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Abstract 

For some time it has been known that many of the two-phase flow models 
lead to ill-posed problems unless viscous stresses are included. The 
inclusion of viscous stresses changes the character of the equations from 
hyperbolic to parabolic. A continuing problem has been to find a well-posed 
hyperbolic system of equations which provide a reasonable model for two-phase 
flow, or to show that no such model exists. Another outstanding problem has 
been to understand why the derivation procedures for microstructural models 
produce models with the peculiar defect of being unstable. 
vestigation of the derivation procedures for the simple case of stratified 
flow suggests that the equal-pressures assumption is most likely the assump- 
tion leading to instability. Consideration of the alternative assumption 
suggests a model, namely the Unequal-Pressures Model, which is expressed 
by a first order system of partial differential equations with real char- 
acteristics. Thus the problem of complex characteristics (or sound speeds) 
which lead to the instability in the equal-pressures models is obviated. 
The form that the analysis takes suggests a technique for categorizing 
models according to the evolution equations for their internal state vari- 
ables in order to aid model builders in quickly determining which models 
will lead to complex characteristics. Also a model with real characteris- 
tics for the two-phase flow of a bubbly liquid arises from an extension of 
the Unequal-Pressure6 model for single-layered flow to multi-layered flow. 
This Unequal-Pressures model has real characteristics for all physically 
acceptable states and has a complete set of eigenvectors except for a set 
of measure zero in state space and therefore is hyperbolic a.e. (almost 
everywhere) in state space. 
in the sense of von Neumann a.e. in state space. 

A careful in- 

Also this Unequal-Pressures model is stable 
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PREFACE 

Several colleagues asked about procedures for analyzing the well- 

posedness of initial value problems for systems of nonlinear partial 

differential equations. 

report somewhat more tutorial than it otherwise would have been. 

In response to their requests I have made this 

The reader should note that the equation numbering is restarted at 

the beginning of each section. 
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SYMBOL DEFINITIONS 

C 
5 

g 

k 

R 

m 

P 
P 

A 

E 

$5 

E 

5 

5 

4 

P 

P 
- 

sf 
Sf" 
A 

U 

A 

V 

X 

Y 

5 

Sound speed of Sth constituent (or phase) 

Subscript for a gas-phase variable 

Wave number 

Subscript for a liquid-phase variable 

Subscript for a mixture variable 

Interface pressure 

Pressure in the Eth constitutent 

Volume fraction of the Eth constitutent 

Viscous stress in the Eth constituent 

Mass density of the Sth constituent w.r.t. the mixture 

Mass density of the Eth constituent w.r.t. the Eth constituent 

The mass source term for the Eth constituent 

The momentum source term for the Sth constituent 

Interface x-velocity 

Interface y-velocity 

Spatial variable 

Spatial variable 

Constituent index, 5 = g or R 
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SUMMARY 

Herein the derivation procedure for a simple case of two-phase flow, 

namely stratified flow, is carefully studied by enumerating and analyzing 

all of the approximations and assumptions made in constructing the model. 

In particular the approximations are studied for their effect on the sta- 

bility of the model. In this way a conclusion is reached as to which of 

the assumptions lead to instability: the equal-pressures assumption is 

apparently that a3sumption. 

least the sound speeds are real) for two-phase flow is constructed which 

avoids the assumption that the pressures in the different phases are equal. 

This model, namely the Unequal-Pressures Model, is hyperbolic a.e. in state 

space. 

differential equations which have real eigenvalues everywhere and a complete 

set of eigenvectors a.e. in state space. 

the models according to the form of the evolution equations for their internal 

state variables (e.g. the volume fractions in the case of two-phase flow) is 

suggested here. 

in quickly determining which models lead t o  ill-posed problems. 

bolic a.e. model for the two-phase flow of a bubbly liquid is presented here. 

Thib model arises from a consideration of the extension of the hyperbolic 

Then what appears to be a realistic model (at 

That is, the model is expressed by a system of first order partial 

Also a procedure for categorizing 

The purpose for this categorization is to aid model builders 

Also a hpper- 

a.e. model for single layered flow to multi-layered flow. 

a.e. models are stable a.e. in the sense of von Neumann. 

These hyperbolic 

11- I2 



1. INTRODUCTION 

1.1 PURPOSES AND PRELIMINARIES 

This report has four purposes: 

present a careful analysis of the microstructural modeling procedure 

for a simple case in order to illuminate all of the various assumptions 

and approximations which might be the source of the instabilities of 

the two-phase (or two-material) models. 

present an a.e. hyperbolic model for stratified flow that arose when 

the equal-pressures assumption was removed. 

present a procedure for categorizing the models according to the 

evolution equations for the internal state variables. 

present an a.e. hyperbolic model for the flow of a material which has a 

microstructure similar to, for example, a foam, a bubbly liquid or a 

gas with solid particles in it. 

It appears that there are basically two kinds of mixture theories: 

miscible and immiscible. 

theory. 

always well-defined. 

issue of whether or not the two-phase (e.g. gas and liquid) flow of some 

specific material (e.g. water) is well-modeled by an immiscible mixture 

model. 

Here we are concerned with an immiscible mixture 

Basically that means that the interfaces between materials are 

It is beyond the scope of this report to debate the 



1.2 DEFINITIONS AND EQUATIONS 

In DREW [l] and ISH11 [2] and elsewhere the microstructural models 

are derived by averaging processes. These models often lead to instabili- 

ties. 

might be leading to instabilities we follow WEN’DROFF [3] by looking very 

In order to get an idea of which of the assumptions or approximations 

carefully at a very simple case of two-phase flow, namely stratified flow. 

See Figure 1. 

Y 

FIGURE 1. Separated, two-phase flow between two plates in zero gravity. 

ASSUMPTION 1: Assume the fluid is inviscid with a mechanical equation of 

state. 

If viscous stre,sses are included then stable models result [4]. How- 

ever, here we are in pursuit of hyperbolic models and the introduction of 

viscous stresses leads to a model with parabolic character. The assumption 

of a mechanical equation of state simplifies the analysis and does 80 with 

apparently no loss  of generality. 
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A 

L e t  f be f eva lua ted  a t  t h e  i n t e r f a c e .  That i s ,  f o r  any f u n c t i o n  of 
I 

x, y, t l e t  

f^ ( x , t )  = f ( x , i - , t )  
R 

L e t  t h e  volume f r a c t i o n s  Q and Q be de f ined  by 
R g 

4 = (vo l .  of S ) / (vo l .  of mixture)  
5 

Let ( x , t )  be t h e  t o p  s u r f a c e  of phase R (see Fig. 1 ) .  L e t  ( x , t )  

be t h e  bottom s u r f a c e  of phase g. 
R g 

ASSUMPTION 2 :  

t h e  top  and bottom p l a t e s .  

