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JAC — A TWO-DIMENSIONAL FINITE ELEMENT COMPUTER PROGRAM FOR THE NON-LINEAR
QUASISTATIC RESPONSE OF SOLIDS WITH THE CONJUGATE GRADIENT METHOD

J. H, Biffle

Division 1521
Sandia National Laboratories
Albuquerque, New Mexico 87185

ABSTRACT

The nonlinear conjugate gradient procedure is employed in the computer
prbgram JAC to solve quasi-static nonlinear mechanics problems. A set of
continuum equations is used that is very convenient for use with the
conjugate gradient method and accurately describes nonlinear mechanics
involving large rotation and strain. The method is exploited in a two—
dimensional plane strain or axisymmetric setting while using various methods
for accelerating convergence. Sliding interface conditions are also
implemented. A four-node Lagrangian uniform strain element is used with
orthogonal hourglass viscosity to control the zero energy modes. Materials
which can be modeled include temperature dependent elastic—plastic, soils,
and secondary creep behaviors. The program is vectorized to perform on the
CRAY 1 computer.

Sample problems described are the bending of a thin beam, transverse
crushing of a cylinder, extrusion of a plate and cylinder, bending of a
laminated beam with interlaminear sliding and creeping of & cylinder.
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I. INTRODUCTION

JAC is a finite element computer progream for solving large deformation,
temperature dependent quasi—-static mechanics problems in two dimensions with
the non-linear conjugate gradient (CG) technique. Either plane strain or
axisymmetric geometry assumptions may be used with material descriptions’
which include temperature dependent elastic plastic, temperature dependent
secondary creep and isothermal soil models. A four node Lagrangian uniform
strain element is employed with orthogonal hourglass viscosity control of
the zero energy modes.

Various schemes may be used to accelerate convergence of the CG method.
One technique is to use as a starting vector some fraction of the velocity
vector obtained from the previous load step. A second scheme is to first
solve a load step while using a linear geometry approximation to the equa—
tions of motion. Then the linear geometry solution is used as a starting
vector to solve the non-linear geometry problem.

For the calculation of the nonlinear quasi—static response of solids,
there is a need for efficient and reliable solution methods. Obtaining
finite element nonlinear solutions to static problems has represented a
formidable task to engineers. The computer programs which are widely used,
for example the ADINA code [1] and the MARC code [2], rely on the stiffness
approach, using either a modified or unmodified Newton—-Raphson method to
solve the nonlinear problem. Use of the stiffness approach is troublesome
because of the difficulty in deciding when to reformulate the stiffness
matrix to keep the solution from diverging or to accelerate the convergence.
On the opposite end of solution method types are explicit iterative methods
which do not involve a stiffness matrix.

The impetus to try iterative solvers comes from several sources. First,
there is a need to solve three—dimensional problems efficiently without
restrictions on the number of elements which can be used because of hardware
limitations in storing and retrieving the stiffness matrix from a magnetic
disk. Secondly, a case can be made for explicit methods based on experi-—
ences with implicit versus explicit methods for dynamic problems. The
explicit techniques appear to be more reliable in obtaining good solutions.
Implicit techniques for solving nonlinear dynamic problems suffer from some
of the same problems as are experienced by static algorithms that use the
stiffness method. When it was realized that explicit solution to dynamic
problems was effective, as implemented for example, in such codes as HONDO
[3], WULFF [4], DYNARD [5], DYNA3D [6] and SAMSONR [7], then problems with
the stiffness matrix could be circumvented. It can be argued that if an
analyst knows his problem well enough to teke large time steps and to make
decisions about when to update the stiffness matrix and when to use
equilibrium iterations, then a cheaper solution can be obtained using an
implicit rather than an explicit technique. However, the analyst seldoms
know enough about his problem in the beginning to arrive at an effective
solution strategy. Based on this background in structural dynamics, it is
now time to reexamine explicit techniques for use in solving nonlinear
static problems.

In the early 1960’s iterative techniques, such as successive
overrelaxation, Gauss—Seidel, and Jacobi’'s methods were tried on finite
element equations. It was soon discovered that direct solution procedures,



Gaussian elimination for example, were much more efficient than iterative
techniques if the equations were numbered in an efficient manner.. However,
only linear or mildly nonlinear problems were being solved at that time.
Rashid reopened the question of whether to use iterative techniques for
three—-dimensional problems and his technique is discussed by Irons [8].
With vector processing machines, it is very useful to use iterative
techniques with their vectorization potential for two and three—dimensional
problems because storage requirements and input—output operations will
continue to limit the stiffness method. A reliable iterative method, even
if expensive, is superior to a stiffness approach that does not reliably
produce a solution on the first attempt.

After examining and trying various explicit techniques, the conjugate
gradient (CG) technique [9,10,11] was selected for solving nonlinear solid
mechanics problems. These nonlinear effects include material nonlinearities
and geometric nonlinearities due to large rotations, large strains, and
surfaces which slide relative to one another. The CG technique was selected
mainly for its reliability. 1In particular, convergence for a linear problem
is guaranteed with an infinite arithmetric machine in N steps where N is the
number of unknowns in the problem. Also, various investigators in the field
of linear programming and optimization are using the CG technique with some
success [12,13,14]. Nonlinear versions of the CG technique are reported in
reference [15] and [16]. Some acceleration techniques for the linear CG
methods are discussed in reference [12].

In this document, a Lagrangian formulation of the mechanical equations
is used in the current configuration of the body with particular attention
being paid to the rotation of the stress tensor. The formulation is
extremely amenable to the CG method because a stiffness matrix need not be
calculated. Variational statements are then presented which allow a finite
element representation of the equations of equilibrium.



I1. THE EQUATIONS
1.0 Continuum Equations

To define the problem of large deformation static response, three sets
of equations are needed. The first set consists of kinematic statements,
the second of constitutive equations, and the third comprises the equations
of equilibrium. The three sets of equations describe the process in the
current configuration (deformed configuration) of the body at time t.
Cartesian coordinates are used throughout the report. The current spatial
position x of each material particle X in the body is given by the motion yx;
thus

= x(X,t) (1)

The reference configuration is taken to be that of the body at t = 0. The
equations are discussed in detail in reference [17].

The kinematic tensors which are of interest are the rate of deformation
tensor D and the spin tensor W. The two tensors D and W can be written in
terms of the velocity gradient tensor L as

D = (L+LT)/2 (?)
and T

W= (L-L")/2. (3)
Thus,

L=D+W (4)
The components of L are

Lkm = Yem (5)

where the comma denotes partial differentiation and v is the velocity
vector.

The kinematic boundary conditions are written as
(6)

where s is the portion of the surface on which velocity boundary condi-
tions are specified.

Specific constitutive equations for different types of materials need
not be discussed in detail here to develop the equations. It is only
necessary to say that the constitutive equations can be written in the form

T = ), 7
i) =90 T (7)
where the Cauchy stress tensor is T and @ is a function of L and Ti" The
stress boundary conditions are H )

A
ti = ti on s, (8)
of the body.

A
where ti are the tractions prescribed over surfaces Sy
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In component form, the equations for static equilibrium of a body
subject to prescribed body forces are

Tij'j + pb. =0 (9)

where p is the density and bi is the body force per unit mass.

2.0 Variational Statement

In order to obtain finite element equations, a variational statement is
needed. A more complete discussion of the variational problem in the con—
text of dynamics is presented in [18]. The equations below follow [18] if
the acceleration vector used in [18] is set equal to zero.

To obtain a variational principle for use with the finite element
technique, the power input to the body (which is zero for the static

problem) is written as
P nput =/tivids +fpbividV . (10)
s

\Y

where s denotes the surface and V the volume of the body in the deformed
configuration. Since t. = T, - n. on s_,, where the quantities n. are the
components of the unit ﬁorma}Jto tﬂe sur?ace, the surface integrai in (10)
can be transformed into

input = [vi (T,j )+ pb) + Tjivi,j]dv. (11)
\Y
A functional 7 is now defined by the equation
ﬂ=/[viTji’j +Tjivi’j]dv—— t,v.ds = 0. (12)
A s
If the equilibrium equations are substituted for T. . in (12), the

second term integrated by parts and the first variationé’{aken, the result
1s

—— p— —_— —_— /\ —_
on —[cwi( pbi Tji’j)dV 6vi(ti ti)ds. (13)
\Y 52

The Euler equations are the traction boundary conditions (8) and the
equilibrium equations (9). 1f, in equation (13), the term involving T'i i
is integrated by parts, the following first variation is obtained )

om = ov. (—pb. .. T, - . = 0.
™ vy ( pbl)dV + 6vl JT”dV 6v1tlds 0 (14)

’

\ \Y S92

In the finite element method, equation (14) will be used to determine the
residual forces in the body at each iteration to obtain a final solution.



