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MATHEMATICAL AND NUMERICAL MODELING CONSIDERATIONS 
FOR RADIONUCLIDE ION MIGRATION IN POROUS MEDIA 

A. H. Treadway 
Division 2 6 4 6  

Sandia National Laboratories 
Albuquerque, NM 87185 

ABSTRACT 

The equations governing radionuclide transport in sorbing, 
porous media are presented using phenomenological coef- 
ficients. Both equilibrium controlled and simple rate 
controlled chemistry are summarized. Several simplified 
models are discussed. Finally, various numerical problems 
are considered. 
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Mathematical and Numerical Modeling Considerations 
for Radionuclide lon Migration in Porous Media 

1. Introduction 

Several types of depositories have been proposed for the storage 

of radioactive waste. Among these depositories are the sedi- 

ments of the seabed, salt formations, and granite. Since it 

must be presumed that radionuclides will migrate from the stor- 

age sites to the outside environment, a mathematical model is 

needed in order to determine a bound on the flux of these radio- 

nuclides at the various interfaces of the depositories of 

interest. Due to the complexity of the equations that describe 

radionuclide migration in sorbing porous media, numerical s o l u -  

tions, in all likelihood, will be required. 

The purpose of this report is fourfold. First, it is to col- 

lect,. in one place, the equations of a fairly general mathemati- 

cal model which can be used in analyzing radionuclide migration 

in sorbing porous media. Second, it is to review the coeffi- 

cients that must be determined experimentally for a model. 

Third, it is to present some simple models which can be used to 

get 8tbounds8t on the fluxes of interest. Fourth, the report 

considers the possible effects that the model could have on 

numerical techniques used in solving the governing partial 
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differential equations (PDEs). A unpublished report, Treadway 

(1981). examines numerical techniques for radionuclide problems 

in detail. 

In Section 2, the balance equations will be presented without 

any attempt at derivation. Section 3 will describe various 

chemical models along with an experimental curve for a concen- 

In tration-dependent radionuclide distribution coefficient. 

Section 4 ,  the coefficients requiring experimental determination 

Will be summarized. Some simplified models along with their 

solutions will be discussed in Section 5. In Section 6 ,  possi- 

ble numerical difficulties will be examined. Finally, a few 

conclusions will be drawn concerning simulating radionuclide ion 

migration, arid concerning upper bounds to the concentration 

fluxes at boundaries. 

This report is the result of work begun in 1976 on the Seabed 

Disposal Project. The principle aims of that work were (1) to 

review the currently available models, (2) to investigate the 

effects of the porous structure on radionuclide migration, 

( 3 )  to ascertain the possible consequences of assuming non-trace 

chemistry in the models, and finally ( 4 )  to develop a numerical 

code which could be used over a wide range of concentrations, 

going from the simplest trace, to fairly high concentrations. 

These latter concentrations car1 occur in certain experiments 

associated with the project. 

b 
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2. Balance Equations 

In this section, we have endeavored t o  collect together many of 

the models available in the literature. Many terms in the equa- 

tions have been kept f o r  the sake of completeness, although f o r  

most applications. they are quite small. Furthermore, no 

attempt has been made to provide a derivation of the equations. 

It should be pointed out that. the equations in the report were 

obtained for the Seabed Disposal Project. However, the equa- 

tions (with some modifications) should be useful for other 

radionuclide migration studies. 

There are basically two philosophies in obtaining the governing 

equations for migration in porous media. The first is to assume 

that the equations of fluid dynamics hold microscopically in the 

pore spaces and then to average over some representative volume 

of the porous media. The averaging step attempts to take into 

account the curvature and size of the pore channels assuming, 

for instance, that the flow in the channels can be approximated 

by Poiseuille flow in a tube. The net result is that the mass 

and energy equations are basically the same with certain velo- 

city dependent "dispersionii terms iiadded'i and Darcy's law 

replacing the momentum equation. Many cross-coupling terms seem 

to disappear in this approach. The interested reader is referred 

to Bear (1972) for a discussion of the above approach. The 

second approach (see for example, Groenevelt et al. (1969). 

de Groot (1951), Katchalsky and Curran (1965). and Taylor and 
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Cary (1964)) is to average and then use the theory of irrevers- 

ible thermodynamics to obtain the macroscopic equations. This 

approach is more general than the tirst and cross-coupling 

arises naturally. It is the latter approach which will be 

adopted in this report. 
t 

Our model will be concerned with the time atter the radionuclide 

waste cannister has been successtully implanted in the porous 

seabed sediments. The radionuclides are presumed to Ilescape" 

trOm the cannister by some mechanism and begin to migrate 

through the sediments. After a tinite time the radionuclide 

ions will reach the seabed-sea interface and consequently 

migrate into the biosphere. 