Assume t h a t  t h e  phases do not detach from each o t h e r  o r  from 

A A h  Under Assumption 2 w e  have = A y s o  l e t  y = y = y Also w e  have 
R g  R g  

0 + $  = 1  . 
R g  

Note t h a t  (under Assumption 2 )  

and 

( 3 )  

I -- 
g 

where X 

From Q + 0 = 1 i t  fo l lows  t h a t  

i s  t h e  Lagrangean coord ina te  i n  t h e  6-material. 
5 

R g  
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f o r  a = a / a t  and a/ax and t h e r e f o r e  t h e  r e l a t i o n  f o r  t h e  components 

of t h e  v e l o c i t i e s  a t  t h e  i n t e r f a c e  fo l lows  

Note t h a t  r e q u i r i n g  that, t h e  phases do not  detach from t h e  p l a t e s  l e a d s  t o  

REMARK: Assuming t h a t  t h e  phases do not  detach from each o t h e r  l e a d s  t o  

h A v = v  
8 2  

except  f o r  example, f o r  such cases as those  i n s t a n t s  when a shock wave i s  

A pass ing  through t h e  i n t e r f a c e .  From (8) and (6)  i t  fol lows t h a t  ?I = u 
g R  

u n l e s s  a$ / ax  = 0. This  sugges t s  t h a t  should be considered as a func- 
R 5 

t i o n  of a$ /ax. More about t h i s  later. 
R 

Mass Density Def in i t i ons :  

mass d e n s i t y  i n  phase 5 a t  ( x , y , t )  
i f  ( x , y , t )  is  i n  phase 5 

p 5 ( x , y , t )  =- 

zero i f  ( x , y , t )  i s  not i n  phase 5 

( 9 )  

0 



, 

R 

where a = Q d for 5 = g and 2 .  
5 5  

Note that 

- 
p = (mass of t)/(vol. of 5 )  
5 

- 
or in words, p is the mass density of 5 with respect to phase 5 .  

5 
Further define 

and note that 

p = (mass of S)/(vol. of mixture) 
5 

or in words, p is the mass density of 5 with respect to the mixture. 
5 

REMARK: 

written down then averaged in the y-direction to produce one-dimensional 

equations in x. 

Next the equations governing continuum flow in x,y space will be 

Equations Before Averaging: 

ap 5 /at + ap 5 u /ax + ap 5 v /ay = sg 
5 5 

5 2  5 PU ap u /at + ap  /ax + ap 5 
v /ay + ap /ax = s 

5 5 5 5  5 5 



where 

and 

with 

2 2  

5 5  5 5  
E = &  +(u + V ) / 2  

dp5 = cidpc 

c > o  
5 

P PU P V  PE 

E 5  5 5 
REMARK: S , S , S , and S are source terms for the mass momentum, 

and energy equations. 

AVERAGING OPERATORS: Let 

a 
R 

- 1  
f = -  f dY 
R - QR a 

0 

,. d 

R 
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f o r  f = p,pu,pv,pE,etc .  

Note t h a t  

f o r  a = a t ,  a / a x  o r  a&. 

Also no te  t h a t  

where f o  = f ( x , O , t )  and 

where fd  - f ( x , d , t ) .  

Le t  

Df E a f / a t  + auf / ax  + avf /ay  

Note t h a t  

4 Df = a [ +  f ] / a t  + a [ +  u- f1 /ax  + 
R R  R R  R R R  

1 + [ v  2 - v f 3 - -  i [ a +  / a t  + S a+ /ax] 
R R  0 0  d R R R R  

and from eqn. (4) v = [a+ / a t  + u 34  /ax]d t h e r e f o r e  
a a a a  



and likewise 

20 

and the assumption that the flow is attached to the top and bottom plates 

leads to (this assumption is not necessary but it simplifies the equations) 

V d = o = V o  . (30)  

Consequently we have the following averaged forms for the conservation 

laws : 

a(+  P u )/at + a($ u u )/ax 
E 5 5  E 5 5 5  



where 

-- 
Let <f > z f p /p 

5 E 5  5 
- 

and use p = p $ to rewrite the equations as follows: 
5 5 5  

+ a($ u p )/ax - G ; a$ /ax 
5 5 5  5 5  5 

(35 )  

(36 )  

To get the Equal-Pressures Model for a mechanical equation of state, equa- 

tions (39 )  and (40) are dropped and the following assumptions are made 

about variables in eqns. (1) and ( 2 ) :  

21 



2 2 

5 5 
ASSUMPTION 4a: <u > = <u > . 
Thus the equations for the Equal-Pressures Model in the case of a mechanical 

equation of state are (where 5 (J <u > and 52 - <u2>) as follows 
5 5 5 5 

-P 
ap /at + ap ii /ax = s 

5 5 5  5 

Let the mixture density be denoted by p m  then 

P 'P + P  
m g R  

Lyczskowski et a1 [SI define the "mixture sound speed" by 

where 

for 5 = g,R. 

It follows [see 4 & 61 from Assumption 83 that c2dr = c2 dF = dp 
8 8  9, p, 

and therefore 

and 

3 dp e 1 

(43) 

22 



and, of course, to get dr$g we use dOg = - d+ 
11 

Thus the equations for the Equal-Pressures Model for two-phase flow 

may be red-iced to 

ASSUMPTION 5 :  

are real valued functions of p , p , 4 , and u but not their derivatives. 

All of the source terms Fp, xpu, and FpE for 5 = g,R 
5 5  5 1  

E 5 5  5 

The fifth assumption ensures that the source terms do not affect the charac- 

teristic values of the Equal-Pressures Model. It is well-known (see [ 4 ]  & [6]) 

that the Equal-Pressures Model as defined above has complex characteristics 

and consequently leads to ill-posed problems. 

Now let's investigate Assumptions 3 ,  4, and 5 .  

First, there seem to be cases where the source terms are zero or at 

least negligibly small and therefore we would like for the model to be stable 

for those cases. 

reasonable physical processses and need not be altered, at least for the 

purposes of this study. 

Therefore, we feel that Assumption 5 is.associated with 

Next, let's turn to Assumption 4a. Let 6u (x,y,t) be defined by 
5 

u (x,y,t) - <u >(x,t) + 6u (x,y,t) . ( 5 0 )  
5 t; 5 

Then u2 = <u >2 + 2 <u >6u + (6u 12 and since <<u >> - <u > we have 
5 5 5 5  5 5 5 

<u2> = <u >2 + <(CY, )2> . 
5 5 E 



Thus Assumption 4a drops the term <(6u )2> and it can be argued that 

<(6u )2> looks a great deal like a viscous stress. We know that the 

inclusion of vicous stresses stabilize the equations and therefore we are 

led to suspect Assumption 4a. 

