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ABSTRACT

An anisotropic constitutive relation has been incorporated into the Lagrangian
finite-difference wavecode TOODY. This report contains the details of the implemen-

tation of the constitutive relation in the wavecode and an example of its use,



1. Introduction

Finite difference wave propagation codes solve the finlte-difference analogs to
the partial differential equatlions expressing the conservation laws of continuum
mechanics. In addition to these conservation laws, constitutive equations must be
supplied which characterize the physical properties of the materials involved.

The simplest constitutive models assume the materlisl to be hydrodynamlc and-supply
a pressure-volume relationship. More sophisticated models include complete thermo-
dynamic potentlals and allow such phenomena es phase transitions, but still involve
only the pressure and volume., Further refinement introduces the complete stress
and strain tensors but assumes the materials to be isotropic. However, many
materials may be very poorly described by lsotropic calculations, and thus aniso-

tropic material models become necessary.

The anlsotropic constitutive equation presented here uses the general formalism
of ani;sotropic elasticity to relate each stress component to a;.l of the strain com-
ponents through the tensor of elastlc stiffness coefficlients. Third-order elastic
stiffness coefficients are also included to allow for non-linear effects. However,
much room 1s left for refinement. The coefficients are assumed to be constant, and
there is no explicit energy dependence. The model could be improved by introducing
a complete thermodynemic treatment. However, for most anlisotropic meterials the
information does not presently exist to allow a complete thermodynamic description,
and thus the inclusion of the formalism in the code would not be worthwhile at this
time. The most useful improvement to the presgent model would be the addition of

plasticity to the formulation.

It should be noted that the constitutive model is cast in a fully three-
dimensio;zal form ﬁth complete freedom of specification of all of the independent
elastic constents. However, 1t has been incorporated into the two-dimensional
Lagrangian wavecode TOODY]'. Since the response of an anisotropic material will
generally be three-dinmensionsl, care must be taken in the use of this model in TOODY
and other two-dimensionel codes to ensure that the physical situation being calculated

is actually two-dimensional.
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2. Anisotropic Constitutive Relation

Let the vector X be the position at time t of the particle which was at position

.)-(-at time t = 0. Thus
¥ =FXt) , _ (1)

where X is the material, or Lagrangien, coordinate (defined here as the position et
time t = 0), and ¥ is the spatial or Fulerian coordinate. Equation (1) can be viewed
as a transformation from X to X at time t. The transformation matrix for this trans-

formation is called the material deformaetion gradient and its components are given by
F,, = =— . (2)

The determinant of the matrix F is called the Jacobian, J, and is related to the

density, p, by
= p /o - (3)

where po is the density in the reference configuration. The lLegrange-Green finite

strain may be related to F by2

L=3%(E%- D, ()

where I is the identity matrix. In index notation this becomes*

L =—(ax({axk 6) . (5)

ij 2 axaxj

Here [, Las been taken negative in compression and &, . is the Kronecker delta.

13
th

The n~ order adisbatic elastic stiffness coefficients may be defined by3

C, . - ( e (6)
;ak&mp. aes JBLM . ?
8

where € is the specific internal energy, or internal energy per unit mass, and the

*Repeated subscripts imply summation,



subscript s implies differentiation at constant entropy. The series expansion of €

about a state of zero strain isl"

1 1
6 = = L
o = 2 Cignalij%e * B Cigntani ittt 000 0 (7)
where the Cijk.E are the regular, or second order constants, and the Ci;jk!amn are the
*
third-order constants. The stress is related to the internal energy by5
oL
= Po(sr) (8)
ij s

where I is the second Piola-Kirchoff stress tensor, which is related to the Cauchy

stress @ by2

EZE . (9)

i

g =

Thus, from Equations (7) and (8),

d 1 o1
2:i.j = aLi 3 ( 5 CictmnlictTom + 8 Ck&mnpquﬁLanpq )

1 1 1
=5 C55mnlmn * 2 CkiiMe * 8 Cismnpglmipa

1 1

where the fact that

oL

) .
E{-i = 84,83 (11)

has been used.

*The cijkz form a fourth-order tensor, and the Ci kdon constitute a sixth-order tensor.
The deiinition of an nt.h order tensor is that it transforms under orthognal transfor-

mation by the rule
’
Bigke... = ®ip%50%kre’ " Bpare...

where the P’ij are the components of the transformation matrix.