3.0 Finite Element Equations

To obtain finite element equations for (14), it is assumed that the
velocities are approximated by a set of continuous functions with undeter—
mined coefficients. Matrices of interpolation functions, ¢, are used for
vector guantities. In the following equations, all quantities are composed
of tensor or vector components in vector or matrix form.

The equations (1) through (14) describe a quasi—static theory in which
velocities are retained but the time rates of velocities are neglected. Some
gquasi—static mechanical processes involve real times such as those involving
viscoelastic and creeping materials. Others, for example, involving elastic
or elastic—plastic materials, proceed independently of the amount of time
used in the process. The present analysis will be described in terms of
real time. When going from time tn to tn’ an interval of time, At, is

used -1
At = tn - tn_1 (15)
where n is called the time step (load step) number. In order to be consis-—

tent, time will always be used as a load stepping device. The index j is
used to refer to an iteration within a load step.

Given the velocity gradients (5), which is rewritten here in vector
form as

.= o 6
L =9 v, (16)

the constitutive relationship is evaluated as

_ T T
Tj - Qj Qj Tn—IQj * Qj Tn—le’ Dj At QJ’ (17)
where
Qj = f(Wj)At. (18)

The quantity T, is a vector of components of the stress tensor and Q. is a
matrix describlng the rotation of the material at the point in question.
Hallquist [19] and Hughes [20] have shown that, if the velocity gradients
are evaluated at the midstep, the resulting strain is invariant to rigid
body rotation. Also, the resulting integrated incremental strain closely
approximates the true strain for large extensions. The operation with the
matrix Q. represents one—half the rotation that occurs between time t and
t . In équation (17), the stress at time t , is rotated to the midgzep,
and then gsed in the constitutive function.n—+he resulting stress is then
rotated to the end of the step. This large rotation theory has a defect in
that the shear stress exhibits an oscillatory behavior under large shear
straining. There are several theories [21], [22] and [23] under discussion
for use in correcting the problem, however at this time the technical
community has not reached general agreement on the best approach. The
present theory is satisfactory up to approximately a shear strain of 1.0.
JAC should be used with caution for large shear strains.

11
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The finite element equations that represent the variational statement
(14) are

N

[j(w)T T av - f¢prndV - / ¢T’%nds,] (19)
e=1lg (xp) v (x,) S, (x,)

where the integrations are performed with the body in the configuration
currently predicted for the end of the time step. In general, the residual
force vector R, will not be exactly zero as required for equilibrium. The

objective of the iteration procedure is to reduce the residual forces to an
acceptably low value.



ITl1. ITERATIVE SOLUTION

The following equations describe the nonlinear conjugate gradient
iterative procedure for using equations (16)—(19) to calculate a residual

force vector R.. A generalized procedure described in [11] is used, where
Zj is the gene}alized residual vector. For each iterate j,
-1
Z. =M R, 20
j =My R (20)

where M is a weighting matrix. The weighting matrix is usually taken as
the diagonal terms of the stiffness matrix, although other forms have
been considered [11]. The conjugate gradient vector P is calculated using

P. =7Z + 8 P. (21)
where 41 ) BJ )
(zf M Z + zq;_anzi
T , j #0. (22)
zj_1 Mn zj_1
8, ={
0 , j =0

Then the velocity estimate is updated using

. =v, +a. P 23
vJ+l V] aJ P]+1’ (23)
where aj is determined such that
P’ R(v. ) =o0. (24)
j+1 j+1

The displacements and positions of the material particles are then updated
using the formula

uj+1 =u .+ vj+1 At (25)

Xj+1 =x .t vj+1 At (26)

The conjugate gradient process starts at the beginning of each load
step by assuming a velocity vector, v _, and using equation (16) for the
velocity gradient vector. Then the constitutive equations at each node are
solved using equations (17) and (18). The residual force vector is calcu-
lated with equation (19) which in general will not be equal to zero. In
order to reduce the residual force, a conjugate gradient vector is calcu-
lated using (20), (21), and (22). If the process were linear, then the
second term in the numerator of equation (22) would be zero since Z, would
be orthogonal to Z., .. This form for g comes from reference [14] and the
generalized residudl vector given by eqﬁation (20) from reference [11]. Both
the weighting matrix and the second term in (22) for 8 cen be considered as
convergence acceleration devices.

13
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Equation (24) to find «, presents a few problems. Since the solution
to nonlinear structural probiems is wanted, then equation (25) is nonlinear
in o, as seen when v. + a P, _, is substituted into (16) — (19). The value
of a¥ is usually fouﬁd wi{hjgé expensive line search using, for example, a
Newt$n~Raphson method in solving equation (24). However, it is difficult to
calculate the derivative of R with respect to a,. Instead of a line search,
a technique which will usually work for mechaniés problems is to require
that the constitutive model provide a secant modulus, C , for use in the
following calculations, equations (27)-(30). If a secanf modulus is not
available, the elastic constitutive matrix may be used but convergence will
be slower.

ij+1= Vo Pj+1. (27)
T =C D . (28)
P]+1 sj P]+1
al T
R, = (V¢) Tp dv. (29)
j+1 e=1 ]+1
v, (x.)
ZT Mn Z.
o = —%—————i (30)
P.
jt+1 RPj+1

The iteration process continues by incrementing j and solving equation
(16) again.

Velocity boundary conditions are imposed by setting the values in the
initial velocity vector, v , to the values needed to obtain the prescribed
. o .
displacements and then the corresponding components of R, are set to zero.
Stress boundary conditions and body forces are imposed in equation (19)
using bn and tj,

When the jth iteration loop satisfies a convergence criterion after
calculation of equation (19), the stresses, coordinates, and displacements
for use at the beginning of the next load increment are updated. This is
written as

Tn = Tj (31)

X =X (32)
and n J

u = uj (33)



Convergence at a time step is defined to have taken place when either
of the following inequalities is satisfied,

1/2
LA 11— a0 < TOLU. (34)
Tau 11
or
R T\
] < TOLR. (35)
[IF_|]
n
[ IA]] represents the L2 norm of a vector. In equation (35), F_ is a vector

containing the applied tractions, body forces, gravity loads, %hermal loads,
and reactions at nodes where nonzero displacement boundary conditions are
applied. It is important to satisfy equilibrium conditions at the end of
each time step so that the value of the equilibrium convergence criteria
equation (35) should be reached first. The incremental displacement
condition, equation (34) should be used to stop a nonconverging solution.
The program will terminate execution if either equation (34) or (35) is -6
satisfied. The default tolerances for equations (34) and (35) are 1.0x10
and 0.001, respectively.

The matrix Mn is used to accelerate the conjugate gradient convergence
process. It is taken to be a diagonal matrix with values equal to the
diagonal of the stiffness matrix with linear elastic properties used. It is
calculated only once, at the beginning of each time step (load step), and
held constant during the iterative process. This choice of M_ is partic—
ularly useful in axisymmetric problems or when different parts of the body
contain different elastic properties.

Another way to accelerate the convergence is to provide a good starting
velocity vector. It is very helpful if the starting vector contains infor-—
mation about the lowest mode shapes which may be present in the solution.
In many cases, a good starting vector is some fraction of the velocity
calculated for the previous time step. This is particularly true if the
directions of the imposed tractions are not significantly changed between
steps. Another convergence acceleration technique is to first obtain a
solution for the velocity with linear geometrical assumptions. Then the
linear solution is used as a starting vector to calculate the geometrically
nonlinear solution. This technique appears to be most useful when the
solution is dominated by geometric nonlinearities. Excluding geometrical
effects is easily accomplished by not updating the coordinates x. for the
integrations and by not rotating the stress vector. !

The program has an element birth and death option which allows a block
of elements with the same material identification number to be active for
solution times which are between a specified birth time and a death time.
If the solution time is outside the active time range, the elements are
simply skipped in the residual force and conjugate gradient parameter
calculations.