In developing the mathematical model to describe the migration 

o t  the radionuclides in the seabed sediments and to thus calcu- 

late the tlux at the seabed-sea intertace, we have assumed that 

(1) the temperature o t  the tluid and porous media are the same, 

(2) the porous media is saturated, and ( 3 )  the porous media is 

rigid. The second assumption essentially states that there is 

Only liquid present in the pore space, implying that the can- 

nister is not hot enough to dry the surrounding medium. The 

third assumption presumes that the cannister remains intact t o r  

a sutticient time atter burial tor the media to reach a time- 

independent equilibrium state. The last two assumptions can be 

removed (see Freeze (1971) t o r  ( 2 )  and Cooper (1966) tor ( 3 ) ) .  



However, more experimental data will be needed for the various 

constitutive relations. 

2.1 Mass Balance 

For each species present, we have 

- - a 
at B i  - (mi + p c ) = - 0 Vi - Xi(BCi + pBci) 

+ ’i 

where 

0 

‘i 

‘i 

volumetric water content of medium, 

cm3 of solution per cm3 bulk 

bulk density of the medium, gm/cm 

of soil 

amount of ionic species i in solution 

phase, gm/cm3 of liquid 

amount or  ionic species i sorbed by 

solid phase, gm/gm of soil 

flux of component i, gm/cmz bulk/sec 

velocity of component i ,  cm/sec 

decay constants 

source or production term, gm/cm 

bu 1 k/ s ec 

3 

3 
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- 
It must be rioted that the term pBhi-lCi-l appearing in (2.1) 

is to be interpreted as the amount of species i present due 

the decay of the i-1 species. See Section 3 . 1  f o r  more 

detail. 

Introducing into Equation (Z.l), the flux of component i 

relative to the mean pore water velocity, jv/8, namely 

- jv 
R “i ji = - 

‘i 

gives 

R + pBci) + V 0 cijV = - V ciji 
- a 

-(Wi at 

- 
- b p i  + PBCi) 

+ Ai-l(eCi + p E;. ) + si B 1-1 - 

where the Darcy velocity (volume tlux) jv is defined a s  

j =E @&Va (liquid components) (2.4) 
V a  

expressed in cm3 liquid /cm2 bulk/sec and the are the 

macroscopic volume fractions such that 

Under saturated conditions, 8 is equal to the porosity, c .  



2.2 Enerqy Balance 

Following Taylor and Cary (1964), Groenevelt and Bolt 

(1969), and Mercer and Faust (1979), we have 

where the acceleration of the center-of-mass, velocity- 

squared terms, pressure work term, and viscous dissipation 

have been neglected. In addition, the soil matrix is 

assumed rigid. In the above 

total liquid density 

density of the soil matrix 

internal energy of  soil matrix 

U internal energy of the liquid mixture 

J heat flux 

pf 

p S  

4 
- 

external forces on component i gi 

2.3 Fluxes 

In keeping with our approach of using the linear phenomeno- 

losical equations of irreversible thermodynamics, we will 

assume that the system of interest is not t o o  distant from 

equilibrium and that the processes are sufficiently slow. 

For the Seabed Disposal Project, these assumptions are 

quite reasonable since the cannister temperature is 
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expected to be on the order of a few hundred "C; thus, the 

velocity, temperature, and pressure fields around the 

cannister should be small, Schimmel et al. (1977). 

The phenomenological equations can be written as 

( 2 . 7 )  

where Ji are the fluxes, Lik the phenomenoloqical 

coefficients, and nk are the conjugated forces. In Equation 

(2.6), the Lik may depend on the concentrations, 

temperature, pressure, charge, etc., but cannot be 

functions of either the fluxes or the torces. 

There is currently work being done on nonlinear transport 

in which higher order terms, (powers and products of: the 

forces) are kept. (See Rastogi, Singh, Srevastava 

(1969).) However, the nonlinear theory is very incomplete 

and as a result we will consider only the linear theory in 

this report. 