Now from Equetion (6), the elastic stiffness coefficients are symmetric with

respect to the exchange of pairs of indices. since

C = P (___i&____) (_______3}_@______) =C (12)
- L - = Ed PR .
gutmn = Fo\ Ty T B ) "\ T Ty, ) T kg
Using this fact, Equation (10) becomes
1
Zij = Cignelet * 3 Cigntmnlicttm (13)

Equations (5) and (13) provide the constitutive relation describing anisotropic
elesticity, including third-order constants. The constitutive relation must satisfy

2,6

the law of objectivity. This states that the constitutive relation must be inde-
pendent of the observer, and thus must be invariant under translations and rotations
of the coordinate system. It is shown in Reference 6 that both Z and [, are frame-
invariant with respect to rotations of the Eulerian coordinate system. That is, their
components are not affected by such rotations. They are frame-indifferent with respect
to rotat%ons of the Lagrangian coordinate system, which means that they transform
under the normal tensor transformation rule for orthogonel transformations of the
Lagrangian coordinate system. Thus, Equation (13) satisfies the law of bbjectivity.
Physically, this is due to the fact that all components of Equation (13) are defined
with respect to the Lagrangian coordinete system and are unaffected by material
rotation with respect to the Eulerian system. However, the equations of motion in
most codes are written with respect to the Eulerian system and thus require the

Cauchy stress ¥. This can be obtained from the second Piola-Kirchoff stress using

Equation (9), which in index notation becomes

'—l

Thus, Equations (5), (13) and (14) define a frame-indifferent anisotropic constitutive

relation suiteble for usé in waveccdes.



3, Reduced Notation

There 8re 9 components in the stress and strain tensors, 81 second-order elastic
constants, 8nd 729 third-order elastic constani:s. However, the stress and strain
tensors are Symmetric, reducing the number of independent components to 6. The
elastic constants, as shown in Equation (12), are symmetric with respect to the
exchange of Pairs of indices. They are also symmetric with respect to interchange of
indices within & pair as can be seen by considering Equation (12) in the context of
the symmetrY of . This reduces the number of independent second-order elsstic com-

ponents to 21, 2nd the number of independent third-order elastic constants to 56.

Because of these symmetries, it would be very wasteful computationally to perform
calculations With the constitutive relation in the form given by Equation (13). The
situation c@n be improved by introducing & reduced notation which replaces each pair

of indices DY & single index. The convention is as follows:

Double Subscript Single Subscript

11
22
33
23 or 32
13 or 31
12 or 21

[« NN B VIR O I

The convenbion cerries directly through for the stresses, but factors of two must be

introduced for straing with index greater than or equal to 4, Thus:

L=Iy
L=Ip
3= Iy
b, = Tp3 = Iy
Ty =Tz = Iy
Tg = Ljp= Iy
Ip=In



&
o

¥
i}

2L32

Ls = 2Ll3 = 2L31
L6 = 2L12 = 2]'_21 .

The notation holds directly for the elastic constants, with each pair of subscripts -

being replaced by a single subscript. Thus:

Ciu = 1123 = Cp132

235 = Ca23313 = Cop333y ®C-

Using this convention, Equation (13) becomes*
E, =l + 3 Suvinly - | (15)

The elastic constants in the reduced notation are symmetric with respect to any
permutation of the indices. However, Equation (15) involves considerably less compu-
tation since there are now summations over 36 second-order and 216 third-order con-

stants, of which 21 and 56, respectively, are independent.

A relationship may be derived which allows the elastic constant tensors to be
transformed under rotation in the reduced notation directly rather than converting to
the double index notation. The transformation rule for a second-order tensor is

‘ A
Bij = aikajlakz s (16)

where the a,, are the components of the transformation metrix. A matrix A mey be

J
defined which will allow Equation (16) to be written in reduced notation as:

B, = AuBy - _ (17)
A mey be defined by noticing that Equation (16) may be written
3 41 |
3{3 = Sikaa‘nk‘ﬁ_ks + z z (aika.:j‘} aijadk)Bk‘ ’ (18)
2=l k=1

*QGreek subscripts will be‘used‘to denote summation using the reduced noﬂétion.



where the symmetry of B has been assumed. The first term contains components of B

which correspond to the single indices 1, 2, and 3, while the gecond contains compon-

ents which correspond to single indices 4, 5, and 6. Thus, if A corresponds to ij

and M corresponds to kf, A is defined by

A = oy o

(19)

for u = 1, 2, 3 corresponding to k& = 11, 22, 33, respectively, and

AMJ = aika;jl' + aif:ajk ’