15
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The JAC computer program is vectorized to perform efficiently on the
CRAY 1 computer. The vectorization method is called block vectorization and
is described in reference [24]. In general within a group of elements using
the same material identification number, the elements are processed in
blocks of up to 128. The residual force vector is obtained by processing
equations (16) — (19) for each block of elements. The calculation of the

a. conjugate parameter in equations (27)—(30)is also vectorlzed using this
block vectorization method.



IV. TWO-DIMENSIONAL APPLICATION

The computer program JAC uses a two—dimensional application of the CG
iteration technique. Devices to accelerate convergence of the solution as
well as sliding surface constraints are implemented. All the ideas used can
be readily extended to three-dimensional geometry.

1.0 Plane Strain Element

For the two-dimensional application, four-nede isoparametric elements
are used. The four node uniform strain element quadrilateral with
orthogonal hourglass control which is used for plain strain calculations is
described in reference [25] by Flanagan and Belytschko. The results are
reviewed here and then an extension to the axisymmetric element by Flanagan
[26] is discussed. The element is derived by first writing the interpola-
tion functions in terms of an orthogonal set of physical base vectors as

4 ¢I = EI + gAH + Ayt gnrl (36)

where Table 1 describes the base vectors.

Table 1
Node, 1 £ n EI A11 ABI I}
1 -1 -1 1 -1 -1 1
2 1 -1 1 1 -1 -1
3 1 1 1 1 1 1
4 -1 1 1 -1 1 -1

The 1soparametric coordinates ¢ and 7n have a range of —1 to +1.

The uniform velocity gradient operator components for equation (16) are

defined as
v.oo=1y 6 . av (37)
i,j Ve il 1,j

\
e

where the bar (~) denotes a uniform quantity. Assuming a unit thickness for

the plane strain element, the volume Ve is then calculated by

1 1
Ve = X1 9, (67 @5 — ¢
)

¢, )dnd¢ (38)
¢

n ¢

2

-1 -1

17
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These results are the same as with a single point integration when using the
center of .the element. The difference in the customary single point element
and the uniform strain element is in the representation of the hourglass
forces. The hourglass forces are found by first expressing the linear part
of the velocity field as

v, =V, + vi,j (xj - xj). (39)

The hourglass field v??
nodal velocity field:

is now defined by removing the linear portion of the

HG _ LIN
Vit T Vi1 T Vi (40)

In [25] it is shown the VHG is orthogonal to all of the base vectors in
Table 1 except the I' vector. Therefore, the hourglass field can be
expanded as a linear combination of the I} vectors as:

HG

viip= 4 (41)

iaI;I

where q. represents the hourglass velocities, By defining the hourglass
velocities 9, 8&s

=1
Ya 7 2 Vi1 7are (42)
it is shown in {25] that the hourglass shape functions 7y are
r = p— -];—— X I" ¢ dV (43)
I 1 Ve iy 7J I,i
v
e
The antihourglass forces are computed by
HG
1 =% 7y 75 Vg (44)

where

C
-, 4 _
K= v [¢“dv/¢“dv. (45)
v
e e

In contrast to [25] where elastic hourglass control is discussed, the use of
the secant shear modulus, C44 is necessary to account for reductions in



element stiffness due to plastic straining when using a elastic—plastic
material model. The secant shear modulus is defined in the material
properties section of this document. The best value for the constant &£ was
experimentally determined from a series of numerical eanalyses to be 1/30.

2.0 Axisymmetric Element

For the axisymmetric element [26], the element volume is written, where
r is the radial component, as

1 1
V=g [ /«pl (9 By 9y oty Jame (46)
-1 -1

which can be analytically integrated. The uniform velocity gradient com-
ponents are

= 1
Vi,j = V; v,lI ¢I,jdA (47)
A
e
and
;r 1
PR vrI/ ¢ dA (48)
e
A
e

The above definitions yield the important identity
(49)

so that the correct volume change is calculated when using the uniform
velocity gradient components.

Using a derivation as in [25] for the plane strain element, the
hourglass shape functions for the axisymmetric element [26] can be shown to
be

e

-r -1
L4 TRl TR A PJ/¢I,idA (50)
e

In two dimensions, the spin tensor W in equation (3) has only one non-
trivial component:

ny = 1/2($X’y- GY’X) | (51)

The angle which is used in the definition of the matrix Q is given by

19
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o = tan ! (1/2 nyAt) . (52)

3.0 Sliding Interfaces

Many structures consist of two or more parts which are in contact and
slide with respect to one another. In the context of the CG method, a
sliding algorithm can easily be incorporated using the master—slave concept.
When interference between two surfaces is detected, the nodes on the slave
surface are constirained to move in a direction normal to the master surface.
Friction can be used to constrain differential motion of the two surfaces in
the direction tangent to the master surface. The relationship between a
slave node and a master surface is shown in Figure 1. The slave node if
unimpeded would move to point 3 in Figure 1.

If |d| in Figure 1 is larger than some previously specified value and
the normal force F_ is also larger than a previously specified value, then
penetration of a slTave node into the master surface is defined as having
occurred.

The residual forces present at slave node 3 rotated to the n-—s
coordinate directions are calculated as

3n 3x
= v (53)
R R
3s 3y
L L _

where U is a rotation matrix which defines the n—s coordinate system with
respect to the x-y system. The normal force R is applied to the master
surface at 4 but the amount of force to be applied in the tangential
direction is dependent upon the coefficient of friction. If u is the
coefficient of friction, then the tangential force F_ is the minimum of the

friction force MRS and the residual, R g The posifive direction of FS is
the same as that o RSs' The forces R4 to be applied at the master surface
location 4 are
R4x RBn
~1
=Y (54)
R4y FS

Point 4 is generally not a nodal location on the master surface and hence
the force R must be distributed to the master element nodes. The equation
used to app?y R4 to the master surface is

l

4 .
Ri =R +¢R, i=1,2 (55)



where i is a master node number and ¢i are interpolation functions,
evaluated at 4

The forces R4 are then subtracted from the slave node residuals.
R4 = R4 - R4 (56)

The conjugate gradient vector of the slave node must be modified so
that the velocity of the slave node will eventually be the same as the
velocity of the master surface at 4 . First, P, , the conjugate gradient
vector of the slave node, is rotated to the n—s coordinate system.

=U (57)

Then the conjugate gradient vector of the master surface at point 4 is
calculated with the interpolation functions by using the equation:

m m
P, = ¢, P, (58)

Then P is rotated to the n-s coordinate system and the slave node con-

jugate gradient is now calculated using Pjn’ PBS and d:

© s [ _m 0.2)d] 7
Pax Pn a;At
= UT
p> 3 (59)
L 3y d L 3s .

When P;Xand P;y are used in equation (23), the slave node will follow the

master surface in the normal direction. In order to correct for the initial
penetration distance, the factor 0.2]d|/a.At is used to reduce the distance

on each succeeding iteration where «. is the conjugate gradient parameter in
equation (23). )

The sliding algorithm can be simply changed to a fixed interface
algorithm by applying all the residual slave forces to the master surface at
4 and then subtracting the slave residuals. The slave node is given the

same slave node conjugate gradient vector as the master surface has at point
4 by using the value in (58).
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V. MATERIAL PROPERTIES

The program is written in modular form so that different material
models can be added in the future. At the present time, the code contains
an isothermal elastic-plastic model, a temperature dependent elastic—plastic
model, a temperature dependent elastic—-secondary creep model, and a soil and
crushable foam model.

The function % in equation (17) represents the constitutive relation-
ship. The main approximation in the following models is that the strain

rate 1s constant over the interval from time tn—l to tn.

1.0 Isothermal Elastic Plastic Model

The elastic—plastic linear strain hardening model is a combined
isotropic—kinematic hardening model with a hardening parameter 0 < 8 < 1 to
specify the ratio of kinematic to isotropic hardening. A von Mises yield
surface is used together with an associated flow rule. This method, used
for the isothermal elastic—plastic calculations, is reported by Krieg and
Key [27,28]. The behavior described by the model is shown in Figure 2 for
uniaxial stress.

The numerical method for solving the resulting equations may be
considered that of stepping out elastically in deviatoric stress space and,
if the resulting "trial state” is beyond the yield surface, then scaling the
stress radially back to the updated von Mises yield surface. The updated
stress and the yield surface position and size are found simultaneously.

