beginning to arrive at an effective 
solution strategy. Based on this background in structural dynamics, it is 
now time to reexamine explicit techniques for use in solving nonlinear 
static problems. 

In the early 1960’s  iterative techniques, such as successive 
overrelaxation, Gauss-Seidel, and Jacobi’s methods were tried on finite 
element equations. I t  was soon discovered that direct solution procedures, 
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Gaussian elimination for example, were much more efficient than iterative 
techniques i f  the equations were numbered in an efficient manner.. However, 
only linear or mildly nonlinear problems were being solved at that time. 
Rashid reopened the question of whether t o  use iterative techniques for 
three-dimensional problems and his technique is discussed by Irons [ 8 ] .  
With vector processing machines, it is very useful to use iterative 
techniques with their vectorization potential for two and three-dimensional 
problems because storage requirements and input-output operations will 
continue to limit the stiffness method. A reliable iterative method, even 
i f  expensive, is superior to a stiffness approach that does not reliably 
produce a solution on the first attempt. 

After examining and trying various explicit techniques, the conjugate 
gradient (CG) technique [9,10,11] was selected for solving nonlinear solid 
mechanics problems These nonlinear effects include material nonlinearities 
and geometric nonlinearities due to large rotations, large strains, and 
surfaces which slide relative to one another. The CG technique was selected 
mainly for its reliability. In particular, convergence for a linear problem 
is guaranteed with an infinite arithmetric machine in N steps where N is the 
number of unknowns in the problem. Also, various investigators in the field 
of linear programming and optimization are using the CG technique with some 
success [12,13,14]. Nonlinear versions of the CG technique are reported in 
reference [15] and [ 1 6 ] .  Some acceleration techniques for the linear CG 
methods are discussed in reference [12]. 

In this document, a Lagrangian formulation of the mechanical equations 
is used in the current configuration of the body with particular attention 
being paid to the rotation of the stress tensor. The formulation is 
extremely amenable to the CG method because a stiffness matrix need not be 
calculated. Variational statements are then presented which allow a finite 
element representation of the equations of equilibrium. 
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D = (L+LI' ) /Z (2) 

I I . THE EQUATIONS 

1 . 0  Continuum Equations 

To define the problem of large deformation static response, three sets 
of equations are needed. The first set consists of kinematic statements, 
the second of constitutive equations, and the third comprises the equations 
of equilibrium. The three sets of equations describe the process in the 
current configuration (deformed configuration) of the body at time t. 
Cartesian coordinates are used throughout the report. The current spatial 
position x of each material particle X in the body is given by the motion x ,  
thus 

The reference configuration is taken to be that of the body at t = 0 .  The 
equations are discussed in detail in reference [ 1 7 ] .  

The kinematic tensors which are of interest are the rate of deformation 
tensor D and the spin tensor W. The two tensors D and W can be written in 
terms of the velocity gradient tensor L as 

and 

Thus, 

T w = (L-L ) / z  

L = D + W  

The components of L are 
Lh = v 

k ,m 
where the comma denotes partial differentiation and v is the velocity 
vector. 

The kinematic boundary conditions are written as 

A 
1 '  

V. = v. on s 
1 1 

( 3 )  

( 4 )  

where s is the portion of the surface on which velocity boundary condi- 
tions are specified. 1 

Specific constitutive equations for different types of materials need 
not be discussed in detail here to develop the equations. It  is only 
necessary to say that the constitutive equations can be written in the form 

where the Cauchy stress tensor is T and $ i s  a function of L . .  and T . . .  The 
stress boundary conditions are 1 J  1 1  

A 

2 t .  = t .  on s 
1 1 

A where t .  are the tracbions prescribed over surfaces s of the body. 
1 2 



In component form, the equations for static equilibrium of a body 
subject to prescribed body forces are 

T.. . + pb. = 0 (9) 11 11 1 

where p is the density and b. is the body force per unit mass 
1 

2.0 Variational Statement 

In order to obtain finite element equations, a variational statement is 
needed. A more complete discussion of the variational problem in the con- 
text of dynamics is presented in [la]. The equations below follow [18] i f  
the acceleration vector used in [18] is set equal to zero. 

To obtain a variational principle for use with the finite element 
technique, the power input to the body (which is zero for the static 
problem) is written as 

where s denotes the surface and V the volume of the body in the deformed 
configuration Since t = T * n on s , where the quantities n are the 
components of the unit normailto the surface, the surface integra{ in (10) 
can be transformed into 

1 

m 

v. (T.. . + pb.) f T..v. dV. 
’input 1 1 1 3 J  1 J 1  1 , J  1 

Jv 
A functional 7r is now defined by the equation 

I f  the equilibrium equations are substituted for T in (12), the 
second term integrated by parts and the first variationA’kaken, the result 
is 

f r 

, - , ,  Jv 
A 

d.rr = I dvi (-pbl - T1 1 .  )dV - 1 Svi (t i-t $ds. 
2 

(13 

The Euler equations are the traction boundary conditions ( 8 )  and the 
equilibrium equations (9). I f ,  in equation (13), the term involving T 
is integrated by parts, the following flrst variation is obtained J 1 9 1  

In the finite element method, equation (14)  will be used to determine the 
residual forces in the body at each iteration to obtain a final solution. 
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3.0 Finite Element Equations 

A t = t  - n n- 1 t 

To obtain finite element equations for ( 1 4 ) ,  it is assumed that the 
velocities are approximated by a set of continuous functions with undeter- 
mined coefficients. Matrices of interpolation functions, $b, are used for 
vector quantities. In the following equations, all quantities are composed 
of tensor or vector components in vector or matrix form. 

The equations (1) through (14) describe a quasi-static theory in which 
velocities are retained but the time rates of velocities are neglected. Some 
quasi-static mechanical processes involve real times such as those involving 
viscoelastic and creeping materials. Others, for example, involving elastic 
or elastic-plastic materials, proceed independently of the amount of time 
used in the process. The present analysis will be described in terms of 
real time. When going from time t to tn, an interval of time, At, is n- 1 used 

where n is called the time step (load step) number. In order to be consis- 
tent, time will always be used as a load stepping device. The index j is 
used to refer to an iteration within a load step. 

Given the velocity gradients ( 5 ) ,  which is rewritten here in vector 
form as 

L. = V@ v. , 
I 1 

the constitutive relationship is evaluated as 

'F 'F 

Q., D. At Q., 
1 1 1  Q; Tn-l j 1 1 

T. = Q1 Q. Tn-lQj + 

where 

Q. = f(W.)At. (18) 
1 1 

The quantity T. is a vector of components of the stress tensor and Q. is a 
matrix describjng the rotation of the material at the point in questjon. 
Hallquist [19] and Hughes [ Z O ]  have shown that, i f  the velocity gradients 
are evaluated at the midstep, the resulting strain is invariant to rigid 
body rotation. Also, the resulting integrated incremental strain closely 
approximates the true strain for large extensions. The operation with the 
matrix Q. represents one-half the rotation that occurs between time t and 
t . In kquation (li'), the stress at time t , is rotated to the mid%&p, 
and then used in the constitutive function. 
rotated tb the end of the step. This large rotation theory has a defect in 
that the shear stress exhibits an oscillatory behavior under large shear 
straining. There are several theories [ 2 1 ] ,  [ 2 2 ]  and [23] under discussion 
for use in correcting the problem, however at this time the technical 
community has not reached general agreement on the best approach. The 
present theory is satisfactory up to approximately a shear strain of 1.0. 
JAC should be used with caution for large shear strains. 

n n- "he resulting stress is then 

I -  
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The finite element equations that represent the variational statement 
(14)  are 

where the integrations are performed with the body in the configuration 
currently predicted for the end of the time step. In general, the residual 
force vector R. will not be exactly zero as required for equilibrium. 
objective of the iteration procedure is t o  reduce the residual forces to an 
acceptably low value. 

