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ABSTRACT 

An anisotropic constitutive re la t ion  has been incorporated in to  the  Lagrangian 

finite-difference wavecode TOODY. This report contains t h e  deta i l s  of the  implemen- 

t a t ion  of the  constitutive re la t ion  i n  t h e  wavecode and an example of i t s  use. 



1. Introduction 

Finite difference wave propagation codes solve the finite-difference analogs to 

the partial differential equations expressing the conservation laws of continuum 

mechanics. In addition to these conservation laws, constitutive equations must be 

supplied which characterize the physical properties of the materials involved. 

The simplest constitutive models assume the materlal to be hydrodynamic and,supply 

a pressure-volume relationship. More sophisticated models include complete thermo- 

dynamic potentials and allow such phenomena as phase transitions, but still involve 

only the pressure and volume. Further reflnement introduces the camplete stress 

and strain tensors but assumes the materials to be isotropic. However, many 

materials may be very poorly described by isotropic calculations, andl thus aniso- 

tropic material models become necessary. 

The anisotropic constitutive equation presented here uses the general formalism 
Y 

of anisotropic elasticity to relate each stress component to a l l  of the strain com- 

ponents through the tensor of elastic stiffness coefficients. Third-order elastic 

stiffness coefflcients are also included to allow for non-linear effects. However, 

much room is left for refinement. The coefficients are assumed to be constant, and 

there is no explicit energy dependence. The model could be improved by introducing 

a complete thermodynamic treatment. However, for most anisotropic materials the 

information does not presently exist to allow a cmplete thermodynamic description, 

and thus the inclusion of the formalism in the code would not be worthwhile at this 

time. The most useful improvement to the greeent model would be the addition of 

plasticity to the formuJ.ation. 

It should be noted that the constitutive model is cast in a Arlly three- 

dimensional form with complete freedom of speciflcation of all of the independent 

elastic constants. However, it has been incorporated into the two-dimensional 

Lagraneian wavecode !FOOD*. Since the reaponse of an anisotropic material rdll 

generally be three-d&wnsfonal, care must be taken in the use of this mdel in TOODY 

and other two-dimensional code8 to ensure that the physical sftuation being calcaated 

is actually lam-dimensional. 



2. Anisotropic Constitutive Relation 

Let the  vector 2 be t h e  position a t  time t of the  pa r t i c l e  which was a t  position 
& 

X a t  time t = 0. Thus 

where ?r is  the  material, o r  Lagrangim, coordinate (defined here as the pos3tion a t  

time t = 0), ana t is  the  spa t i a l  or Eulerian coordinate. Equation (1) can be viewed 

as a transformation from t o  F a t  time t. The transformation matrix f o r  t h i s  trans- 

formation i s  called the material deformation gradient and i t s  components are given by 

The determinant of the  matrix E is  called the  Jacobian, J, and i s  related t o  the 

density, P, by 

where Po i s  the  density i n  t h e  reference configuration. The Lagrange-Green f i n i t e  
2 s t r a i n  may be related t o  by 

* 
where is the  ident i ty  matrix. In  index notation t h i s  becomes 

Here b kas been taken negative i n  compression and 6 i s  the Kronecker delta. 
i j 

The nth order adiabatic e l a s t i c  s t i ffness coefficients may be defined by 
3 

where e i s  the  specif ic  in te rna l  energy, or  in ternal  energy per unit mass, and the  

*Repeated subscripts imply sumation, 



subscript s implies differentiat ion a t  constant entropy. The series expansion of e 

about a s t a t e  of zero s t r a in  i s  
4 

where the  Cijkh a re  the  regular, o r  second order constants, and the  C jkh are  t h e  
* 5 

third-order constants. The stress is related t o  t h e  in ternal  energy by , 

where is  the  second Piola-Kirchoff s t r e s s  tensor, which i s  related t o  the  Cauchy 

s t ress  g by 
2 

1 T a , = g E Z E  ( 9 )  

Thus, from Equations (7) and (8), 

where the  fac t  tha t  

has been used. 

- 

*The Cijkl form a fourth-order tensor, and t h e  Cijkhmn const i tute a sixth-order tensor. 

