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FUNDAMENTAL COMBUSTION AND DXAGNOSTICS RESEARCH 
AT SANDIA 

I 

ABSTRACT 

The combustion research a t  Sandia Laboratories sponsored by the Of f ice o f  
Basic Energy Sciences emphasizes basic research i n t o  fundamental prob?ems 
associated w t h  combustion. Special emphasis i s  placed on the  developaent 
and appl icat  on o f  advanced research methods. The overal l  program addresses: 
(1) detai led chemistry o f  combustion, (2) fundamental processes assxfated 
wi th  laminar and turbulent flames, (3) developnent o f  research techniques 
spec i f i ca l l y  applicable t o  combirstion envib-orments, and (4) operation o f  
the user-oriented Combustion Research F a c i l i t y .  

Attached are status reports on the research sponsored by OBES. The f i r s t  
section contains a c t i v i t i e s  i n  Combustion Research, the second section con- 
ta ins a c t i v i t i e s  i n  Molecular Physics and Spectroscopy, and the  t h i r d  section 
contains a c t i v i t i e s  i n  Diagnostics Research. The resu l t s  reported i n  these 
three sections are e i ther  completed o r  a t  an advanced stage. The work pre- 
sented i n  the sections en t i t l ed  "Work i n  Progress" represents research i n  
i t s  i n i t i a l  stages. Status o f  the CRF construction and operatjon are 
reported e l  sewhere. 
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COMBUSTION RESEARCH 

The chemical reaction o f  C2H2 and 02 i s  accompanied by both chemi-ionization 
and chemi-luminescence. The emitted rad iat ion comes fi-om a va r ie t y  o f  
sources and i n  general displays d i f f e ren t  character ist ics.  I n  the work t o  
be reported, a mixture of C2H2 and 02 was ign i ted by a spark and the r e s u l t -  
i n g  time varying emission from C$, CH*, and continuum was recorded. (The 
electron density was monitored by recording the transmission o f  microwaves 
(8.5 GHz) tnrough the c e l l . )  Figure 1 represents oscil loscope traces OF the 
transmitted microwaves, CH*, and continuum emission as a funct ion o f  t ime 
f o r  a stoichiometric mixture o f  C2H2 and 02 (the instrumental dispersion was 
11 &m). The C$ emission i s  essent ia l ly  ident ica l  t o  tha t  o f  CH*. 
contfnuum was br ight  and appeared t o  be centered a t  approximately 4500 . 
It i s  important t o  note tha t  the continuum had the appearance o f  a contirw- 
ous spectra a t  the instrumental resolut ion o f  the present experiment. There 
i s  evidence from other laboratories that  a t  higher reso lu t ion  t h i s  may i n  
fact  be very f i n e l y  banded. The continuum i s  thought t o  be due t o  

Thl 

CO + 0 4 C02 + hv (1) 

There are several in terest ing features t o  be noted i n  Fig. 1: 
continuum emission occurs essent ia l ly  a f t e r  the CH* and C 2  radiat ion, 
(2) the CH* emission occurs during the buildup to  the peak chemi-ionization, 
and (3)  the continuum has a r e l a t i v e l y  long-lived character which implies 
e i t he r  a slow reaction r a t e  o f  Eq. 1 a t  the temperaturas involved ( the 
temperature has not been measured) and/or a net production o f  the reactants 
i n  Eq. 1. Figure 2 represents the t o t  1 time-’ntegrated l i g h t  a t  three 
d i f f e r e n t  spectral regions. The 4319 ! (1.65 bandpass) continuum was 
chosen rather than the 4500 1 (they are equ’valent) b ause the  spectral 
response o f  the system i s  the same a t  4319 B and 4314 7i and hence the two 
emissions can be d i r e c t l y  compared. The ncst in terest ing feature of Fig. 2 
i s  the essential pressure independence o f  the ,, and CH* integrated emis- 
sions. I t  i s  tempting t o  argue tha t  t h i s  must T e  due t o  quenching of the 
excited states a t  higher pressures, but i t  seems very u n l i k e l y  t h a t  both 
CH* and Cp would be quenched t o  the extent t h a t  both curves are  f l a t .  The 
monotonic r i s e  o f  integrated continuum emission with pressure (implying 

cipate a p r i o r i  (a1 though not necessarily the pa r t i cu la r  nonlinear behavior). 

(1) the 

. 
0 inweased CO2 production) i s  exactly the type o f  behavior one would an t i -  

11 



Experiments are continuing t o  study the behavior o f  t h i s  system a t  different 
equivalence r a t i o s  u l t imate ly  comparing the r e s u l t s  t o  modeling e f f o r t s  now 
underway. 

C2H2:02 (1:5/2) 

70 Torr Total I n i t i a l  Pressure 

100 usec/cm 

Microwave Transmission 

0 
Continuum a t  4319 A 
S l i t  Width = 150 pm 
0.0005 v/cm 

a 

2 2 CH(A 6 - X R) Band 
a t  4314 A 
S l l ’ t  Width = 30 pin 
0 -0005 v/cm 

L. 

Figure 1: The oscil loscope traces shown are  the microwave trans- 
mission through the c e l l ,  the,continuum emission a t  4319 A, 
and the CH* emission a t  4314 A. These data were taken 
using a stoichiometric mixture of C2H2 and 02 a t  70 t o r r  
t o t a l  i n i t i a l  pressure. 
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Figure 2: The time-integrated l i g h t  i n tens i t i es  from three 
spectral regions are p lo t ted  as a function o f  i n i t i a l  
pressure f o r  a stoichiometric C2H2-02 mixture. 