If the forces and fluxes are chosen so that the entropy 

production, u ,  (or Tu, where T is the temperature) is 

given by 



then 

Lik = Lki , 

Furthermore, since u > 0, then 

Lii > 0 

and 

Lii Lij 1. Lij 2 

(2.8) 

Before continuing, it should be noted that f o r  the Seabed 

Project there are ten seawater ions present, Miller0 

(1974). and that the seabed is clay-like in nature. Conse- 

quently, we are dealing with an electrolyte, and the pores 

will have a charge. A s  a result, "electrokinetic eftects" 

must be considered in the model. For the remainder of the 

discussion we will assume electroneutrality, that is, 

- 1 ZiF(@Ci + p C ) + Z = 0 B i  (2.10) 

where 2 is the valence of the ith ionic species, F is 

Faraday's constant, and 2 is the pore charge. In addition, 

since there are no electrodes completing a circuit, we have 

no current tlow, viz, 

i 

I = 0 = C ZiFJi (2.11) 
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It can be shown (Groenevelt and Bolt (1969)) that 

- 
TO = J I V (-lnT) + JV*(V(-P) - pg) 

9 

- - C n-1 

i 
+ 1 JD 1 [piV(-vi) - pi(l - ViP)91 

+ I 0 V( -Jr )  + JCHA 

where 

(2.12) 

J '  
9 

D 

T 

P 

P 
- 
9 

D 
J; A 

Pi 
C 

'i 

I 

JI 

JCH 
n, 

A 

caloric heat flux 

gradient operator 

temperature 

total volume tlux (Darcy velocity) 

pressure 

total liquid density 

gravity 

"diffusional" fluxes 

density of ith species 

ith concentration-dependent part of the chemical 
potential 

partial specific volume 

current 

electric potential 

chemical flux 

electrochemical affinity 



with 

- - - Jv = JwVw + JiVi , lfw 
i 

(2.13) 

It chemical reactions can be neglected and since the term 
- 

pi(l-Vip)g 1s negligible for gravity, then the tluxes are 
D J = {J;, Jv, Ji, I3 and the conjugated forces are 

- x =  I -  VlnT, C PlVVl 

Since the balance equations contain fluxes ditterent trom 

the above, it will be necessary to express them in terms of 

the flux set J above. 

R Now the relation between {jv, jij in Equation (2.3) and 

D {Jv. J i l  is, that for Ci = p i ,  

jv = JV 

and 

(2.14) 

(2.15) 

17 



where 

- 
= p . v . 0  . ai 1 1  

(2.16) 

In addition, since 

- 
J '  = J - 1 hiJi 9 9 

where T;i is the partial specitic enthalpy, we have 

V - R  J = J '  + hj + 1 pi h. j. 9 9 1 1  

(2.17) 

(2.18) 

with 

- 
h = C p i h i  . (2.19) 

The last term o t  Equation (2.18) is generally much smaller 

than the first two. 

From the above relations, once the phenomenological 

coetticients have been determined, the fluxes appearing in 

Equations (2.3) and ( 2 . 5 )  are known. 

2 . 4  Couplinq 

Using the fluxes and conjugated torces tound in the last 

section, Equation (2.6) may be written as 



C 
q , k+ 3 kvPk J '  = - L VlnT - L (VP+pg) - L VJr  - 1 L 

k=l 9 (21 q2 q3 

C 
L ~ , ~ + ~  P '11, 

- 
Jv = - LvlVlnT - Lv2(VP+pg) - L ~ ~ V ~ &  - 1 

k=l 
(2.20) 

Now 

where the Ci'S are the concentration tractions and 

cci = 1 , 

with N being the number o t  species. 

Consequently, 

D 
k Li,k+3 'k = 5 'k "cj 

Detining 

(2.21) 

(2.22) 

(2.23) 

(2.20) 
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then is recognized as the ''hydrodynamicdl dispersion ten- 

sor'' and must be considered a "lumped" coefficient, as a r e  

the other coefficients which include effects of macroscopi- 

zation, Elrick et a1.(1975). 

In Equation (2.20) above, for the remaining straight 

coefficients, we have 

the system thermal conductivity, 

the hydraulic conductivity, 

the system electrical conductivity. 

T 

Lv2 

L13 

Furthermore, since 1 = 0, V\lr can be expressed in terms of 

can be set to the remaining forces. As a result, L. 
' 3  

D zero in J', Jv, Ji which gives a reduced set of coefticients 9 

to be found. In addition, the Dufour effect and Soret 

VlnT terms, C 
Lq,k+3 'k " A  Lil effect, i.e., the 

respectively, are usually small unless there are large 

gradients. 