5 

5 

To test this assumption we consider the following model. Replace 

Assumption 4a with 

ASSUMPTION 4b: 

eqn. (40) (the 

Let <u2> be determined by the following modification of 
5 

averaged equation for the energy): 

Also use eqn. (38) instead of (42) to determine <u >. 
REMARK: 

Thus the Equal-Pressures-Model with Assumption 4b, namely Equal-Pressures Model 

5 
Note that we have made the approximation <u3> f <u >3 in eqn. (52). 

5 5 

4b, is expressed as follows: 

24 



where by the equal pressures assumption 

and furthermore by elementary thermodynamic identities 

P P 
d& = A d ;  

5 5 5  

which hold when the specific entropy is held constant. 

Now t o  simplify the notation let 

and 

m = p < u >  
5 5 5  

1 
K = 2 P <u2> 

5 5 5  

gl t = f ’  

(57) 

for f = m , k , p , etc. Then we have the following expressions for the 
5 5 5  

Equal-Pressures Model 4b: 

p + m ’ = T  
5 5  

P P 
m 5 + 2K0 5 + $cp m cm2[< +--(-I= ?? 5 

25 



i, P 

26 

2 R l 3  H + ; €  +rpmc,p - + -  
5 5 5  5 i; R Zl3 

+ [ 4 u2 + 8 + p/F 3 m’ - u (u2 + p/p >p’ 
5 5  5 5 5 5  5 5  

P’ P 
-PE +u(rp++)pmc: ++-S P = s  5 

R R 
5 5  5 P 

It turns out (as shall be shown in Section 2)  that the above model also 

leads to complex characteristics. This does not, of course, rigorously 

establish that Assumption 4a is not the assumption that leads to instability. 

However, it does suggest that to US. Therefore, we turn to Assumption 3 (The 

Equal-Pressures Assumption) and consider its reasonableness. 

In the case of stratified flow we could conceivably at some instant have 

pressure profiles similar to the one illustrated in Figure 2. 

FIGURE 2 
A Conceivable Pressure Profile for Stratified Flow. 



I 

From considerations of conceivable situations such as that exhibited 

in Figure 2 ,  it appears that in a dynamic flow situation there is no good 

reason why should equal pg. Considering Figure 2 suggests that what we 
XI 

should do to resolve the discontinuity at 

blem between the R-state and the g-state. 

Knowing ̂ v would then allow us to write an 

namely 

a4 /at + G a+ /ax = G/d 
R R R  

A 

y = a is solve the Riemann pro- 

This would determine I; and ;. R 

evolution equation for 4 , 
R 

where we assume that 6 is some real valued function of the state variables. 
R 

Reasonable and physically acceptable approximations to are, for 
R 

example, u and (u + u ) / 2 .  However, these should probably be patched up 
R g R  

a bit from the following considerations: as 4 + 0 we should have 6 + u 
g R R  

and as 

simple single-phase flow when the other phase vanishes. Therefore, one 

+ 0 we should have G + u if we want our equations to reduce to 
R R g  

+ 4 u The remark after equation ( 7 )  suggests also 
‘!dub?, 8 8 

might take G 
that should be dependent on 2 4  /ax. 

R R 
The foregoing considerations yield the following model which we 

shall refer t o  as the Unequal-Pressures Model for stratified flow: 

d 

P + m  = , O  
5 5  

for 5 = g and R and the system is completed with the evolution equation ( 6 4 )  for 

the internal state variable. 



- 
Let a = c p be the acoustic impedance of the 5th phase. By assuming 

5 4 5  - - 
v = 0 = v and by approximating the vP Hugoniots with straight lines of 
g a. - 
slopes - a and + a , we arrive at the following approximate solution to the 

R g 
Riemann problem 

A 

p = (;; /a + ;; /a )/(I/; + 1/a ) . 
g g  R R  g R 

Thus we arrive at the Unequal-Pressures Model for stratified two-phase 

flow: 

- 
p + m’ = SP 
R R R 

where 

h g ? = p  - p - &  . 
5 5  5 5  

This model has real characteristics as shall be shown in section two. 

Moreover this model is hyperbolic a.e. (almost everywhere) in state space. 

That is, except for a set of measure zero in state space (with its natural 

measure) this is a hyperbolic model. This shall be shown in section two. 



Next let’s consider what happens when instead of a s i n g l e  layer (one 

interface) of stratified flow we have a two layer (two interfaces) stratified 

flow as illustrated i n  Figure 3 (where a 

and dl + d2 = d). 

= $I d for 5 = g,R and i = 1,2 
Ei Ei i 

Y 

/ I  
FIGURE 3:  TWO-LAYERED FLOW 

For two-layered flow we have t h e  following four averaging operators: 

0 

a 
R1 



d 
- 1 

R2 R2 

Note t h a t  for  a = a / a t ,  a h ,  o r  a /ay w e  have 

Therefore ,  i f  w e  apply  t h e  averaging  o p e r a t o r s  t o  

w e  g e t  

where 

f o  i e f a t y = O  , 
f d l  i s  f a t  y d l  , 
fd  i s f a t y = d 2 + d l - d  8 

and 

I 

(77) 



Using 

and vo = 0 = vd and adding eqns. (78) and (81) we get 

and similarly adding eqns. (79) and (80) we get 

where 

for 5 = g,R. 

Therefore, the conservation of mass equations are 

a ( +  p >/at + a ( +  =)/ax = 0 
5 5  5 5 5  

for 5 - g,R. Similarly the conservation of momentum equations are 

where 

for 5 = g,R. 

31 
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Solving (approximately) the Riemann Problem at the interfaces we get 

(recall that a = cp and that we are using the approximations dp/dv = a): 

and 

- - 
P 'P 

a + a  
A i gi ? ai 
vi = (-1) - 

gi ai 

A 
i+l 

d (a+ /at + U a+ /ax) = ( -1) 
i xi R i  R i  i 

(94) 

for i = 1,2. Now, mainly to simplify these equations, let us assume that 

f = f  
gl g2 

and 

f = f  
R 1  22 
-- 

for f = a,c,p,p, and u. Then we get 

(95) 

Recall (from eqns. ( 6 6 )  and (67)) that for the single layer case we had 

Note that the only difference between eqn. (97) (two-layer case) and eqn. 

(98) (single-layer case) is the factor of two ( 2 )  appearing on the right 



hand side of eqn. (97). Consideration of this result leads to a conclu- 

sion that it is reasonable because if we have two interfaces moving from 

phase 5 (g or R) toward phase 5 ( R  or g) at the same speed as one 

interface moving from 5 toward 5 then we should change the volume frac- 

tions twice as fast. 

Therefore, we see that the basic difference between single layered 

(one interface), two layered (two interfaces), or L-layered (L interfaces) 

flow occurs only in the evolution equation for $, namely 

where L is the number of interfaces crossed in the distance d. 