The definition of an nth order tensor is tha t  it transforms under orthognal transfor- 
mation by the  r u l e  

= a  a 
j . . .  i ~ j ~ % ~ ~ s * ~ ~ ~ p q r s . . .  

where t h e  e.. are the  components of t h e  transformation matrix. 
13 



NDW from Equation [ 6 ) ,  the  e l a s t i c  s t i f fness  coefficients are  symmetric with 

respect t o  t h e  excnange of pai rs  of indices. since 

Using t h i s  fac t ,  Equation ( 10) becomes 

Equations (5)  and (13) provide t h e  constitutive relat ion describing anisotropic 

e las t i c i ty ,  including third-order constants, The consti tut ive relat ion must satisf'y 

the law of objectivity. 2s6  a s  s ta tes  tha t  the  constitutive re la t ion  must be inde- 

pendent of t h ~  observer, and thus must be invariant under translat ions and rotations 

of the  coordinate system. It is  shown i n  Reference 6 tha t  both E and & are frame- 

invariant with respect t o  rotations of t h e  Eulerian coordinate system. That is, t h e i r  

components are not affected by such rotations. They are frame-indifferent w i t h  respect 

t o  rotations of the  Lagrangian coordinate system, which means that  they transform 

under t h e  normal tensor transformation ru le  for  Orthogonal transformations of t h e  

Lagrangian coordinate system. Thus, Equation (13) s a t i s f i e s  t h e  law of objectivity. 

Physically, t h i s  i s  due t o  t h e  fac t  t h a t  a l l  components of Equation (13) are  defined 

with respect t o  the  Lagrangian coordinate system and are unaffected by material 

rotat ion with respect t o  t h e  Eulerian system. However, t h e  equations of motion i n  

most codes are  written with respect t o  the  Eulerian system and thus require the  

Cauchy stress =. This can be obtained from the  second Piola-Kirchoff stress using 

Equation (9), which i n  index notation becomes 

Thus, Equations ( 5), (13) and (14) define a frame- indifferent anisotropic constitutive 

re la t ion  suitable f o r  use i n  wavecodes. 



There are 9 components i n  the  s t r ess  and s t r a i n  tensors, 81 second-order e l a s t i c  

c ~ n s t a n t s  , and 729 third- order e las t i c  constants. However, t h e  s t r ess  and s t ra in  

tensors a r e  S W e t r i c ,  reducing tk number of independent c~mponents t o  6. The 

e las t i c  coostants, as s h m  i n  Equation (12), a re  symmetric with respect t o  the  

exchange of Pairs of indices. They are  also symmetric with regpect t o  interchange of 

indices wi*hin a Pair, as  can be seen by considering Equation (12) i n  the  context of 

the  symmetfl of he 'Phis reduces t h e  number of independent second-order e las t i c  com- 

ponents t o  21, and the number of independent third-order e l a s t i c  constants t o  56. 

Because of these symmetries, it would be very wasteful computationally t o  perform 

calcuiatioz?s w i t h  the constitutive re la t ion  i n  t h e  form given by Equation (13). The 

si tuat ion can be improved by introducing a reduced notation which replaces each pa i r  

of indices a s i ~ l e  index. The convention is a s  follows: 

Double Subscript Single Subscript 

The conven*ion carries d i rec t ly  through for  the stresses, but factors of two must be 

introduced for strains wi th  index greater  than o r  equal t o  4. Thus: 



The notation holds d i rec t ly  f o r  the  e l a s t i c  constants, with each pair  of subscripts 

being replaced by a single subscript. Thus: 

Using t h i s  copvention, q u a t i o n  (13) becomes* 

The e l a s t i c  constants i n  t h e  reduced notation are symmetric with respect t o  any 

permutation of the  indices. However, Equation (15) involves considerably l e s s  compu- 

ta t ion  since there a re  now sumations over 36 second-order and 216 third-order con- 

stants ,  of which 21 and 56, respectively, a re  independent. 

A relationship may be derived which alluws t h e  e l a s t i c  corlstant tensors t o  be 

transformed under rotat ion i n  the  reduced notation di rec t ly  rather than converting t o  

the  double index notation. The transformation r u l e  fo r  a second-order tensor is 

where the  a a re  t h e  components of the  transformation matrix. A matrix & may be 
i j  

defined which w i l l  allow Equation (16) t o  be writ ten i n  reduced notation as: 

& may be defined by noticing tha t  Equation (16) may be written 

*Greek subscripts w i l l  be used t o  denote summation using the  reduced notation. 



where the symmetry of &has  been assumed. The first term contkina c-nents of g 
which correspond t o  the single indices 1, 2, and 3, while the second contains cornpan- 

ents which correspond t o  single indices 4, 5 ,  and 6. Thus, if A corresponds t o  i j 

and p corresponds t o  ka, & is  defined by 

= 'ikaJ1 (19) 

for y = 1, 2, 3 c~rresponding t o  kb = 11, 22, 33, respectively, and 

for  p = 4,5,6 corresponding t o  kA = 23 or 32, 13 or  31, 12 or 21, respectively. With 

