
NUREG/CR-0465
SAND77-2051
Unlimited Release

A SETS User's Manual for the
Fault Tree Analyst

Richard B. Worrell, Desmond W. Stack

SF 2900 Q(7-73)

Prepared for

U. S. NUCLEAR REGULATORY COMMISSION

When printing a copy of any digitized SAND
Report, you are required to update the

markings to current standards.

NOTICE

This report was prepared as an account of work
sponsored by an agency of the United States
Government . Neither the United states Government
nor any agency thereof, or any of their employees,
makes any warranty, expressed or implied, or assumes
any legal liability or responsibility for any
third party's use, or the results of such use, of
any information, apparatus, product or process dis­
closed in this report, or represents that its use
by such third party would not infringe privately
owned rights .

The views expressed in this report are not necessarily
those of the U.S. Nuclear Regulatory Commission

Available from
National Technical Information Service

Springfield, Virginia 22161

.'

'.

NUREG/CR-0465
SAND77-2051

A SETS USER'S MANUAL FOR THE
FAULT TREE ANALYST

Richard B. Worrell
Desmond W. Stack

Date Published: November 1978

Sandia Laboratories
Albuquerque, New Mexico 87185

operated by
Sandia Corporation

for the
U. S. Department of Energy

Prepared for
Probabilistic Analysis Staff

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
Under Interagency Agreement DOE 40-550-75

NRC FIN No. Al191

1-2

ABSTRACT

This manual describes the use of the Set Equation

Transformation System (SETS) for fault tree analysis.

An algebraic minimal cut set algorithm is presented which

determines all of the fundamental ways that an intermediate

event can occur. A direct implementation of the algorithm

using SETS is adequate for small fault trees, but for large

fault trees several techniques are presented which increase

the efficiency of the algorithm. These techniques include

the separate processing of independent subtrees and the

derivation of an equation in stages. The truncation of

an equation to retain only those minimal cut sets with

n or fewer components is also described.

3

4

ACKNOWLEDGMENT

We want to thank Francine F. Goldberg, a member of the Nuclear Regulatory
Commission's Probabilistic Analysis Staff, for suggesting many improvements
to this user's manual for the fault tree analyst. She was particularly helpful
in identifying the community of users for which this manual is intended, and
for proposing changes which kept the description focused on the needs of those
users.

The techniques that are described for finding minimal cut sets for large
fault trees have been in use at Sandia Laboratories for several years, and
many people have contributed to the evolution of these techniques. We especially
want to thank Melvin D. Olman who first suggested the improved efficiency that
could be achieved by creating additional independent subtrees and by reducing
equation segments before inserting them into an equation that is being developed
in stages.

We also want to thank Allan M. Fine for the calligraphic rendering of the
guideline flowchart in Chapter 5.