We can use the preceding concepts to generate a model for the flow 

of a bubbly liquid. 

0 ,< 2r < d. 
number of interface crossings L as y goes from 0 to d. 

pose for simplicity that r is constant and there is on the average only 

one bubble in a cube of dimensions d x d x d. 

lation gives the expected value of L to be 2n(%)*. 

be related to $ 

Therefore since 

Assume the bubbles are spherical of radius r with 

Then given a distribution on r we can compute the expected 

For example, sup- 

Then an elementary calcu- 

This value can 

because another elementary calculation shows $ 
g g = $IT(%)>’. 

L = 2n(3)2 

and 

33 



then . 

follows by eliminating r from eqns. (100) and (101). It will be shown in 

section 2 that the model for the two phase flow of a bubbly liquid which 

results from using the equations (99) and (102) to define the evolution 

equation for $ with equations (89) and (90) to complete the system is 
R 

hyperbolic a.e. 

REMARK: An implicit assumption has been made throughout this report and 

that assumption shall be named 

ASSUMPTION 0: The interface between the two materials (or two phases) is 

well-defined at all times. 

This assumption is based on the fact that here we are treating the 

immiscible mixture (e.g. oil and water or air and sand grains) rather than 

a miscible mixture (e.g. oxygen and nitrogren). Whether or not this assump- 

tion is valid for a given mixture is beyond the scope of this report. 

34 



1.3 WELL-POSEDNESS AND STABILITY 

Let U be a vector of M components and consider a system of partial 
N 

differentsal equations of the form 

au/at =g(t,x,u,au/ax, ..., anu/axn) 
N N N  N 

whose solution is desired for the finite time interval [to,tf]. Let the 

equation of first variation of (1) be written 

a w l a t  = A (a/ax)su 
N N N 

where 6 is the variation operator and A (a/ax) is an M by M matrix 

polynomial in a/ax with coefficients depending on t,x,U,aU(ax,...,anU/~xn. 
N 

N N  N 

Let Ao (a/ax) be A (a/ax) evaluated at Do where Do * (to,xo,UO,aUo/ax, 
N N N  

..., anUo/axn). Note that A. (a/ax) is a linear operator with constant 
N 

coefficients. The equation 

asu/a t = &(a /ax)6u 
N N N 

( 3 )  

is called the local (at Do) equation of first variation of eqn. (1). The 

von Neumann method of stability analysis involves the inspection of the 

spectral radius ri ofP{ : exp (Ao(ik)t) where k is the wave number, 

- m < k < m .  

Definition: Stable in the sense of von Neumann: 

If r{ is bounded uniformly in k for all t in the finite time interval 

[to,tf], then eqn. (1) is said to be stable in the sense of von Neumann at 

DO . 
REMARKS: For a motivation of this definition and its relation to well-posedness 

see [6]. 
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THEOREM.1: Let aj (k), 1 < j < M, be the eigenvalues of Ag(ik). 

eqn. (1) is stable in the sense of von Neumann at Do iff max Re a (k) is 

bounded above uniformly in k, - OD < k < 00. 

Then 
N 

j .I 

PROOF: This follows from Theorem 1.1 and corollary 1.1B on pages 18, 19 of 

[ 61  

Consider the case when eqn. (1) has the following form 

aU/at = d(U) aU/ax + B(U) 
N N N  u N N  

( 4 )  

where &(U) is a real M by M array and B(U) is a real M vector. We follow 

Courant and Hilbert (see 171 p. 425)  in the following definition of hyperbolic. 
N N  N N  

~ 

DEFINITION: The matrix d i s  said to be hyperbolic at U iff d(U) has a l l  its 

eigenvalues real and a complete set of eigenvectors. The system ( 4 )  is said 
- *. N N  

to be hyperbolic at U provided &is hyperbolic at U. 
N N N 

REMARK: In 181, Lax has given a nice discussion of the notion of hyperbolicity. 

THEOREM 2 :  

D o  iff d is hyperbolic at Uo. 

The system ( 4 )  is stable in the sense of von Neumann for a11 B at 
N 

N 

PROOF: Note that the equation of first variation of ( 4 )  is of the form 

where U’= aU/ax and where the structure of C depends upon the structure 

of ,&and B. Note that the Ao(a/ax) in the definition of stable in the 

sense of von Neumann is for this case given by 

N N N 

N N 



and t h e r e f o r e  

Ag(ik) = d ( U O ) i k  + C(U0,U;) 
N N N  N N  - 

F i r s t ,  w e  prove t h a t  i f  d ( U 0 )  i s  hype rbo l i c  t hen  eqn. (4) i s  s t a b l e  i n  t h e  

sense of von Neumann a t  D o  f o r  a l l  B. 

t hen  it is d iagona l i zab le .  Therefore,  without  loss of g e n e r a l i t y ,  assume 

N N  

By d e f i n i t i o n ,  i f  S e ( U 0 )  i s  hype rbo l i c  
N N N  

t h a t  ~ ( U O )  is d iagona l  w i th  d i agona l  elements d l l ,  d22,..., 

an eigenvalue of ~ ( U O )  of m u l t i p l i c i t y  m and l e t  t h e  d i i  be 

L e t  p =ikX - a and cons ide r  t h e  upper 

N N  

N N  

= &. = d l l  = * * *  

of Ao(ik) - al. It has t h e  fol lowing form 
N 

c12 . . 
p+c22 . . . 
. . . . 
. . . . 
. . . . 

d m .  L e t  h be 

so  arranged t h a t  

m by m block 

C2m 

. 
(7) . 

. 

Note t h a t  ik appears nowhere i n  t h i s  a r r a y  except  i n  t h e  1-1. It fol lows 

t h a t  d e t  D ( p )  is an mth degree polynomial i n  p wi th  c o e f f i c i e n t s  t h a t  

do not  depend on i k  and t h e r e f o r e  t h e  r o o t s  of t h e  polynomial do not  depend 

on ik. 

1 < j < m. 

N 

Hence, t h e  r o o t s  are of t h e  form p = O((ik)O> f o r  .i 
It fol lows t h a t  t h e  r o o t s  of d e t  (A( ik)  - al) are of t h e  form 

N N 

a j ( k )  = ikdjj + 0 ( ik) '  f o r  1 j < M 

where t h e  d j j  are a l l  rea l  by hypothesis .  

bounded above uniformly i n  k and thus  w e  have s t a b i l i t y  i n  t h e  sense  of 

Consequently, max R e  crj(k) i s  
1 

von Neumann a t  Do f o r  a l l  B. 
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Second, we prove that if d(U0) is not hyperbolic then there exists a 

B such that eqn. ( 4 )  is unstable at Do in the sense of von Neumann. There 

are two ways to violate hyperbolicity: case 1 is when the eigenvalues are 

N N  

N 

L 

A1 

0 

0 

. 