High-pressure Soot Formation - T. M. Dyer/W. L. Flower 

Experiments t o  characterize and measure soot par t i cu la te  formation processes 
are being conducted i n  a constant-volume combustion bomb. The object ive o f  
t h i s  work i s  t o  provide ins ight  i n t o  the o r ig ins  o f  soot and i t s  behavior 
i n  internal-combustion engines. An important aspect o f  t h i s  work has been 
the development o f  an opt ica l  pyrometer t o  simultaneously measure the time- 
and space-resolved soot volume f rac t ion  and temperature o f  the burned gas. 

The current working hypothesis i s  tha t  whi le soot fmna t ion  does depend on 
equivalence ra t io ,  tne formation i s  more fundamentally re la ted t o  the tem- 
perature o f  the burned gas. The turned gas tanperature i s  coupled t o  
equivalence ra t i o ,  but i t  i s  also strongly dependent on the concentration 
o f  d i l l rent  i n  the oxidizer.  Therefore, it i s  possible t o  t e s t  the hypo- 
thesis by holding the equivalence r a t i o  f i xed  and observing var ia t ions  i n  
soot formatior! as N2 d i luent  and thus flame temperature i s  varied. I n  Fig. 
3, adiabatic flame temperatures calculated f o r  equi l  ibr ium condi t ions are 
p lo t ted as a function o f  equivalence r a t i o  f o r  various d i l uen t  concentra- 
t i ons  i n  the oxidizer.  The negative slope o f  these curves r e s u l t s  from the 
f a c t  that  excess fuel, beyond the chemically correct  point, acts  as a 
d i luen t  t o  cool the burned gas. 
o l d  f o r  soot formation observed i n  tes ts  i n  the constant-volume combustior: 
bomb. The low temperature region below the l i n e  y ie lds  soot and the high 
temperature region above the 1 i ne  i s  nonsooting. 
o f  soot are farmed a t  conditions f a r  below the l i n e .  The threshold i s  
slowly varying H i t h  # and i s  thus consisten? w i th  the hypothesis tha t  soot 
formation i s  more d i r e c t l y  related to  the flame temperature ra ther  than the 

Superimposed on these curves i s  the thresh- 

Increasing quant i t ies  
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equivalence ra t io .  Such an observation has important imp1 icat ions when 
attempting t o  understand the sooting tendency o f  pract ica l  burners as i n i t i a l  
conditions are varied. 
burn temperature and hence may be expected t o  increase soot formation. 
Conversely, increasing the reactant preheat increases the burn temperature 
and thus reduces soot production. The fundamental dependence o f  soot 
generation on temperature along w i th  the observed pressure dependence pro- 
vides substantial guidance toward i den t i f y i ng  operating regimes which 
minimize in-s i  t u  par t icu l  ate formation. 

For example, exhaust gas rec i r cu la t i on  lowers the 

I I I I I 1 
I 

1.6 1.8 2.0 2 3  2 4  26 
EQUIVALENCE RATIO (91 

Figure 3: Calculated adiabatic f lame temperatures change 
dramatically as the d i l  uent concentration varies f o r  
a given equivalence r a t i o .  
QpIN2 blends a r e  indicated on the parametric curves. 
The dashed curve indicates the experimental threshold 
f o r  soot formation d iv id ing regions y ie ld ing  soot ( 0 )  

from nonsooting regions ( 0 ) .  

Percent N2 i n  various 

FTIR Measurement i n  a Sooting Flame - D. A. Stephenson/D. K. Ottesen 

A j o i n t  project  t o  determine the f e a s i b i l i t y  o f  using Fourier Transform 
Inf rared (FT IR)  spectroscopy t o  measure hydrocarbons i n  flames, p a r t i c u l a r l y  
those which might be soot precursors, has been i n i t i a t e d .  To t h i s  end, a 
simple kerosene lantern flame has been set up i n  f r o n t  o f  the FTIR spectro- 
meter and the absorption spectrum measured as a funct ion o f  height above 
the wick. 
I n  rough terms, the hydrocarbon concentration was greatest near the wick 
and decreased as the measurement region was moved up i n  the flame. There 
i s  sose ind icat ion o f  a change i n  the shape o f  the C-H band as a funct ion of 
posit ion, but t h i s  must be viewed wi th  caution because of the i r reproducible 
nature o f  the kerosene flame. 

-- - 

Figure 4 shows the absorption i n  the region o f  the C-H stretch. 

- 1  
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. 
Figure 4: The absorbance o f  a kerosene flame as  measured w i t h  

an FTIR spectrometer. 

Although the objective of these experiments was to  measure hydrocarbons, i t  
should be pointed out t h a t  the simpler molecules, such as CO, CO2,  H20, and 
perhaps even OH, were easily observed, even i n  the highly sooting parts of 
the flame. The dominant source of  noise i n  these experiments seemed t o  be 
flame fluctuations, not soot particles. I t  is  not anticipated that larger 
particles, such a s  pulverized coal, would present a serious measurement 
probl em. 

These experiments are being continued w i t h  the surface mixing burner pre- 
viously used i n  the Raman experiments; w i t h  propane a s  a fuel , it can be 
operated either as a sooting premixed or diffusion flame. 

Laser Absorption and Mass Spectroscopy of the OH Radical - R .  Cattolica 

A comparison of laser absorption and mass spectroscopy measurements on the 
concentration of the OH radical i n  atmospheric pressure flames hac been 
conducted i n  cooperation w i t h  Professor Eldon Knuth of the Department of 
Chemical , Thermal , and Nuclear Engineering a t  the University o f  California 
i n  Los Angeles. Using molecular beam mass-spectroscopy, Professor Knuth’s  
research group has made a systematic study o f  the effect of nozzle design 
characteristics on b o t h  stable and radical species concentrations i n  an 
atmospheric methane-air f l a t  flame. Complementary absorption measurements 
o f  the OH radical concentration profiles, using a tunable dye laser,  have 
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been completed a t  SNLL i n  the same type of flame under identical conditions. 
Temperature profiles through the flame were determined w i t h  a time-of-flight 
technique using the mass spectrometer a t  UCLA. Thermocouple measurements of 
the temperature profiles were taken a t  both UCLA and SNLL t o  insure that 
identical flames were used i n  the comparison. 