1. Introduction

2. Fault Tree Input

2.1 Example Fault Tree Input

2.2 Event Names

2.3 Primary Event Definitions

CONTENTS

2.4 Intermediate (Gate) Event Definitions

3. SETS User Programs

3.1 A Minimal Cut Set Algorithm

3.2 Understanding SETS User Programs

3.2.1 Boolean Equations

3.2.2 Procedure Calls

3.2.3 The Block File

3.2.4 The Equation File

3.3 Example SETS User Programs

3.3.1 Example 1. Minimal Cut Sets for the Top Event
of a Fault Tree Without Complement Events

3.3.2 Example 2. Minimal Cut Sets for the Top Event
and Intermediate Events of a Fault Tree Without
Complement Events

3.3.3 Example 3. Prime Implicants for the Top Event
of a Fault Tree With Complement Events

4. Advanced Minimal Cut Set Techniques

4.1 Separate Processing of Independent Subtrees

4.1.1 Identifying Independent Subtrees

4.1.2 Example Using Independent Subtrees

4.2 Processing a Fault Tree in Stages

4.2.1 A Method for Choosing Stages

4.2.2 Example Using Processing in Stages

4.3 Composite Technique

4.4 Creating Independent Subtrees

4.4.1 A Method for Creating Independent Subtrees

4.4.2 Example Using Created Independent Subtrees

4.5 Limiting the Size of Minimal Cut Sets

5. Guidelines for Applying Advanced Techniques

5.1 An Initial Approach

5.2 Modifications to Use When Available Storage is Exceeded

5.3 Modifications to Use When Run Time is Excessive

5.4 A Guideline Flowchart

6. Quantification of Minimal Cut Sets

6.1 Types of Computation

6.2 Variable Value Assignment

6.3 The Compute Term Value Procedure

6.4 The Truncate On Term Value Procedure

Page

9

11

11

13

13

14

17

17

18

19

19

20

21

21

21

24

27

31

35

36

37

38

39

39

40

41

42

42

45

47

47

47

48

51

55

55

55

57

60

5

6

CONTENTS (Continued),

Appendix A -- Procedures Available in SETS

A.l Read Input Block

A.2 Read Fault Tree

A.3 Print Equation

A.4 Print Equation In Disjunctive Normal Form

A.5 Delete Equation

A.6 Substitute In Equation

A.7 Reduce Equation

A.8 Form Block

A.9 Load Block

A.IO Print Block

A.ll Delete Block

A.12 Block Status

Appendix B -- Executing SETS User Programs

B.l Special Library Routines

B.2 Creating Different Size SETS Object Programs

B.3 Job Control Sequences for Executing SETS

B.3.1 Block File on a Temporary Disk File

B.3.2 Block File on a Magnetic Tape

B.3.3 Block File on a Permanent Disk

Appendix C -- Execution Diagnostics

C.l SETS Errors

C.2 SETS User Program Errors

C.2.1 Special Fault Tree Error Messages

C.2.2 Numbered Error Messages

Appendix D -- Common Cause Analysis Using SETS

D.l Common Cause Analysis

D.2 Using SETS to Implement Common Cause Analysis

References

Page

63

63

64

64

64

65

65

67

69

69

70

70

71

73

73

74

75

75

75

76

77

77

78

79

79

89

89

91

95

.'
Figure

1

2

3

4

5

6

7

8

Table

I

II

III

IV

0-1

D-II

D-III

A Simple Fault Tree

Fault 'Tree Symbols

FIGURES

Processing Schematic for Procedure Calls

Another Simple Fault Tree

A Fault Tree With Complement Events

A Complex Fault Tree

Illustration of Subtrees

Flowcha~t for Applying Minimal Cut Set Techniques

TABLES

Execution Times for Different MCS Techniques

Term Computations Available in SETS

Variable Value Restrictions

Values for Complement Variables

Special Conditions

Second~ry Causes

Special Conditions and Secondary Causes for the
Primary Events of the Example

Page

11

12

20

24

28

33-34

36

51-53

35

55

55

56

89

90

91

7-8

.'

A SETS USER'S HANUAL FOR THE FAULT TREE ANALYST

1. Introduction

The Set Equation Transformation System (SETS) is a very general, flexible tool

for manipulating Boolean equations--equations which mayor may not be derived from

fault trees. This manual, however, is designed specifically to describe the appli­

cation of SETS to fault tree analysis. The occurrence of the top event or any

intermediate event of a fault tree can be represented by a Boolean equation. When

this equation is transformed in a certain way, the fundamental ways that the top or

intermediate event can occur (i.e., the minimal cut sets) may be read directly from

the equation. Thus, SETS provides basic capabilities for manipulating Boolean

equations which can be used by the fault tree analyst to determine the minimal cut

sets for the top event or any intermediate event of a fault tree. In this manual,

the explanation of the use of SETS for fault tree analysis is provided primarily by

illustrative examples. However, a more complete set of reference material has been

included in the appendices for experienced users who require further information.

The input to SETS consists of two parts: (1) the fault tree description,

covered in Chapter 2; and (2) the SETS user program, explained in Chapter 3 and

developed further in Chapters 4-6. The input fault tree description employed in

SETS is simple, free format, and easily prepared from the graphical representation

of a fault tree. A variety of predefined gates are available, including the

standard AND and OR gates, as well as the INHIBIT, PRIORITY AND, and EXCLUSIVE OR

gates. In addition, the user may define his own "SPECIAL" gates for any valid logic

function, such as m-out-of-n logic. Unlike many other fault tree programs, SETS is

capable of handling trees which contain both an event x and its complement x.
However, as will be explained later, extra processing is usually required for these

trees. The SETS fault tree input is described in detail in Chapter 2.

In addition to the input description of the fault tree, the analyst must

prepare a SETS user program. This program translates the fault tree into a set of

Boolean equations, and transforms these equations in a way which allows the minimal

cut sets to be obtained. The SETS user programs required for different fault trees

will, in general, be quite similar. However, variations will be required depending

on such factors as (1) the size of the tree, (2) whether or not complement events

are present, and (3) whether or not minimal cut sets are to be computed for events

other than the top event.

