
SAND80-206 1
Unlimited Release I

n + . t . - .

Issued by Sandia Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

~

NOTICE

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States nor
the Department of Energy, nor any of their employees, nor
any of their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness or
usefulness of any information, apparatus, product or process
disclosed, or represents that i t s use would not infringe
privately owned rights.

SF 1004-DF(11-771

P r i n t e d i n t h e United S t a t e s of America

Ava i l ab le from
Nat iona l Technica l Informat ion S e r v i c e
U.S. Department of Commerce
5285 P o r t Royal Road
S p r i n g f i e l d , VA 2 2 1 6 1

Pr ice : P r i n t e d Copy $ 5 . 0 0 ; Microf iche A 0 1

SAND80-2061

ALGEBRA - A COMPUTER PROGRAM THAT ALGEBRAICALLY
MANIPULATES FINITE ELEMENT OUTPUT DATA*

M. A. Richgels
J. H. Biffle

Sandia National Laboratories**
Albuquerque, New Mexico 87185

ABSTRACT

ALGEBRA is a program that allows the user to process output

data from finite-element analysis codes before they are sent to

plotting routines. These data take the form of variable values

(stress, strain, and velocity components, etc.) on a tape that

is both the output tape from the analyses code and the input

tape to ALGEBRA. The ALGEBRA code evaluates functions of these

data and writes the function values on an output tape that can

be used as input to plotting routines. Convenient input format

and error detection capabilities aid the user in providing

ALGEBRA with the functions to be evaluated.

* This work was supported the the U. S. Department of Energy
(DOE). Contract AT(29-1) -789

**A U. S. DOE Facility

3

ACKNOWLEDGEMENTS

We would like to acknowledge Prof. A. F. Emery of the

Department of Mechanical Engineering, University of

Washington. His ALGEBRA program was the basis of this

program. We would also like to acknowledge Zelma E. Beisinger

of Sandia National Laboratories for her aid and routines MATCH

and PACK.

4

ALBEGRA - A Computer Program that Algebraically Manipulates
Finite Element Output Data.

1. INTRODUCTION

ALGEBRA is a program which allows the user to have more
specific control over finite element data sent to plotting
routines such as CNTR, TPLOT2, DETOUR and DMESH. The program
uses an output data tape from an analysis code as the input
tape to calculate new data from algebraic expressions, given by
the user, and writes the results of the calculations to a new
output tape to be processed by, for example, TPLOT2.

A new flexible data format described in the Appendix is
used which allows the names of special functions to be sent to
the plot programs from the ALGEBRA code.

With the algebraic evaluations performed by ALGEBRA,
special functions such as principal values, effective stress,
or pressure that are not evaluated by an analysis code can be
written to the new output tape for plotting. ALGEBRA offers
all the FORTRAN operations and functions plus TMAG, PMAX, and
PMIN as special functions.

Three types of variables are defined; global, element, and
nodal. Global values are any scalar quantities representative
of the system as a whole, e.g., its total energy, which are
output from the analysis code at each time step. An element
quantity has a value for every element of the finite element
analysis at each time step, e.g., the stress in the
X-direction. A nodal variable has a value for every node of
the mesh at each time step, e.g., the displacement in the
X-direc t ion.

Algebraic expressions to be evaluated in ALGEBRA may depend
on any of the variables from its input tape. These variables
include the coordinate values, the time step value, called
TIME, and the values of any node, element or global variables
calculated by the analysis code. Coordinate values are treated
as nodal values. Global, element, or nodal values are created
on the ALGEBRA code output tape, depending on the types of
variables which appear on the right-hand side of the algebraic
expression being evaluated. Quantities evaluated at specific
elements or nodes can be used in an expression by appending the
element or nodal number to the mnemonic which describes the
quantity, (SIGRS123).

5

2. USER INSTRUCTIONS

2.1 EQUATION INPUT

Algebraic syntax of the equations is very similiar to
FORTRAN equation syntax. There are a few restrictions which
should be stressed:

- variable names are from 1 to 10 alphanumeric characters
long and must have a letter as the first character.