Summarizing, 

- 
Jv = - Lil VlnT - LG2(VP + pg) + 1 L;lj VCj (2.25) 

- D c Ji = - Lf;(vP + p i )  + gij vcj 



where ' indicates the tact that I = 0. Without turther 

knowledge o t  the above coetticients, which are not avail- 

able tor the Seabed Project, the cross-coupling terms must 

be kept. Bolt and Groenevelt (1969) have shown that the 

cross-coupling can account tor the non-Darcian behavior 

observed in many soil/water systems. 

3.0 Chemistry 

- 
Xi 

In order to solve Equation (2.1), we need - There are two 
at - 

possible control modes for the chemistry. One is equilibrium 

COntKOlled and the other is rate controlled. 

3.1 Equilibrium Controlled 

In equilibrium-controlled chemistry, relationships o t  the 

form 

Connect the amount sorbed by the solid media and the 

amount o t  the species in solution. Some examples are 

a.C i i  
'i - 1a.c 
- - 

J J  
(Langmuir) ( 3 . 2 a )  

(Selectivity) (3.2b) 
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i (Distribution) ( 3 . 2 ~ )  
- 
Ci = Kd(C)Ci 

i where Kd is a distribution coefficient and Kj i are selectiv- 

ity coefficients (e.g., see Helfferich and Klein (1970) 

and Elrick et ai. (1975)). 

For  the Seabed Disposal Project, a 881umped81 group distri- 

bution coefficient has been determined experimentally, 

Erickson (1977). It is 

4 

7 , m%/gm 2 x 10 lo2 + Kd(C) = 3 1 + 1 o c  1 + 2 x l O C  
(3.3) 

where C is in moles/% and is shown in Figure 1. This Kd 

represents a two mechanism "Langmuir" type isotherm, and 

is valid for very high concentrations of 0.1 moles/k down 

moles/% and infinite- to trace concentrations of 10 

ly dilute solutions. We will show some numerical results 

using this Kd later. 

-11 

- 
aci 
at * 

To find - differentiate (3.1)* (3.2), - or (3.3) with 

respect to (wrt) t, and then solve for - dt from the result- 
aci 

ing equations. 

As was mentioned in Section 2, some care is required when 

using Ci-1 in a chain decay problem. Using the distribution 

coetticient (3.2~) we have 

- 

22 



In Equation (2.1) we put 

since Ai-lCi-l represents the amount of species 1-1 

that has decayed to species i. 

3 . 2  Rate Controlled 

- 
dCi 

If the chemistry is not in equilibrium, then - dt must be 

determined trom a set of n-coupled rate equations. For 

example, Bradley and Sweet (1975), 

where 

is a Stanton number 'ik 

and 

-* ci = ti(Ci, ..., CN) . 

-* 
Ci 1s the solid phase concentration in equilibrium with the 

liquid phase. Equation ( 3 . 4 )  must be considered as an 

approximation, particularly f o r  transient systems. 

2 3  



4 . 0  Experimental Coetticients 

As is evident from the previous sections, there are a 

considerable number of coefficients in the mathematical model. 

Unfortunately, most of these coefficients must be determined 

experimentally. In the absence of any cross-coupling, there 

are models available for the straight phenomenological coeffi- 

cients. However, because there is no reason to believe that 

for the Seabed Project that "electrokinetic" cross-coupling 

terms or the other cross-coupling terms are negligible, it 

would seem best to determine all of the coefficients experi- 

mentally. It should be noted that as the concentration 

decreases to trace levels, the cross-coupling effects become 

negligible. It is obvious that the above determination will 

not be easy. However, to make predictions for waste disposal 

on highly incomplete intormation seems unwise. 

Gathering the coefficients requiring experimental determination, 

It C D' i i 
Y we find 8, p B ,  Z, pi, Qij, Lii, Lt;i, LIi, Liz. Kd or K 

has been assumed that models are available for p s ,  Us, p i ,  U, 

5 . 0  Simplified Models 

In order to gain some insight into how the riorilinear chemistry 

might affect the transport of radionuclides, some drastic 

simplifications will be made in this section. There are two 

2 4  



types o t  problems which are readily amenable to treatment. One 

is the one-dimensional dittusion equation, and the other is the 

one-dimensional advection equation. 