SETS user programs are'discussed in Chapters 3-6. In Chapter 3, the elements

of SETS user programs are described, and example programs are given which determine

the minimal cut sets for the specified intermediate events of small fault trees with

and without complement events. In general, the standard minimal cut set algorithm

does not correctly determine all of the fundamental event occurrence causes for a

9

10

tree which contains both an event and its complement; therefore, the term "minimal

cut sets" should not really be used for such trees. For these trees, a more

complicated algorithm is required (see section 3.3.3) and the resulting fundamental

causes are known as the "prime implicants" of the intermediate event of interest.

The terms "prime implicant" and "minimal cut set" are equivalent for trees contain­

ing no complement events. In this manual we will use the more familiar term

"minimal cut set" for trees without complement events and the term "prime implicant"

for trees with complement events •

. When a fault tree is relatively large or complex, the single step technique

described in Chapter 3 for determining minimal cut sets is often impractical

because of the large amount of computer storage or execution time required. In

Chapter 4, three advanced techniques are described for finding minimal cut sets for

large fault trees:

1. Separate processing of independent subtrees.

2. Processing a fault tree in stages.

3. Composite of 1 and 2.

Each of the advanced techniques is based on processing the fault tree in parts or

stages, and each of them is inherently more efficient than the single step tech­

nique. Also.described in Chapter 4 is a way of creating independent subtrees and

a description of how to truncate an equation so that only minimal cut sets with

n or fewer variables are retained.

Some general guidelines for deciding how and when to apply the advanced

minimal cut set techniques, and the methods for creating independent subtrees and

truncating equations are described in Chapter 5.

The determination of minimal cut sets or prime implicants is often referred

to as the "qualitative" assessment of a fault tree. This is because the results

of such an assessment are independent of the probabilities associated with the

basic events. Once the qualitative assessment has been made, it is often desirable

to perform certain quantitative evaluations. The quantitative techniques available

in SETS are described in Chapter 6.

Appendices A-D provide additional reference material for the SETS user.

Appendix A is a detailed discussion of SETS procedure calls; Appendix B provides

information for running SETS user programs on CDC equipment; Appendix C describes

the SETS error messages; and Appendix D explains how to use SETS for common cause

analysis.

..

:

2. Fault Tree Input

The generation of the SETS computer input description of a fault tree usually

proceeds from the familiar graphic representation of the tree such as the one shown

in Figure 1.

Figure 1. A Simple Fault Tree

We assume that the reader is familiar with the basic fault tree terminology and

symbols. The latter are shown for convenient reference in Figure 2.

2.1 Example Fault Tree Input

A listing of the data cards which would be used to input the fault tree shown

in Figure 1 is as follows:

FAULT TREES FIG-i-FT.
COMMENTS INTER"EOIAT E EVENT (GATE) OEF! NITI ONS. $

OG$ Gl. IN$ G2, G3.
AG$ G2. IN$ GIt, El. OUTS G1.
AGS G3. IN$ G5, E2. DUn Gl.
OGS G4. INS Go, £3. oun G2.
AGS G5. IN$ G7, G8. OUTS 63.
AG$ G6. IN! E4, E5. OUTS G4.
OG3 G 7. INS E5, E3. OUTS G5.
OG$ G8. INS £2, El. OUT$ G$.

COMMENTS PRIMARY EVENT DEFINITIONS .$
8E$ El. Ours-"G2, G6.
8E$ E 2. oun G3, G 8.
BE$ E.3. OUTS G4, G7.
BES E4. OUl$ G6.
BH E5. OUTS G6, G7.

The fault tree input is written in a free format language. The representation

of a fault tree which SETS can interpret is simply the string of characters that has

been read from punched cards after all blank (space) characters have been purged

from the string. This means that the SETS user need not be concerned about entering

11

12

D

o
o
<>
<> o
D
L

GATE SYMBOLS

AND - Output fault occurs if all of the input faults occur

OR - Output fault occurs if at least one of the input faults occurs

EXCLUSIVE OR - Output fault occurs if exactly one of the input faults
occurs

PRIORITY AND - Output fault occurs if all of the input faults occur in a
specific sequence (the sequence is represented by a CONDITIONING
EVENT drawn to the right of the gate)