- the 80 column card is free formatted (blanks are
delimiters)

- 1st item (or entry) of the card must be a variable
- 2nd item must be an = sigq.

- to include a sign with a variable or constant, use parens
(i.e., 6 + -5 is illegal, 6 + (-5) is legal).

- any algebraic error found will be pointed out with an
error message and the equation in which it appears will
be ignored. Any later errors will stop the program.

- last input card is an END card, starting in col. 1.
- a maximum of 20 legal equations is allowed.
The syntax of the variables is just as important as the

algebraic syntax. The variable type of the written variable
will depend on the expression.
constants and/or global variables, the written variable is
global. If a vector is found in an expression, the variable
type (element or nodal) will be the same as the vector found.
There cannot be an element vector and a nodal vector in the
same equation.

If an expression has only

2.2 VARIABLES

Assigned variables, those variable names which appear on
the left hand side of the equation, can be any 10 alphanumeric
characters (A-Z, 0-9) as long as the first character is a
letter. All assigned variables will be written to the output
tape.

Tape variables, those variable names used in the equations
which are read from the input tape, cannot have embedded
blanks. If a specific node or element quantity is desired, a $
sign and the specific quantity number is appended to the
variable name. For example SIGR$BO refers to the 40th quantity
value of SIGR. The specific number must be an integer value.

6

2.3 CONSTANTS

An equation constant can be integer or real. The
exponential format is also allowed, (e.g., 5E-03). If a sign
is used with the constant, remember to put parenthesis around
the sign and the constant.

2.4 OPERATORS AVAILABLE

The legal operations are addition (+) , subtraction (-) ,
multiplication (*) I division (/) , and exponentiation (* *) .
Exponentiation is the only legal double operator. If a sign is
desired with a constant, variable, or function, a set of
parenthesis are needed. For example

A = +5* - SIN(0.5)
should be written as

with the parenthesis around the +5 as optional.

2.5 FUNCTIONS AVAILABLE

All functions must have all of their parameters specified.
If certain parameters are to be left out, put a zero in that
parameter position of the function.

The one-parameter functions are:
SIN,COS,SQRT,LOG,TAN,ASIN,ACOS,ATAN, and EXP. The FORTRAN
restrictions of these functions apply.

Three special functions have been included in the code to
calculate the minimum and maximum principal values of a
symmetric tensor and the magnitude of a symmetric tensor. The
maximum and minimum principal values of a tensor are obtained
with the functions PMAX and PMIN, respectively. For example,
for a tensor, T,

For a two-dimensional tensor or a tensor using cylindrical
coordinates for an axisymmetric solution, T33, T23, and
T31, may be set equal to zero.

For the magnitude of a tensor T, the function TMAG is used
as

7

where the

TMAG =

following calculation i s made.

+ 6(T12 2 + T23 2 + T312)]1'2

For example, if the value of the von Mises stress is wanted,
the value supplied by the function TMAG must be multiplied by
the constant 1.0/ 2.

The parameters for the three functions may be algebraic
expressions and all six must be supplied even though some may
be zero.
value of the effective strain is needed, then

For example, if engineering strains are known and the

2.6 CARDS

If ALGEBRA
to be run,

NEEDED TO RUN ALGEBRA.

is run by itself, or the first of several programs
the job cards that are necessary are:

ATTACH,FXMATH,FXMATH.
LIBRARY,FXMATH.
ATTACH,tapename,your input tape.

ALG(,,,tapename,newtapename)
ATTACH,ALG,ALGEBRAo

Tapename is the output tape of the analysis code and the input
tape for ALGEBRA.

The newtapename is the output tape created by ALGEBRA.

The tape defaults are TAPE1 for input (tapename)
output (newtapename).

and TAPE2 for

If ALGEBRA is executed after another program, the ATTACH of the
input tape may be left out.

8

3 . THE OUTPUT

When no errors are found, the output will look like that
shown in the example in Figure 1. If an algebraic error is
found, the equation is reproduced with an error message(s)
printed beneath it, the equation is then ignored, and the
program continues processing the rest of the data cards. Most
error messages are self explanatory. To aid the user in
remedial action, a list of the errors and appropriate action is
given.