Equations (19) and (20) defining & Equations (16) and (17) are equivalent. The f u l l  

matrix A_ is  

Fourth-order tensors transform as follows: 

t Bijkl = a a a B i q  jraks A t  qrs t  ; 

but if 1 4 3 ,  p-ka, v-qr, and @--st, we have* 

.a a B i q  jr qrs t  ' Ah~%st 

a B 
~$1 = A x h  A t  vs t  

*BVst has had the reduced notation applied t o  the first pair  of indices but not the  

second. Thus, Bvst = Bqrst where v corresponds t o  qr i n  the usual reduced rotation 
convention. 



a B Bas it vs t  = CB@ 
Thus 

A B  . 
= AXY ,J$ * (26) 

Thus, with & defined i n  Equat5on (21) t h e  general transformation ru le  for nth-order 

symmetric tensors may be writ ten i n  t h e  reduced notation a s  

Equation (27) may be used t o  transform the  e l a s t i c  constant tensors so tha t  the  

anisotropic materials a re  oriented as  desired with respect t o  the Lagrangian fram'e 

used i n  the  wavecode calculation. 



4. ,Incorp,ration into the Wavecode TOODY 

The coordinate system used in  MODY i s  8 h m  in  Figure 1. 

Figure 1. TOODY Cwrdinata System 

The motion accurs in  the s,x plate. The convention &opted here w i l l  be t o  

equate the e axis with the 4 axis, x with x2, and y with p. Thus a vector rill 

have cmponents 

and a second-order tensor wil l  have components 

This allam a standard ?, %,,% coordinate c d i m  t o  be wrd, with a 

pennutea naming af the exes when referring t o  TOOM. 

Let a Iangrangian position Vector be denoted 



and an Eulerian vector be denoted 

The deformation gradient is 

&i - - 
Fij - axj (32) 

TOODY is a two-dimensional. ccde Kith motion only i n  the  x x plane, so the  defgmatian 1 2  

gradient becomes 

P i s  not .symmetric, so the  reduced notatign does not apply. The U p A ~ + S r e n  f i n i t e  ." 
s t ra in  i s  given by Equation ( b ) ,  which resu l t s  i n  

Thus the  s t ra in  compnents i n  the  reduced notation are 

The ~omponents of the second Piola-Kirchoff s t ress  i n  the reduced notatisn are given 

12 



by Equation (15). The components of t h i s  stress tensor i n  terms of the components i n  

the reduced notation are 

The Cauchy stress is  then calculated from Equation (g), which results i n  the following 

Cauchy stress components for  use i n  the TOODY equations of motion: 

These equations must be finite-differenced t o  f i t  into the TOODY difference 
1 scheme. -Since the stresses are required a t  time m l  i n  TOODY and no rates are 

involved i n  the constitutive relation, a l l  quantities are evaluated a t  time ni l .  

The only further requirement i s  a finite-difference expression for  the components of 

the deformation gradient i n  Equation (33). 

Finite-difference approximations t o  par t ia l  derivatives i n  TOODf are given by 
1 

where C is  a closed curve ov& which the l ine  integral  i s  evaluated, and A i s  the 

area enclosed by the curve. A portion of the TOODY finite-difference mesh i s  shown 

i n  Figure 2. 



Figure 2. TOODY Finite-Difference Mesh 

The integration f o r  t h e  mesh with index 1, j is taken Dver the  curve OBFC. Thus, 

where AL is  t h e  area enclosed by curve OBFC i n  Lagrangian coordinates. Taking z t:, 

be c ~ n s t a n t  along each of the  l i n e  segments and equal t o  the  average of the  values a t  

the  endpoints, t h i s  becomes 

Similarly 

In  general, t h i s  will require atoring the  i n i t i a l  positions fo r  every paint. 

However, if t h e  i n i t i a l  mesh i s  uniform with spacing 61, i n  each direction, then 

;FQuations (41) through (44) r d u c e  t o  



Equations (45) through (48), (35), (15) and (37) constitute an anisotropic 

constitutive relation suitable for inclusion in TOODY. If the in i t i a l  mesh is 

not uniform, EquatioDs (41) through (44) may be used i n  place of Equations (45) 

through (48). 