. 

. 
0 

b 

not real; case 2 is when there is not a complete set of eigenvectors. 

Consider case 1: The Jordan canonical form for d(U0) has the form 
N N  

bl 0 . . 0 

A2 b2 0 . . 0 

0 A3 b3 0 . . 
e 0 e e 

e . . 0 

. e e . 0 Am 

where the bj = 0 or 1 and the Xj may not be distinct and at least one of the 

Xj, say XI, is complex in case 1. 

real. 

also an eigenvalue of d(U0). 

Let A 1  = a + ib where a and b # 0 are 
- 

Since the matrix d(U0) was real, the complex conjugate A1 = a -ib is 

Consider 
N N  

N N  

p(a) = det [ - a1 + J(U0)ik + E(Uo,U~)] 
N N N  N N  N 

where E is the result of applying the canonical transformation (the one that 

takes d(U0) into J(U0)) to C. 
N 

N h )  N N  N 

From Puiseux's Theorem (see Eichler [9] p a  118) it follows that 

P 
aj ikXj + 0 (k) j 

where 0 < p < 1 - l/mj with mj being the multiplicity of X j e  
j 

Consider X I  - a + ib with b # 0. Then 

p1 
Re (al) = - kb + 0 (k) 

(9) 
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where p < 1. 
- - < k < m. 

system ( 4 )  is unstable at Do in the sense of von Neumann for all B. 

Therefore Re (“1) is not bounded above uniformly in k for 
1 

Thus if any of the eigenvalues of d(U0) are complex then the 
N 

N 

Consider Case 2: 

has a 2 by 2 subblock of the form 

If there is not a complete set of eigenvectors then J(U) 
N N  

Now consider 

p ( a )  = det [ - a1 + Js(Uo)ik + Cs(Uo, Uo)] 
N N N  N N  N 

where Cs is a subblock of C. Let - N 

c11 c12 
N S  = L 2 1  c22] 

Then 

and 

I 2 
c11 + c22 (Cll c22) 

a+(k) Xik ?: 2 ik c21 + + c12 c21 

Note that i f  X is real and c21  > 0 then max Re (a+_ (k)) is not bounded 

uniformly i n  k for -00 < k < a. 
Q.E.D. 
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REMARK: Note that from the proof of Theorem 2 we have: 

(i) If d(U0) has all real eigenvalues and a complete set of eigen- 

vectors then ( 4 )  is stable at Do in the sense of von Neumann for 

all B. 

If d(U0) has some complex eigenvalues then ( 4 )  is unstable at Do 

in the sense of von Neumann for all B. 

If d(U0) has all real eigenvalues but an incomplete set of eigen- 

vectors then the stability at Do of ( 4 )  in the sense of von 

N N  

N 

(ii) 
N N  

N 

(iii) 
N N  

Neumann depends upon the structure of B relative to d. 
N N 
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1.4 BACKGROUND 

In [4] it was shown that the characteristic polynomial for the equal- 

pressures model (with Assumption 4a) is 
* 

p ( A )  f (A + ug)2 (A + u )2 - E (A + ug)2 - E (A + u )2 (1) 
4 R s R R 

where 

for 5 = g,R. 

u 

This can be simplified by the Galilean transformation ug + w, 

+ -w, where w = (us - u )/2. Then P4 becomes 
R R 

Let 

c f (E + z ) / 2  
g R  

and 

A (E - E )/2 
R g  

and then P may be written 
4 

4 2 
+ a2A P4(A) = A + alA + a. 

(4) 

(5) 

where 

2 a2 = -2(w + C )  

a1 = -4wA 

and a. = w2(w2 - 2 ~ )  . 
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The following lemma (which we call the W-lemma) turns out to be useful 

in determining when the roots of the quartics that arise in the stability 

analyses of these two-phase flow models are all real. 

Lemma (W): Consider the real quartic 

P(X) X 4 + b3X 3 + b2X 2 + blX + bo (7) 

Necessary and sufficient conditions for P to have four real roots are that 

P’(X) have three real roots rL < rM G rR such that the following three 

inequalities are satisfied 

and 

PROOF SKETCH: Consider the graph of a typical quartic. Roughly it has the 

shape of a W (hence the name of the lema). 

to the central, upper vertex of the W and the relative minima correspond to 

the two lower vertices of the W. Note that inequalities (8), (9), (10) insure 

that either all four legs of the W are cut (therefore four distinct roots) by 

the horizontal axis (strict inequalities) or (nonstrict inequalities) the axis 

goes through a vertkx (or vertices) and we have multiple roots but etill all 

real roots. Q.E.D. 

The relative maximum corresponds 

In the case of P4(X)  of eqn. ( 6 )  let 

a = -(w2 + C) 
and 

42 

b * -wA 



and 

where 

with 

then 

2 

k k O  
l\k = aX + 3bX + a 

and 

(17) [ A 1  < 0 and A2 < 01 iff [Pq(r~) < 0 and Pq(r~) < 01 

was proved in [4]. 

are A 

Thus from the W-Lemma the conditions for four real roots 

0, A 1  < 0, and A2 < 0. 
0 
Wendroff [8] has proved that the A 1  and A2 constraints are vacuous 

and the A constraint is equivalent to 0 

which we shall refer to as Wendroff's inequality. 

In summary Wendroff [ 8 ]  has proved the following theorem. 

THEOREM (WENDROFF): Consider the polynomial 

2 2 
p4(X) E (A2 - w2) - ! ( A  + w) - ! (A - w)2 

g R 
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where w.is real and 5 for 5 = g,R are nonnegative. Then we have two cases 

in which the roots of p 4  are all real: 
5 

(i) 5 = O o r B  = O , o r w = O  
g R 

or 

(ii) G > 0, B >0, w # 0 and w, B , and 3 satisfy Wendroff's 
R g R 

inequality (18). 

Therefore, when the relative velocity (w) and the volume fractions 

($ , $ 2 )  are nonzero then Wendroff's inequality (18) is necessary and 
g 

sufficient for the sound speeds in the Equal-Pressures model to be real. 
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2.1 STATEMENT AND PROOFS OF RESULTS 

First consider the Equal-Pressure Model 4b where it is not assumed 

that < u > ~  = <u2> but the energy equation is used to generate an evolution 

equation for <u2> and then 'the approximation <u3> 

energy equation. The model is expressed by 

<u>3 is used in the 

ug 2 + gg + p/Pg] mg/ - ug ("g' + P/;,> P; 

-P 

R R R 
+ m ' = ~  

. 
P 

i + & + r pm c; p[k+$] + [3/2 u2 + G + p/p ] m' 
R R R  R R R R R  

( 4 )  

- - 
where P = P = P . 

g R  
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Let UT = (p , m , K , p , m , K ) and then we can write the equa- 
g g g R R R  

tions (1) - (6) as 

. 
which can be reduced to the form U = AU' + B. 
A satisfy the polynomial 

Then the eigenvalues for 
N A I -  

N 

P ( A )  = P (A)P ( A )  - P (A)P ( A )  
6 3g 3R l g  1R 

where 

with 

b 
- u F  + u ( r p + $ ) T  

5 5  5 5 5 5  

and 

5 5  - u2 +'p/F6 
and where 

(7) 



I 

Note that the coefficients of P depend on c , p , u , p , and Cp for 5 = g,R. 