If ALGEBRA enters its evaluation loop, that section of the
program that evaluates the expressions for each time step, the
output tape is complete. If an error is discovered during this
loop, the program stops with as much correct information
written to the output tape as possible. The error messages are
to aid the user in discovering why the program halted. An
end-of-file error message means the output tape is as complete
as it can be with the given input tape.

9

ALGEBRA

R U L

1.

-

2.

3.

4.

5.

6. -

r . -

8. -
9. -

10.

11.

. ,
E S F O R E Q U A T I O N S

ANY 'VARILBLE ON T k E LEFT HAND S I D E OF AN EQUATION* AN ASSISNEO VARIABLE* MILL BE W I T T E N '

TO THE NEY TAPE.

ANY VARIABLE W A Y APPEAR I N AN EXPRESSIONI THE RIGHT HAND S I D E OF AN EPUATIONr AS LON6 AS
I T IS A VARIABLE FROW THE INPUT TAPE OR A PREVIOUSLY ASSIGNED VARIABLE.

A D I S T I N C T I O N IS WADE BETYEEN VECTOR AN0 SCALAR VARIABLES. IF A SCALAR IS OESIREDI BE
SURE TC QUALIFY I T PROPERLY- (E.6. 'SI6Rt4O' VERSUS *SIGR*)

I F AN EXPRESSION CONTAINS ALL SCALARS* OR Y I T H A COMBINATION O F SCALARS AND GLOBAL
VARIABLES. THE ASSI6NED VARIABLE BECOMES A 6LOBAL VARIABlrE-

I F ANY ONE VARIABLE I N AN EXPRESSION IS A VECTORI TME ASSII6NED VARIABLE IS ALSO A VECTOR.

ALL v E c i o R s IN AN EXPRESSION nus1 BE TME SAM TYPE - ALL , O W L an ALL ELEMENTS.

TME FUNCTIONS AVAILABLE ARE; SIN* cosI saRTI LOG* TAN* ASIN. A C O S ~ ATAN* E m T W A G *
PIIAXs ANC PWIN.

EACH EPUATION RUST HAVE AN ASSIGNED V A R I A E l E r 111 EPUAL SIGN* A I 0 A11 EXPIIESSIOMR.
ONE E P U A l I O N TO A CARD.

IF AN ALGEBRAIC ERROR IS FOUND I N AN EPUATIOM* TMAT EPUATION IS IUIOREO.
ANY OTHER ERROR TERMINATES THE RUN-

UPTO 20 m m x a s ARE ALLOYED. IF umt DESIREO* COWACT n. IIRHCELS.

THE LAST INPUT CARD SHOULD BE AN *END* CARD S T M T I W G I N COLUUN 1-

2
644
488

4
1
6
B
4
8
0
0

STORAEE A V A I L L I L E I N STORAGE ARRAY A (IIAXA)----- 600
STORllOE llEEU€b FOR YORUING ARRATS ------------- 43
UNUSED STOUACE (AOJ(ISTE0 INTERNALLT) ---*------- m r - . - __ __ - -. - I - - - - .

Fig. 1. ALQBIU Code Output

A L P H A N P M E S F R O M o ~ r n T A P E

COCRD NODAL

1 A O I S P L 9
2 2 O I S P L 2
3 VEL R
4 VEL z

ACCEL 9
6 ACCEL I
7
8

ELEMENI

S I & R
S I G Z
S I G T
TAU R Z
EPS R
EPS z
EPS T
EPS RZ

GLOBAL

RE S I D U A L
ENERGY
NORM
L 2 NORM

C A R D I N P L T S

1 . EFFSTR = S Q R T ~ 1 ~ 5 ~ * 5 ~ 7 5 E - 3 € * V O N M I S E S ~ ~ ~ ~ 3 ~ E X P ~ - l 2 ~ @ / 3 O O ~ ~ ~ l . 9 E ~ ~

3 . PRESS = (S I G R + S I G Z + S I G T) / 3.G

4. PSESSlCS = (S I G R L l L 0 * S I G Z f l O - + S I G T S l C :) / 3.G

5 . P H I E F F S T R - 0 . C 2 3 - PRESS (4.43E-E-3.7€-15+PRESS)