INHIBIT - Output fault occurs if the (single) input fault occurs in
the presence of an enabling condition (the enabling condition is
represented by a CONDITIONING EVENT drawn to the right of the gate)

SPECIAL - Output fault occurs according to a logic function defined
by the user

PRIMARY EVENT SYMBOLS

BASIC EVENT - An initiating fault requiring no further development

CONDITIONING EVENT - Specific conditions or restrictions that apply
to any logic gate (used primarily with PRIORITY AND and
INHIBIT gates)

UNDEVELOPED EVENT - An event which is not further developed either
because it is of insufficient consequence, or because
information is unavailable

DEVELOPED EVENT - An event which could be further developed, or is
developed elsewhere, but is treated here as a primary event

EXTERNAL EVENT - An event which is normally expected to occur

MISCELLANEOUS SYMBOLS

DESCRIPTION - Contains the description of an event

TRANSFER IN - Indicates that the tree is developed further at the
occurrence of the corresponding TRANSFER OUT (e.g., on
another page)

TRANSFER OUT - Indicates 'that this portion of the tree must be
attached at the corresponding TRANSFER IN

Figure 2. Fault Tree Symbols

.'

the input in certain columns or with certain spacing. As long as the delimiters

(i.e., dollar signs, periods, and commas) are correctly placed, the input will be

properly interpreted by SETS.

form:

where

The first card in the fault tree input is the fault tree header which has the

FAULT TREE$ fault-tree-name.

"fault-tree-name" is an arbitrary name supplied by the analyst consisting of

from 1 to 16 name symbols. (See section 2.2 for a description of valid names.)

The delimiters "$" and are required.

The second card is a comment card which has the form:

COMMENT$ descriptive material $

where

"descriptive material" is supplied by the analyst.

Comments can occur throughout the input, but they must follow a "." delimiter.

They do not contribute to the definition of the fault tree. The "$" delimiters are

mandatory.

The rest of the cards are the intermediate and primary event definitions.

The event definitions can occur in any order, but there must be exactly one defini­

tion for every event in the fault tree. The event definitions are described in

sections 2.3 and 2.4.

2.2 Event Names

As part of the event definitions, each primary and intermediate (gate) event

must be assigned a name. Valid names consist of from 1 to 16 name symbols, where

the name symbols are the capital letters A through Z, the digits 0 through 9 and

the minus sign (used to represent a hyphen in a name). For example,

CH1-SQB, G4, 113, 53-A-GRND4

are all legitimate names, and, in fact, any ordering of from 1 to 16 name symbols

is a name. Any name can be used as an event name in a fault tree with the exception

of the name OMEGA which has special meaning.

2.3 Primary Event Definitions

The primary events of a fault tree are those events which, for one reason or

another, have not been further developed. Five different types of primary events

are provided for the convenience of the analyst, and they are described in Figure 2;

however, it should be realized that all primary events are treated identically

during processing by SETS. The primary event definition for a basic event has the

form:

BE$ basic-event-name. OUTS output-event-list.

13

14

where

"BE" identifies the primary event as a basic event

"basic-event-name" is the name of the basic event supplied by the _analyst

"output-event-list" is the list of gates to which the basic event has an

output.

The four other types of primary events have similar event definitions of the form:

CE$ conditioning-event-name. OUTS output-event-list.

UE$ undeveloped-event-name. OUTS output-event-list.

DE$ developed-event-name. OUTS output-event-list.

EE$ external-event-name. OUTS output-event-list.

For example, the primary event definitions for the basic events E2 and E4 from the

fault tree in Figure 1, are as follows:

BE$ E2.

BE$ E4.

OUTS G3, G8.

OUT$ G6.

2.4 Intermediate (Gate) Event Definitions

The intermediate events of a fault tree are defined as logical combinations

of other intermediate or primary events in the fault tree. Figure 2 describes the

six types of gates which are valid for use with SETS. They are:

l. The AND Gate.

2. The OR Gate.

3. The EXCLUSIVE OR Gate.

4. The PRIORITY AND Gate.

5. The INHIBIT Gate.

6. The SPECIAL Gate.

The first five have standard predefined logic functions. Of these, the AND, OR,

and EXCLUSIVE OR are distinct, while the PRIORITY AND and INHIBIT gates are really

special cases of the AND gate. The differences between the AND, PRIORITY AND, and

INHIBIT gates come into play during quantitative evaluation, but for the purpose of

determining minimal cut sets or prime implicants, they all have the same logic

function.