The assumption of a constant strainrate over a time step used in the
material subroutines is consistent since time rates of change of velocities
are ignored in the program. The stress and plastic state update applies
equally well for any general initial state at the beginning of the time step
and for any strain increment size or direction. While a conceptually
“simplistic” process, it is an excellent numerical approximation for
integrating this rather conventional plasticity model. The accuracy of this
"radial return” method has been compared by Krieg and Krieg [29] to other
methods for the case of no hardening.

The details of the process are as follows. The stress is denoted as

T 1 position of the center of the yield surface v 1 and effective
p?astic strain o
D ,and the strain rate Dn—l/2 The steps taken are:

n—1

(1) The radius ay of the yield surface is calculated using the equation
o =T + GHD , (60)

where



iE _ (61)

where the elastic modulus E, the plastic tangent modulus E , the yield
stress T and the hardening parameter B are material parameters identified

in FigurX 2. The elastic shear modulus G and the bulk modulus K are used in
the following steps,

)

(2) The "trial"” stress state TT , the jth iteration approximation for the
end of the increment, is célculated using a matrix of elastic constants
C.

T =T + C DjAt

} n—-1 (62)

where Tn—l is the rotated stress indicated in equation (17).

(3) The trial deviatoric effective stress, S., is calculated,

S| _T.T-yn_l] (63)
) LJ deviator

and its vector magnitude is compared to the radius of the yield surface:

8 =/§ ;| - 7, (64)

(4) The incremental process is elastic if & < 0 and,

in this case, the
final stress is the trial stress:

j p (65)

The incremental process is at least partially plastic if & < 0 and the
remaining step (5) must be executed.

(5)

The updated value of the yield surface position and size (indirectly as

the effective plastic strain) are calculated and the trial stress is
scaled back to this surface to give the final stress.

ag
L VE/3 Yy
°)
Cs = 1 + H/3 G (66)

23



24

D =D +%|%|/£’G (67)

(68)

~
It
~
—
+
o~
T
™
~
3
Q
|
w2

T. =T, -C_. S, (69)

The secant modulus used in the determination of the conjugate parameter
aj is calculated using the relations:

C =1/2a, + K—a, S S , =1,3 70
pq /8 &, 2 5, 3, P. q (70)
C =2/3 a, + K—a, S S no summation = 1,3 71
op = 2/3 8, 2 S, S, ( ) » (71)
C =C =a_, S, S p=1,3 (72)

4p p4 2 4 p

a, = 2G(1—C5) (74)

2G V2/3 oy

4 (75)

_ 3
R (1 + H/SG)ISI3

2.0 Temperature Dependent Elastic—Plastic Model

The temperature dependent elastic plastic model uses the radial return
method as does the previously described elastic plastic model. The material
properties; Young's modulus, Peoisson’'s ratio, yield stress and hardening
modulus, are assumed to vary linearly with temperature between the beginning
and the end of the time step. First, the initial stress is adjusted to
reflect the change in moduli due to temperature, then the trial stress is
calculated. Instead of using the plastic strain as in (60) and (67) for the
isothermal model, an updated value on the yield surface is calculated.

Given the previous value of the yield radius T , and the initial yield
radius values, T and T, at temperatures anzland Bn, respectively, the
radius of the yie}d surfage is calculated by
Hy - H :
o =T + (T -T )+ ——= (o -T ), if 8 #0. (76)
Yy Yn-1 Yo Yy H Yn-1 N1



6 =T +T, - T, if g =0 (77)

The calculation of the stress state continues as with the isothermal
model using average values of G and H. Instead of using equation (67), the
yield surface is updated by

Hi S,
- ﬁ_sé_l_il (78)
Yn Y5 V6 G

The secant modulus constants are calculated by using equations (70)-(75)
with average material properties.

3.0 Secondary Creep Model

Secondary creep described by a power law form is used for the material
model! and is integrated in time by a technique described by Krieg in [24].
The effective creep strain rate, DC for the material is represented by the
scalar equation:

A, -A_/8
2 3
= 7
Dc A1 o, e (79)
where A and A, are material constants, § is the absolute temperature,

and Oc 1s tﬁe effec%lve stress.

The dilitational response is elastic. Tensor equations are used for
the stress rate as a function of initial stress state and the imposed strain
rate. The resulting mathematically stiff equations cannot be efficiently
and accurately solved using ordinary numerical integration methods. Three
separate regions are used and approximate but tractable tensor differential
equations are derived for each. The analytical solutions of these approx-—
imate equations are then used to define a numerical method with acceptable
accuracy and speed. The method has automatic internal multistepping based
on accuracy limitations. For the five percent tolerance which is used,
never more than eight multisteps are needed and usually only one step is
used.

Equation (79) is used to derive a tensor valued differential equation
for the deviatoric stretching tensor S as

) A
S =a - bS, (80)

where
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a, = 2G D, (81)

O.5(A2+1)

2G(1.5) A (82)

o
I

G is the average elastic shear modulus over the temprature span during the
time step.

The three regions for which (80) is approximated are:

A
(1) The case when b S.i 2 <<-la‘ where an expansion about the initial
stress state is'uddd sincé {he response is nearly elastic. the
resulting equations are

—A_Bt
_ (=8 RTT_ B
(A 5 ) Sn—l (e e (83)
2 .
where
A2_1
g = blS | (84)
I
a. | A
_ I J| R__
S, = 5 8 (85)
Sn_l' aj
p =t (86)
n-1 "n-1
A2—1
Cy = b|S | (87)
AZ
(%) The second case is when b|S. | = |la.| where an asymptotic solution is
obtained in the neighborhooa of S, .° The resulting equations are

_ S .S ~A Bt —Bt
S =5 - (s -g5_ )e Pt +»(§E—l~if— 1) s (e 2 e ) (88)



A
(3) The third region is when |a | << b|S | & and the elastic terms can be
neglected. The resulting sélution i

n-—1

3 Spo1 ~ Aj/AC,
s =1 [1—(A - 1)C t] + _
AL, € ° [1+(A2—1)C0t]1/(A2 1)

(89)

The accuracy is controlled by using appropriate time sub—increments within
each case and defining the boundaries between cases. The present version of
the model is accurate for Az = 5. Care should be used for a value of A2
for from 5.

With the creep model, an elastic modulus instead of a secant modulus is
used in equation (29) for determination of the conjugate gradient parameter.

4.0 Soil and Crushable Foam Model

Soils and crushable foams exhibit a behavior that is pressure
dependent . Because of voids, they crush or compact under pressure. Their
failure in shear can also be sensitive to pressure. Krieg [30] models these
characteristics using an isotropic pressure dependent deviatoric plasticity
theory and an arbitrary volumetric plasticity. The yield surface in
principal stress space is a surface of revolution centered about the hydros-—
tat with the open end pointing into compression. The open end is capped
with a plane which is at right angles to the hydrostat. The deviatoric part
is elastic—perfectly plastic so the surface of revolution is stationary. The
volumetric part has variable strain hardening so the end plane moves outward
during volumetric yielding. A flow rule is used such that deviatoric strains

produce no volume change. The material is assumed to be intact, i.e., tensile
fracture has not occurred so long as the pressure, P 15 greater than h, where
h is the minimum root of the polynomial A1 + A2P + ASP = 0. [If fracture

occurs, the pressure is set equal to h.

The function f which describes the pressure versus the volume strain
behavior is depicted in Figure 3. Unloading from any point along the curve
is taken to be elastic with a modulus of KO.

The steps taken are as follows:

(1) The pressure p and the deviatoric stress S at time n are computed. The

volumetric strain rate D and deviatoric strain rate D at t are
v s n-1/2
computed.
(2) The volumetric strain at tn is calculated and compared to the past
minimum E
v
m
EV = Ev + Dv At (90)
) n—1 n—-1/2
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If

v

> Ev , the step is elastic and
j m

P.=P _ -K D At (91)
] o n-1/2

< Ev , plastic loading is occuring and

Pj = f (EV') (92)
J

EV = Ev. (93)
m i

after the step has converged.

(3) A check for tensile failure is made. If failure has occurred, the
pressure at tn is set equal to h. The stress state is then at the tip
of the surface of revolution and the deviatoric stress must be zero

T =P =-h 94
i i (94)
If failure has not occurred, the deviatoric stresses are sought.
{(4) The deviatoric components of the stress are calculated as in the

elastic—plastic models with the radial return method. In this case the
hardening modulus Et and the hardening parameter g are zero.