A state of the material in our two-phase flow model is determined 'by these 
6 5 5 5 5  5 

variables. 

Ca) DEFINITION: We say that a state (p , I;, u , u , P , P , Cp , Cp , c , 
g R g R g R g R g  

is physically acceptable provided p 

that c > 0, p > 0, 0 < Cp 1, and Cp + Cp = 1 for 5 = g,R. 

us, p5 ,  Cp5, cs are real numbers such 

5 5 5 8 R  

RESULT 1: The roots of P6 (A) given by eqn. (7) are not all real for all 

physically acceptable states. 

PROOF: 

u + W. u + -w where w (u - u )/2. Next consider the special case of 

To simplify P6 first make the following Galilean transformation 

and Cp. Then note that the A3 

and 

in 

g - 2  - g  fi. 
equal phases: f = f for f = p ,  c, 

A terms in P6 vanish. That is, 
g R  

1 

P (A) + A6 + A4A + A2A + 
6 4 2 

ther words P6 becomes symmetric -bout X - 0. In ord r for P 6  to have 

6 real roots it must cross (counting contacts as two crossings) the axis 6 

times and it follows from symmetry that Pg(O) < 0 is required. 

the constant term in Pg(A),  namely Ao, must satisfy A o  < 0. 

elementary calculation we find 

Therefore 

By an 

A0 - -4w2(w2 - c2)(w2 + p / p ) .  

We have 

becomes 

< 0 satisfied if w2 = 0. But if w2 f 0 then the constraint 

c2 < w2 

Therefore in the case w2 < c2, P6 (A) has at least two complex roots. Q . E . D .  
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It follows from RESULT 1 that the Equal-Pressures Model 4b has complex 

characteristics at certain physically acceptable states and therefore is not 

stable in the sense of von Neumann (by Theorem 2) for those states. 

and 

Next consider the Unequal-Pressures Model. The model is expressed by 

+ mi = 3: 

4 + 4’ = v/d 
R R R  

where 

.. 
g? = p  - p - c L p  

5 5  5 5  

for 5 = g,R. 

Let 

and the Unequal-Pressures Model may be expressed by 

6 = A U ’ + B  
N N N  N 

. I  

where A is given by: 
N 
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A =  
N 

0 -1 0 0 

and therefore 

2 
g g  u2 - c , -2ug 0 0 

X 1 -  A =  
- N  

0 0 0 -1 

0 

0 

0 

0 

1 

-A + 2ug 

0 

0 

0 

u2 - c2 -2u 
R R  R 

0 0 

R 
-19 I 
-U 

R 

0 0 0 

-9 g 0 0 

x 1 1 

c2 - u2 x + 2u +9P 
R R R R 

0 0 x + s  
1 

Note that by multiplying the second row by X and subtracting c2 - u2 times g g  
the first row therefrom and doing a similar operation on the fourth row the 

array above reduces to the triangular array D(X) :  
N 
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It fo l lows  t h a t  

L 

0 

-xgg 

0 

A 9  
R 

x + G  
R 

d e t  ( A 1  
n. 

where 

1 0 0 

0 x 

0 0 

0 0 

0 

1 

( A  + u )2 

-C2 
R 

R 

0 

RESULT 2: 

mat r ix  A given by eqn. (19) has  rea l  e igenvalues  f o r  a l l  phys i ca l ly  accept- 

a b l e  s ta tes .  

I f  G, is a real-valued func t ion  of t h e  s t a t e  v a r i a b l e s  then t h e  

N 

h 

The f i v e  e igenvalues  of A are -u , -u 2 c , and -u 2 c . 
N R 8 8  R R  

PROOF: The eigenvalues  of A are t h e  roo t s  of P5 ( A )  of eqn. (22) and i t  
N 

- 
is c l e a r l y  seen  t h a t  t h e  r o o t s  of P5 ( A )  are t h e  va lues  s t a t e d  above. 

By t h e  d e f i n i t i o n  of phys i ca l ly  accep tab le  states it fol lows t h a t  -u 2 c 
€ 5  

are real  f o r  5 - g,R. QmEmD. 



RESULT'3: For all physically acceptable states the matrix A has the follow- 
u 

I 

ing eigenvectors: 

(i) Associated with the eigenvalues (-u f c ) are the right eigen- 
g g  

vectors (-1, -u f c , 0, 0, o)T. 
g g  

(ii) Associated with the eigenvalues (-u 2 c ) are the right eigen- 

2 c , o)T. 
R R  

vectors (0, 0, -1, -u 
R R  

(iii) If 'iR and 'iR are both nonzero then associated with the eigen- 
g R 

value -6 is the right eigenvector 
R 

(Pg, L5Pg, -@%, -u9W,%?%+ 
g R  R g R  R g  R R g  g R  

where 

and 

for E - g and R. 
A (iv) If B = 0 and gJ - 0 then associated with the eigenvalue -u 

B II a 
i e  the right eigenvector (0, 0, 0, 0, l)T. 

A (v) If B - 0 and gJ # 0 then associated with the eigenvalue -u 
8 R R 

is the right eigenvector (0, 0, -7, -2 9 ,  W IT. 
If ,9 - 0 and 9 

is the,right eigenvector (9,  ̂u $?, 0, 0, W I T .  

a a  R 
A 

(vi) 0 then aseociated with the eigenvalue -u 
R 8 R 

8 R g  8 
(vii) The eigenvectors of (i) and (ii) are linearly independent. 

(viii) The eigenvectors of (i), (ii) and (iii) are linearly independent 

provided 
n 

'U # 'U ?: c 
11 € 5  

for E = g and R. 

( ix)  The eigenvectors of (i), (ii), and ( iv )  are linearly independent. 



(x) The eigenvectors of (i), (ii), and (v) are linearly indpendent pro- 

vided %? # 0. 
R 

(xi) The eigenvectors of (i), (ii), and (vi) are linearly independent 

provided $3' # 0. 
g 

(xii) The matrix A has a complete set  oE elgenvectors iff [g and g are 
4 g R 

g R g R 
both nonzero; or 9 and 9 are both zero; or 9 is zero and $f? is 

not; or 9 is zero and 59 is not]. 
R g 

PROOF: 

given vectors are the eigenvectors associated with the stated eigenvalues. 