5. Application 

An example of the  application of t h i s  constitutive relation is the calculation 

of the normal impact of an x-cut quartz plate on a y-cut quartz plate. An analytic 

solution for t h i s  prohlem excluding the third-order constants has been given by 

~ohnson.' He shows that  the anisotrop of the crystal  produces two coupled longi- 

tudinal-shear waves which propagate into  the y-cut quartz target. The m~tion is  two- 

dimensional and thus suitable for  TOODY calculations. For the case i n  which the 

materials become bonded together a t  the impact interface, the f i r s t  wave travels with 

a velocity of 6.0 b / s  and reflection from the free  rear surface of the target 

results  i n  longitudinal and transverse velocity components which are 38% and 7gq& of 

&'rs impact velocity, respectively. The second wave has a velocity 3f 4.3 km/s and a 

longitudinal f ree  surface velocity component 100$ of the impact velocity. The trans- 

verse f ree  surface velocity component of the second wave is  i n  the negative x2 

direction and has a magnitude which is 74& of the impact velocity. Results were also 

obtained for  the case of no transverse stresses being transmitted across the impact 

interface (ne frict ion on dnterfaee) . Figure 3, taken from reference 7, sunrmariees 

the results, 

I 
" O t  , 

m ~ - l l . l l - . l . - . l ) . l . - - m - -  

G 
8 c- LONGITUDINAL 

- SLIP 

---- NO SLIP 

z 
0.0 

c- TRANSVERSE 

NORMALIZED TIME 

Figure 3. Analytical Results for Longitudinal and Transverse Components of Free Surface 
Velocity i n  Impact of x-cut Qtartz on y-cut Quartz 



The orientation of the crystallographic r-ference systems relative t o  the TOODY 

coordinate system is sham i n  Figure 4. 

4 / -. TOODY SYSTEM 

- Figure 4. Relation of Crystallographic Axes t o  TOODY Axes 

Thus, for  the  x-cut quartz, the  rotation matrix, defined by Equation (16), is 

and for  the y- cut quartz, it is 

Appendix A contains the input fo r  the constitutive relation, and Appendix B contains 

the e las t ic  constants for  a-quartz. 

The calculation used symmetry boundaries so that  quantities varied only i n  the 

TOODY 5 direction, and.thus zoning was required only i n  the xl dimension. Calcu- 

lations were performed for  various impact velocities. Results for  the no-slip case 

are shown i n  Table I. The result  a t  wry law strag- agree w i t h  Johnson's results, 

which describe the acoustic case, The rasults  a t  higher strains are aSfacted by the 



Table I 

Summary of Calculational Results for Impact of x-cut Quartz on 
y-cut Quarte. No Slip at Impact Interface 

Impact 
Velocity 
(km/sec 

.0012 

-12 

.22 

.33 

Longitudinal 
Free Surface Velocity 
(% of Impact Velocity) 

st 1 Wave 

78.86 

79.68 

80.34 

81.06 

2nd wave 

?-00.75 

100.37 

100.08 

99 80 

Transverse 
Free SurPace Velocity 
(& of Impact Velocity) 

1 Wave 1 znd wave st 

Wave Speed- 
(km/sec) 

38.11 

38.54 

38.91 

39.35 

st 1 Wave 

6.006 

5 . 0 9  

5.980 

5.967 

-7.12 

-6.49 

-6.01 

-5.52 

end wave 

4.308 

4.401 

4.474 

4.552 





A n  anisotropic consti tut ive re la t ion has been incarporated i n t o  the  f in i te-  

difference wavecode TOODY. The re la t ion has been formulated i n  complete thrrs- 

dimensional generality. However, since TOODY i s  a two-dimensional cacie, care must 

be taken %to ensure that  the physical configuration being calculated is  actually Dne 

of tw*dimensional strain.  The model has been applied t o  a specific canf igura t i~n  

and resu l t s  have been ~ b t a i n e d  which agree with both analytical  and experimental 

results .  The most useful improvement of the  m ~ a e l  would be the  ajlditian sf plas t ic i ty .  
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Apperidix A 

Input Instruct ions 

The input f o r  the  anisotropic const i tut ive re la t ion  consists of t h e  following 

cards. The numbers i n  parenthesis following the  f i e l d  are  t h e  column numbers i n  which 

t h e  variable appears on t h e  card. 

Card 1 (5E10.0) 

Field Variable Name . Description 

1 (1-10) Po I n i t i a l  density of the  material. 

Largest sound speed possible i n  the  

material. 

ROTSW If not equal t o  zero, the  crystallographic 

axes a r e  not ident ica l  with t h e  TOODY axes, 

and t h e  e l a s t i c  constant tensor w i l l  be 

rotated. 

If not equal t o  zero, third-order e l a s t i c  

constants w i l l  be used. 