With the soil model, a secant modulus is calculated by employing equations
(70)—(75).



VI. EXAMPLE PROBLEMS

Example problems are included for use in code verification and to
acquaint the user with the input and types of problems which can be cal-
culated. The problems include the large displacement bending of a beamn,
transverse crushing of a cylinder, extrusion of a plate and cylinder,
bending of a laminated beam with interlemination sliding, and creeping of a
cylinder.

1.0 Large Displacement Beam

The large deformation of an elastic cantilever beam is included since
an analytical solution by Holden [31] is available. It also demonstrates a
problem with which the CG method has great difficulty. The beam has a length
to thickness ratio of 30 and Poisson’s ratio is set equal to zero. Two
solutions are reported. The beam is loaded with a uniformly distributed
vertical load and with a pressure normal to the surface. Thirty elements
are used along the length and four through the thickness.

Shown in Figure 4 is a comparison of the analytical results both with
and without non-linear terms as reported in [31], and the numerical results
due to & gravity load, i.e., one in which the forces in the beam are in the
vertical direction. The comparison is very good. For the gravity loading,
the value of P in the figure is gravity load divided by the length of the
beam. Also shown in the figure are the numerical results for a pressure
loaded beam where the forces are always normal to the beam. Figure 5
depicts the actual deformed shape of the beam due to gravity loading at k =
6.48.

Convergence of the solution for the beam problem is very slow. First,
the spread of eigenvalues in the problem is large and any explicit
interative technique will have difficulties. If the problem is ill-
conditioned in the linear approximation, as in this case, then adding the
nonlinearity of large deformation, i.e., taking into account the rotation of
the beam, compounds the difficulty. To ease the difficulties of the non-
linearities, the calculation is begun by first solving the linear problem.
Then, using the linear result as a starting vector, the geometric monlinear
effects are included. The starting vector for each time step is taken to be
the velocity of the previous step. After the first load step, each step
took approximately 220 linear iterations followed by approximately 310
nonlinear iterations. Load increments of k = 0.0328 for the pressure
loading and load increments of k = 0.0628 were used for the gravity loading.
A convergence tolerance of 0.03 for the force norm of equation (35) was
used.

2.0 Tube Crushing

The plane strain crushing of a relatively thin tube in the diametrical
direction by rigid platens represents a difficult elastic-plastic, large
deformation and sliding surface problem for a finite element technique. The
geometry and material properties of the problem are shown in Figure 6. The
surface between the tube and the platen is assumed to be frictionless. Shown
in Figure 7 is the finite element model.
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A displacement is applied to the tube at the lower symmetry plane.
Displacement control is needed because the load—deflection response is soft
after plastic hinges have formed at the top and bottom of the ring quadrant.
Four elements are needed through the thickness in order to accurately repre-
sent a plastic hinge stress state through the thickness. The displacement
of 2.921 x 10—-4 m was applied in 10 steps, followed by 20 steps to 0.00254 m
of total displacement, then equal steps of 2.75 x 10-4 m. The deformed
shape at a deflection of 0.01778 m is shown in Figure 8. The results are
shown in Figure 9 for the total load on one platen versus the displacement
0 , where r is the initial midsurface radius.

The results are compared to both analytical [32] and experimental
results [33]. The applied load is normalized to the load that will cause
plastic hinges to first appear, which is

20 h2
P = 4 (95)

° V3

The solution strategy consisted of obtaining a linear geometry solution
followed by a geometrically nonlinear solution. It took approximately 1300
iterations for the linear geometry solution and 300 iterations for nonlinear
geometry solutions to achieve convergence for each step. A force conver—
gence tolerance of 0.001 was necessary to obtain a satisfactory load deflec—
tion curve.

3.0 Extrusion

The problem of the plane strain extrusion of a plate [32] is included
to demonstrate a case where large amounts of sliding take place, along with
elastic-plastic loading and unloading. The geometiry, properties for the
elastic-perfectly plastic material and and initial finite element mesh are
shown in Figure 10. The sliding surface is assumed to be frictionless. A
displacement is applied to the left end to move the material. The deformed
mesh plot at the applied displacement of 0.0381 m is shown in Figure 11.

The applied load is plotted as a function of the applied displacement
in Figure 12. The ragged appearance of the plot is due to the small number
of elements used to describe the pressure along the interface. The solution
strategy was the same as was used for the crushed tube problem. It took
approximately 1000 and 500 iterations, respectively, for convergence of the
linear and the nonlinear geometry solutions for each displacement load step.
Seven load steps of 0.00254 m were followed by steps of 0.00177 m. A force
norm convergence tolerance of 0.001 was used.

The extrusion problem was also calculated using the axisymmetric
element. The results were similar to the plane strain calculations. The
deformed mesh at a displacement of 0.0356 m is shown in Figure 13 and the
load deflection curve is shown in Figure 14.



4.0 Laminated Beams

A laminated beam problem is used to demonstrate the behavior of
multiple sets of slide lines. The problem is a simulation of the reaction
of layers of material above an underground mine opening. An experiment was
performed which is described in [35]. A centrifuge was used to simulate
enhanced gravity loads and a lamination of foundry stone was made up of
0.0254 m thick beams, 0.267 m long. The geometry of the experiment is shown
in Figure 15, along with the material properties and loading sequence. The
coefficient of friction between layers was experimentally found to be ap-
proximately 0.50. Sliding interfaces were used between the beams and
separation of the beams was allowed to preclude development of tensional
stress normal to the interfaces.

The finite element model which was used is shown in Figure 16 where
symmetry is used.

In the experiment, the rotational speed of the centrifuge was increased
until all the beams above the opening were cracked. This occurred at a load
of 150.3 g's. The ultimate tensile strength of the material is approxi-—
mately 917 kPa while the computer code predicted 830 kPa at 150.3 g's at
point A in Figure 19, at the center of the opening. Figure 15 shows the
deformed shape at 150.3 g’'s magnified 200 times to show the sliding.

The solution strategy adopted consisted of obtaining a geometrically
linear solution followed by a geometrically nonlinear solution for each load
step. It took approximately 1000 iterations for the linear solution fol-
lowed by one iteration for the nonlinear solution. A force norm convergence
tolerance of 0.03 was used.

5.0 Creep analysis of a thick walled cylinder

A suddenly applied pressure is applied to the inside of a thick
cylinder and the creep response is_calculated. The plane strain cylindgg
has an inside radius of 4.064 x10 m and a outside radius of 6.35 x 10 m.
Six elements are used to model the cylinder through the thickness. An
internal pressure is applied as a function of time as shown in Figure 18.
Load steps of 6 seggnds were taken. The material constants for equation (74)
are A, = 8.27 x 10 , A, = 4.4 and A, = 0.0 with a Young’'s modulus of 137
GPa and a Poisson's ratioc of 0.3. Sgown in Figure 19 arg the resulting
efigctive stress as a function of time at r = 4.25 x 10 " m and r = 6.16 X
10 m. A force convergence tolerance of 0.001 was used. A viscosity
coefficient of 20/3 was necessary to control the hourglass modes. The
results compare favorably to a steady state solution reported in [34].
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Figure 1. Master-Slave Relationships for Sliding Interfaces
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Figure 2.

/
=

Typical behavior of a ductile metal bar loaded first
in uniaxial tension followed by uniaxial compression.
The straight line approximation is characterized with
an elastic modulus E, a yield stress T , a strain
hardening modulus E_, and a hardening paramameter B.
Kinematic hardening is obtained with B = 0, isotropic
hardening is obtained with B = 1, and a linear
combination of the two is obtained for B between

zero and one,.
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Figure 3.

Ey=-/n(py/P)

Pressure versus volume strain behavior for a porous
material. Unloading is assumed to occur elastically

with a modulus of KO. '



1. ANALYTICAL-HOLDEN [29]
2. GRAVITY-JAC

3. PRESSURE-JAC

4. LINEAR SOLUTION

DEFLECTION RATIO, /L

Figure 4. Load vs.deflection curve for the cantilever beam

analysis.
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UNDERFORMED

Figure 5. Undeformed and deformed mesh due to gravity load at

K = 6.48 for cantilever beam problem.