Preliminary results indicate t h a t  the time-of-fl i g h t  temperature measure- 
ment yields accurate results only i n  the post-flame gas region. 
perturbation of the temperature and OH concentration profiles through the 
flame transition zones indicated nozzle interference effects. 
research Peport on this  study is i n  preparation and w i l l  be presented a t  
the 1980 Fall meeting of the Western States Section of the Combustion 
Institute, University of Southern California, October 20-21, 1980. 

Substantial 

A jo in t  

The Role o f  the OH Radical i n  Catalytic Combustion - R. Cattolica 

In cooperation w i t h  the combustion research group (under  Dr. Frank Robben) 
a t  the Lawrence Berkeley Laboratory, a joint  experiment is being conducted 
on the role of the OH radical i n  catalytic combustion. 3r. Robert Schefer 
of LBL has brought a catalytic f l a t  plate experiment t o  S#LL t o  use the 
laser fluorescence capabilities for making OH concentration measurements 
of the OH radical i n  the laminar boundary layer o f  a lean hydrogen-air 
mixture flowing over a platinum surface heated to  130PK. Modeling of the 
combustion processes i n  t h i s  environment requires a knowledge o f  t h e  effect 
of the boundary conditions on the fa te  of the OH radical. M i t h  the results 
of the current investigations, Or. Schefer w i l l  be able t o  evaluate the 
use of various boundary conditions i n  h i s  numerical model o f  the experiment. 

Pmnorria/Oxygen flame Studies - R.  M. Green/J. A.  Miller 

Concentration profiles of the NH2 radical have been measured i n  rich, 
stoichimetric,  and lean prmixed NH3/O2 flames a t  low pressures us ing  laser 
absorption spectroscopy. 
mixing layer a t  t h e  boundary of the flame was creating an inhomogeneity 
i n  the laser optical path resulting i n  a n  unrealistically rapid decay of 
the measured translational temperature of the post-flame gases. These 
effects have been minimized through the use of a momentum-flux matched 
co-flow of nitrogen a t  the flame boundary. 
temperatures w i t h  radiation-corrected themocoupl e measurements (made we11 
away from the boundary of the flame) have verified the adequacy of the 
solution. 

I t  has been postulated that a large shear-induced 

Comparisons of t h e  translational 

The translational temperature distribution exhibited a problem i n  the in i t ia l  
data reduction. As one moved further downstream from t h e  burner i n  the past- 
flame region, the translational temperatures exhib i ted  an increasing amount 
o f  scatter which  quickly became unacceptable. Since the inferred NH2 con- 
centration was obtained from the integrated absorption coefficient and the 
temperature profile, the scatter i n  the temperature was transferred to the 
concentraticn profile. A careful consideration of the experimental absorp- 
tion spectra i l lustrates  the cause of the scatter i n  t h e  temperature data. 
In the post-flame region, where the NH2 &centration rapidly decreases t o  a 
low level, the absorption lines were quite weak i n  addition t o  being 

16 



broadened by a high temperature. As a resu l t ,  the absorption l i n e  p r o f i l e s  
were poor ly resolved thus reducing the precision o f  the data f i t t i n g  tech- 
nique which used these prof i les  t o  obtain a t rans lat ional  temperature. This 
problem was overcome by using the t rans lat ional  temperatures on ly  i n  the 
region close t o  tne burner i n  the react ion zone where NH2 concentrations were 
highest and precise f i t t i n g  o f  the pro f i les  was pcssible. I n  the post-flame 
region the thennocouple measurements were used t o  smooth the scattered trans- 
l a t i ona l  temperatures. The use o f  these "smeothed" temperature p r o f i l e s  i n  
the ca lcu lat ion o f  the NH2 concentration resul ted i n  concentration p r o f i l e s  
which exh ib i t  nearly no data scatter,  i l l u s t r a t i n g  the s e n s i t i v i t y  o f  the 
measured integrated absorption coe f f i c i en t  a t  a low Concentration o f  
absorbing spec i e s  . 
Figures 5, 6, and 7 i l l u s t r a t e  r e l a t i v e  Concentration and temperature pro- 
f i l e s  f o r  r i ch ,  stoichiometric, and lean NH3/O2 flames. Note tha t  the 
r e l a t i v e  concentration p lo t ted i n  the f igure i s  the product of the absolute 
mole f rac t i on  o f  NH2 and the o s c i l l a t o r  strength, f, o f  the t rans i t i on  used 
i n  obtajning the absorption spectra. Although f i s  not known, the r e l a t i v e  
p ro f i l es  s t i l l  contain valuable information. The shape o f  the p r o f i l e s  and 
the pos i t ion o f  the peaks are being used t o  v e r i f y  the adequacy of react ion 
mecnanisms through comparisons w i th  f la t - f lame code predict ions which are 
made using f i n i t e - r a t e  chemistry. 

NH,/O, FLAME MEASUREMENTS 
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W e 1  f o r  Diffusion-Control led Reduction o f  N i t r i c  Oxide by Amnonia - 
J .  A. Mil ler/R. J. Kee/M. C. Branch (Univ. o f  Colorado) - 
I n  order t o  understand the select ive reduct ion o f  n i t r i c  oxide by amnonia 
under non-homogeneous conditions, calculat ions have begun to model the 
experlments conducted by Banna a t  the Un ivers i ty  o f  Colorado. I n  these 
experiments, two co-flowing streams were mixed. The outer stream consists 
o f  post-flame combustion products containing superequil ibr ium NO d i l u t e d  
i n  argon. The inner stream contains ammonia d i l u ted  i n  argon. A5 they 
mix, reaction occurs between the NH3 and NO. I n  order t o  solve t h i s  problem, 
the d i f f us ion  flame model o f  Kee and M i l l e r  (transformed t o  stream funct ion 
coordinates, the t ransport  and chemical k ine t i cs  terms coupled, aitd pro- 
v i s ion  made f o r  including an outer w a l l  by including a pressure gradient 
term) has been modified and a version o f  the react ion mechanism o f  M i l l e r ,  
Granch, and Kee adopted. 