6 . ALPHA 5 SIGRS56

7. BETA = PLPHl l + 1 . 4 i 4

STORAGE A V A I L A B L E I N STORAGE ARRAY A (M A X A) - - - - - 4 3
2 4 t a 3 STORAGE NEEDEC F O R YORKING ARRAYS --------------

UNUSED STORAGE (PCJUSTEO INTERNALLY) ----------- - 2 4 4 4 0

RUN rIMC FOR ALGEBRA (I N SECONDS) ---------- 3.22

Fig. I . - Cont.

12

3.1 ALGEBRAIC ERRORS

ERROR MESSAGE ACTION

A REPEATED OPERATOR WAS FOUND.

A VARIABLE IS FOLLOWED BY A (

A / OR * EITHER STARTS THE
EQUATION OR FOLLOWS A (SIGN

ALPHANUMERIC IS OVER TEN
CHARACTERS <var. name>

PARENTHESES
NO. OF LEFT
= <#>
PARENTHESES
A FUNCTION

DO NOT BALANCE.
=<#>? NO OF RIGHT

DO NOT BALANCE FOR

THE EQUATION DOES NOT SPECIFY
AN ASSIGNMENT VARIABLE

THE EQUATION HAS CONSECUTIVE
OPERATORS <first op .> AND

eecond op.>

THE EQUATION IS MISSING THE =
SIGN.

Two operators, + ? - ? or /
were found together. Check
the typing of the equation.

An operator is missing or a
function name is
misspelled. Check the
equation.

A variable or) is missing.
Check the equation.

Variable name is too long.
Check the equation.

Check the equation to see
where the parens need
matching.

The function is probably
missing a right paren.
Check the entire equation to
be sure all parens are
matched.

The first entry of the
equation is not a variable.
Check the equation.

Two operators were found
together. If the equation
is correct - use a set of
parens to separate the
operators (e.g. ++5 +(+5)).

The expression is checked
for other algebraic syntax
before it is ignored.
Insert the = sign and
assignment variable if it
was forgotten.

ERROR MESSAGE

THE SYMBOLS) (WERE FOUND

<#>ERRORS WERE FOUND IN THE
ABOVE EQUATION. IT WILL BE
IGNORED.

WARNING -- MORE THAN 20
INPUT EQUATIONS.

WARNING -- NO END CARD WAS

READ WILL BE EVALUATED.
FOUND, ONLY THOSE EQUATIONS

3.2 USER TERMINATION ERRORS

A FATAL EXECUTION ERROR

DATA TAPE IS NOT DEFINED

ELEMENT =<#>IS LARGER THAN
NUMEL =<#>

END-OF-FILE MESSAGES

ACTION

An operator is missing.
Insert the operator if
multiplication is desired.

Recaps the number of errors
in the equation. The
program continues.

The program will only accept
20 legal input cards. If
more are needed, contact
Mary Richgels. The program
continues, using the first
20 legal cards.

The end card was missing,
the program will continue as
if one were there.

A general message. See
message (s) listed above this
one for clarification of the
fatal error.

The input data tape is not
available. Be sure it has
been attached and it has
been typed correctly.

The specific element
requested is too large.
Check the input equation
that uses the erroneous
number.

A premature end-of-file has
been detected. Be sure the
input tape is specified
correctly. The message will
say when the error occurred.
The output tape is not
effected and may be used for
plotting with no difficultv.

1 3

ERROR MESSAGE

- READING THE ARRAYS

- SKIPPING OVER DATA

- THE DATA READING

- THE INITIAL VARIABLES

- THE NAME ARRAYS

EQUATION <#> IS INCORRECT.
NOT ALL VECTORS ARE ELEMENTS
OR NODES.

FUNCTION <name> DOESN' T HAVE
ENOUGH PARAMETERS

NO EQUATIONS REMAIN

NODAL POINT =<#> IS LARGER
THAN NUMNP = <#>

NVARNP, NVAREL, AND NGLOBL
ARE ALL ZERO

SQRT OF A NEGATIVE NUMBER<#>

ACTION

Reading X, IX, or IMAT
arrays.