5.1 Nonlinear Dift'usion 

It we assume that there are no thermal ettects, no decay 

terms, no cross-coupling, no velocity tlux, only one ion 

present, and one space dimension, we have 

'B - a ac (C + - C) = -u- a 
at 8 ax d x  
- 

pB where c is given by Equation ( 3 . 3 ) .  We Will take e = 5 . 4 ,  

3 pB and 1.0 gm/cm . The tirst value o t  8 is an average v a l u e  

tor soils while the second is an average value t o r  sea 

sediments. FOK initial conditions 

C ( x , O )  = 0 

and for boundary conditions 

C(0.t) = Co(constant) 

and 

(5.2) 

(5.3) 

lim C(L,t) = 0. 
L + a  

2 5  



Letting T = Dt, Equation (5.1) can be written a s  

ac a"c w(C) - - - 
a T  - ax2 , 

where 

d w(C) = z(C + 5.4Kd(C)C) 

( 5 . 4 )  

( 5 . 5 )  

and is shown in Figure 2. Note that w ( C )  can vary by five 

orders o t  magnitude. 

Because of the form of the initial and boundary conditions, 

Equation ( 5 . 4 )  can be solved using a similarity trans- 

formation. Let 

X q = -  , 
f i  

then 

and 

-- x d  
3/2 dv 2T 

= -  a 
a T  
- 

Consequently, Equation ( 5 . 4 )  becomes 

( 5 . 7 )  

( 5 . 8 )  

( 5 . 9 )  

26 



where 

* c = c/co 

&C) = W(C)/Wg 

with BCs 

E ( 0 )  = 1 (5.10) 

Note that in using G ( C )  in Equation (5.9) T has been 
rescaled such that 

T = Dt/Wo. 

Equation (5.9) subject to conditions (5.10) was solved 

numerically using a forward-backward shooting technique 

breifly described below. A more detailed explanation is 

given in the Appendix. 

Since we do not know how to handle the second condition in 

(5.10) numerically, we approximate it by 

- 8  E ( L )  = 10 (5.11) 

2 7  
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where L is "sufficiently large". In the forward shooting 

process c ' ( 0 )  is adjusted until the above condition is sat- 

isfied. See Figure 3a for a sketch of the resulting 

solution. Unfortunately (5.11) is not the correct 

the solution to Equation condition since for C < 10 

(5.9) is 

-11 

&I) = (5.12) 

(See the Appendix) 

where 

,., -11 
''O c, = 10 

- -11 w, = w(10 ) 

and TI, is unknown. To find TI* we differentiate (5.12) 

wrt TI to obtain an expression for E l ( q * )  which along with 

E(TI,) is used to integrate Equation (5.9) backwards. tl, is 

adjusted until the first condition in (5.10) is met. As a 

first approximation to TI*, we use the value in Figure 3a 

where the steep portion of the log E vs 11 curve and the 

flat portion meet. The latter is a result of the c(L) con- 

dition used in the forward shooting process. The results 



presented below were calculated using a pure relative err01 

tolerance of  in the numerical ordinary differential 

equation integrators used in the above solution technique. 

Equation (5.9) was solved for values of Co of 10- l, 

and The results are shown in Figures 3b. 

3c. and 3d. respectively. In Figure 3, the * represents 

the value of 'q where the numerical solution ends and the 

analytical solution begins. The solutions are very similar 

to the solutions of singular diffusion problems, Crank 

(1956). Furthermore, it was necessary to use a stiff in- 

tegrator in the forward process. Both of the above 

features will present difficulties in trying to numerically 

solve the associated PDEs. In Figure 3e. the previous 

three curves are plotted using the scaling of T-I associated 

with Co = lo-'. In addition the solution for w(C) 5 1 is 

shown for comparison. This latter solution would be the 
-11 result if chemistry is ignored. 5 would be equal to 10 

at T-I z 9.6 for this solution. 

In Table I, we have provided the values of ?-I, and the asso- 

ciated cl('q,) found from the solution process for the three 

values of Co considered. The numbers in the table can 

be used to integrate Equation (5.9) backwards from 'q* 

to provide accurate numerical solutions. Forward integra- 

tion of the equation tends to be less accurate. For 

values of TI > ri, (5.12) is used. 

2 9  



TABLE I 

cO q* 

10- .65272219 -1.0477731E-8 

2.0026297 -2.8335045E-7 

10- 1.3440714 -9 -7427641E-6 

In order to determine what ett'ect soil density might have 

on the solutions, the CO = 10-1 case was resolved using 

= 1. The results tor the two values are shown in - PB 
e 
Figure 3f. There is considerably less retardation with 

As was mentioned i n  the Introduction, we are interested in 

the tlux at the seabed-sea intertace. This tlux is given 

by 

(5.13) 

Increasing the complexity of the model a little, let us 

assume that the ion not only dittuses through the liquid, 

but also on the solid particles. In the similarity 

variable, the equation is 



(5.14) 

where a is a parameter. A similar numerical technique 

to that previously described is used to solve the above 

equation. In Figure 4 ,  we have shown the numerical solu- 

tion of (5.14) for a = .01 and Co = .l. For compari- 

son, the solution with a = 0 (Figure 3b) is also shown. 