The 

1 2  



1 1 1 .  ITERATIVE SOLUTION 

The following equations describe the nonlinear conjugate gradient 
iterative procedure for using equations (16)-(19) to calculate a residual 
force vector R.. A generalized procedure described in [ll] is  used, where 
Z is the generalized residual vector. For each iterate J ,  

J 
-1 

Z .  = M R .  
J n J  

where M is a weighting matrix. The weighting matrix is usually taken as 
the diagonal terms of the stiffness matrix, although other forms have 
been considered [ll]. The conjugate gradient vector P is calculated using 

n 

where 
P .  = z. + p .  P .  
J+1 1 I J  

( Z T  M _ Z .  + Z. T lM,Z. 
- 

1 , j # o .  

, j = 0. 

Then the velocity estimate is updated using 

= V .  + a. P .  
vj+l J J J + 1 '  

where a. is determined such that 
1 

PT R(v. ) = 0 
J+1 1 +1 

The displacements and positions of the material particles are then updated 
using the formula 

u. = u + v. At 
j+1 n-1 j+1 (25) 

(26 )  x. = x + v. At ~ + 1  n-1 j+1 

The conjugate gradient process starts at the beginning of each load 
step by assuming a velocity vector, v and using equation (16) for the 

0' velocity gradient vector. Then the constitutive equations at each node are 
solved using equations (17) and (18). The residual force vector is calcu- 
lated with equation (19) which in general will not be equal to zero. In 
order to reduce the residual force, a conjugate gradient vector is calcu- 
lated using (20), (21), and (22). I f  the process were linear, then the 
second term in the numerator of equation (22) would be zero since Z. would 
be orthogonal to Z. This form for p .  comes from reference [14] And the 
generalized residuAi'vector given by eqAation (20) from reference [ll]. Both 
the weighting matrix and the second term in (22) for ,!3 cen be considered as 
convergence acceleration devices 

. 
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Equation (24) to find a. presents a few problems. Since the solution 
to nonlinear structural problems is wanted, then equation (25) is nonlinear 
in a .  as seen when V. + a.P. is substituted into (16)  - ( 1 9 ) .  The value 
of a1 is usually f o d d  with an expensive line search using, for example, a 
NewtAn-Raphson method in solving equation (24). However, it is  difficult to 
calculate the derivative of R with respect to a . Instead of a line search, 
a technique which will usually work for mechaniAs problems is to require 
that the constitutive model provide a secant modulus, C , for use in the 
following calculations, equations (27)-(30). I f  a secant modulus is not 
available, the elastic constitutive matrix may be used but convergence will 
be slower. 

]+1' 

= VqJ P .  
LP. 1 + I  1+1 

DP. 'j ]+I 
= c  TP. J +1 

Z. T Mn Z. 

PT R p ,  
J J a .  =------- 

'+' J+1 

J 

The iteration process continues by inorementing j and solving equation 
(16) again. 

Velocity boundary condrtions are imposed by setting the values in the 
initial velocity vector, v to the values needed to obtain the prescribed 
displacements and then the corresponding components of R are set to zero. 
Stress boundary conditions and body forces are imposed ib equation (19)  

A using b and t 

0' 

n 

When the th iteration loop satisfies a convergence criterion after 
calculation of equation ( 1 9 ) ,  the stresses, coordinates, and displacements 
for use at the beginning of the next load increment are updated This is 
written as 

and 

T = T. 
n J  

x = x. 
n J  

u = u  
n j  

1 4  

(33) 

0 
c 

0 

0 

0 

a 



Convergence at a time step is defined t o  have taken place when either 
of the following inequalities is satisfied, 

or 

2 I [ A (  I represents the L norm of a vector. In equation (35), F is a vector 
containing the applied tractions, body forces, gravity loads, ehermal loads, 
and reactions at nodes where nonzero displacement boundary conditions are 
applied. It  is important to satisfy equilibrium conditions at the end of 
each time step so that the value of the equilibrium convergence criteria 
equation (35) should be reached first. The incremental displacement 
condition, equation (34) should be used to stop a nonconverging solution. 
The program will terminate execution i f  either equation (34) or (35) is 
satisfied. The default tolerances for equations (34) and (35) are 1.0~10-~ 
and 0.001, respectively. 

The matrix M is used to accelerate the conjugate gradient convergence n process. It  is taken to be a diagonal matrix with values equal to the 
diagonal of the stiffness matrix with linear elastic properties used. It  is 
calculated only once, at the beginning of each time step (load step), and 
held constant during the iterative process. This choice of M is partic- 
ularly useful in axisymmetric problems or when different parvs of the body 
contain different elastic properties. 

Another way to accelerate the convergence is to provide a good starting 
velocity vector. It  is very helpful i f  the starting vector contains infor- 
mation about the lowest mode shapes which may be present in the solution. 
In many cases, a good starting vector is some fraction of the velocity 
calculated for the previous time step. This is particularly true i f  the 
directions of the imposed tractions are not significantly changed between 
steps. Another convergence acceleration technique is to first obtain a 
solution for the velocity with linear geometrical assumptions. Then the 
linear solution is used as a starting vector to calculate the geometrically 
nonlinear solution. This technique appears to be most useful when the 
solution is dominated by geometric nonlinearities. Excluding geometrical 
effects i s  easily accomplished by not updating the coordinates x. for the 
integrations and by not rotating the stress vector. 1 

The program has an element birth and death option which allows a block 
of elements with the same material identification number to be active for 
solution times which are between a specified birth time and a death time. 
I f  the solution time is  outside the active time range, the elements are 
simply skipped in the residual force and conjugate gradient parameter 
calculations. 
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The JAC computer program is vectorized to perform efficiently on the 
CRAY 1 computer. The vectorization method is called block vectorization and 
is described in reference [ 2 4 ] .  In general within a group of elements using 
the same material identification number, the elements are processed in 
blocks of up to 128. The residual force vector is obtained by processing 
equations (16) - (19) for each block of elements. The calculation of the 
a. conjugate parameter in equation$ (27)-(3O)is also vectorized using this 
bi ock vector i zat ion method. 

0 
c 

1 6  



IV. TWO-DIMENSIONAL APPLICATION 

The computer program JAC uses a two-dimensional application of the CC 
iteration technique. Devices to accelerate convergence of the solution as 
well as sliding surface constraints are implemented. All the ideas used can 
be readily extended to three-dimensional geometry. 

1 . 0  Plane Strain Element 

For the two-dimensional application, four-node isoparametric elements 
are used. The four node uniform strain element quadrilateral with 
orthogonal hourglass control which i s  used for plain strain calculations i s  
described in reference [25]  by Flanagan and Belytschko. The results are 
reviewed here and then an extension to the axisymmetric element by Flanagan 
[ 2 6 ]  i s  discussed. The element i s  derived by first writing the interpola- 
tion functions in terms of an orthogonal set of physical base vectors as 

4 9, = X I  + [ A l I  + 71AZI + (71q 
where Table 1 describes the base vectors. 

Table 1 

Node, I 71 A1 I *2 I 

1 -1 -1 1 -1 -1 1 

2 1 -1 1 1 -1 - 1  

3 1 1 1 1 1 1 

4 -1 1 1 -1 1 -1 

The isoparametric coordinates 6 and 71 have a range of -1 to $1. 

The uniform velocity gradient operator components for equation (16) are 
defined as 

where the bar (-) denotes a uniform quantity. Assuming a unit thickness for 
the plane strain element, the volume V i s  then calculated by e 
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These results are the same as with a single point integration when using the 
center of the element. The difference in the customary single point element 
and the uniform strain element is in the representation of the hourglass 
forces. The hourglass forces are found by first expressing the linear part 
of the velocity field as 

0 

- - L I N  - 
V. = v. + v. (Xj - Xj). 