Figure 8 shows the r e s u l t  o f  a prel iminary ca lcu la t ion  f o r  NH3 decay along 
the center l ine o f  the co-flowing streams. The agreement i s  acceptable f o r  
a prel iminary calculat ion.  Bet ter  agreement can probably be obtained by a 
more precise speci f icat ion o f  condit ions a t  the burner e x i t  plane and by 
including a more complete react ion mechanism. An in te res t ing  po in t  t h a t  
comes out o f  these calculat ions i s  that  the optimum temperature f o r  NO 
reduction moves to  a higher temperature than cnaer homogeneous plug-flow 
conditions. 
react ion zone severly 1 i m i  t s  the chain branching mechanisms. 

The a b i l i t y  o f  chain ca r r i e rs  t o  d i f f use  away from the ac t i ve  

I I 1 I I I I I 
0.2 0.4 0.6 0.6 1.0 1.2 1.4 ‘1.6 

A x i a l  D i s t a n c e  (cm) 

Figure 8: A ca lcu lat ion o f  [NH3] along the center l ine  o f  a 
co-flowing stream o f  NO and NH3. 
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Confined Axisymetric Turbulent Jet - R. E. Mitchell 

The k-E model of turbulence was checked for i ts  internal consistency and it 
was found t h a t  two of the "empirical constants," Ccl and C , must sat isfy 
prescribed relations. The k-E model i s  given by €2  

where the turbulent viscosity is  defined as  

The f ive constants i n  the model (Cp, CJ , aE, CEl, and CEZ) were determined 

are, 
by comparisons of experiment and calcu I( a t ion .  Values recotmended by Launder 

= 0.09 ak = 1.0 a& = 1.3 C = 1.45 C = 1.92 
cl.i E1 E 2  

Satisfactory predictions has been reported for a variety of  boundary layer 
type flows when these values are used. The values cannot be considered t o  
be universal constants for  i t  i s  necessary t o  modify two o f  these (C and 

Equation (3) can be rearranged t o  give 

C ) when considering the round j e t .  v 
E2 

(4) E = Cp pk2/p (t) . 
Ct) 

Using this equation, V-  (pie) and V- (%Vt) can be determined as functjons 
of V- (pck), Vu(t), V-Vu(t), and V-Vk. The terms V- (p6k) and V-Vk can be 
eliminated by employing Eq. (1). By forming the expression V* [@E - 
p(t)vE)using the functions derived, comparison w i t h  Eq. (2) indicates tha t  
a€ 

c = 2.0 
E2 

and 
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Using this expression for CEl adds no more complexity t o  the k-c model of 
turbulence, since Eqs. ( l ) ,  (2 ) ,  and (3) must be solved simultaneously irre- 
spective of the value of CEl used. 

The k-s model o f  turbulence can t h u s  be considered to consist o f  only three 
empirical constants: C,, ak, and og. CE2 and CEr are  given by Eqs. (5 )  and 
(6)  above. Tests are presently underway t o  determine values of C,, ak, and 
oE which can be used for  a l l  flow situations. 

i )  

Turbulent Diffusion Flame Facility (TDFF) - G. 0. Rambach 

The Turbulent Diffusion Flame Facility is currently configured t o  accomno- 
date mixtures of hydrogen and gas phase methanol. The mixtures a re  required 
t o  satisfy the requirements of a Rayleigh scattering temperature measurement 
for diffusion flames. For the proper fraction of methanol i n  hydrogen, the 
Rayleigh scattering cross section is essentially the same for t h e  reactants 
and products, yielding a simple measurement of temperature. 
appropriate meghanol fraction i n  the fuel corresponds t o  a saturation tem- 
perature of 40 C, the hydrogen was bubbled through a volume of l i q u i d  
methanol heated t o  the correc& temperature. A l l  the downstream fuel pfumb- 
ing was heated t o  a t  least  50 C t o  avoid condensation o f  the methanol before 
injection into the t e s t  section. 

Since the 

The cyclone seeder previously uaed t o  i n j e c t  particles in to  the hydrogen 
fuel j e t  was heated t o  about 60 C t o  permit seeding of t h e  methanof/hydrogen 
mixture w i t h  A1203 particles without them acting a s  condensation s i t e s .  
However, since the fuel mixture was used t o  scavenge the particles from a 
packed bed, the large hydroscopic surface area o f  particles exposed t o  the 
fuel appeared to preferentially absorb enough methanol to  a l t e r  i t s  concen- 
tration and the Reynolds number of the fuel j e t .  After a short period o f  
operation, dispersion of the particles i n  the seeder was not possible. 
problem of seeding the fuel j e t  w i l l  soon be circumvented w i t h  the use of 
an evaporator that  injects methanol into a hot, preseeded hydrogen stream. 

T h i s  

The two color LDV receiving optics have been r e t ro f i t  w i t h  improved lenses 
w h i c h  increased the signal-to-noise i n  the present configuration from two 
to about ten. Two-component velocity measurements i n  a CH3OH/H2 t u r b u l e n t  
diffusion flame have been initiated along the same radial traverses as 
previous Rayleigh temperature measurements. 
injected into the a i r  side, b u t  the measurements are  being taken f a r  enough 
downstream that  a complete radial traverse can be made. Turbulent flames 
w i t h  j e t  Reynolds numbers of 5000 and 8000 are  being investigated. 