Elementary computations of the form A$ = &?establish that the 
N 

To see the significance of ( 2 3 )  note that 

'% = 0 iff -tl = "U c 
5 R 5 5  

for 5 = g,R. 

The eigenvectors of (i) and (if) are seen to be linearly independent 

because g > 0 for 5 = g,R. 
5 

The eigenvectors of (iii) is independent of those of (i) and (iii) when 

( 2 3 )  holds because of ( 2 4 ) .  

The eigenvector of (iv) is easily seen to be independent of those of (i) 

and (ii). 

The eigenvector of (v) is independent of those of (i) and (ii) provided 

%? # O .  
5 

The eigenvector of (vi) is independent of those of (i) and (ii) provided 

REMARK: RESULT 3 shows that A has a complete set of eigenvectors if ( 2 3 )  

holds. 

that A is hyperbolic if ( 2 3 )  holds. Then by Theorem 2 it follows that for 

N 

Since RESULT 2 says that the eigenvalues of A are all real it follows 
N 

N 
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any definition of the source terms i!, S s  for 5 = g and R that satisfies 

Assumption 5 (source terms don't depend on derivatives), the Unequal-Pressures 

Model is stable in the sense of von Neumann if (23 )  holds. If ( 2 3 )  is 

violated then the stability depends upon how the source terms are defined. 

If we put the usual Lebesgue measure on each of the state variables and the 

usual product measure on the state space then the set of points in state 

space for which ( 2 3 )  is violated is a set of measure zero for any physic- 
h A + U  

ally acceptable definition of (e.g. u = u or u = (UE R)are 
R R R R 

physically acceptable definitions for ). It then follows from RESULTS 

2 and 3 that the matrix A is hyperbolic a.e. (almost everywhere) in state 

space. From Theorem 2 it then follows that the Unequal-Pressures Model 

R 

N 

is stable in the sense of von Neumann a.e. for any physically acceptable 

definitions of , 
measure zero where 

that ( 2 3 )  is never 

The alternative is 

then do a full von 

R 
-pl 3, and Ss . One way to remove that set of 

(23 )  is violated is simply to define in such a way 

violated. However, this seems somewhat artificial. 

to define 

Neumann stability analysis to see which definitions of 

R 

in some physically acceptable way and 
R 

the source terms lead to stability and which do not when (23 )  is violated. 

This latter alternative is beyond the scope of this report. 

It is interesting to note that the Unequal-Pressures Model encounters 

this "nonhyperbolioity problem" only in the transonic regions. To clarify 

this remark, let G = (u + u ) / 2  and then make the Galilean transformation 

u + w, u + -w where w = (u - u ) / 2  and note that +. 0, -u 2 c + -w 2 c 
R g R  

g 9. g R  R g g 
and -u 2 c + w 2 c By RESULT 3 the only time that the set of linearly 

R R  R 
A independent eigenvectors of A reduces from five to four is when -u = -u 2 c 

N R 5 5  
for 5 = g or R which for the case at hand reduces to w = 2 c . Thus if 

5 
w < min c then we are in the subsonic region and A is hyperbolic. If 

N 5 6  
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w > max c then we are in the supersonic region and A is hyperbolic. Only 
N 5 5  

in the transonic region, i.e. only as Iwl passes through c or c does the 
g R 

matrix A lose its hyperbolicity. 
N 

Next consider the Unequal-Pressures Model for L-layered, stratified, 

two-phase flow or for a flow of a bubbly liquid: 

where L 

tified, 

liquid 

+ m0 = SP 
8 8 8  

2 2  1;1 + (c8 - ug) p e  + 2u mc - 4. p - 
g 8 8 8  8 

+ me - S% 
R R  

1;1 + (c2 - u2) p a  + 2u me + 4 p = ~m 
R R R R  R R  R R  a 

may be just a constant integer L - 1,2,3,... for L-layered, stra- 

two-phase flow or L may be a function of 4 for the flow of a bubbly 
a 

Note that if L does not depend on the derivatives of the primary 

variables,i.e. p , m , p , m , 4 then the characteristic values (eigen- 
g g a a a '  

values) are not affected and the characteristic polynomial is P5(X) as 

defined in eqn. (22). Let's augment Assumption 5 to include this Assumption: 

ASSUMPTION 6 :  Sf, SF, 6, e, d , and L are assumed to be real-valued 
R 

m , and 4 for 6 - g, R but are 
E ,  E E 

functions of the state variables p 

assumed not to depend on their derivatives. 

For concreteness let us take 
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RESULT.4: Under Assumption 6, the Unequal-Pressures Model for L-layered, 

stratified flow (L = 1,2,3,...) or for a bubbly liquid (L = L((I >)  given by 

eqns. (25: - (30) has real characteristic values for all physically accept- 
R 

able states and has a complete set of eigenvectors a.e. in state space. 

PROOF: As observed in the proof of RESULT 2 the characteristic values are 

-u k c , - u  f c ,  and -u . The set of points for which 
g g R R  R 

for 5 = g or R is a set of measure zero because it is a finite union of sets 

of lower dimension than the dimension of the state space. Q.E.D. 

REMARK: Recall that in any wave propagation model the characteristic values 

are associated with the sound speeds or wave speeds. One of the most physic- 

ally unacceptable things about the Equal-Pressures Model is the fact that it 

has "complex sound speeds." 

Model . 
This problem is corrected in the Unequal-Pressures 
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2.2 DISCUSSION OF RESULTS 

In the case of the Unequal-Pressures Model recall the triangulated 

form (eqn. 21 of section 2.1) of X1-A when the evolution equation for 
N N  

the internal state variable is given by 

Recall that the triangulated form was named D(X)  and that 

D ( X )  = 
N 

x 1 

2 
+ Ug) 

0 

0 0 

0 0 

0 0 

0 0 

1 0 

2 
+ UR’ 
2 
R ‘ C  

0 A + :  
R 

Recall that this matrix comes from the following system of five equations 



and 

{ + u +*  = Lv/d . (7)  
R R R  

It is quite convenient to categorize the equations in this form; that is, 

in the form of eqns. (3), ( 4 ) ,  (5), ( 6 )  plus an evolution equation for the 

internal state variable. Because as we change models only eqn. (7 )  and 

therefore only the fifth row of D(X) changes. Thus this provides a 

convenient framework within which to categorize the models. To illustrate 

this idea consider the following general first order evolution equation for 

the internal state variable 

N 

i + a i  + a p ’ + a A  + a m * + a i  
R l g  2 g  3 g  4 g  5 2  

. 
+ a p ’ + a m  + a m ’  + a + ’ = a  

6 R  7 R  8 R  9 R 10 

where a , i = 1, 10 may be functions of c , p , m , and 41 but not 

their derivatives. Replacing eqn. (7 )  with eqn. (8) causes the fifth row 

of D(X) to be replaced with 

i 5 ’ 5  5 5 5 

(ax + a  a X + a  a X + a  a X + a  X + a )  
1 2’ 3 4’ 5 6’ 7 8’ 9 

Now in more generality than this is the general arbitrary order evolution 

equation for the internal state variable. But even so only the fifth row 

of D(X) is altered. 