1 1 i , j  

HC 
1 1  

The hourglass field v. is now defined by removing the 
nodal velocity field: 

L I N  v. HG = v - v. 
1 1  i 1  1 1  

c 

(39) 

inear portion of the 

(40) 0 
In [ 2 5 ]  it is shown the vHG is orthogonal to all of the base vectors in 
Table 1 except the I?, veck6r. 
expanded as a linear combination of the I7 vectors as: 

Therefore, the hourglass field can be 

I 

HG 
1 1  

V. 

where q. represents the hourg 
l a  velocities q. as 

la 

= q .  r . ia a1 

ass velocities. By defining the hourglass 

1 = - v .  qia 2 1 1  ’ a ~ ’  

it is shown in 1251 that the hourglass shape functions 7 are 

e 
The antihourglass forces are computed by 

HG 
f i I  = K; 7J YJ ViI 

where 

(44)  

e e 

In contrast to [25 ]  where elastic hourglass control is discussed, the use of 
the secant shear modulus, C44 is necessary t o  account for reductions in 0 

18 



element stiffness due t 
material model. 
properties section of this document. 
experimentally determined from a series of numerical analyses to be 1/30. 

plastic straining when using a elastic-plastic 
The secant shear modulus is defined in the material 

The best value for the constant c was 

2.0 Axisymmetric Element 

For the axisymmetric element [26], the element volume is written, where 
r is the radial component, as 

-1  - 1  

which can be analytically integrated. The uniform velocity gradient com- 
ponents are 

and 

v. #I,jdA 1 - 

1 1  
v. = - 

i , J  Ve 
JA 

e 

- 
V 

VrI / $1 
- -  r 1  - -- 

e r V 

Ae 
The above definitions yield the important identity 

- 
V r v = v .  , + -  

e 1 . 1  r 
- 

so that the correct volume change i s  calculated when using the uniform 
velocity gradient components. 

Using a derivation as in [25] for the plane strain 
hourglass shape functions for the axisymmetric element 
be 

0 

In two dimens 
trivial component. 

(47) 

(48) 

(49)  

element, the 
261 can be shown to 

ons, the spin tensor W in equation ( 3 )  has only one non- 

The angle which is used in the definition of the matrix Q is given by 0 
/ 
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3 . 0  Sliding Interfaces 

Many structures con 

6 = tan-' ( 

i t of tw 
slide with respect to one another. 

12 % At) . 
*Y 

which re part m in conta 0 

In the context of the CG method, 
t and 
a 

sliding algorithm can easily be incorporated using the master-slave concept. 
When interference between two surfaces is detected, the nodes on the slave 
surface are constrained to move in a direction normal to the master surface. 
Friction can be used to constrain differential motion of the two surfaces in 
the direction tangent to the master surface The relationship between a 
slave node and a master surface is shown in Figure 1. The slave node i f  
unimpeded would move to point 3 in Figure 1 

If (dl in Figure 1 is larger than some previously specified value and 
the normal force F is also larger than a previously specified value, then 
penetration of a sfave node into the master surface is defined as having 
occurred. 

The residual forces present at slave node 3 rotated to the n-s 
coordinate directions are calculated as 

R3n 

R3 

= u  
R ;"I 3Y ( 5 3 )  

where U is a rotation matrix which defines the n-s coordinate system with 
respect to the x-y system The normal force R is applied to the master 
surface at 4 
direction is dependent upon the coefficient of friction. I f  p is the 
coefficient of friction, then the tangential force F is the minimum of the 
friction force $3 and the residual, RQs The posi&ive direction of F is 
the same as that o? R . The forces R 
location 4 are 

but the amount of force to be ap;fied in the tangential 

3 S to be applied at the master surface 
3 s  4 

Point 4 is generally not a nodal location on the master surface and hence 
the force R must be distributed to the master element nodes. The equation 
used to appfy R to the master surface is 

4 

R f  = R .  + # . R  
1 1 1 4  

i = 1 , 2  ( 5 5 )  
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where i is a master node number and q 5 ,  are interpolation functions, 
evaluated at 4 . 1 

The forces R are then subtracted from the slave node residuals. 4 

The conjugate gradient vector of the slave node must be modified s o  
that the velocity of the slave node will eventually be the same as the 
velocity of the master surface at 4 . 
vector of the slave node, is rotated to the n-s coordinate system. 

First, P3 , the conjugate gradient 

[I:: = u  (57) 

Then the conjugate gradient vector of the master surface at point 4 i s  
calculated with the interpolation functions by using the equation: 

(58) 
m m P,=Q,P 

1 1  
m Then P4 

jugate gradient is now calculated using P 
is rotated to the n-s coordinate system and the slave node con- m 

4n ' Pgs and d . 

m 0.2)dl 
'4n a.At 

1 

- p3 --I s 

( 5 9 )  

When Ps and Ps 
master surface in the normal direction In order to correct for the initial 
penetration distance, the factor 0 21dl/a At is used to reduce the distance 
on each succeeding iteration where a i s  the conjugate gradient parameter in 

are used in equation (23), the slave node will follow the 
3x 3Y 

equation (23) J 

The sliding algorithm can be simply changed to a fixed interface 
algorithm by applying all the residual slave forces to the master surface at 
4 and then subtracting the slave residuals The slave node is given the 
same slave node conjugate gradient vector as the master surface has at point 
4 by using the value in ( 5 8 ) .  
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V. MATERIAL PROPERTIES 

The program is written in modular form so that different material 
models can be added in the future. At the present time, the code contains 
an isothermal elastic-plastic model, a temperature dependent elastic-plastic 
model, a temperature dependent elastic-secondary creep model, and a soil and 
crushable foam model. 

The function % in equation (17) represents the constitutive relation- 
ship. The main approximation in the following models is that the strain 
rate is constant over the interval from time t to t . n- 1 n 

1.0 Isothermal Elastic Plastic Model 

The elastic-plastic linear strain hardening model is a combined 
isotropic-kinematic hardening model with a hardening parameter 0 < p  5 1 to 
specify the ratio of kinematic to isotropic hardening. A von Mises yield 
surface is used together with an associated flow rule. This method, used 
for the isothermal elastic-plastic calculations, is reported by Krieg and 
Key [27,28]. 
uniaxial stress. 

The behavior described by the model is shown in Figure 2 for 

The numerical method for solving the resulting equations may be 
considered that of stepping out elastically in deviatoric stress space and, 
i f  the resulting "trial state" is beyond the yield surface, then scaling the 
stress radially back to the updated von Mises yield surface. The updated 
stress and the yield surface position and size are found simultaneously. 
The assumption of a constant strainrate over a time step used in the 
material subroutines is consistent since time rates of change of velocities 
are ignored in the program. The stress and plastic state update applies 
equally well for any general initial state at the beginning of the time step 
and for any strain increment size or direction. While a conceptually 
"simplistic" process, i t  is an excellent numerical approximation for 
integrating this rather conventional plasticity model. The accuracy of this 
"radial return" method has been compared by Krieg and Krieg [29] to other 
methods for the case of no hardening. 

The details of the process are as follows The stress is denoted as 
T , position of the center of the yield surface 7 and effective pK4tic strain n-1 ' 

D ,and the strain rate D The steps taken are n- 1 /Z Pn- 1 

(1) The radius D of the yield surface is calculated using the equation 
y1 

D = T  + BHDp 
'j 'n- 1 n- 1 

where 
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EE t H = -  
E-Et ' 

. 
where the elastic modulus E ,  the plastic tangent modulus E the 
stress T--, and the hardening parameter p are material parameters 

shear modulus G and the bulk modulus K 

t' 

in  Figur% 2 .  The elastic 
the following steps, 

( 2 )  The "trial" stress s 
end of the increment 
C .  

where T is the rotated n- 1 

ate TT , the jth iteration approximat 
is cklculated using a matrix of elast 

m 

T1 = T + C D.At 
1 n-1 1 

stress indicated in equation ( I ? )  

(3) The trial deviatoric effective stress, S., is calculated, 
J 

r T  1 

yield 
identified 
are used in 

on for the 
c constants 

and its vector magnitude i s  compared to the radius of the yield surface: 

(64) rJ 
Y. 

1 

) The incremental process i s  elastic i 
final stress is the trial stress: 

T T. = T. 
I 1 

ip 5 0 qnl, in this case, the 

The incremental process is at least partially plastic i f  Q 5 0 and the 
remaining step ( 5 )  must be executed. 