The LDV seed is  only being 

The FORTRAN program for data collection and reduction on the PDP 11/34 has 
been extended to transfer the raw data for 3000 measurements of U i p  V i ,  and 
ti  t o  a disc f i l e  for  each spatial location. The raw data is  stored i n  a 
fashion that i s  compatible w i t h  the CDC 6600 t o  minintize transfer time to  
magnetic tape. 

A Schlieren system has been fabricated for the TDFF that will be used for 
h i g h  speed movies of turbulent flames. The Schlieren system should give 
better resblution of the flame structure and represent the location of the 
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flame boundary more accurately than the shadowgraph system used i n  e a r l i e r  
experiments. The Schlieren movies w i l l  be compared wi th ve loc i t y  and tem- 
perature measurements t o  improve the understanding o f  the processes tha t  
occur i n  these flames and t o  help def ine the types and methods o f  experi- 
ments t o  be used i n  the future.  

Turbulent Reacting Flow Studies - R. W. Silger/R. W. Dibble 

Professor R. W .  Bi lge r  o f  the Department o f  Mechanical Engineering, Uni- 
ve rs i t y  o f  Sydney, Austral ia, has been v i s i t i n g  f o r  three months. Turbulent 
d i f f us ion  flame problems have been the  centra l  top ic  o f  d iscission. Plans 
f o r  the new turbulence/chanistry in te rac t ion  studies laboratory i n  the 
f a c i l i t y  have received considerable at tent ion.  The Sydney Un ivers i ty  compu- 
t e r  code f o r  turbulent  d i f f us ion  flames has been modified f o r  use on the 
Sandia computer and has been used t o  predic t  ce r ta in  o f  the flames measured 
a t  Sandia. 
has been developed and an experiment designed t o  t e s t  the theory by using 
Rayleigh scatter ing from a j e t  o f  propane and hydrogen mixing i n  a i r ;  a 
prel iminary experiment has yielded encouraging resul ts .  
been used t o  p red ic t  molecular t ransport  e f fec ts  i n  the m i l d l y  tu rbu len t  
d i f fus ion flame o f  Lapp and Drake a t  GE i n  Schenectady wi th  good agreement. 
The large e f fec ts  on temperature and composition found i n  these experiments 
can now be avoided i n  the design o f  experiments t o  elucidate turbulent /  
k ine t ics  interact ions.  Professor B i l ge r  a lso gave a ser ies o f  seminars on 
turbulent-non-premixed combustion. 

A theory f o r  d i f f e r e n t i a l  d i f f us ion  due t o  molecular t ranspor t  

The theory has a lso 

MOLECULAR PHYSICS AND SPECTROSCOPY 

Observation o f  an Optical Stark E f fec t  on Vibrationa! and Rotational 
Transit ions - L. A. Rahn/R. L. Farrow/M. L. Koszykowski/P. 1. Matt& - 
The f i r s t  observation o f  s h i f t s  i n  molecular ro ta t iona l  and v ib ra t i ona l  
frequencies induced by an opt ica l  f i e l d  has been observed; the f i e l d  was no t  
resonant w i th  molecular t rans i t i on  frequencies. The Stark s h i f t s  o f  ro ta-  
t i ona l  t rans i t ions  i n  polar cules have been studied extensively using 
low frequency appl ied f i e l d s y l f  Stark s h i f t  f v ibrat ional  frequencies 
dr iven near resonance have been investigated, t2y but s h i f t s  due t o  the 
presence of nonresonant op t ica l  f i e l d s  have not  been reported previously.  

I n  the experiments described here, a frequency s h i f t  o f  the S(3) ro ta t i ona l  
t rans i t i on  i n  molecular hydrogen was observed i n  coherent anti-Stokes Raman 
scat ter ing (CARS). The spectra was obtained from a sample volume i r rad ia ted  
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by the focused output o f  a pulsed 1.06 rn Nd:YAG laser .  A s h i f t  o f  0.12 cm-l 
t o  lower frequency i s  measured f o r  the data shown i n  Fig. 9 f o r  the perturbed 

were obtained using a high-resolution (0.1 - 0.2 cm-I), time-averaged, 
crossed-beam CARS apparatus. Spat ia l  resolut ion was obtained by crossing 

sected a probe laser beam contained i n  the ve r t i ca l  plane. For each data 
point, 50 single-shot measurements were d ig i t i zed ,  normalized, and averaged. 
The perturbing opt ica l  f i e l d  was provided &y the 1.06 rn output (" infrared" 
beam) o f  the 'Q'-switched Nd:YAG laser.  By blocking a l te rna te  in f ra red  
laser  pulses w i th  a 5 Hz chopper, perturbed and unperturbed spectra were 
averaged simul taneouslj-. This process essent ia l l y  e l iminated wavelength 
uncertaint ies between the two spectra. As a r e s u l t  of the spat ia l  and 
temporal resolut ion of the CARS experiment, r e l a t i v e l y  small var ia t ions i n  
the high power infrared f i e l d  i n tens i t y  occurred dur ing the generation o f  
the CARS signal. For the measurements o f  Fig. 9, the i n f ra red  laser  pulse 
energy was t y p i c a l l y  e 0 0  mJ, measured a f t e r  the focusing lens, and the 
probe and pump laser pulse energies were 0.4 mJ and 3 mJ, respect ively.  
CARS experiments have also been performed i n  which the Stark s h i f t  i s  caused 
by a high power pump laser. Asymmetrically broadened line-shapes i n  both 
v ibrat ional  and rotat ional  spectra were observed, presumably due t o  gradients 
i n  the op t ica l  f i e l d  o f  the pump laser.  