(20)

for W = 4,5,6 corresponding to k% = 23 or 32, 13 or 31, 12 or 21, respectively. With

Equations (19) and (20) defining A, Equations (16) and (17) are equivalent. The full .

nmatrix A is
811217 %10%1p 2383 28,,83 28,48, 4
82181 8pplpp  8n38p3 285083 28,8y
®31%31 ©32%3p %33%33 28383  2agy%g3

821732 %pof3p %p3%33  BppBagtlnglay  85,835t85084,

"11%31 %12%32 %13%33  %10%33"%13%30  B13%33%3%

311821 312322 &13323 ‘312323+313&22 511323+313321
Fourth—order tensors transform as follows:

?
Biiks = 21q%3r®%ks®2tBqrst 3

but if Aeij, pekl, Verqr, and ¢»st, we have®

"aiqajqurst- A= A}\\JB vst

80

'
Bkkf« = AxvaksaLthst :

Y
second. Thus, Bv

st = Bqret
convention, :

221812
2851859
2a..8 '
3132 (21)
321832+322331.
811%30%810%)

8)1800% 81 0% -

(22)

(23)

(2k)

*B, st has had the reduced notetion epplied to the first pair of indices but not the
vhere v corresponds to qr in the usual reduced rotation
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But

aksaEtB\)st = Ap¢Bv¢ ‘ (25)
Thus

Biu = A)NAmBW . (26)

Thus, with A defined in Equation (21) the general trensformation rule for nth;order

symmetric tensors mey be written in the reduced notation as

’

By e+ = Aghughur - -Bpgyeer - . (27)

Equation (27) may be used to transform the elastic constant tensors so that the
anisotropic meterials are oriented as desired with respect to the lLagrangian frame

used in the wavecode calculation,



4, ‘Incorporation into the Wavecode TOODY .

The coordinate system used in TOODY is shown in Figure 1.

X

Figure 1. TOODY Coordinate System

The motion occurs in the z,x plane. The convention adopted here will be to
equate the z axis with the = axis, x with Xy and y with x3 Thus & vector will

have components

V1 2
V= V2 Vx ) (28)
vy vy ,

Bll 312 B].3 Bzz Bzx Bzy
B=| 3 By B23 = B_'xz Bex Bxy (29)
B .
1331 B32 B3 Byz Byr ¥y

This allows a standard x']_, Xy, x3 coordinate system convention to be used, with a
permuted naming of the axes when referring to TOODY.

Iet a Langranéian position vector be denoted
xl p A
X= x2 =1 X (30)
v ,

%3



and an Eulerian vector be denoted

Xy z
=[x |=(x (31)
) v/ .
The deformation gradient is
ax
Fij = —BTC'; (32)

TOODY is = two-dimensional code with motion only in the x x, plane, so the deformation

1

gradient becomes

x =

Fii Fp O ¥y = ©
x x

0 0o 1 6 o0 1

E is not symmetric, so the reduced notation does not apply. The Legrange-freen finite

T

strain is given by Eguation (i)}, which results in

2_ 2 |
Fla*foy -1 Ffierforfp O |
_1 ’ . 2 2 N
L=3 Mf12Forfee Fro*Fpp -1 0 (39
o 0 o/ .

Thus the strain components in the reduced notation are

1 2. 2

L 3 (Fy +Fpy - 1)

" 1 2_ 2
L 5 (Fip+Fpy - 1)

: 0

L= 3 = (35)

I, 0
I 0
L Fy1F19 F 21 a0 .

The components of the second Piola-Kirchoff stress in the reduced notation are given



by Equation (15). The components of this stress tensor in terms of the components in

the reduced notation are

5 % 5
£=[ % 5, 3 (36)
25 Eh 23 .

The Cauchy stress is then calculated from Equation (9), which results in the following

Cauchy stress components for use in the TOODY equations of motion:

2 2
=0 =
Opz = %11 = P/P,(F )72y + 2F ) F) g + FrpZy)
2 2
Ox = %o = P/Po(Fpy 2y + 2P FpoZg + Fpp ) (
37)
= U - y .
O e = 10 = P/P LR (Fp By + FpoTe) + Fop(Fy Tp + FipBy)]

cy_y = 033 = p/paz:3

These equations must be finite-differenced to fit into the TOODY difference
scheme. Since the stresses are required at time n+l in TOODY1 and no rates are

involved in the constitutive reletion, all quantities are evaluated at time n+l.
The only further requirement is a finite-difference expression for the components of

the deformation gradient in Equation (33).