PLATEN PROPERTIES OF TUBE
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Figure 6. Geometry and material properties for the tube crushing
problem. '
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Figure 7. Finite element model for tube crushing problemn.
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Figure 8. Deformed shape plot of the tube crushing problem at

a displacement of § = 0.01778 m.
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Figure 10.
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Geometry, material properties and finite element
mesh of extrusion problem.
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Figure 11.

h it 41
TH

Deformed mesh of the plane strain analysis of the
extrusion problem at an applied displacement of
0.381 m.
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Total force vs. applied displacement curve for the
plane strain analysis of the extrusion problem.
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Figure 13.

Deformed mesh of the axisymmetric analysis of the

extrusion problem at an applied displacement of
0.356 m.
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Figure 14. Total force vs. applied displacement curve for the
axisymmetric analysis of the extrusion problem.
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Finite element mesh of the sliding beam problem.
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Input pressure vs. time curve for the cyclic creep
analysis of a thick walled cylinder.
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creep analysis of a thick walled cylinder.
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The computer code JAC

Iviir.

USER INSTRUCTIONS

designed to be executed on the CRAY1 machine.

‘is normally used in con;unction with the four node two dimensional mesh

generatlon programs QMESH
-description requires a knd
flags which are used to d¢g
program on local file FTOY
FT09 file is noted in the

Output is written by
plot programs DETOUR, TPL(Q
- ALGEBRA [40] may be used t
'DETOUR plots contours and
TPLOT2 is a function vers
prescribed distances in ei
can be used to plot conto
‘variablps. S

Funct:ons versus time
control the solutxon
_increments, and solution s

Chapging boundary conditions,

[37].- RENUM and QPLOT. The following input
wledge of the QMESH progrems. Nodal and element
fine boundary conditions are output by the RENUM
for- input to the JAC program
QMESH document [37].

JAC on the local file FT11 for use with the

T2 [38], SPLOT, and MOVIE-BYU [39]. The program

o algebraically manipulate the output data.
deformed mesh plots for two dimensional bodie

s time plot program. SPLOT plots functions Versus
ther two or-three dimensional bodies and NBVIE—BYU
rs, deformed meshes ‘and color fringe patterns of

are input which define all the quantities used to
print and plot
trategy are controlled by functxons

It

The format of the.



JAC Input File FTO5 Description N

1. Title Card (8A10)

. Col's  Emt —Var ’ _ltem
. 1-80 A TITLE Any title suitable for L
e identifying the data deck ?‘fu

B / and the program output.
. Ra. ,Control Card One (1315,5X,E10. 0) -
"(Table 2 contains a brief descrlptxon of the two control cards. )

Col’s Fmit __!gz___ v _Item
1-5 I NUMMAT . Total number of different

‘materials‘ See Section 3.

6-10 1 NUMFT Total of load and solutlon , o
' ~ control functions which are | -
input; NUMFT < 10. R

See Section 4.

o~

11-15 I NMPL Maximum number of . pOInts ta*l
- describe ;any one of the Nﬂﬂ??
= functions. See Section 4. '
16-20 1 NUMPC Number of boundary condiiionfcards,
/ ’ b
21-25 } 1 _NSS © - Number of slzd;ng 1nterfpees e

26-30 I o Geometry parummter

L 31-35 1




36-40

41-45

46-50

I

1

I

NSOLT

' NODE4

NODE4F

Solution control function number.-

A type 2 function is used,

(Tablé 3) to calculatée solution
time increments. The starting time
for the solution is the first time

"in the NSOLT function and the final

time of the problem is the last
time in the NSOLT function.

Iterative solution control.
If NODE4 = 1, a geometrically -

linead and material nonlinear
solution will be obtained for - N

each load step.

If NOﬁE4 = 2, a geometric .
and material nonlinear _
solution will be obtained for‘
each load step.

i { B
If NODE4 = 3, during each load
step & solution is first obtained
with linear geometry and nonlinear
material properties. Then. a second
solution is obtained with both non-
linear geometry and material {
properties by using the first
solution to start the second

) solution.

Default = 2.
NODE4' value function number.

If NODE4F = 0, the value on NODE4
in columns 41-45 is used to control
the 1terat1ve procedure.

If NODE4F # 0, function NODE4F is
used to determine the value of N
NODE4 during the solution process.
Values of 1,2 or 3 are permissible

for the value of the NODE4F

function. A type 3 ﬁunctxon is
used (Table 3).



' 51-55

56—69;

©  61-85

~ 71i80

I

-1

1

E

NDISP

NIMAX

NTERM

VISCO

Inltlal startlng 1ncremental ,

If NTERH;&»O xsathermaj prebﬁemg

and NUMRP is the total. nﬁmber of
\&nodal palnts a5

dlsplacement vector control

If NDISP = 0, at the beginning of
each load step, the assumed
incremental displacement vector to
start the iteration procedure is
zZero.

If NDISP # 0, at the beginning of.
each load step, function NDISP is
used to obtain a ratio, represented
by the value of the function .at the =
beginning of the load step. . An ’
incremental displacement vector
is then calculated by multiplying
the incremental displacement
vector of the previous load step . . )
by the ratio.- A type 3 fumction . .
is used (Table 3).

Maximum number of-iterations
allowed per load step for each
iterative solution specxflqﬁ

by the NODE4 par&m&ter Bl

N

Default = number of degrees
of freedom.

Temperature prablen contral

is solved.

,fe T:1sythe n&dai tenperatur“;




2b. Control Card Two (5I5)

i

ol's Fmt  _ Var - ____Item

1-5 I NGRAVX x or r direction body force
) . functjoq‘number.

If NGRAVX = .0, no body force
"loads or centrifugal forces

are applied in the x. or r
-direction.

If NGRAVX # 0, function
number NGRAVX is used to
define the magnitude of the
x body force load or the r
centrifugal forces.

For x body force loads,
Load * Density*volume*f(t).

For c¢ntrifugglrforces;,
Load = Density*volume*f(t)*r
where f(t) represents the
square of the angular
velocity.

. , ) Volume and r is supplied by

o the program and density is
input on material cards.
A-type 1 function 'is used.
(Table 3).

6-10 | I NGRAVY | y or z direction body fofcew
N ‘ function number. ‘

If NGRAVY = 0, no body force
. loads'in the y or z direction .
are applied.

If NGRAVY # 0, function
number NGRAVY is used to
~define the magnitude of the
'y or 2 body force load.
Load = Density*volume*f(t).
Volume is supplied by the
program and density is
input on material cards.
A type 1 function is used
(Table 3).



60

C11-15

- 16-20

21-25

1

f

I

NSTRTR

NPOUT

NSTRTW

%Reétart=funcﬁi6n‘nuﬁber;[?ﬁ*

- to restart the pr&

Restari\read parameter.

1f NSTRTR = 0, problem is not
a restart problem.

1f NSTRTR =1, problem is a
restart problem and the start .
time TSTART, is the first time =
of solution function NSOLT.

The problem will be started

at the time which is found

to FT32 that is greater

than or equal to TSTART.

A problem is restarted by
supplying a previously saved

FT30 as FT32, see parameter

NSTRTR on this card. The lnltzal
temperature under any starting-
conditions is obtained fren\?T58 1f
a thermal stress problem is to be
calculated, NTERM = '

Plot output function number .

If NPOUT = 0, data which can .

~be plotted is written to FT11

at the end of each solutlon
step: ‘

-1 NPOUT # 0, a type’ zv-r;unct.nin‘, i o 5
~is used (Table 3) to'celculate ~ '
- time xntefvals at: whzch FT11 18

wrltten

wrltten\to FT30 at the enﬂ
f eaeh solutaon atep :




’ TABLE 2.
‘Brief Control Card Description

2a. Control Card One (1315,5X,E10.0)

Col's Fmt _Var_, _ Item
1-5 I NUMMAT = Number of different materials
610 1 NUMFT Total number of functions
11-15 I ~ NUMPL Maximum number of function points
16-=20 © I  NUMPC Number of boundary condition cards
R1-25 1 NSS - . Number on sliding interfaces
26-30 1 NAX1S Geometry parameter :
31-35 1 NouUT Output print function ;
36-40 1 NSOLT - Solution control function , -
41-45 1 NODE4  ° Tterative solution control
46-50 I NODE4F Iterative solution'contrql'function
51-55 1 NDISP Starting vector function ‘
56—60 I NIMAX - Maximum number of iterations
61-65 I + NTERM Temperature control parameter
71-80 E ]

VISCO ~ Hourglass viscosity parameter

2b. Control Card Two (515)

Col’s Fmt Var , Item
1-5 I . NGRAVX X or r direction body force function
6-10 I . NGRAVY y or z direction body force function
11-15 . T = NSTRTR Restart read parameter
16-20 I NPOUT Plot output function
21-25 1

NSTRTW - . Restart write function

/

.

crgid onvoooLOoO0O0O0
l!,’ .