( 5 )  The updated value of the yield surface position and size (indirectly as 
the effective plastic strain) are calculated and the trial stress is 
scaled back to this surface to give the final stress 
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D = D  + c5 ISjI / &  G 
'j 'n- 1 

S. 
3G J 

C5H 
Y j  = Yn-l + (1-8) -- 

T. = T.T - C S (69) J I 5 1  

The secant modulus used in the determination of the conjugate parameter 
a .  is calculated using the relations: 

J 

C = 1 / 2 a  + K - a  S S p, q = 1 , 3  (70) P9 1 2 P q  

C = 2/3 a + K - a S S (no summation) p = 1,3 (71) PP 1 2 P P  

C = C  = a  s s p = 1 ,3  (72) 4P p4 2 4 p 

a 1 = BG(1-C5) (74) 

Y. 
2 G a  cr 

2 ( 1  + H/3G)1SI3 
a = 1 ( 7 5 )  

2.0 Temperature Dependent Elastic-Plastic Model 

The temperature dependent elastic plastic model uses the radial return 
method as does the previously described elastic plastic model The material 
properties, Young's modulus, Poisson's ratio, yield stress and hardening 
modulus, are assumed to vary linearly with temperature between the beginnlng 
and the end of the time step First, the initial stress is adjusted to 
reflect the change in moduli due to temperature, then the trial stress is 
calculated Instead of using the plastic strain as in (60) and (67) for the 
isothermal model, an updated value on the yield surface is calculated 
Given the previous value of the yield radius T , and the initial yield 
radius values, T and T , at temperatures 8 'n- 1 and B respectively, the 

radius of the yieid surface is calculated by 
n- 1 n' y2 Y 
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0 

8 

e 

e 

(77  

The calculation of the stress state continues as with the isothermal 
model using average values of G and H. Instead of using equation (67), the 
yield surface is updated by 

The secant modulus constants are calculated by using equations (70)-(75) 
with average material properties. 

3.0 Secondary Creep Model 

Secondary creep described by a power law form is used for the material 
model and is integrated in time by a technique described by Krieg in [ 2 4 ] .  
The effective creep strain rate, Dc for the material i s  represented by the 
scalar equation. 

(79) 

where A , A , and A are material constants, 8 is the absolute temperature, 
and CJ is  tie effecgive stress. 

C 

The dilitational response is elastic. Tensor equations are used for 
the stress rate as a function of initial stress state and the imposed strain 
rate The resulting mathematically stiff equations cannot be efficiently 
and accurately solved using ordinary numerical integration methods Three 
separate regions are used and approximate but tractable tensor differential 
equations are derived for each The analytical solutlons of these approx- 
imate equations are then used to define g numerical method with acceptable 
accuracy and speed The method has automatic internal multistepping based 
on accuracy limitations For the five percent tolerance which is used, 
never more than eight multisteps are needed and usually only one step is 
used 

Equation (79)  is used to derive a tensor valued differential equation 
for the deviatoric stretching tensor S as 

S. = a. - bS. A2 
J J J 

where 
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a = 2G D. (81 
j J 

0. 5(A2+1) 
b = 2G(1.5) 

G is the average elastic shear modulus over the temprature span during the 
time step. 

The three regions for which (80) is approximated are: 

(1) The case when b I S. 
stress state is u d sinc e response is nearly elastic. the 
resul t ing equat ions are 

<< laid where an expansion about the initial 

where 

2 1 -A 

laJ 
a. 

b J 
- s =  

00 

S - a. n-1 J 

n-1 n-1 = s--.-- 
A -1 2 

'0 = b (  'n-1 I 
(2) The second case is when blS.1 A2 - = 1a.I where an asymptotic solution is 

obtained in the neighborhooA of S, . J  The resulting equations are 
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I= 
( 3 )  The third region is when la.1 << blS.1 and the elastic terms can be 

neglected. The resulting shlution i s  

- Aj/A2C0 - n- 1 S 
s. = - 'J [ I - (A2- l)Cot + -- ' A2Co 1 [It(A2-l)C 0 t]'/(Az- ') 

The accuracy is controlled by using appropriate time sub-increments within 
each case and defining the boundaries between cases. The present version of 
the model is accurate for A = 5 .  Care should be used for a value of A 
for from 5 .  

2 2 

With the creep model, an elastic modulus instead of a secant modulus is 
used in equation (29 )  for determination of the conjugate gradient parameter. a 
4.0 Soil and Crushable Foam Model 

Soils and crushable foams exhibit a behavior that is pressure 
dependent. Because of voids, they crush or compact under pressure. Their 
failure in shear can also be sensitive to pressure. Krieg [30] models these 
characteristics using an isotropic pressure dependent deviatoric plasticity 
theory and an arbitrary volumetric plasticity. The yield surface in 
principal stress space is a surface of revolution centered about the hydros- 
tat with the open end pointing into compression. The open end is capped 
with a plane which is at right angles to the hydrostat. The deviatoric part 
is elastic-perfectly plastic so the surface of revolution is stationary. The 
volumetric part has variable strain hardening so the end plane moves outward 
during volumetric yielding. A flow rule is used such that deviatoric strains 
produce no volume change. The material is assumed to be intact, i.e., tensile 
fracture has not occurred s o  long as the pressure, P is greater than h, where 
h is the minimum root of the polynomial A 
occurs, the pressure i s  set equal to h. 

a 

+ A2P + A3P = 0. I f  fracture 
1 

The function f which describes the pressure versus the volume strain 
behavior is depicted in Figure 3 .  Unloading from any point along the curve 
is taken to be elastic with a modulus of K O .  

The steps taken are as follows: 

(1) The pressure p and the deviatoric stress S at time n are computed. The 
0 

are at tn-1/2 volumetric strain rate D and deviatoric strain rate D 
V S computed . 

(2) The volumetric strain at t is calculated and compared to the past n minimum E . 
m V 

At 
V .  

J V n- 1 + Dv n-1/2 
E = E  (90)  
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I f  E > Ev , the step is elastic and 
V. J m 

At 
n- 1 /Z 

- Dv P. = P 
J n-1 

I f  Ev, S Ev , plastic loading is occuring and 
1 m 

E = E  
V V. 
m J 

(93) 

after the step has converged 

( 3 )  A check for tensile failure is made. I f  failure has occurred, the 
pressure at t is set equal to h. The stress state is then at the tip 
of the surface of revolution and the deviatoric stress must be zero n 

T. P .  = -h (94) I J 

I f  failure has not occurred, the deviatoric stresses are sought. 

(4) The deviatorlc components of the stress are calculated as in the 
elastic-plastic models with the radial return method. In this case the 
hardening modulus E and the hardening parameter p are zero. t 

With the soil model, a secant modulus is calculated by employing equations 
( 7 0 ) - ( 7 5 ) .  
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VI. EXAMPLE PROBLEMS 

Example problems are included for use in code verification and to 
acquaint the user with the input and types of problems which can be cal- 
culated. The problems include the large displacement bending of a beam, 
transverse crushing of a cylinder, extrusion of a plate and cylinder, 
bending of a laminated beam with interlamination sliding, and creeping of a 
cy1 inder . 

a 

1 . 0  Large Displacement Beam 

The large deformation of an elastic cantilever beam is included since 
an analytical solution by Holden [31] is available. It  also demonstrates a 
problem with which the CG method has great difficulty. The beam has a length 
to thickness ratio of 30 and Poisson’s ratio is set equal to zero. Two 
solutions are reported. The beam is loaded with a uniformly distributed 
vertical load and with a pressure normal to the surface. Thirty elements 
are used along the length and four through the thickness. 

0 

Shown in Figure 4 is a comparison of the analytical results both with 
and without non-linear terms as reported in [31], and the numerical results 
due to a gravity load, i.e., one in which the forces in the beam are in the 
vertical direction. The comparison is very good. For the gravity loading, 
the value of P in the figure is gravity load divided by the length of the 
beam. Also shown in the figure are the numerical results for a pressure 
loaded beam where the fQrces are always normal to the beam. Figure 5 
depicts the actual deformed shape of the beam due to gravity loading at k = 
6 . 4 8 .  