Finite-difference approximations to partial derivatives in TOODY are given byl

Tl va (38)
oY 1
2.1 vax, (39)

where C is & closed curve over which the line integral is evaluated, and A is the
area enclosed by the curve. A portion of the TOODY finite-difference mesh is shown

in Figure 2,



1

J+1

J-1

i-1 | i+l

Figure 2., TOODY Finite-Difference Mesh
The integration for the mesh with index i,j is taken over the curve OBFC. Thus,
oz 1
Fu= Foz= &= AL,dex ’ (ko)

where AL is the area enclosed by curve OBFC in Lagrangian coordinates. Teking 2z to
be constant along each of the line segments and equal to the average of the values at

the endpoints, this becomes

P o gy [ - B0 - o) v (g - )0 X)) . ()
Similarly
Fio '3?( [(z zF)(ZC - ZB) + (zB - zc)(Ze - ZF)] (k2)
Py = gg - [(xe - X)Xy - X)) + (xy - %) (X - X)) (43)
Fpp = 3% = 2A [ixg - xp)(Zy - Z5) + (x5 - x)(Zg - 2)] . (bb)

In general, this will require storing the initial positions for every point.
However, if the initial mesh is uniform with spacing 81 in each direction, then
Equations (41) through (L4) réduce to

Fll = 'é']b;i. (ze + 2y - 2 - zB) (45)

Fip = é-%—i (29 + 25 - 2 - 2) (46)

Fpy = -é%‘-i (xg + %y = X - Xp) (x7)
1

Foo =L (o * T %o %) - (49



Equations (45) through (U8), (35), (15) and (37) constitute an anisotropic

constitutive relation suitable for inclusion in TOODY. If the initisl mesh is

not uniform, Equations (41) through (44) may be used in place of Equations (45)
through (L48).
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5. Application

An example of the application of this constitutive relation is the calculation
of the normel impact of an x-cut quartz plate on a y-cut quartz plate., An analytic
solution for this problem excluding the third-order constants has been given by

Johnson. 7

He shows that the anisotropy of the crystal produces two coupled longi-
tudinal-shear waves which propagate into the y-cut quartz target. The motion is two-
dimensional and thus suitable for TOODY calculations. For the case in which the
materials become bonded together at the impact interface, the first wave travels with
a velocity of 6.0 k.m/s and reflection from the free rear surface of the target
results in longitudinal and transverse velocity components which are 38% and 79% of
+’:a impect ve}ocity, respectively. The second wave has a velocity of 4,3 km/s and a
longitudinal free surface velocity component 100%' of the impact velocity. The trans-
verse free surface velocity component of the second wave is in the negative X,

direction and haé a magnitudevwhich is T% of the impact veloecity. Results were also

obtained for the case of no transverse streasses being transmitted across the impact

interface (no friction on interface), Figure 3, teken from reference 7, summarizes
the results.

1.0
=
O LONGITUDINAL
o R
]
>
2 o0.5f e SLIP
ﬂ ! X ) ey
<
3 ———e  NO SLIP
z .
9
0.0 «— TRANSVERSE |
| ] ]

2.0 2.5 3.0

NORMALIZED TIME

Figure 3. Analytical Results for Longitudinal and Transverse Components of Free Surface
Velocity in Impact of x-cut Quartz on y-cut Quartz
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The orientetion of the crystallographic reoference systems relative to the TOODY

coordinate system is shown in Figure k.

TOODY SYSTEM
X3 ,

- Figure 4. Relation of Crystallographic Axes to TOODY Axes

Thus, for the x-cut quartz, the rotation matrix, defined by Equation (16), is

1 0O .
a=]0 01 | - (49)
o -1 0/ ,
and for the y-cut quartz, it is
010
a=lo0o 01 (50)
1 00

Appendix A contains the input for the constitutive reletion, and Appendix B contains

the elastic constants for O-quartz.