It should be noted that there is considerable difterence 

between the solutions. This difference would t e n d  to 

indicate that solid diffusion might have to be taken into 

account when developing various bounds. 

5.2 Nonlinear Advection 

Let us assume that we have a constant flow rate, q ,  no 

I@diffusion", and that we adopt the other assumptions of 

the preceding section. Hence 

where 'E = qt. 

(5.15) 

Equation (5.15) is hyperbolic and as  such may be written 

in characteristic form, viz, 

L 

a c  
a T  
- = o  

(5.16) 
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I f  the characteristics intersect, then a "shock" will 

fo rm.  It is easy to show, Hilbert and Courant ( 1 9 6 6 ) .  that 

f o r  shocks we have 

where Vs is the shock velocity 

[ r l  = r, - r -  

(5.17) 

(5.18) 

and r+ is the value of r ahead of the shock 

r is the value of r behind the shock. - 

In order to see how we might use Equations (5.16) and 

(5.17) to solve Equation (5.15). let 

U = E + 5.4Kd(C)E . 

Consequently, Equation (5.15) becomes 

( 5 . I .  9 ) 

(5.20) 

where 

f ( U )  5 E ( U )  . (5.21) 

Equation (5.20) is the more common form of  a hyperbolic 

PDE . 



Two examples of f ( U )  are shown in Figure 5. In E'igure 5a. 

f(U) is a convex function, and as a result, any two points 

on the curve can be connected by a straight line without 

intersecting the curve. These two points are candidates 

for the state ahead of the shock and f o r  the state behind 

the shock, Oleinik (1963). Now in Figure 5b, only certain 

portions of the f ( U )  curve can be connected without inter- 

secting the curve, Oleinik (1963). For example, it the 

initial state is U = 0, then the only states which can be 

connected to U = 0 are those values of U U,, where U, is 

the solution of 

(5.22) 

U, in this example is just the point at which a line 

from the origin is tangent to f(U). (See Figure 5b). In 

other words, if U > U,, no jump is possible until U = U,. 

To see what types of solutions to Equation (5.15) can 

arise depending on the shape o t  t ( U ) ,  consider tirst 

U2 f(U) = - 2 

with 

U(x,O) = 0 

(5.23) 

x > o  
(5.24) 
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Then 

r f l - o - 1 / 2  - L - vs = [u] 0 - 1  - 2  - 

The solution is 

x 1  1 - < -  T 2  
0 - > z  x 1 

T 

(5.25) 

(5.26) 

that is, a step function travelling with a velocity o t  one 

half. The results for this example are shown in a x - 'c 

diagram in Figure 6a. 

Now consider 

2 (U - .16) 
2 f(U) = 

(U - .16)2 + ( . 8  - U) 
(5.27) 

with the same conditions as before. One easily calculates 

U, = .6125 (5.28) 

and 

= 1.3934 vs 

Note that 

(5.29) 

(5.30) 



that is, the s h o c k  speed and characteristic speed a r e  t h e  

same, which implies, that 

u = u, (5.31) 

along the shock line. If X / T  > f'(U,), then U = 0, and if 

X/T = f'(u,), then U = U,. However, if x/r < f'(U*), we 

must solve the equation 

- f'(U) X 
T 
- -  

0 5 x 1. Tfl(U*) . 
(5.32) 

The solution for this second example is sketched in 

Figure 7 for arbitrary r and also shown in an x - T 

diagram, Figure 6b. 

In order to use the above information, we need a plot of  

C(U) versus U, which is shown in Figure 8 .  For Cg = .1 

and E(x,O) = 0, the solution is 

(5.33) 

since ( . 6 4 ,  .l) and (0, 0) are connectable states. As in 

the diffusion problem, the chemistry does have a retarding 

effect, but the retardation is considerably smaller. A s  

the initial concentration is reduced, the propagation 

velocity will also be reduced. It should be noted that 
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for this C(U), all points can be connected to the origin 

due to convexity. 