I n i t i a l  uniform spacing of the  mesh repre- 

senting the  material. (A uniform mesh has 

been assumed, but t h i s  could eas i ly  be 

changed i f  required. ) 

Card 2 (8~10.0)  Second- Order ' Elast ic  Constants 

Field . Vari able Name Description 
- - - 

1 (1-10) 

2 (11-20) 
C12 

3 (21-30) C13 
Second- Order Elast ic  Constants 

4 (31-40) 5 4  

5 (41-50) C 
15 



Card 2 (8E10.0) Cont'd 

Field Variable Name Description 

Card 3 (8~10.0) Second- Order Elastic Constants 

Field 
-- - 

Variable Name Description 

Card 4 (8E10 .O) Second-Order Elastic Constants 

I 

b Second- Order Elastic Constants 

Field Variable Name Description 

Second-Order Elastic Constants 

Card 4 (8~10.0) Rotation Matrix. Present bnly if ROTSW * 0 on Card 1. 

Field Variable Name Description 

I Components of r ~ t a t i o n  matrix as 

defined i n  Equation ( 16). 



Card 4 (8~10.0)  Cont * d 

Field Variable Name Description 

Components of rotation matrix as 

defined i n  Equation (16). , 

Card 5 ( ~ 1 0 . 0 )  Ratation Matrix. Present only if ROTSW * 0 on Card 1. 

Field Variable Name Description 

Components of rotat ion matrix as defined 

i n  Equation (16). 

Card 6 (8~10.0) Third-Order Elast ic  Constants. Present only i f  TOSW * 0 on Card 1. 

- 

Field 
- - 

Description 

Third-Order Elast ic  Constants 

Card 7 (8~10.0) Third-Order Elastic Constants. Present only i f  TOSW * 0 on Card 1. 

Field Variable Name Description 



Card 7 (8~10 .0 )  Cont'd 

Field Variable Name Description 

Card 8 (8~10 .0 )  Third-Order Elastic Constants. Present only if TOSW * 0 on Card 1. 

Field Variable Name Description 

Third-Order Elastic Constants 

1 

Card 9 (8E10.0) Third-Order Elastic Constants. Present only if TOSW * 0 on Card 1. 
-- 

Field Variable Name Description 

1 

t Tnird- Order Elastic Constants 



Card' 10 (8~10.0) Third-Order Elastic Constants. Wesent only i f  TOW oc 0 on Card 1. 

Field Variable Name Description 

Third-Order Elast ic  Constants 

Card 11 (8~10.0) Third-Order Elast ic  Constants. Present only i f  TOSW pc 0 on Card 1. 

-- 

Field Variable Name Description 

Third- Order El8  .?tic Constants 

Card 12 (8E10.0) Third-Order Elastic Constants. Present only i f  TOSW ir 0 on Card 1. 

Field Variable Name Description 

l ( 1 - l o )  • '446 

2 (11-20) 
C455 

3 (21-30) C456 Third-Order Elast ic  Constants 

4 (31-40) C466 

5 (41-50) 555 



Card 12 (8~10.0) Cont'd 

Field Variable Name Description 

The e las t i c  cmstants a r e  symmetric with respect t o  any permutation of the  

indices. Only the  independent (f9r a t r i c l i n i c  crystal)  constants a re  read in. The 

constants are stored i n  a doubly subscripted array i n  the  same order as read in. 

The first index picks the constant, and the  second picks the material t3 which it 

applies. It may be noticed tha t  f o r  any second-order constant required i n  Equa t i~n  

(151, i f  i ts indices are  permuted so tha t  they are i n  increasing d e r ,  Cij, where 

i 5 j, then the index of that  constant i n  the  storage array i s  

Index = ~ ( i )  + j , 

where ~ ( 1 )  = 0, ~ ( 2 )  = 5, ~ ( 3 )  = 9, ~ ( 4 )  = 12, L(5) = 15, ~ ( 6 )  = 15. For t h e  third- 

order emstants, the index of C where i 5 j 5 k, i s  
i jk' 

Index = ~ l ( i )  + ~ ( j )  + k , 

where ~ ( j )  i s  as abcjve, and Ll(1) = 0, ~ 1 1 2 )  = 15, ~ l ( 3 )  = 25, ~ 1 ( 4 )  = 31, ~1(5) = 349 

~ 1 ( 6 )  = 35. This storage arrangement takes advantage of t h e  symmetry 3f the  cgnstants 

and allows a l l  emstants t o  be referred t o  while s t ~ r i n g  only the  independent C O I I S ~ ~ ~ S .  



Appendix B 

Elastic Constants for &Quartz 

The e last ic  constants for a-quartz are as follows: 9, 10 

(units are Mbars) 

Second-Order 

Third- Order 



Third- Order ( Cont ' d) 

Cb66 ' 15 

C = o  
555 

'556 = 

'566 ' 0 

c6& = 0 
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