Convergence of the solution for the beam problem is very slow. First, 
the spread of eigenvalues in the problem i s  large and any explicit 
interative technique will have difficulties. I f  the problem i s  i l l -  
conditioned in the linear approximation, as in this case, then adding the 
nonlinearity of large deformation, i.e., taking into account the rotation of 
the beam, compounds the difficulty. To ease the difficulties of the non- 
linearities, the calculation is begun by first solving the linear problem. 
Then, using the linear result as a starting vector, the geometric nonlinear 
effects are included. The starting vector for each time step is taken to be 
the velocity of the previous step. After the first load step, each step 
took approximately 220 linear iterations followed by approximately 310 
nonlinear iterations. Load increments of k = 0.0328 for the pressure 
loading and load increments of k = 0.0626 were used for the gravity loading. 
A convergence tolerance of 0.03 for the force norm of equation (35) was 
used. 

0 

2.0 Tube Crushing 

The plane strain crushing of a relatively thin tube in the diametrical 
direction by rigid platens represents a difficult elastic-plastic, large 
deformation and sliding surface problem for a finite element technique. The 
geometry and material properties of the problem are shown in Figure 6 .  The 
surface between the tube and the platen is assumed to be frictionless. Shown 
in Figure 7 i s  the finite element model. 

0 
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A displacement is applied to the tube at the lower symmetry plane. 
Displacement control is needed because the load-deflection response is soft 
after plastic hinges have formed at the top and bottom of the ring quadrant. 
Four elements are needed through the thickness in order to accurately repre- 
sent a plastic hinge stress state through the thickness. The displacement 
of 2 . 9 2 1  x 10-4 m was applied in 10 steps, followed by 20 steps to 0.00254 m 
of total displacement, then equal steps of 2.75  x 10-4 m. The deformed 
shape at a deflection of 0.01778 m is shown in Figure 8 .  The results are 
shown in Figure 9 for the total load on one platen versus the displacement 
6 , where r is the initial midsurface radius. 

The results are compared to both analytical [32]  and experimental 
results [ 3 3 ] .  The applied load is normalized to the load that will cause 
plastic hinges to first appear, which is 

2 
20 h 

Y p = -  
O h -  

(95) 

The solution strategy consisted of obtaining a linear geometry solution 
followed by a geometrically nonlinear solution. I t  took approximately 1300 
iterations for the linear geometry solution and 300 iterations for nonlinear 
geometry solutions to achieve convergence for each step. A force conver- 
gence tolerance of 0.001 was necessary to obtain a satisfactory load deflec- 
tion curve. 

3 . 0  Extrusion 

The problem of the plane strain extrusion of a plate [32]  is included 
to demonstrate a case where large amounts of sliding take place, along with 
elastic-plastic loading and unloading. The geometry, properties for the 
elastic-perfectly plastic material and and initial finite element mesh are 
shown in Figure 10. The sliding surface is assumed to be frictionless. A 
displacement is applied to the left end to move the material. The deformed 
mesh plot at the applied displacement of 0.0381 m is shown in Figure 11. 

The applied load i s  plotted as a function of the applied displacement 
in Figure 12. The ragged appearance of the plot is due to the small number 
of elements used to describe the pressure along the interface. The solution 
strategy was the same as was used for the crushed tube problem. I t  took 
approximately 1000 and 500 iterations, respectively, for convergence of the 
linear and the nonlinear geometry solutions for each displacement load step. 
Seven load steps of 0.00254 m were followed by steps of 0.00177 m. A force 
norm convergence tolerance of 0.001 was used. 

The extrusion problem was also calculated using the axisymmetric 
element The results were similar to the plane strain calculations The 
deformed mesh at a displacement of 0.0356 m is shown in Figure 13 and the 
load deflection curve is shown in Figure 14. 
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4.0 Laminated Beams 

A laminated beam problem is used to demonstrate the behavior of 
multiple sets of slide lines. The problem is a simulation of the reaction 
of layers of material above an underground mine opening. An experiment was 
performed which is described in [35]. A centrifuge was used to simulate 
enhanced gravity loads and a lamination of foundry stone was made up of 
0.0254 m thick beams, 0.267 m long. The geometry of the experiment is shown 
in Figure 15, along with the material properties and loading sequence. The 
coefficient of friction between layers was experimentally found to be ap- 
proximately 0 . 5 0 .  Sliding interfaces were used between the beams and 
separation of the beams was allowed to preclude development of tensional 
stress normal to the interfaces. 

The finite element model which was used is shown in Figure 16 where 
symmetry is used. 

In the experiment, the rotational speed of the centrifuge was increased 
until all the beams above the opening were cracked. This occurred at a load 
of 150.3 g’s. The ultimate tensile strength of the material is approxi- 
mately 917 kPa while the computer code predicted 830 kPa at 150.3 g ’ s  at 
point A in Figure 19, at the center of the opening. Figure 15 shows the 
deformed shape at 150.3 g ’ s  magnified 200 times to show the sliding. 

The solution strategy adopted consisted of obtaining a geometrically 
linear solution followed by a geometrically nonlinear solution for each load 
step I t  took approximately 1000 iterations for the linear solution fol- 
lowed by one iteration for the nonlinear solution. A force norm convergence 
tolerance of 0.03 was used 

5.0 Creep analysis of a thick walled cylinder 

A suddenly applied pressure is applied to the inside of a thick 
cylinder and the creep response i s  calculated. The plane strain cylinde 
has an inside radius of 4.064 x ~ O - ~  m and a outside radius of 6.35 x 10 
Six elements are used t o  model the cylinder through the thickness. A n  
internal pressure is applied as a function of time as shown in Figure 18.  
Load steps of 6 sec nds were taken. The material constants for equation (74) 
are A = 8.27 x 10 = 0.0 with a Young’s modulus of 137 
GPa and a Poisson’s ratio of 0.3. 
eff ctive stress as a function of time at r = 4.25 x 10 m and r = 6.16 x 
10 m. A force convergence tolerance of 0.001 was used. A viscosity 
coefficient of 20/3 was necessary to control the hourglass modes. The 
results compare favorably to a steady state solution reported in [34]. 

-5 m. 

-9 
, A2 = 4.4 and A 1 

S?~own in Figure 19 ar the resulting -9 
-5 
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NODE 
MOVEMENT 

X 

F i g u r e  1 .  M a s t e r - S l a v e  R e l a t i o n s h i p s  f o r  S l i d i n g  I n t e r f a c e s  
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F i g u r e  2 .  T y p i c a l  b e h a v i o r  o f  a d u c t i l e  m e t a l  b a r  l o a d e d  f i r s t  
i n  u n i a x i a l  t e n s i o n  f o l l o w e d  b y  u n i a x i a l  c o m p r e s s i o n .  
T h e  s t r a i g h t  l i n e  a p p r o x i m a t i o n  i s  c h a r a c t e r i z e d  w i t h  
a n  e l a s t i c  m o d u l u s  E ,  a y i e l d  s t r e s s  T , a s t r a i n  
h a r d e n i n g  m o d u l u s  E a n d  a h a r d e n i n g  5aramameter  B .  

h a r d e n i n g  i s  o b t a i n e d  w i t h  6 = 1 ,  a n d  a l i n e a r  
c o m b i n a t i o n  o f  t h e  t w o  i s  o b t a i n e d  f o r  8 b e t w e e n  
z e r o  a n d  o n e .  