There are some solution techniques available tor the 

multicomponent extension ot the advection problem, 

provided that the chemistry is simple Langmuir (3.2a) or 

= 1 and K1 constant, of the type (3.2b) with 

Helfferich and Klein, (1970). (It turns out that these 

two types of chemistry are the same.) For an interesting 

application to a radionuclide problem, the interested 

reader is referred to Nuttall (1976). The report shows 

what can happen when ion exchange effects are taken into 

account. Depending on the magnitudes and the orderings of 

the K.'s some radionuclides may not be retarded at 

all or the retardation effect may be signiticantly ditfer- 

ent than in the case of a single species. One tinds that 

the radionuclides move in "chromatographic" bands; each 

species moving with a different ionic velocity. 

I' 

=I "1 3 

i 
3 

Unfortunately, indications are that the multicomponent 

chemistry for the Seabed problem will not be of. the 

required type. As a result, a multicomponent extension of 

the method we have outlined will be necessary or one must 

solve the governing PDE's numerically. Untortunately, 

mOSt numerical techniques result in smeared shocks or 

worse, negative concentrations near the shock, Roache 

(1976). 



5.3 Bounds on Concentrations and Fluxes 

One of the assumptions that was made in developing the 

simplified solutions in the previous two sections was that 

the decay constant was zero. For radionuclides it. 

obviously is not. A simple way to account t o r  the decay 

effect is to multiply the ditfusion or advection concen- 

The result will be an tration solutions by e 

upper bound for the quantities of interest t o r  the 

simplified models. 

-A?: 

Now in order to obtain a "global" bound tor the 

concentration or flux at an interface trom the simplified 

models, we need a technique which links the advection and 

diffusion solutions together. It should be noted that it 

is expected that near the cylinder and t o r  early times, 

advection will be the dominant transport mechanism while 

farther from the cylinder, and at later times, the 

mechanism will be diffusion. See Figure 9 .  

Assume that a velocity profile, q(x), is known and is such 

that q(xo) = 0, e.g. Hickox (1977). Then the nonlinear 

advection equation becomes 

M a a -  ,., 
z(C + RKdC) + zq(X)C = 0 . ( 5 . 3 4 )  
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We may use the technique in Section 5 . 2  to solve this 

0' 
equation. The solution to the above equation at x 

is then used as the initial condition f o r  the 0 'c 

dittusion problem, where we now define 

x - xo 
n =  J.c-ro (5.35) 

We have thus produced a llglobal" solution. 
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For constant chemistry. velocity, and dispersion even 

simpler solutions are available, Lester et al. (1976). 

There are also methods available to produce three- 

dimensional, analytical expressions tor the tlux a t  the 

seabed-sea interface with the velocity in the vertical 

direction. 

Unfortunately, to produce really meaningtul bounds, the 

multicomponent chemistry must be used. At this writing, 

this chemistry is not available. 

One further point should be noted betore leaving this 

Section, namely, a nonchemistry lower bound on the time 

required for an ion to reach an interface can be com- 

puted. To calculate this bound, the energy and mass 

transport equations are solved neglecting the chemistry. 

and assuming the ion being transported is of trace type. 



i.e., has no effect on the fluid density. These equations 

can be solved using the current state-of-the-art numerical 

PDE techniques. 

6 . 0  Numerical Considerations 

In this section we will attempt to give an overview o t  the 

numerical difficulties expected in trying to solve the 

governing PDEs. A s  mentioned in the introduction, a detailed 

account can be found in Treadway (1981). In the sections on 

simplified models, several different types o t  structure arose 

in the solutions, namely, stittness, 'I d 1 t t u s i o na 1 

singularness.'l and shocks. 

Any of the three can result in numerical ditficulties, which 

individually can, at times, be handled, but collectively will 

overtax the current state-of-the-art techniques tor numerically 

solving PDEs. Shock problems are ''routinely8i solved in hydro- 

dynamics, however, the shocks are generally quite smeared. On 

the other hand, "diffusional singu1arness.I' 1.e.. when the dif- 

fusion coefficient essentially goes to zero, is not routinely 

handled even for ordinary differential equations (ODES). 

Because the diffusion coefficient changes so rapidly, it is 

very easy to produce negative concentrations which can in turn 

lead to a negative diffusion coetticient. Consequently, the 

problem becomes mathematically unstable, i.e., the solution 

becomes unbounded with time. To overcome the problem, either 
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the concentration must be clipped s o  that it remains positive 

or a large amount of "artificial damping" must be added. In 

either case, the resulting solution need not resemble the true 

solution. 