D be designated simply 

So in complete generality let the fifth row of 
N 

N 
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Then D(X) = (D D D D )D - (D D D D )D 
11 22 33 44 55 11 22 33 45 54 

+(D D D D )D -(D D D D )D +(D D D D )D . (10) 
11 22 34 45 5 3  11 25 3 3  44 52 12 25 33 44 51 

- the 
Using the facts that D = X = D and D = -Xp and D 

11 33 25 8 45 
expression for the characteristic polynomial of the system reduces to 

P(X) = (D D )D - X(D p )D + (D p )D 
22 44 55 22 R 54 22 R 53 

8 44 52 

where we have also used the facts D 1 = D Note that 
34 12 

D = ( X + U ) ~ - C ~  
22 8 8 

and 

D = ( X + U ) ~ - C ~  . 
4 4  a R 

To further simplify these equations let us make the following Galilean 

transformation 

u + w,  u + -w where w = (u - u ) / 2 .  
8 R 8 R  

Then, the equations 

D ( A  - w ) 2  - c 2  
44 a 

summarizes all the information needed to generate the characteristic poly- 

nomial (eqn. (11)) for the arbitrary evolution equation for the internal 

state variable. 
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Next consider the equal-phases case where 

- 
f = f for f = c, p, 4 ,  p 
g R  

then 

D + (A + w)2 - c2 
22 

D + (A - w)2 - c2 
44 

- - -  
where the assumption has been used that if = p then ^p = p = pRa 

8 2  8 
Also note that 

- [ ( A  + w2) - c2]  c2p (D - AD54) 
53 

- AD52) 51 
+ c% [(A - w ) ~  - c2] (D 

Now let's illustrate the use of eqns. (11) and (12) in some examples: 

First example: Consider the case where the evolution equation for 

the internal state variable has the form 

4 + a + C = a  
a 9 a  10 5 + 

- 
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then this changes the D(A) of eqn. (2) only in the fifth position 

of the fifth row where 
N 

. I  

D = A + ;  + A + a  
55 R 9 

Therefore the only requirement on @-laws of the form (13) in order that 

they lead to real characteristics is that a be real. 

tion procedure quickly takes care of this simple case. 

Thus our categoriza- 
9 

Second Example: 

is also expressible in the form of eqns. ( 3 ) ,  ( 4 ) ,  ( 5 ) ,  (6), and (7) being 

replaced by the following $-law: 

We wish to emphasize this point: The Equal-Pressures Model 

where 

c =  Pm 4 r 9 IP 
P S  

for 5 = g,R while 5 = R,g. That the Equal-Pressures Model may be put in this 

form is not entirely obvious; see [6] for a derivation of (14). Replacing 

(7) with (14) leads to D = A, D51 = C A, D = -C A and D = D = 0. 
55 Pg 53 PR 52 5 4  

Substituting these into (12) and cancelling 

P4(A) = [(A + w)2 - c q  [(A - w)2 

out a A leads to 

- c2] 

+ C%CP [(A + w)2 - 2 2  + (A - w) 2 ] 
> 

where C = C = C in accordance with the equal-phase case. 
P Pg P i  

Now by the symmetry of P (A) about A = 0, in order for P (A) to have 
4 4 

. I  

four real roots it is necessary that P (0) > 0 and this is equivalent to 
4 
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2 
(w2 - c2) f 2CZ;;CP (w2 - c2) > 0 

and this holds if€ 

1 - 26CP G w2/c2 G 1 

Thus if (18) is violated then the models with a +-law of the form 

has complex characteristics. Thus our categorization procedure quickly 

eliminates any +-law of the form (19) from further consideration with 

respect to +-laws which lead to models with real sound speeds. 

Third Example: Consider a case where the evolution equation for the inter- 

nal state variable involves higher order derivatives. For example, let the 

evolution equation be 

.. + + a $4  + a $’* + a i + a +*  = a 
11 1 R  2 1 1  3 R  4 L  5 

where the a , 1 G i G 5, are functions of p , p , m , and + but not of their 
i 5 5 5  5 

derivatives. 

In doing a von Neumann stability analysis we consider solutions of the 

form 

U = Uo exp (ikx + at) 
N N  

so that U + aU and U’ + ikU and a and ik are related to A by X = a/ik. 

Thus D(X) + D(a,ik) where 
N N N 
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- 
a 

0 

0 

0 

0 
- 

D(a,ik) = 

ik 0 0 0 

(a + iku )2 
g 0 

-(ikc ')2 
g 

0 

0 a ik 0 

0 
(A + iku )2 

0 R 
-C2 

R 

0 0 

where 

D (a,ik) - a2 + a aik + a (ik)2 + a a + a (ik) 
55 1 2 3 4 

follows from (20) and (21). 

Let a (k) be the roots of the polynomial det (D). 

bility requires that there exist a finite constant number B such that 

By Theorem 1, sta- 
i 

max Re(a (k)) < B 
i 

for all k. 

cz (k) which are pure'ly imaginary and therefore satisfy (24). 

From the structure of D, the upper 4x4 block of D will yield only 

Thus we have 
i 

an easy test which provides a necessary condition to decide whether the 

form (20) leads to stable models according to whether or not the roots of 
V 

D (a,ik) satisfy (24). 
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30 CONCLUDING REMARKS 

Herein, the derivation procedure for a simple case of two-phase flow, 

namely stratified flow, was carefully studied. All of the approximations 

and assumptions made in constructing the model were enumerated and ana- 

lyzed for their effect on the sound speeds (or wave speeds) of the model. 

This led to a conclusion as to which of the assumptions causes the sound 

speeds to become complex or imaginary: namely, the equal-pressures assump- 

tion. The relaxation of the requirement that the pressures in the different 

phases be equal led to a model (namely, the Unequal-Pressures model) with 

real sound speeds and this condition is necessary for stability in the 

sense of von Neumann. The analysis also suggests that the best way to 

categorize these models is by their evolution equations for their internal 

state variables. Categorizing the models this way leads to a rather simple 

and easy to check condition which is necessary for these models to be stable 

in the sense of von Neumann. Also a model with real sound speeds for two- 

phase flow of a bubbly liquid is suggested by an investigation of the 

extension of the Unequal-Pressures model for single layered flow to multi- 

layered flow. 
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