Skipping over NODES,
ELEMENTS, GLOBAL data or
reading TIME.

Reading NODES, ELEMENTS, or
GLOBALS.

Reading the initial 12 tape
parameter variables.

Reading NAMEX, NAMENP,
NAMEEL, OR NAMEGL.

Check the variable types in
the equation. An element
vector and a nodal vector
were found in the same
equation.

Check the equation. Be sure
the function is written
correctly. Functions TMAG,
PMIN, and PMAX must have all
6 parameters specified.

All the input equations have
been ignored, or none were
found.

The specific node requested
is too large. Check the
input equation that uses the
erroneous number.

The input data tape has no
values to be read. Check
the typing of the data tape
name.

The values read off the
input tape or the equation
constants have led to a
negative number. Check the
equation.

3.3 PROGRAM TERMINATION ERRORS

If you receive one of these errors, please bring the
output to Mary Richgels. The error that was found is in the
program.

ERRORS MESSAGE ACTION

THE DIVISOR IS ZERO

THE LIBRARY FUNCTION RSAA
HAS FOUND AN ERROR

THE LOG OF A NEGATIVE
NUMBER <#>

<Jar iable name>HAS A
NON-DIGIT CHARACTER AFTER
THE $ SIGN

<variable name>IS NOT IN
THE LIST OF TAPE VARIABLES

0.0 RAISED TO 0.0 POWER

BLOCK ELEMENT DATA HAVE BEEN
FOUND, INSERT ROUTINES
Call M. Richgels

BLOCK NODAL DATA HAVE BEEN
FOUND, INSERT ROUTINES

Call M. Richgels

The values read off the
input tape or the equation
constants have led to a zero
divisor. Check the equation.

Check your parameters,
illegal values are being
passed to PMAX or PMIN.

The values read off the
input tape or the equation
constants have led to a
negative number. Check the
equation.

The specific quantity was
typed incorrectly. Check
the variable.

The variable was not an
assignment variable nor a
variable on the input tape.
Check the spelling of the
variable name.

The values read off the
input tape or the equation
constants have led to the
error. Check the equation.

A program diagnostic. The
code cannot handle block data.

A program diagnostic. The
code cannot handle block
data.

15

EQUATION <#> CANNOT BE
EVALUATED
Call M. Richgels

The illegal character
was discovered in the
equation while it was being
evaluated.

EQUATION <#> HAS BEEN
INTERPRETED INCORRECTLY
Call M. Richgels

A right paren has gotten
onto the postfix stack.

FUNCTION <name> NOT IN THE
LIBRARY. Call M. Richgels

An illegal function index
was found during evaluation
of the program.

OPERATOR INDEX IS TOO LARGE
Call M. Richgels

An unknown operation has
been found during evaluation.

PROGRAM STACK PROBLEM.
Call M. Richgels

The evaluation stack has
either underflowed (not
enough values) or overflowed
(stack area not large
enough).

THERE CANNOT BE A (OR)
HERE.
Call M. Richgels

Parens are illegal
characters during evaluation.

TOO MANY ASSIGNPENT
VARIABLES.
Call M. Richgels

A temporary array of
assignment variables has
gone out of range.

TOO MANY VARIABLES IN
EQUATIONS.
Call M. Richgels

The NAMEV array has gone out
of range with the assignment
variables.

TOO MANY VARIABLES IN
EXPRESS IONS.
Call M. Richgels

The NAMEV array has gone out
of range.

16

4 . PROGRAM DOCUMENTATION

4.1 FULL NARRATIVE DESCRIPTION OF THE PROGRAM

ALGEBRA reads variable values from an input tape of the
plotting data base format (dated June 10, 1980) and calculates
new values to write to a new output tape of the same format.
Users' cards are read to determine what calculations are to be
done and which variables are to be written to the new tape. A
printout is given to the user to help him determine any errors
that he might encounter.

The first portion of the input tape is read to make the
variables available for the entire program. The input cards
are then checked for algebraic errors. If any errors are
found, that card is ignored and the program continues. The
legal equations are then processed and checked for other
syntactic errors.