K i n e m a t i c  h a r d e n i n g  t '  i s  o b t a i n e d  w i t h  B = 0 ,  i s o t r o p i c  
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PL3 K = -  
El 

F i g u r e  4 .  L o a d  v s . d e f l e c t i o n  c u r v e  f o r  t h e  c a n t i l e v e r  beam 
a n a l y s i s  . 
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UNDERFORMED 

1 

DEFORMED, K=6.48 

F i g u r e  5 .  U n d e f o r m e d  a n d  d e f o r m e d  m e s h  d u e  t o  g r a v i t y  l o a d  a t  
K = 6 . 4 8  f o r  c a n t i l e v e r  beam p r o b l e m .  
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PROPERTIES OF TUBE 

r = 0.0238m 
t = 0.00325m 

E = 68.9 GPa 
Et= 117.1 MPa 

Ty=68.9 MPa 

V = 0.3 
p=0 

F i g u r e  6 .  G e o m e t r y  a n d  m a t e r i a l  p r o p e r t i e s  f o r  t h e  t u b e  c r u s h i n g  
p r o b l e m .  
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F i g u r e  8 .  D e f o r m e d  s h a p e  p l o t  o f  t h e  t u b e  c r u s h i n g  p r o b l e m  a t  
a d i s p l a c e m e n t  o f  6 = 0 . 0 1 7 7 8  m. 

3 9  



2.2 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

.a 

.6 

.4 

.2 

I 1 1 1 1 1 1 1 1 1 1 1 1 1 

If \ LIMIT LOAD 

_-  
.O .05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 

DEFLECTION, d/r 

F i g u r e  9 .  L o a d  v s .  d e f l e c t i o n  c u r v e s  f o r  t u b e  c r u s h i n g  
p r o b l e m .  



0.0445m 0.038 1 rn -+0.0254m f- w,,, J 
I I 

DISPLACEMENT, 6 

0. 127m 

MATERIAL PROPERTIES 
E=68.9 GPa 
V =0.3 

Ty=68.9 MPa 
Et'O.0 Pa 
f l=Q 

F i g u r e  1 0 .  G e o m e t r y ,  m a t e r i a l  p r o p e r t i e s  a n d  f i n i t e  e l e m e n t  
m e s h  o f  e x t r u s i o n  p r o b l e m .  

. 

4 1  



4 2  

F i g u r e  11. D e f o r m e d  m e s h  o f  t h e  p l a n e  s t r a i n  a n a l y s i s  o f  t h e  
e x t r u s i o n  p r o b l e m  a t  a n  a p p l i e d  d i s 2 l a c e m e n t  o f  
0 .381  m .  



80 

70  

60 

50 

40 

30 

20 

10 

0 I I I I 1 I 1 I I 

0 ,004 .008 ,012 . O l e  .02 .024 .028 .032 .036 .04 

APPLIED DISPLACEMENT, m 

F i g u r e  1 2 .  T o t a l  f o r c e  v s .  a p p l i e d  d i s p l a c e m e n t  c u r v e  f o r  t h e  
p l a n e  s t r a i n  a n a l y s i s  o f  t h e  e x t r u s i o n  p r o b l e m .  

4 3  



F i g u r e  1 3 .  D e f o r m e d  m e s h  o f  t h e  a x i s y m m e t r i c  a n a l y s i s  o f  t h e  
e x t r u s i o n  p r o b l e m  a t  a n  a p p l i e d  d i s p l a c e m e n t  o f  
0 . 3 5 6  m .  

4 4  



240 

220 

200 

180 

160 

140 

120 

100 

80 

60 

40  

20 

0. 
0. -004 ,008 .012 ,016 .02 .024 .028 ,032 .036 .04 

APPLIED DISPLACEMENT, m 

F i g u r e  1 4 .  T o t a l  f o r c e  v s .  a p p l i e d  d i s p l a c e m e n t  c u r v e  f o r  t h e  
a x i s y m m e t r i c  a n a l y s i s  o f  t h e  e x t r u s i o n  p r o b l e m .  

4 5  



0.0254m 

T :  
1' 

Y 

1 9, GRAVITY LOADING 

LOADSEQUENCE 

1. l g  

2. 26.09 

3. 50.29 

4. 75.29 

5. 150.29 

MATERIAL PROPERTIES 

E = 3.17GPa 

V = 0.3 

p = 14.305 kN/m3 

F i g u r e  15 .  D e s c r i p t i o n  o f  s l i d i n g  beam p r o b l e m .  

4 6  



SYMMETRY 
PLANE 

Y 

X 

F i g u r e  1 6 .  F i n i t e  e l e m e n t  m e s h  o f  t h e  s l i d i n g  beam p r o b l e m .  

4 7  



Y 

X . 
h 



m 

W 

3 w a 
W 
K 

a 

e 

A 
m 
& 2.52 

-2.52 - 
L 

TIME, SECONDS 

. 

4 9  



80 

70 

(0 
n 60 
5 
6 
a 

50 

c 
v) 

> 
F 
0 
W 
LL 30 
LL 
W 

40 

20  

10 

/ 
r = 0.00425m 

5.39 
- 1  

REFERENCE (331 < 
L J  v.4; 

0 40 80 120 160 200 240 280 320 

TIME, SECONDS 

F i g u r e  1 9 .  E f f e c t i v e  s t r e s s  v s .  t i m e  c u r v e s  f o r  t h e  c y c l i c  
c r e e p  a n a l y s i s  o f  a t h i c k  w a l l e d  c y l i n d e r .  

5 0  



VI I . REFERENCES 

e 1 

2 .  

3 .  

0 4 .  

5. 

6 .  

a 7 .  

8 .  

9 .  

e 10 

11' 

12 

Bathe, K. J .  "ADINA - A Finite Element Program for Automatic Dynamic 
Incremental Nonlinear Analysis, Acoustics and Vibration Laboratory, 
Mechanical Report 82448-1, Engineering Department, M A .  Institute of 
Technology, Cambridge, MA, September 1975, (Revised 1 9 7 7 ) .  

MARC-CDC, General Purpose Finite Element Analysis Program, Control Data 
Corporation, Minneapolis, MN. Publication No. 17309500, Rev. J .  

Key, S. W., "A Finite Element Procedure for the Large Deformation 
Dynamic Response of Axisymmetric Solids," ComDut er Methods in  ADD^ i ed 
Mechanics and Enein eerinp. April 1974,  pp. 195-218. 

Biffle, J .  H. and Gubbels, M. H., "WULFF - A Set of Computer Programs 
for the Large Displacement Dynamic Response of Three Dimensional 
Solids," Sandia National Laboratories, Albuquerque, New Mexico, SAND76- 
0046 ,  1976. 

Hallquist, J .  O., "User's Msnual for DYNA2D - - A n  Explicit Two- 
Dimensional Hydrodynamic Finite Element Code with Interactive 
Rezoning," Lawrence Livermore National Laboratory, Livermore, CA, 
Report UCID-18756, Rev. 1 ,  February 1982. 

Hallquist, J .  O., "User's Manuals for DMJA3D and DYNAF'," Lawrence 
Livermore National Laboratory, Livermore, CA, Report UCID-19156, July 
1981. 

Belytschko, T., and Robinson, R. R . ,  "SAMSONZ: A Nonlinear Two- 
Dimensional Structure/Media Interaction Computer Code," Report AFWL-TR- 
81-109, Kirtland AFB, New Mexico, November 1981. 

Irons, B. and Elsawaf, A., "The Conjugate Newton Algorithm for Solving 
Finite Element Equations," Formulations and ComDut ation Aleorithm s in 
Finite Element Ana lvsis, Eds. K. J .  Bathe, J .  T. Oden, and W 
Wunderlich, MIT Press 1977.  

Hestenes, M. R., and Stiefel E., "Methods of  Conjugate Gradients 
for Solving Linear Systems," Journal of Research of th e National Bureau 
of Standards. Vol. 4 9 . ,  No 6 December 1952, pp. 409-436. 

Ralston, A .  and Wilf, H. S., Mathematical Methods of Dieital ComDuters, 
John  Wiley 8c Sons, Inc., N.Y. 1960. 

Consus, P., Golub, G. H., and O'Leary D. P., "A Generalized Conjugate 
Gradient Method for the Numerical Solution of Elliptic Partial 
Differential Equations," Sparse Matrix Computations. Ed. Bunch, J .  R . ,  
and Rose, D. J . ,  Academic Press N.Y. 1965, pp. 307-332. 

Fletcher, R., and Reeves, C. M., "Functional Minimization by Conjugate 
Gradients," The Computer Journal 7 1964, pp. 149-154. 