. spectrum (crosses) compared t o  the unperturbed spectrum (c i rc les) .  

two focused 532.0 nm pump beams i n  the horizontal plane such t h a t  they i n t e r -  

The data 

.I 

The observed frequency s h i f t s  are interpreted by considering the coup1 ing  o f  
the op t ica l  f i e l d  t o  the molecule v ia  the var ia t ion  o f  the e lect ron ic  
p o l a r i z a b i l i t y  w i th  internuclear separation. The primary e f f e c t  o f  the 
perturbat ion i s  t o  increase the equi l ibr ium internuclear spacing, qe. The 

i n  the moment of iner t ia ,  and i s  given t o  f i r s t  order by 

. - 

0 theoret ica l  change i n  ro tat ional  frequency can be calculated from the change 

where 4 i s  the unperturbed frequency, Eo i s  the f i e l d  amplitude, a i s  the 
p o l a r i z a b i l i t y  (assumed t o  be isot rop ic) ,  and 2D B2 i s  the harmonic force 
constant f o r  a Morse osc i l l a to r .  The vibrationaf! frequency s h i f t  i s  calcu- 
l a t e d  from the change i n  the harmonic force constant, and i s  given t o  f i r s t  
order for the ground state by 

n 

c 
where 4 i s  the unperturbed v ib ra t  
been compared w i t h  exact numerical 
Schroedinger equation; less than a 
f i e l d s  up t o  1013 W/cm2. . 
An 
PU 
va 

onal frequency. These expressions have 
solut ions o f  the t ime independent 
f i v e  percent e r ro r  was found f o r  H2 with 

estimate of the peak in tens i ty  1 ue t o  the 200 

ue and a p o l a r i z a b i l i t y  der iva t ive  for  H2 o f  

m Q-switched 
se used i n  the experiment indicates 8(H) x 10 
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rotational shift is -0.11(_+.05) cm-'. Thus, the observed -0.12 em-' line- 
shift is consistent w i t h  the calculation. The observed shift is an order 
of magnitude larger t h a n  the estimated collisional width o f  hydrogen a t  one 
atmosphere. A consideration of t h i s  Stark s h i f t  i s  important for high 
resolution laser spectroscopy, even a t  much lower power densities. I t  is 
anticipated that  this perturbation will also be important  i n  some infrared 
laser photolysis experiments and the i r  application to  isotope separation. 
Finally, experiments are i n  progress to  demonstrate spatially-resolved 
icfrared absorption u t i l i z i n g  this form of Stark effect  to  modulate the 
absorption frequency o f  a m n i a .  
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transition o f  molecular hydrogen. The sol id  and dashed 
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K inet ics o f  Soot Precursers by XUV Spectroscopy - R. W. Schmieder 

The spectrum o f  v i s i b l e  fluorescence from acetylene gas (C2H2) i r rad ia ted  
w i t h  XUV photons has been recorded f o r  the f i r s t  time. Figure IO shows a 
typ ica l  spectrum obtained i n  a s ingle scan of 
source was a microwave discharge i n  Ne a t  300 
X73.6 MI l i n e .  The fluorescence from C2H2 a t  
a 1/4-m monochromator and detected w i th  a coo 
The spectral resolut ion was about 1 nm. 

2 hours' duration. The XUV 
mforr, which provided the  Ne1 
600 mTorr was dispersed w i t h  
ed EM1 6256 phatomul t ip1 ier.  

The spectra show the  Swan bands o f  C2 including the dv = -1, 0, +1 sequence 
and two bands o f  CH, the blue-violet  (A  2A - X 2n) w i t h  the head a t  4315 ma, 
and the near u l t r a v i o l e t  (B2C- - X 2n) band. 

The energy o f  the Ne l i n e  (16.8 eV) i s  j u s t  below the appearance potent ia l  
f o r  the ethynyl i on  (C2H+) which may be a precursor o f  C p  and CH. Future 
e f f o r t s  w i l l  be made t o  observe a possible change i n  these spectra asso- 
c ia ted w i th  t h i s  threshold. 

FLUOREESCENT INTENSITY FBOY CIHt (78.2 nm INCIDBNT) - C2 I 7  CH- 
Bran Bandr 
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Figure 10: Fluorescence spectrum i n  the v i s i b l e  from acetylene 
i r rad ia ted  by VUV rad iat ion (73.6 nm). 

High Temperature Raman Measurements o f  GO, and H,O - 0. A. Stephenson 

The high temperature measurements o f  the Raman spectra o f  C02 and H20 have 
been completed. The observed spectra confirmed the theoret ica l  models used 
t o  predic t  these spectra. 
harmonic o s c i l l a t o r - r i g i d  ro to r  p a r t i t i o n  functions can be used, even a t  
temperatures as high as 2100 K. 

I n  par t icu lar ,  i t  was found tha t  the simple 

The spectra were measured i n  the hot post-flame gases o f  the surface mixing 
burner described previously. The oxidant was a 2:1 mixture o f  N2 and 02 t o  
insure lean operation even a t  h igh flame temperatures. The temperature was 
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adjusted pr imar i ly  by varying the input methane flow; however, t o  obtain the 
lowest temperatures i t  was necessary t o  ex t rac t  heat with metal screens above 
the flame, but below the measurement region. 
laser and gated CAMAC electronics minimized the observed background 1mi- 
nos i t y  from the flame. 