When the multicomponent problem is considered, more 

difficulties arise. Some will be similar to the ditticulties 

previously mentioned; however, some new ditticulties must be 

considered. For example, consider the simplest multicomponent 

chemistry 

i - 
Ci = KdCi (6.1) 

i i where Kd is a constant. 

orders of magnitude between the various species. A s  a result, 

the ions are effectively transported at ditterent rates. In 

order to accurately track the ions, each component must have 

its own dynamically generated spacial mesh. There is currently 

much research being directed at producing dynamic meshes. How- 

ever, to date there are no automatic, multicomponent generation 

techniques available, even in one dimension. When multidimen- 

sionality is added to the foregoing discussion, trying to 

numerically solve the governing PDEs is a very formidable prob- 

lem indeed. However, as mentioned previously, many ditticul- 

ties disappear when the radionuclides are present in low con- 

centration amounts. 

For radionuclides, Kd may vary by many 
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7.0 Conclusions 

From a consideration of the mathematical model, it is evident 

that much work must be done in experimentally determining the 

functional coefficients, especially, with regard to the chem- 

istry. Even if thermal effects are neglected, which is reason- 

able some distance from the cannister, the chemistry is neces- 

sary not only to determine bounds, but also to develop the 

necessary numerical techniques. 

The mathematical model also pointed out the need to consider 

I1electrokinetictt coupling for the Seabed Project because o t  the 

charged, clay-like composition of the medium, particularly for 

high concentrations. 

The simplified models presented showed that several numerical 

difficulties could arise. These problems were due to stiff- 

ness, "diffusional singularness, tlshocks, It multiple compo- 

nents, and multidimensionality. At this time, a numerical sim- 

ulation for high concentrations or multiple components would be 

extremely difficult and probably would not be very believable. 

Consequently, it is the author's opinion that with the avail- 

ability of multicomponent chemistry, the best course would be 

to use simplified models to develop bounds for the concentra- 

tions and fluxes. 
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APPENDIX 

, To numerically s o l v e  Equation (5.9) subject to BCs (5.10), repeated 

here t o r  completeness, 

BC 

E ( 0 )  = 1, arid lim ?(L) = 0 
L + m  

we write ( A . l )  as a system, viz.. 

( A . 3 )  

then 

I 

Yl = Y2 

. where 

c = c y  0 1 '  

4 3  



Furthermore, 

y ( 0 )  = 1 and lim yl(L) = 0 . 1 
L-, 00 

It we knew how to approximate the second condition in ( A . 5 )  well, we 

could use simple shooting to solve ( A . 4 ) .  ( A . 5 ) .  i.e., adjust 

Yz(0) until the above condition is satisfied with yl(0) = 1 

being the initial condition. Unfortunately, how we chose to make 

this approximation had a significant effect on the answer at low 

concentrations. 

-11 - On the other hand, we know that f o r  C 1.10 , w is constant, w,. 

Consequently tor y1 5 10-ll/Co ( A . 4 )  becomes 

It we impose the BCs 

- 
Y1(v,) = C, and lim Y~(L) = o 

L + a ,  

where ‘1, is, for the moment, arbitrary and solve ( A . 6 )  we find 

( A . 7 )  
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Differentiating (A.8) wrt rl and evaluating at rl,, we obtain 

( A . 8 )  and ( A . 9 )  represent the asymptotic behavior of ( A . 4 )  for low 

(trace) concentrations. If 11, were known, then Equation (A.4) 

could be integrated backwards to q = 0. 

To find q, we use the BCs 

Y1(0) = 1 and yl(L) = (A.lO) 

and solve (A.4) by simple shooting. Figure 3a. (Other 

approximations could have been used.) The initial approximation to 

TI, is obtained from the intersection of  the flat portion and 

curved portion of the curve in Figure 3a. We then adjust rl* in 

( A . 9 )  and solve (A.4) subject to BC 

( A . 1 1 )  

until 

Y1(0) = 1 ( A .  12) 

q* 
Since for the parameters consider in the report zJ"* is very large, 

the denominator in ( A . 9 )  must be evaluated using an asymptotic 

expansion, Abramowitz and Stegan, ( 1 9 6 5 ) .  
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The SLATEC library code SNSQE, was used to solve the nonlinear 

problems associated with the second condition in ( A . 1 0 )  and ( A . 1 2 ) .  

In the forward shooting problem, the code DEBUF was used because of 

stiffness problems, while in the backward problem, DERKF was used. 

The stiffness problem was due to (A.lO) in that the step size being 

used was being restricted by the integration method, not by accuracy. 
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