The sixth gate, called "SPECIAL," is different from the other gates because

its logic function is defined by the user in the form of a Boolean expression. The

SPECIAL gate makes it easy for the SETS user to describe, directly, such logic

functions as the m-out-of-n gate instead of having to express it in terms of

several AND and OR gates.

The intermediate event definition for an AND gate has the form:

AG$ and-gate-name. IN$ input-event-list. OUT$ output-event-list.

where

"AG" identifies the intermediate event as an AND gate

"and-gate-name" is the name of the AND gate supplied by the analyst

"input-event-list" is a list of gates and primary events which are inputs to

the AND gate

"output-event-list" is a list of gates to which the AND gate has an output.

The top event of the tree has no output event list. The other predefined gates have

similar event definitions of the form:

OG$ or-gate-name. IN$ input-event-list. OUTS output-event-list.

EOG$ exclusive-or-gate-name. IN$ input-event-list. OUTS output-event-list.

PAG$ priority-and-gate-name. IN$ input-event-list. OUTS output-event-list.

IG$ inhibit-gate-name. IN$ input-event-list. OUTS output-event-list.

For example, the intermediate event definitions for the OR gate Gl and the AND gate

G2 from the fault tree in Figure 1 are as follows:

OG$ Gl. IN$ G2, G3.

AG$ G2. IN$ G4, El. OUTS Gl.

The intermediate event definition for the SPECIAL gate has a slightly

different form:

where

SG$ special-gate-name logic-function. IN$ input-event-list.

OUTS output-event-list.

"logic-function" is any properly formed Boolean expression.

The Boolean operations of conjunction (A), disjunction (V), and negation (,) that

appear in the expression are represented by the symbols *, +, and I, respectively.

The event names that appear in the Boolean expression must be the event names that

appear in the input event list. Conversely, every event name in the input event

list must appear in the Boolean expression. For example, the intermediate event

definition for a SPECIAL gate which specifies that the output event occurs when

exactly two of the three input events occur, can be represented in the following

way:

I
SIGNAL

, Q I
SIG-A SIG-B SIG-C

I I I

SG$ SIGNAL = SIG-A*(SIG-B*/SIG-C + ISIG-B*SIG-C) +
/SIG-A*SIG-B*SIG-C.

IN$ SIG-A, SIG-B, SIG-C.

OUT$ •••

A more detailed discussion of all of the options available for the fault tree input,

including the use of similar trees, is available in [1].

15-16

3. SETS User Programs

As mentioned earlier, a fault tree may be represented by a collection of

interrelated Boolean equations, one for each intermediate event. These equations

can be processed by SETS to determine the minimal cut sets for any intermediate

event in the fault tree. The fault tree analyst must direct this processing by

writing a SETS user program, which is then read, interpreted, and executed by SETS.

The SETS user programs will vary depending on such factors as (1) the size and

logical structure of the fault tree, (2) whether or not complement events occur in

the tree, and (3) the intermediate event for which the minimal cut sets are to be

obtained. It is the ability to direct the processing which gives the SETS system

its great generality and flexibility.

This chapter on SETS user programs is divided into three main parts. The

first part shows how the minimal cut sets of a fault tree may be obtained from the

tree's equivalent set of Boolean equations; the second part discusses the elements

of the SETS user program language; and the third part discusses two example SETS

user programs that find minimal cut sets and one example that finds prime

implicants.

The names that occur in SETS user programs are constructed according to the

same rules that were described for fault tree event names (section 2.2).

3.1 A Minimal Cut Set Algorithm

A fault tree can be represented by a collection of interrelated Boolean

equations, one for each intermediate event. These equations can be transformed to

determine the minimal cut sets for any intermediate event in the fault tree.

Three steps are necessary to find the minimal cut sets for a particular inter­

mediate event:

1. Generate all of the intermediate event equations defined by the fault

tree.

2. Generate an equation for the selected intermediate event as a function

of only primary events by a repeated substitution process using the

intermediate event equations generated in step 1.

3. Reduce the equation resulting from step 2 by applying the Boolean

absorption identities p*p = P and P + P*Q = P, or, if the equation

contains both an event and its complement, apply a prime implicant

algorithm.

The resulting equation, when printed in disjunctive normal (sum of products) form,

is tantamount to a listing of the minimal cut sets (or prime implicants).