—
[}

Lo i o Y e B e B e
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.during the tlme 1ncrement

Table 3. -

JAC Function Description : -

,Naﬁg J L ‘Varjable : Type  7
‘Diéélaceﬁeﬁt' | NP , 1
i Pressure - ' NF R 1 ) r;it“;ff?f” (o
"X or R body force NGRAVX ' . 1
Y or*z'boqy force | NGRAVY | 1
Solution Control ’ NSOLT 2
Print Output Control NOUT | 2 ;
Plot Output Control ~ NPOUT 2 S ,V 7} §
Restart Write Control NSTRTW g 2 | = f{};\
Iterative Solution Control NODE4F ; | 3 | - £

Starting Vector Control NDISP ' 3
Note:

Type 1 Functlon - Interpoiated ValueiCalcul&ted
For a type 1 functlon linear znterpolatlon jis u ed to flnd ihe value of the -
function at the current solutlon tlme which is'b tween two tzms pomnts of TR
‘the- functlon . ! o St

\ i
!
Type 2 Function - Time IncremsntiCaicu}ated

 For a type 2 function, the value of the functlan at the begf”
~increment represents the number of time subdlv;siens whlch'w
. the time 1ncrement

Type 3 Functxon = Integer Value

For' a type 3 functlon the va]ue of’ the fanc ion a lhe beg:an
5’t;me increment - represents an lnteger number whxch will ‘be hei

by . -

AN




3a.

3b.

\30.

*

\

i

Material Card Sets (NUMMAT sets)

‘Z‘Material Type 1 - Isothermal Elastic—Plastic

Material Idemtification Card (215,3E10.0)

Item

15 I N
6-10 1 MTYPE(N)
11-20  E RO(N)
21-30  E - - BTIME(1,N)
'BTIME(2,N)

- 31-40

4

Material property number

Material type number

" Density of material to be-

used for bodg force loads,
force/length

-Birth time at which elements

with material numbér N become
active. Default = .0.0.

Death time at which elements

‘with material. number N become

inactive. Default = 1.0E100.

Material Heading‘Card,(BAlb) .
ol’'s _’ gm; igi_ Item )
1—80,‘ A — User selected name of ihe'mgteriél
Materia},Stress Strain Information, 7 cards with (E10.0 fbrmgt
,gggg a leii Eml Var J | Item %
‘1\, 1»8@/ E  (EE(1,1,N),I = 1,8) Températureé, 8
\:;2 1-10 lE 'EE(1,2,N) Young's modulus, E
3 1-10 E EE(1,3,N) Poisson’s ratio;'u>
4 1-10 E EE(1,4,N) Yield stress, T
5 {~;0 . E EE(1,5,N) \Hardeniﬂg)modulus, E,
6 i~10) E EE(I,G,N) | Hardéning parameter, g
7 1-10 E  (EE(I,7,N),I ='1,8) Thermal strains, D,
0 <p<1 |

{ B = 0 kinematic

= 1 isot

B

‘If the yield stress Ty

)

ropic

0, elastic behavior is assumed.
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RIS NS /

Material Type 2 — Temperaturé'Dependeﬁt‘ElastiéaPlﬁétiéﬂ

‘nk3a,\ Material Identification Card (215,3E10.0)

Col's Fmt  __Var | Item_
1-5 1~ N Material propertyvnﬁmbérw'

6-10 I MTYPE(N)  Material type number

{

S /ﬁi 11-20 E ~ RO(N) Density of material to be u39d3ior
SRR C body force loads, force/length™
21-30 E BTIME(1,N) Birth time at which elements
\ o . with material number N become

‘ active. Default = 0.0.

31-40 E . BTIME(2,N) Death time at which elements with
material number N becope inactive.
Default = 1.0E100. SRR

'1‘,;,/\ R

3b. Material Heading Card (8A10)

e Col's Fut Var ' Item
Lo 1-80 A —_ User selected name of the matetial

s 36. Material Stress Strain Informatlon 7 Cards of 8 values per card "
(BEIO O) : L

i

e ;d o Col's " Fmt . Var .l S )Itéiﬁff}"ii S AT :j €5

SRR \1'f-\'ao B (EE(1,1,N),1=1,8) T‘empe}atu;fes,‘.’Zef[ S ;
2 180 E (EE(I ,fz—,m',;fel,s»)‘  Young's MedhEL, B -
3 ilso B (EE(1.3.N), 1=1,8) f’mssan

4 'f" 1-80 E (EE(I 4 N),I I‘Bj

S




Material Type 3 - Temperature Dependent Secondary Creep

.

‘35. Mater1a1 Identlflcatlon Card (215 3E10.0)

3

Col's Fmt  _Var Item
1-5 1 e( . N Material\pfoperty numbef' T
| 6-10 -~ I . MIYPE(N) Material type ﬁumber |
f; n'il—20 : E . -~ RO(N) o \Den31ty of mater1a1 to be used_for

body force loads,: force/length

21-30 E  BTIME(1,N)  Birth tfme at which elements with
' ‘ ) / .~ material number N become actlve o

Default = 0.0.

31-40 E - BTIME(2,N) Death time at which elements with
‘ : ; - material number N become 1nact1ve
befault = 1. OElOO

3b. Material Heading Card (8A10)

'

Col's Emt  Var - Ltem =
1—80 ‘ A — User selebted name of the material

3c. Materlal Stress Strain. Informatlon .7 cards thh
(8E10.0) Format

card - Col's. Pt Var . lItem

]

1 . 1-80 - ;E ‘(EE(i.l,N),I=1,8) "~ Temperatures, B r“
2;‘ 1-80 / E (EE(I,Z;N),I=L,8) Young;vaoduli,/E’ ~
3.  1—804‘k ' ﬁ (EE(1,3,N),1=1,8) Poiseon'e‘Ratios, v
4‘ : l—ld \Ex EE({,4,N)’ Creep Law \Constant,’A1
5 1-10 ; ﬁ; kEE(i;5,N) ’ ’ Creep Law Constant, A2=
’ 6  I;iO E ~ EE(1,6,N) .~ Creep Law Constant, Aq
75 f1;80 } | E e(EE(IL7,N),I=1,8) Thermal,Streiné;:D \

[eE -
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~ / ,‘1
‘Material Type 3 — Temperature*Dependent Secondary Creeﬁ (cbntinued)
$heqcreep law relating the effective strain rate, Dc’ to the effective
-stress, o , is = \ SRR
| | ' A, -A_/6 ] S .
D =A, ¢ 2 e 3 _ !

i

c 1 c

s

fgnd De are depe%dgkt/ypon temperature. If NTERM = 0, i.e., nq'tempgratm

-are input, then e is equal to 1 and the values stored in EE(1,J,N,) are
~used. - e




3a.

3b.:

3c.

 Card

1

Material Type 4 - Isdthermal'Finite.StraihkSoil and Crushable Foam

Material identificAtion Card (215,3E10.0)
Col's Pmt  _Ver Lien
1-5' I ‘17(N~;7 ‘Material propertylnumbér\
6-10 1 | MTYPE(N) Material type numbef
11-20 E 'RO(N) ‘Densit& of material to be
T used for- bodg force loads,
force/lengih
© . 21-30 E  BTIME(1,N) . Birth time at which elemeﬁ;s
‘ - ) with material number N become
active. Default = 0.07
'31-40 E  BTIME(2,N) Death time at which elements
L ~with material number N become
inactive. Default = 1.0E1Q0.
ﬁatérial Heading Card (8A10) |
Col's ' Fmt Var It,ém
 1-80 A ‘._, i User selected name of the matepiala
Material Stress/Straln Informatlon |
(8E10 0) Seven Cards
Col's  Fmt Var ltem
1-80 E (EE(1,1,N),I=1,8) ‘Temperﬁtures, 6
2 1-10 E ‘EE(1,2,ﬁ) Sh;ar\Modulus, G
2 11420 E "EE(2,2,N) Bulk Unloading Modulué} K ‘
2 21-30 E EE(3,2,N) Yield Function Constant, A,
2 31-40 E EE(4,2,N) Yield Function Constant , A,
2 41-50 E EE(5,2,N) Yield Function—Coﬁsiaﬁt, Ay
3 1-10 E EE(I,S,N)‘ Volumetric Strain, 1§(pq/p)k
3 11_20' E Eﬁ(Z,S;N) Pressure, P
3 21-30 E EE(3,3,N) Volﬁmetric Stfainf fﬁ(po/p),
3 31;40 E EE(4,3,N) Pressure, P

67



Card  Col's Fmt  ___ Var — - lien

. . . I .
4 1-10 - E - EE(1,4,N) . Volumetric Strain, ln(po /p).
4 , 10-20 E . = EE(2,4,N) Pressure, P .