The r a p i d l y  pulsed Nd:YA6 

Figure 11 shows the amount of product ( C o p  o r  Hp0) measured i n  the flame 
divided by the amount of fue l  as functions o f  temperature. The r a t i o s  o f  
both the products and the fue l  r e l a t i v e  t o  nitrogen were used i n  order to 
avoid ca l i b ra t i on  problems. S imi lar ly  the absolute values o f  the products 
have been normalized; i t  i s  only the temperature dependence tha t  i s  o f  
i n t e r e s t  here. The resu l t s  show no discernible trend with temperature, nor 
i s  there any s i  n i f i c a n t  dif ference between the data taken wi th  the nitrogen 
sh ie ld  (squares '3 from those taken with argon sh ie ld  ( c i r c les ) .  
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Figure 11: The normalized concentrations o f  CO and H20 measured 
i n  the postflame gases o f  a Np/Op/C& flame. The 
mixture was lean i n  a l l  cases so tha t  the CH4 should 
go over quant i ta t ive ly  t o  Cop and H20 independent of 
temperature, as the measurements confirm. 
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On Correlat ion Functions and Normal Modes - M. L. Koszykowski 

I n  unimolecular reactions, chemical ac t i va t i on  experiments, i n f ra red  mu1 ti- 
photon dissociat ion, and v ibrat ional  spectroscopy, a bond (or group o f  
bonds) i s  v i b ra t i ona l l y  excited by co l l i s i on ,  chemical reaction, o r  op t ica l  
radiat ion.  The r a t e  a t  which t h i s  energy i s  t ransferred t o  other bonds and 
t o  other molecules i s  of in te res t  i n  regard t o  the i n te rp re ta t i on  o f  chemical 
reactions. I t  i s  o f ten  assumed i n  react ion r a t e  theory tha t  the intramolec- 
u l a r  re laxat ion occurs on a time scale shor t  compared w i t h  the mean time f o r  
subsequent react ion o f  the molecule. It has been demonstrated t h a t  moments 
o f  corre la t ion functions1 accurately describe intermolecular re laxa t ion  and 
spectroscopic 1 inewidths. This repor t  documents p re l  i a ina ry  r e s u l t s  o f  an 
invest igat ion o f  intramolecular re1 axation. 

The Hamiltonian used i s  

Y 

which represents two normal modes w i th  nonlinear coupling. 
funct ion i s  defined as 

The co r re la t i on  

C ( t )  = <Ex(0)Ex(t)> , 

where E x ( t )  i s  the energy i n  the x mode a t  t (t = 0 i s  the t ime o f  exc i ta-  
t i on ) .  I f  the normal coordinates are a "good" representation, the corre la-  
t i o n  function should be constant, and s t a t i s t i c a l  react ion theor ies w i l l  
not  be va l id .  On the other hand, i f  there i s  t o t a l  re laxat ion,  one should 
f i n d  

e 

7 2 C(=) = <C(O)C(=)> = cC>' = 3/4 and C(0) = <C > = 1 . 
I n  th isxase,  C ( t )  w i l l  decay from 1.0 t o  3/4. This r e s u l t  i s  p rec ise ly  
what i s  fourtd using a cor re la t ion  f i inct ion approach i n  Fig. 12. I n  t h i s  
analysis the re laxat ion time i s  related t o  an energy d i f f u s i o n  t ime and may 
be useful i n  br idging the gap between Slater 's  unimolecular reac t ion  theory 
(normal modes) and RRKM theory ( t o t a l l y  random energy d i s t r i bu t i ons ) .  This 
re laxat ion w i l l  also g ive r i s e  t o  in te res t ing  lineshapes o f  reac t ion  i n t e r -  
mediates. The appl icat ion of these cor re la t ion  funct ion techniques t o  H20 
and the loca l  model-normal mode question i s  being pursued. 
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Figure 12: Normal coordinate cor re la t ion  function a) f o r  a "good" 
coordinate b) a mode showing vibrat ional  re laxat ion.  

DIAGNOSTICS RESEARCH 

Two-Line Laser Excited Fluorescence Temperature Measurem$nt - R. Cattol ica 

A temperature measurement technique using two-1 ine laser excited f luores- 
cence (LEF) has been developed. The ro ta t i ona l  temperature o f  t he  OH 
molecule has been measured using t h i s  method. The approach consists o f  
exc i t i ng  two d i f f e r e n t  ro tat ional  v i  bronic t rans i t i ons  from the ground state 
t o  a c o m n  excS ted rotat ional  v i  bronic state. The resul tSng fluorescence 
i s  monitored and the ra t i o ,  R, o f  the resu l t i ng  emissions formed. 
13 i l l u s t r a t e s  the laser fluorescence p r o f i l e s  across a methane-air (d = 1.0) 
f lat-f lame. The aspmetry o f  the fluorescence profi:es indicates the 
e f f e c t  o f  rad ia t i on  trapping. The fluorescence r a t i o ,  however, i s  indepen- 
dent o f  the fluorescence trapping. This r a t i o ,  R, i s  a lso independent o f  
quenching and any non-equil ibrium population distrSbGtion i n  the excited 
state. This l a t t e r  e f f e c t  also makes i t  independent o f  t he  spectral band- 
width of the detection system. The ro ta t i ona l  temperature, Tr, can be 
eas i l y  calculated from the re la t ionship 

Figure 
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where AE i s  the energy level  d i f ference between ro ta t i ona l  states ( I )  and 
(14) i n  the X211(v” = 0) ground state o f  the OH molecule. The degeneracies 
g1 and 910 of the two ground states and the Einstein c o e f f i c i e n t  for absorp- 
t i o n  t o  the rotat ional  state (2) i n  the A2C(v’ = 0) s ta te  are known f o r  the 
OH molecule. The temperature f luctuat ions i n  Fig. 13 are consistent w i t h  
the Poisson s t a t i s t i c a l  character o f  the fluorescence i n t e n s i t y  measure- 
ments. The s e n s i t i v i t y  o f  the inferred temperature t o  the r a t i o  o f  the 
fluorescence in tens i t i es  can be determined by using higher ro ta t i ona l  l eve l s  
o r  by pumping from two d i f f e r e n t  v ibrat ional  levels i n  the ground e lec t ron ic  
state. A detai led discussion o f  t h i s  techniaue including conclusions w i tn  
regard to  the p o s s i b i l i t y  of temperature measurements i n  turbulent combustion 
environments can be found i n  a Sandia report (SAND79-8831). 