5 1  



13 

14 

15 

16 

-rn 

Lenard, M. L., "Convergence Conditions for Restarted Conjugate Gradient 
Methods with Inaccurate Line Searches," Mathematical Proeramm ing 10 
1976, pp. 32-51. 

Powell, M. J .  D., "Restart Procedures for the Conjugate Gradient 
Method, " Math emat i cal Pr OB r m  ' 12 1977, pp. 242-254. 

Daniel, J .  W., "The Conjugate Gradient Method for Linear and Nonlinear 
Operator Equations, " SIN J ournal of N u  erical Analy sis, Vol. 4 No. 1 
1967, pp. 10-26. 

Bartels, R. and Daniel, J .  W., "A Conjugate Gradient Approach to 
Nonlinear Elliptic Boundary Value Problems in Irregular Regions," 
Lecture Notes in Mathematics, Ed. A. Dold and B. Eckmann, Springer- 
Verlay, New York 1973. 

1 1 .  Malvern, L .  E., Introdu ction to th e Mechani ' c s  of a Continuous Medium, 
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1969. 

18. Biffle, J .  H., and Key S. W., "Finite Element Formulations for 
Transient Dynamic Problems in Solids Using Explicit Time Integrations," 
ComDuter Methods in ADDlied Mechanics and Enein eering 12 1977, pp. 323- 
336. 

19 

20 

21 

22 

23 

Hallquist, J .  O., "NIKE2D: A n  Implicit, Finite-Deformation, Finite 
Element Code for Analyzing the Static and Dynamic Response of Two- 
Dimensional Solids," Lawrence Livermore National Laboratory, Livermore, 
CA, Report UCRL-52678, March 3, 1979. 

Hughes, T. J .  R., and Winget, J . ,  "Finite Rotation Effects in Numerical 
Integration of Rate Constitutlve Equations Arising in Large-Deformation 
Analysis," International Journal Num erical Methods in Eneineering 1980, 
Vol. 15, pp. 1862-1867. 

Johnson, G. C., and Bammann, D. J . ,  "A Discussion of Stress Rates in 
Finite Deformation Problems," 9 
Structures, in review. 

Atlurl, Satya M , "On Constitutive Relations at Finite Strain. Hypo- 
elasticity and Elasto-Plasticity with Isotropic and Kinematic 
Hardening," Georgia Institute of Technology, Atlanta, Georgia, Report 
No GIT-CA CM-SNA-83-16, February 1983 

Defalias, Y. F . ,  "Corotational Rates for Kinematic Hardening at Large 

April 1982 
' Plastic Deformations," Univ of California at Davis, Report No. 82-1, 

24. Goudeau, G .  L and Hallquist, J .  O., "Recent Developments in Large- 
Scale Finite Element Lagrangian Hydrocode Technology," Computer Methods 
in Applied Mechanics and Enein eerinu 1982, Vol. 33, Nos. 1-3, pp. 725- 
757. 

25. Flanagan, D. P .  and T. Belytschko, "A Uniform Strain Hexahedron and 
Quadrilateral with Orthogonal Hourglass Control," International Journal 
for Numerical Methods in Engineeriu 1982, Vol. 17, pp. 679-706. 

5 2  



26. Flanagan, D. P., "The Uniform Strain Axismetric Quadrilateral 
Jnternal M e m o r a n d a  Sandia National Laboratories, Albuquerque, 
Mexico, April 1982. 

New 

27. R. D. Krieg and S .  W. Key, "Implementation of a Time Independen 
Plasticity Theory Into Structural Computer Programs," in: J .  A 
Stricklin and K. J .  Saczalski (eds)., Constituti ve Eauat ions ie 

(The American Society of Mechanical Engineers, New York 1976), pp. 125- 
248. 

Viscoplasticitv. Cnmput ational and Ewineerinu A sDec t s . AMD Vol . 20, 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. . 
37. 

38. 
b 

R. D. Krieg, "An Efficient Numerical Method for Time Independent 
Plasticity," Sandia National Laboratories, Albuquerque, New Mexico, 
SAND77-0943, 1977. 

R. D. Krieg and D. B. Krieg, "Accuracies of Numerical Solution Methods 
for the Elastic-Perfectly Plastic Model, Journal of P ressur e Vessel and 
Pipine. November 1977, Vol. 99, pp. 510-515. 

Krieg, R. D., "A Simple Constitutive Description for Soils and 
Crushable Foams," Sandia National Laboratories, Albuquerque, New 
Mexico, Report No. SC-DR-72-0883, 1972. 

Holden, J .  T., "On the Finite Deformations of Thin Beams," 
International Journal o f  Solids and Structures 1982, Vol. 8, pp. 1051- 
1055. 

Reddy, T. Y., and Reid, S. R., "On Obtaining Properties from the Ring 
Compression Test," Yuclear Enein eerine - and D es ipn 52 1977, pp. 257-263 

Key, S. W., Krieg, R. D., and Bathe, K .  J . ,  "On the Application of the 
Finite Element Method to Metal Forming Pressures - Part I," Computer 
Methods in Applied Mechanics and Engineering, November 18, 1979, pp. 
597-608. 

DeRuntz, J .  A., Jr., and P. G .  Hodge, Sr., "Crushing of a Tube Between 
Rigid Plates," Journal of  ADD^ ied Mechanics, September 1963, pp. 391- 
365. 

Sutherland, H. J . ,  eta, "Physical Simulations of Subsidence by 
Centrifuge Techniques," 20th U .  S. Symposium on Rock Mechanics, Austin, 
Texas, June 4-6, 1979. 

Finnie, I .  and W. R. Heller, CreeD of E nvineer inP Materials, McGraw- 
Hill 1959, pp. 208. 

Jones, R. E., "User's Manual for QMESH, a Self-organizing MESH 
Generator Program," Sandia National Laboratories, Albuquerque, New 
Mexico, Report SLA-74-0239, July 1974. 

Beisinger, Z. E. and C .  M. Stone, "TPLOT2: A Flexible X-Y Plotting 
Program for Use with Finite Element Software," Sandia National 
Laboratories, Albuquerque, New Mexico, SAND80-2508, February 1981. 

5 3  



5 4  

39. Preece, D. S. and B. A. Lewis, "MOVIE-BYU User Document," Sandia 
National Laboratories, Albuquerque, New Mexico, SAND82-0945, September 
1982. 

40. Richgels, M. A .  and J .  H. Biffle, "ALGEBRA - A Computer Program that 
Algebraically Manipulates Finite Element Output Data," Sandia National 
Laboratories, Albuquerque, New Mexico, SANDBO-2061, September 1980. 

. 

e 



The computer code J1 
is normally used in conji 
‘generat ion programs *SI 
description requires a kr 
flags which are used to c 
program on local file FTC 
FT09 file is noted in the 

Output is written bj 
plot programs DETOUR, TPI 
ALGEBRA [ Q O )  may be used 
DETOUR plots contours and 

. istatices in e 
to plot conto 

* 

variables. 
\ 

Functions versus tirn 
control the solution. Ch 
incrqments, and solution 

VIII. USER INSTRUCTIONS 

designed to be executed on the CWY1 machine. It  
:tion wi€h the four node two dimensional mesh 
[37], REMJAl and QPLOT. 
vledge of the QMESH programs. Nodal and element 
rine boundary conditions are output by the RENW 

WSH document [ 371. 

IAC on the local file FTll for use with the 
‘2 [38), SPLOT. and MOVIE-WN [39]. 
b algebraically manipulate the output data. 
leformed mesh plpts for two dimensional bodieg. 
I time plot program. SPLOT plots functions Versus , 
her two or three dimensional bodies and MOVIE-Byu’ 
s, defarmed meshes band color fringe patterns of 

The’following input 

for input to the JAC program. ‘?he format of the- 

\ 

The program 

are input which define all the antitias used to. 
ging boundary conditions, print and plot 
rategy are controlled by functions. 



c 



36-40 I NSOLT 

7 

I 

/ 

41-45 I NODE4 

46-50 I NODE4F 

I 

Solution control function number: 

A type 2 function is used, 
(Tabla 3) to calculate solution 
time ilncrements. The starting time 
for tQe solution is the first time 
in thd NiOLT function and the final 
time df the problem is the last 
time iin the NSOLT function. 