The calculat:ion used symmetry boundaries so that quantities veried only in the
TOODY X direction, and .thus zoning was required only in the Xy dimension. Calcu-
la,tions were performed for various impact velocities. Results for the no-slip case
ere shown in Table I, The result at very low strains agree__‘ with Johnson's results,
which describe the acoustic case, The resizlts &t higﬁe‘r ‘str,ai'ns ‘are affected by the



Table I

Summary of Calculational Results for Impact of x-cut Quartz on
y-cut Quartz. No Slip &t Impact Interface

6T

. Longitudinal Transverse W Speed-

Impact Free Surface Velocity Free Surface Velocity ?::1 / pe)

W{el;cit;; (% of Impact Velocity) (% of Impact Velocity) sec

km/sec i -

ISt Wave 2nd VWave 1St Wave 2nd Wave 1St Wave 2nd Wave

.0012 78.86 100.75 38.11 -7.12 6.006 4,308
.12 79.68 100.37 38.5k -6.49 5.092 L.ho1
22 80.3k 100.08 38.01 -6.01 5.980 I, b7l
33 81.06 99.80 39.35 -5.52 5.967 L. 552







6. Conclusions

An anisotropic constitutive relation has been incorporated into the finite-
difference wavecode TOODY. The relation has been formulsted in complete thr-s-
dimensional generality. However, since TOODY is a two-dimensional code, care must
be taken to ensure that the physical configuration being calculated is actually one
of two-dimensional strain. The model has been applied to a specific configuration
and results have been obtained which egree with both analytical and experimental

results. The most useful improvement of the model would be the addition of plasticity.
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Appendix A

Input Instructions

The input for the anisotropic constitutive relation consists of the following
cards, The numbers in parenthesis following the field are the column numbers in which

the variable appears on the card.

Card 1 (5E10.0)

Field Variable Name - Description
1 (1-10) P, Initial density of the material.
2 (11-20) c, Largest sound speed possible in the
material.
3 (21-30) ‘ ROTSW If not equal to zero, the crystallographic

axes are not identical with the TOODY axes,
and the elastic constant tensor will be

rotated.

L (31-ko) TOSW If not equal to zero, third-order elastic

constants will be used.

5 (41-50) DL Initial uniform spacing of the mesh repre-
senting the material. (A uniform mesh has
been assumed, but this could easily be

changed if required.)

Card 2 (8E10.0) Second-Order Elastic Constants

Field .Variable Neame Description
1 (1-10) cll
2 -
(11-20) Cio |
3 (21-30) Cyq Second-Order Elastic Constants
5 (41-50) c

15
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Card 2 (8E10.0) Cont'd

Field Variable Name Description
6 (51-60) Ci6
7 (61-70) Cop Second-Order Elastic Constants
8 (71-80) 023

Card 3 (8E10.0) Second-Order Elastic Constants

Field 7 Variaeble Name Description
1l (1-;0) ' C2h
2 (11-20) 025
3 (21-30) Cog
4 (31-k0) Cas .
Second-Order Elastic Constants
5 (k1-50) Cay,
6 (51-60) 035
7 (61-70) Cag
8 (71-80) Cpy

Card 4 (8E10.0) Second-Order Elastic Constants

Field Varisble Name Description
1 (1-10) chS
2 (11-20) Clg
3 (21-30) Csg Second-Order Elastic Constants
4 (31-k0) Gy |
5 (41-50) Cee

Card 4 (8E10.0) Rotation Matrix. Present only if ROTSW # O on Card 1.

Field Varisble Name Description
1 (1-10) &y Components of rotation matrix as
2 (11-20) LI defined in Equation (16).



Card 4 (8E10.0) Cont'd

Field Variable Name Description
3 (21-30) 3
L (31-k0) 8 »
Components of rotation matrix as
5 (41-50) a5
defined in Equation (16).
6 (51-60) 853
7 (61-70) 83,
8 (71-80) 8y

Card 5 (E10.0) Rotation Matrix. Present only if ROTSW # O on Card 1.

Field . Varisble Name Description

1 (1-10) a Components of rotation matrix as defined

33
in Equation (16).

Cerd 6 (8E10.0) Third-Order Elastic Constants. Present only if TOSW = O on Card 1.

Field Variable Name Description
1 (1-10) _ C111
2 (11-20) 0112
3 (21-30) C113
4 (31-k0) Cllh
Third-Order Elastic Constants
5 (41-50) 6115
6 (51-60) 0116
7 (61-70) C100
8 (71-80) 0123

Card 7 (8E10.0) Third-Order Elastic Constants. Present only if TOSW # O on Card 1.

Field Variasble Name Description
1 (1-10) C1on | .
2 (11-20) 0125 Third-Order Elastic Constants
3 (21-30) Cy06

27
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Card 7 (8E10.0) Cont'd

Field Variasble Name Description
4 (31-40) 0133
5 (L1-50) Cyan
6 (51-60) Cy35 Third-Order Elastic Constants
7 (61-70) 0136
8 (71-80) Cyu

Card 8 (8F10.0) Third-Order Elastic Constants.