The evaluation loop reads values off the input tape for
each time step, evaluates all legal equations for these values,
and writes the calculated answers to the output tape. The loop
stops when an error is found or the end of the input tape is
discovered.

4 . 2 HARDWARE CONFIGURATION REQUIRED

The memory allocation routine can only be used on the CDC
7600 or CYBER76 operating system.

4 . 3 LANGUAGES USED

All but one routine in ALGEBRA is written in FORTRAN
EXTENDED VERSION 4 . The memory allocation routine is written
in COMPASS, the CDC assembly language.

4 . 4 OPERATING SYSTEM

ALGEBRA was written to be used in BATCH mode on the CDC
7600 or CYBER76.

4.5 SPECIAL SOFTWARE USED

REQCM, the COMPASS assembly language routine that allows
dynamic memory allocation.

17

4.6 INPUT

The input data tape is read with unformatted read
statements. The user's card deck input is limited to an 80
column card.
section 2.

A full description of the input is given in

4 . 7 OUTPUT

The output tape is written with unformatted write
statements. The user output is a hard copy printout. Examples
of the output is given in Figure 1.

APPENDIX

PLOTTING DATA BASE

READ (ND) TITLE(8)

C
C
C
C
C
C
C
C
C

C

C

C

READ (ND) NCORD,NUMNP,NUMELINUMMIX,NWAT,NVARNP,NVAREL,
NGLOBL,IBLKNP,IBLKEL,IPACK

NCORD = number of coordinates per node
NUMNP = number of nodes
NUMEL = number of elements
NUMIX = number of nodes per element
NUMMAT = number of materials
NVARNP = number of variables at each node
NVAREL = number of variables for each element
NGLOBL = number of global variables
IBLKNP = 0; nodal point data are not blocked and each

logical record contains the values at all nodal
points of a single nodal point variable,
therefore there are NVARNP records each
containing (((NUMNP-l)/IPACK)tl) words. For
example, all the X components of displacement are
written in one record, then all the Y
displacements in another record, etc.

IBLKNP = 0; nodal point data are blocked, and IBLKNP is
the number of nodal point sets of NVARNP
variables in each block. The number of words per
block is ((((NVARNP*IBLKNP) -1) /IPACK) t1) . The
number of blocks of data is
(((NUMNP-1) /IBLKNP) +1) . For example, in each
block, for IBLKNP elements or nodes all the
stress, strains, displacements, etc. could be
written. All the data for the first element in
the block are written first, followed by all the
data for the second element, etc.

IBLKEL (Same as IBLKNP except for element data)

IPACK = 1, Data are packed 1 into 1 (i.e., not packed)

Functions KOMPRS, DROMPRS, KOMPR3, and
DKOMPR3 are available to pack and unpack 2 or 3
variables per word.

= 2, Data are packed 2 into 1
= 3 , Data are packed 3 into 1

19

C

C Read the alpha names of the variables

C

C Read alpha names of coordinates

IF(NC0RD .GT. 0) READ (ND) (NAMEX(I),I = 1,NCORD)

C Read alpha names of nodal variables

IF(NVARNP .GT. 0) READ (ND) (NAMENP(1) ,I = 1,NVARNP)

C Read alpha names of element variables

IF(NVAREL .GT. 0) READ (ND) (NAMEEL(1) ,I = 1,NVAREL)

C Read alpha names of global variables

IF(NGL0BL .GT. 0) Read (ND) (NAMEGL(I),I = 1,NGLOBL)

C

C Read numerical values

C

C Read numerical values of x, y and z

IF(NC0RD .GT. 0) READ (ND) ((X(I,J),I = l,NUMNP),
1 J = 1,NCORD)

C Read numerical values of IX array

IF(NUMEL .EQ. 0) GO TO 20

DO 10 J = l , NUMEL

READ (ND) (IX(1,J) ,I = 1, NUMIX)

10 CONTINUE

20 CONTINUE

C Read numerical values of material array

IF(NUMMAT .GT. 1) READ (ND) (IMAT(I),I = 1,NUMEL)

C Time step records

READ (ND) TIME

C

C NODAL TIME DATA

C

IF(NVARNP .EQ. 0) GO TO 60

C Read nodal point data in the order of the NAMENP list.