OH TWO-LI NE LASER FLUORESCENCE TEMFERATURE 
I N  A METHANE-AIR FLAT FLAME 

I t 

Figure 13: Two-line laser excited fluorescence (LEF) temperature 
p r o f i l e  o f  the OH molecule 2 mn above a methane-air 
f l a t  f lame burner. The Q21(9) and Szi(7) t r ans i t i ons  
were excited w i th  a tunable dye laser  operating i n  the 
u l t r a v i o l e t  (%300 nm). Also shuwri i s  a thermocouple 
p r o f i l e  taken a t  the same posit ion. 
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Scattered L igh t  - Free Combustion Kinet ics - F. P. f u l l y  

Chenical react ion r a t e  data a t  temperatures relevant t o  combustion have been 
obtained almost exclusively through ind i rec t  methods, such as the k ine t i c  
fimdeling o f  experimental measurements on complex react ive systems. Sequences 
o f  react ion schemes wi th  parameterized ra te  coe f f i c i en ts  are used t o  i t e r a -  
t i v e l y  reproduce the measured concentration p r o f i l e s  and/or product y ie lds .  

I n  contrast, d i r e c t  studies which monitor reactant disappearance o r  product 
formation i n  iso la ted elementary reactions have been scarce a t  temperatures 
above 50OK. The most promising technique o f  making unambiguous d i r e c t  
k i n e t i c  measurements o f  elementary reactions a t  temperatures as high as 
1800K i s  the laser  photolysis - laser  induced fluorescence method. B r ie f l y ,  
a homogeneous gas-phase react ion i s  i n i t i a t e d  by a short  durat ion laser  
photolysis pulse. 
species are followed v ia  time-resolved e lect ron ic  absorption o r  fluorescence. 
However, absorption measurements are f requent ly plagued by the d e t e c t i v i t y  
requirement o f  large rad ica l  concentrations, which encourage secondary 
reactions. 
t o  discr iminate between fluorescence o f  t rans ient  species and the scattered 
l i g h t  signal from the cw exc i t ing  beam. 

The r a t e  o f  decay o r  growth o f  the resu l tan t  t rans ien t  

Fluorescence experiments are t y p i c a l l y  l i m i t e d  by the a b i l i t y  

The f i r s t  allowed electronic t rans i t ions  f o r  a large number o f  important 
combustion intermedietes are located i n  the u l  t r a - v i o l e t  a t  wavelengths 
inaccessible t o  conventional cw dye lasers. Exc i ta t ion laser  probes f o r  
e f f i c i e n t  k ine t ic  studies o f  the reactions o f  species such as OH, NH, CH3, 
CN, SH, SO, S p . ,  etc., do not ex is t .  This repor t  sumnarites the resu l t s  o f  
a f e a s i b i l i t y  study t o  develop uv sources appropriate f o r  combustion-related 
fluorescence experiments. 

. 

The use o f  a mode-locked, cavi ty-dumped , synchronous1 y-pumped picosecofid 
dye laser  system as an exc i ta t ion  source has been investigated. Calcula- 
t i ons  and measurements demonstrate a var ie ty  o f  in te res t ing  features : 

1) The second harmonic power generation varies as the square o f  the 
laser power a t  the fundamental wavelength. 
generate f a r  greater peak power densi t ies than those obtainable 
cw. Calculations pred ic t  t h a t  second harmonic conversion e f f i -  
ciencies i n  excess o f  10% are feasible.  The photon f l u x  thus 
obtainable exceeds tha t  from a conventional resonance lamp by 
a factor  o f  3-10. 

Pico-second pul ses 

2) The laser  pulse r e p e t i t i o n  r a t e  i n  the cavity-dumped configuration 
i s  t y p i c a l l y  ~1 M H t .  Given the time scale on which the chemistry 
i s  proceeding (Q 1 msec), t h i s  rap id pulsing i s  equivalent t o  a 
cw probe f o r  the experiment. Thus, cont r ibut ions to a complete 
decay curve may be signal averaged f o r  each photolysis pulse; 
i n i t i a t i n g  pulse power var ia t ions can be ignored. 

3) Under the conditions o f  a typ ica l  experiment, the  f luorescent 
l i f e t imes  o f  the emi t t ing t rans ient  species range from 50-500 nsec. 
Running the cavity-dumper o t  a 1 MHz r e p e t i t i o n  r a t e  and t r i gge r ing  
off each probe pulse, i t  i s  possible t o  use gat ing techniques t o  
discriminate against scattered 1 i g h t  coming from the picosecond 
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excitation probe pulse. Experimental measurements have shown tha t  
the product of the laser pulse duration and the spectral l i newid th  
of the visible laser output is approximately Fourier transform 
limited, i.e., a 10 ps pulse possesses a frequency spread of 
% 45 GHz. Computer calculations performed a t  SNL and plotted i q  
Fig. 14 demonstrate that  the typical laser output l inewidth is 
smaller than the efficiently phase-matched frequency bandwidths of 
two prominent non-linear crystals throughout their entire tempera- 
ture tuning  range. Relatively h i g h  second harmonic generation 
efficiencies are thus assured. Currently, a pico-second laser  
system optimized for the detection and characterization of OH i s  
being designed. 

100 

50 

-Loo -M 0 K) 100 

CRYSTAL TEMRATURE ('C) 

Figure 14: The frequency bandwidth of KDP and ADP crystals as 
a function o f  crystal temperature. 
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