4 21-30 E EE(3,4,N) - Volumetgic Strain, Ia(p_/p) -
4 - 31-40 E - EE(4,4,N) - Pressuréﬂ P

4

7 1-80 E (EE(I,7,N),I=1,8) Thermal Strains, D,

L
- ;
- 1 b
'L )
" i
+




4. Function‘Cards.'.NUMFT Sets of Cards

4a. TFunction Control Card (215,A40)

 Col's Pt _Var Item
1-5 | 1 | NF | Number of function
6;10" I ﬁFP o Number of funciionlpoini
‘ pairs. . .
,11;40 A FTITLE : Déscriptioniof functions,

NODE4, OUTPUT, SOLUTION, for

example. . 7

N

4b. Function Value Cards (as many as needed) (8E10.0) N

ol's mt v . T
1-10 . B P(1,NF,1) = Time
. 10-20 E P(2,NF,1)  Value
E ' P(1,NF,NFF)  Time
"E  (P2,NF,NFP) Value
N 4
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5. Boundary condition cards (215,3E10.0) DT o - i

Col's  Pmt  _Var , __Item_
‘ 1-5 .1 IFLAG o , - Number corresponding to flag
‘ ' number from QMESH.
6—10 I NF ‘ Number of function to be used: - S
ST Type 1 interpolation will be oot
< used (Table 3). e
11-20 E CODE ' Boundary condition code. ‘
1f CODE = 0.0, x or r force s
specified, and y or z. force .
specxfled 5
o , If CODE = 1.0, x or r

displacement specified.

If CODE = 2.0, y or 2z
displacement specified.
\ | | 1f CODE = 3.0, x or r, and
N y or z displacement specified.

i : “1f CODE < 0. 0, pressure
- ] speclfled ,

1f CODE #:1.0, 2.0, or 3.0, the
value of CODE is the angle in af
degrees between the pasitxve X or
r direction and the. dlrectiqn ef
motion alone e slid;ng boméary

The normal displacement iz zero. i
and the tangentxal force is zere.

21-30 B = WX

dependlng uyén tha,valu& ﬁﬂ CQBE

31;40g i E "Uf'\ “~7 stplacement, force or tangenxaal
SR i ‘ ) ’ pressure in the y or -z direction
_depending upcn the‘valaﬁ on’ CODE

NOTE If axxsymmetr;c geometry is used, eoncentrateé fnrceé

,‘\total force ‘per radian: Also at r = 0, the. radzal dl&?i&nﬁuﬂniunnst
be set equal to zero.




Slidihg Ihterface Condition C&rds"

interface) (215,3E10.0,815)

Col’

N\
b

1- 5

6-10

11-20

21-30

31-40

41-45

46-50

76-80

S . Var

IFLAGM(1)

v

IFLAGS

CF(1)

CF(2)

CF(3)

IFLAGM(2)

IFLAGM(3) .

IFLAGM(9)

NSS Cards (ome for each sliding

Ltem;

QMESH flag number correspondlng

to first master side segment of -
slldlng interface. Up to 8

" additional master flags may be
- specified starting in column 41

Therefore, each slave segment can
have a master segment which is
specified by up to nine QMESH
flegs. .

- QMESH flag numbér*corrésponding/

to slave side of sliding
interface.

" Coefficient of friction.

If CF(1) <'0.0, surfaces are

- assumed to be fixed together

upon contact.

Normal,displacempnt)toleréﬁce.»<
. o

Surfaces are assumed to be
in contact when the distances
between surfaces is less than
CF(2). Default = 1.0E-7.
Normal force tolerance..

Voo
If the displacement tolerance
is satisfied and if the normal
force on the surface is less

'than’CF(B) the surfaces are.

assumed to be in contact
Default =-1.0E100.,

Additional master flags. -

N
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7.

Convergence Controlypafd,(lTO;3E10.Q)

1-10.

11-10

fNoﬁe:

used tp stap a. noncanvergzng step.

o~

E

TOLU

TOLR"

"Itgm

Displacement norm
convergence tolerance.

Convergence is assumed, if
) -y

/2 o

[14u < TOWU.

Il - |lau,]|
I

jt+1
| lau,

)+1!

" where U is the(inéremental

displacement during the load -
step, j is the iteration
numbeﬁ and ||A]] represents Y
the L™ norm of A,

Default = 1.0E-6.

Residual force norm.
convergence tolerance.

Convergence is assumed; £f;J

1/2 ,
.tIFnII . , v L .

. / . ":v
where R is the res;duﬁ! 16«&
vector end F is the " hﬁplzeé
force vector. i

tolerance condition . be satlsfled and the .

’

- -

Convergence of the aelutign for a tlme Stﬂ
convergence tolerance is satisfied, It is

_Default ~30;001.‘




IX. JAC Output Descrlptlon

Prxnted output is produced by echoing the input for flle FTﬂS &nd then
writing a detalled description of each input card image.

A plot output file is written on FT11 by JAC and may be sent to the VAX
for post processing with the BFTOV1 procedure The following variables are
’wrltten to the plot tape ' s :

’ngg; L ' ;4Dg§crintion‘

, DIBX or DISR o Total displacement in x or f—dirgction*
'DISY or DISZ‘_ o - Total displacement in y or z—direction*
‘RESX ' Total residual force in x-direction .
RESY Total residual force in y-direction
__Element . - _Description :

. SIGX or SIGR Stress T__ or T
‘ , XX rr /
SIGY or SIGZ " Stress T or T o
* : vy 22 o &
' SIGZ or SIGT . Stress T or T
7 1 o2z tt
SIGXY or SIGRZ Stress T__ or T
: g N Xy rz
‘EPX1
EPX2

g Material history variables**

EPX10 i P R
‘TﬁMP~ , |  , . | Temﬁerature at the center éf the elem;ntét
Global | 37‘ ... Description | (
; RN R Residual force nérm
RNN o '5_ " Residual force tolerance ,
; UN g‘ ~ Incremental displacement norm
UNN : ~  : :Inéremeﬁtal disp}écement tbleraﬁce 7

. FN ‘ ‘ , ' Applied force norm



\

RX or RR\ - Total reaction force in x or r—direction***
RY or RZ ~ Total reaction force in y or z-direction
CUNITER . .. Accumulative total number on iterations
’ . - ) . ‘ E

N

If a load step does not converge the incremental displacements of the

" nonconverged load step are written to FT11 and the printed output file.

" The values in the history variable arrays depend upon- the material

,'\mndéls used in the analysis. The number on arrays output to the plot
‘tape is the maximum number needed by any material model. The followxng

*'rls a’ descrlptlon of the varlables by material type.

el Py

EPX1 Yield surface center stress component 7
EPX2 ) 'Yield surface center stress component >y
EPX3 ; " Current yield stress . yy

‘Thé‘reaction force in the R-direction has unit of force per radian,~ ,~i”‘fﬂ

Material Type 1 — Isothermal Elastic—Plastic i ST
~ Name Description ;i;
"EPX1 T Yield surface center stress component 7y r Y
EPX2 ' Yield surface center stress component y__ or Y2z 7
EPX3 - '~ Accumulated. plastic strain o v L B
EPX4. Yield surface center stress component 7x xy or 7ri ‘ .

- . Material ?ype 2 - Temperature Dependent Elastic—Plastic

Meme - |Description . ...

EPX4 L Y;eld surface center

Hem o | I . Description . ?V" 5

EPX1 e Current effect;ve plastxc strﬁ

74

EPX2 . Current’ volumetr;c strain.
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