Iterative solution control. 

If NOnE4 = 1,  a geometrically 
linear and material nonlinear 
solutiton will be obtained for 
each load step. 

\ 

If NODE4 = 2, a geometric 
and material nonlinear 
solution will be obtained fer 
each lioad step. 

If NODE4 = 3, during each load 
step a'solution is first obtained * 

with linear geometry and nonlinear 
material properties. Then a ,second 
solutim is obtained with both non- 
linear' geometry and @aterial 
properties by using the first ~ 

solution to'start the second 
so 1 ut i zl~l . 

Defaulk = 2. 

NODE4' value function nqnber. 

If NODp4F = 0, the value on NODE4 
in columns 41-45 1s used to control 
the iterative procedure. 

If NQD$4F # 0, function NODEIF is 
used to determine the value of 
NODE4 during the solution process. 
Values of 1,2 or 3 are permissible 
for the value of the NODEQF 
functibn. A type 3 function is 
used (Table 3). 

'\ 

t 

I 

, 







11-15 I MSTRTR 

16-20 

Restart read parameter. 

If NSTRTR = 0 ,  problem is not 
a restart problem. 

If NSTRTR = 1 ,  problem is a 
restart problem and the staft 
time TSTART, is the first tine 
of solution function NSOLT. 
The problem will be started 
at the time which is found 
to FT32 that is greater 

j, 

than or equal to-TSTART. 

A problem is restarted by 

I 

1 

supplying a previously saved 
FT30 as FT32, see paramete 
NSTRTR on this card. The 
temperature under any st 
conditions is obtained f 
a thermal stress problem is to be 
calculated, NTERM = 1.. 

Plot output function number. 

If NPOUT = 0, data which ctm 
be plotted is written to FT11 
at the end of each solution 
steD. 

1 



\ 

1 
,’ 

- e  

L 



Table 3. 

JAC Function Description 
c 

X or R body force 

Y or' Z body force 

NGRAVX 

NGRAVY 

Solution Control 

Print Output Control 

Plot Output Control 

Restart Write Control NSTRTW 

Iterative Solution Control NODEBF 

3 Starting Vector Control NDI SP * 
Type 1 Function - 

e function. 

Type 2 Function - Time Incr 
For a type 2 functlon, the value of the fun 
increment represents the number of time sub 
the time increment. 



3. Material Ctrrd Sets (NUdAT sets) 

h Material Type 1 - Isothermal Elastic-Plastic 
I I 

3a. Material Identification Card (215,3310.0) I 

Y 
I 

-.G!&uBafL Var 

1-5 I N 

6-10 I hfl-YPE (N) 

11-20 E 

21-30 E BTIME( 1 ,N) 

31-40 E BT IME (2, N) 

I 

Item, 

Material property number , / 

Material type number 

Density of material to be 
used for bod3 force loads, 
f orce/l eng th 

Birth time at which elements 
with material number N become 
active. Default = 0.0. 

Death time a€ which elements 
wi tb material, number N become 
inactive. Default = 1.OE100. 

3b. Material Heading Card (8A10) 

w Var I tam coi 's 

1-80 A - User selected name of the material 

3c. Material Stress Strain Information, 7 cards with (E'l0.Q format 

k 
Qad c,l's m Var I tern 

1 1-80 E (EE( I ,  1 ,N) , I = 1,s) Temperatures, 8 

,2 1-10 E EE(1,2,N) Young's modulus, E 

3 1-10 E EE f 1 ,3 , N) Poisson's ratio, 'v 

4 1-10 E EE(1,4,N) Yield stress, T * 

5 1-10 E EE ( 1 ,5, N) Hardeninp,modulus, 

6 1-10, E EE(l,G,N) Hardening parameter, ~3 

7 1-10 E (EE(I,?,N). I = 1,8) Thermal strains, 

0 F B l l  

I 

) Y 
a 

Et 

De 
C 

~ /I = 0 kinematic 

@ = 1 isotropic 
1 

i * I f  the yield stress T = 0, elastic behavior.is assumed. 
I Y 

I 
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1 
6 j 

Material Type 2 - Temp 
-. k 3a. Material Identification Card (215,3310.0)  

col’sm , Var 

1-5 I ‘  N 

21-30 E BTIME( 1 , N )  

. Material Heading Card (8A10) 

I 1-80 A 

Material property n 

Material type number 

Density of material to be used for 
body force loads, force/length 3 

8 Birth time at which elements 
with material number N become 
active. Default = 0.0. 

Default = 1.OE100. 





Material Type 3 - Temperature Dependent Secondary Creep (continued) 

e creep law relating the effective strain rate, Dc, to the effective 

are input, then e 



Material Type 4 - Isothermal Finite Strain Soil and Crushable Foam 

3a. Material Identification Card (215,3E10.0) 
e rc 

col’sm Var I tern 

1-5 I N Material property number 

6-1 0 I MTYPE (N) Material type number 

Density of material to be 
used for body force loads, 
force/length 

11-20 E RO (M 1 
I 

21-30 E BTIME(1,N) I Birth time at which elements 
with material number N become 
active,. Default = 0.0. 

‘a 

31-40 E BT IME ( 2, N ) Death time at which elements 
with material number N become 
inactive. Default = 1.OE100. 

3b. Material Heading Card (8A10) 

Col ‘ s  Ea& &&E I tern 

1-80 A - User selected name of the material 

3c. Material Stress Strain Information, 
a\ 

(8E10.0) Seven Cards 

col ‘ s  m Var I tem Card 

1 1-80 E (EE(1,l ,N), I=l,8) I Temperatures, B 

2 1-10 E EE(1,2,N) Shear Modulus, G 

2 1 le20 E EE(2,2, N) Bulk Unloading Modulus, K 

2 2\1-30 E EE( 3,2, N) Yield Function Constant, 

2 31-40 E EE(4,2,N) Yield Function Constant, A2 

2 41-50 E EE(5,2,N) Yield Function Constant, 

3 1-10 E EE( 1,3 ,N) Volumetric Strain, ln(po/p) 

A1 

A3 

a 

C 3 11-20 E EE(2,3,N) Pressure, P 
/ 

3 2 1-30 E EE( 3,3 ,N) Volumetric Strain, ln(po/p) 

3 31-40 E EE (4,3 ,N) Pressure, P 
L- 

\ 
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Card Col's 

4 1-10 ' 

m 
E 

E 

E 

E 

E 

. 

Var 

I '  . 





i 

5. Boundary condition cards (215,3E10.0) , 

Col ' s  

1-5 

6-1 0 

\ 

EnrfL 

I 

I 

. .  

Var 

I FLAG Number corresponding to 
nmber from QMESH. 

NF Number of function to be us 
Type 1 interpolation will b 
used (Table 3). 

CODE Boundary condition code. 

If CODE = 0 . 0 ,  x or r force 
specified, and y or z force 
specified. ~ 

If CODE = 1.0, x or r 
displacement specified. 

If CODE = 2.0, y or z 
displacement specified. 

If CODE = 3.0, x or r ,  and 
I 

y or z di3placement Specified.. 

I f  CODE < 0.0, pressure 
specified. 

I f  CODE # 1 . 0 ,  2.0, or 3.6, the 

radian. Also, at r 









RX or RFt Total reaction force i 

Total react-ion force i 

Accumulative total number on iterations 

rid i re c t i on 

I 

* If a load step does not converge the incremental displacements of 
nonconverged load step are written to FT11 and the printed output file. 

n the history variable arrays depend upon the material e 
els used in the analysis.. The number )on arrays output to the plot 
k is the maximum number needed by any material model. The followin 
a description of the variables by material type. 

reaction force in the R-direction has unit of force per radian. 

Material Type 1 - Isothermal Elastic-Plastic 

. .  DescrlDt I on 
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