Present only if TOSW = O on Card 1.

Field Variable Name Description
1 (1-10) c1h5
2 (11-20) clh6
3 (21-30) Cy55
I (31-40) 0156
. Third-Order Elastic Constants
5 (41-50) 166
6 (51-60) Conp
7 (61~70) Copg
8 (71-80) Cool

Card 9 (8E10.0) Third-Order Elastic Constants.

Present only if TOSW # O on Card 1.

Field Variaeble Name Description
1 (1-10) 0225
2 (11-20) C226
3 (21-30) Ca33
b (31-k0) Cg3h Third-Order Elastic Constants
5 (41-50) Co35
6 (51-60) Cogg
7 (61-70) Cop,
8 (71-80) Cons



Card 10 (8E10.0) Third-Order Elastic Constants. Present only if TOSW = O on Card 1.

Field i Variable Name Description
1 (1~10) 02h6
2 (11-20) 0255
3 (21-30) Cosg
b (31-40) Coge
Third-Order Elastic Constants
5 (41-50) C333
6 (51-60) C33h
7 (61-~70) C335
8 (71-80) C336

Card 11 (8E10.0) Third-Order Elastic Constants. Present only if TOSW = O on Card 1.

Field Variable Name Description
1 (1~10) Cany
2 (11-20) Cas
3 (21-30) Ca6
L (31-ko) Cass |
5 (41-50) Cas6 Third-Order Elestic Constants
6 (51-60) Cagg
7 (61-70) Chnl,
8 (71-80) Chs

Card 12 (8E10.0) Third-Order Elastic Constents. Present only if TOSW = O on Card 1.

Field Variable Néme Description
1(1~-10) - ' Ciu6
2 (11-20) Css
3 (21-30) Cuse Third-Order Elastic Constents
L (31-k0) Cué6



Card 12 (8E10.0) Cont'd

Field Variable Name Description
6 (51-60) Cesg
7 (61-70) 0566 Third-Order Elastic Constants
8 (71-80) C666

The elastic constants are symmetric with respect to any permutation of the
indices. Only the independent (for a triclinic crystal) constants are read in. The
constants are stored in a doubly subscripted array in the same order as read in.

The first index picks the constant, end the second picks the material to which it
applies. It may be noticed that for any second-order constant required in Equation
(15), if its indices are permuted so that they are in increasing order, cij, where

i = j, then the index of that constant in the storage array is
Index = L{i) + j ,

- where L(i) =0, L(2) = 5, L{3) = 9, L(k) = 12, 1(5) = 15, L{6) = 15. For the third-

order constants, the index of Cijk’ where i< j < k, is
Index = T1(i) + L{(j) + k ,

where L{j) is as sbove, and L1(1) = 0, L1{2) = 15, L1(3) = 25, 1i{h) = 31, 11(5) = 34,
11(6) = 35. This storage arrangement takes adventage of the symmetry of the constents

and ellows all constants to be referred to while storing only the independent constants.



Appendix B

Elastic Constants for O-Quartz
The elastic constants for G-quartz are as follaws:g’lo

(units are Mbars)

Second-Order

Cppy = -868 Cg3 = 1.0575
Cp= .OTOk Cyy = O
Cj3= 1191 Ca5 = O
c,, = -.180k Cag = O
Ci5= O Cyy, = 582
Cig= O Ch5 = O
Cop = .868 Chg = O
Cp3 = 1191 Co5 = -582
Cg, = 180k Cog = -.180k
Cog = O Cgg = -3988
Cog = O
Third-Order
Cyqq = -2:1 Cy33 = -3.12
Ciyp = -3.L5 Cyqy = 02
‘3= 12 C135= 0
Cyqy = -1.63 Cy36= 0
Ciy5= O Cypy = -1.3k
Chig= © Cus = ©
Ciop = -2.23 Ciug = ©
Ciog = -2.9% - Cy55 = ~2.00
Cipy = =-15 C156 = 1.0
0125 = 0 0166 = «.5T75



Copyy = 1.93 Cs55 =

Third-Order (Cont'd)

112 ®ue6 =

0 0566 =
= -3.12 0666 =

.6425

= -8.15

= -lol

.02
1.53
-2.76

2,76
-.33

© O O o
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