IF(1BLKNP .NE. 0) GO TO 40

C Unblocked data

NWRDS = ((NUMNP-1) /IPACK) +I

DO 30 J=l , NVARNP

READ (ND) (A(I),I = 1,NWRDS)

IF (IPACK .GT. 1) CALL UNPACK (A,NWRDS,IPACK)

30 CONTINUE

GO TO 60

40 CONTINUE

C blocked data

NWRDS = ((NVARNP"1BLKNP-1) /IPACK) +I

NBLOCK = ((NUMNP-1) /IBLKNP) +1

DO 50 J = 1, NBLOCK

READ (ND) (A(I),I = 1, NWRDS)

IF(1PACK .GT. 1) CALL UNPACK(A,IBLKNP,IPACK)

50 CONTINUE

60 CONTINUE

C

C ELEMENT TIME DATA

C

IF(NVAREL .EQ. 0) GO TO 100

repeat time read for element data .

100 CONTINUE

C

C GLOBAL TIME DATA

C

IF(NGL0BL .NE. 0) READ (ND) (A(I),I = 1,NGLOBL)

22

D i s t r i b u t i o n :

A. F. Emery
Department of Mechanical Engineer ing
Un ive r s i ty of Washington
M a i l S top FU-10
S e a t t l e , Washington 98105

R. R. Browning, WX-3, 570
L o s A l a m o s S c i e n t i f i c Labora tory
P.O. Box 1663
L o s A l a m o s , NM 87545

W. A. Cook, WX-8, 928
L o s A l a m o s S c i e n t i f i c Labora tory
L o s A l a m o s , NM 87545

J. J. Ruminer, WX-3, 931
L o s A l a m o s S c i e n t i f i c Labora tory
P .O . Box 1663
L o s A l a m o s , NM 87545

F. M. Guerra , WX-3, 567
L o s A l a m o s S c i e n t i f i c Labora tory
P.O. Box 1663
Los A l a m o s , NM 87545

B. E . Brown, L577
Lawrence Livermore Laboratory
P.O. Box 808
Livermore, CA 94550

J. 0. H a l l q u i s t , L122
Lawrence Livermore Laboratory
P.O. Box 808
Livermore, CA 94550

G. L. Goudreau, L122
Lawrence Livermore Laboratory
P . O . Box 808
Livermore, CA 94550

23

I n t e r n a l D i s t r i b u t i o n :
2 6 4 4 D. M. Darsey
4 4 4 2 W. A. Von R i e s e m a n n
4543 M. H. Gubbels
5500 0. E . Jones
5511 D. K. G a r t l i n g
5512 C. E . S i s son
5520 T. B. Lane
5521 L. W. Davison
5521 M. A. Richgels (50)
5521 J. H. B i f f l e
5523 T. G. Carne
5530 W. Herrmann
55 31 S. W. Key
5533 A . J. Chabai
8121 B. A. B e n e d e t t i
8121 M. L. Ca l labres i
8121 E . L. Voelker
8122 C. S. Hoyle
8331 V. K. Gabr ie l son
3141 T. L. Werner (5)
3151 W. L. Garner (3)

For DOE/TIC
(Unlimited Release)

3154-3 R. P. Campbell (25)

2 4

	Algebra-A Computer Program That Algebraically Manipulates Finite Element Output Data
	Abstract
	Acknowledgements
	1. Introduction
	2. User Instructions
	2.1 Equation Input
	2.2 Variables
	2.3 Constants
	2.4 Operators Available
	2.5 Functions Available
	2.6 Cards Needed To Run Algebra

	3. The Output
	3.1 Algebraic Errors
	3.2 User Termination Errors
	3.3 Program Termination Errors

	4. Program Documentation
	4.1 Full Narrative Description of the Program
	4.2 Hardware Configuration Required
	4.3 Languages Used
	4.4 Operating System
	4.5 Special Software Used
	4.6 Input
	4.7 Output

	Appendix
	Distribution