Suppose that we want to use this minimal cut set algorithm to determine the

minimal cut sets for the top event of the fault tree in Figure 1 which does not

~ontain any complement events.

Step 1 -- Generate the intermediate event equations for the fault tree. To

do this, simply write each intermediate gate event as a function of its input events:

17

18

Gl G2 + G3

G2 G4 * El

G3 GS * E2

G4 G6 + E3

GS G7 * G8

G6 E4 * ES

G7 ES + E3

G8 E2 + El

Step 2 -- Generate an equation for Gl that is a function of only primary events.

To do ·this, systematically eliminate each intermediate event on the right side of

the equation for Gl by repeated substitution (i.e., replace each intermediate event

by the right side of its equation from step 1) until Gl is expressed entirely in

terms of primary events.

Gl G2 + G3

Gl (G4 * El) + (GS * E2)

Gl ((G6 + E3) * El) + ((G7 * G8) * E2)

Gl (((E4 * ES) + E3) * El) + (((ES + E3) * (E2 + El» * E2).

Step 3 -- Apply the identities p*p = P and P + P*Q = P to the equation generated

in step 2. The application of the identities can be easily seen by looking at a

disjunctive normal form of the equation:

Gl = E4*ES*El + E3*El + ES*E2*E2 + ES*El*E2 + E3*E2*E2 + E3*El*E2.

The identity p*p = P, when applied to the 3rd and Sth terms of the equation will

reduce them to ES*E2 and E3*E2, respectively. The 4th and 6th ·terms of the equation are

eliminated by the identity P + P*Q = P yielding the minimal cut sets for the top

event of the fault tree:

Gl = E4*ES*El + E3*El + ES*E2 + E3*E2.

3.2 Understanding SETS User Programs

The minimal cut set algorithm described in the previous section is implemented

for the fault tree in Figure 1 by the following very simple SETS user program:

PROGRAMS EX1-MCS.
RDFT (FIG-1-FT).
PRTBLK (FIG-l-FT).
LDBLK (FIG-1-FT).
SUBI NEON (G1, G 1-SUB) •
PRTEQN (G1-SU6).
REOUCEQN (G1-SUB, Gl-HCS).
P~TEQNONF (G1-MCS).

The first three statements read and error check the fault tree input description,

print it, and load its equivalent set of Boolean equations into the equation file.

The fourth statement performs the substitution process which generates an equation

for the top event Gl completely in terms of primary events. The fifth statement,

which is optional, prints the equation for Gl before it has been reduced. The last

two statements perform the reduction process and print the final result in

disjunctive normal form which is tantamount to a listing of the minimal cut sets.

where

A SETS user program begins with a program header of the form:

PROGRAM$ program-name.

"program-name" is any name comprised of from 1 to 16 name symbols (see

section 2.2).

Following the program header are the program statements which are executed in the

order that they occur. Two kinds of statements can appear in a SETS user program:

Boolean equations and procedure calls.

3.2.1 Boolean Equations -- A Boolean equation, as used in SETS user programs,

defines an equivalence relationship between a Boolean variable on the left side of

the equation and a Boolean expression on the right side of the equation. The

Boolean variable on the left side of the equation is represented by a variable name

comprised of 1 to 16 name symbols. The Boolean expression on the right can be any

logical combination of variables involving the operations of conjunction (A),

disjunction (V), and negation (,). A Boolean equation can be identified and

referred to by its left side variable; "the equation for X" means the equation that

has X as its left side variable. No Boolean equations appeared in the SETS user

program Exl-MCS above, but they will be used in later examples.

3.2.2 Procedure Calls -- A procedure call statement causes a predefined proce­

dure to be executed. The following list summarizes the available procedure calls*:

Procedures that

process input

Procedures that

process Boolean

equations

___________ { Read Input Block

Read Fault Tree

Procedures that

reference

equations

individually

Procedures that

reference

blocks of

equations

Print Equation

Print Equation In
Disjunctive Normal
Form

Delete Equation

Substi tute In '
Equation

Reduce Equation

Print Block

Block Status

Delete Block

Form Block

Load Block

RDINPBLK

RDFT

PRTEQN

PRTEQNDNF

DLTEQN

SUBINEQN

REDUCEQN

PRTBLK

BLKSTAT

DLTBLK

FRMBLK

LDBLK

From the above list, it can be seen that procedure calls process input,

individual equations, or blocks of equations. To understand how the procedures are

used, it is first necessary to understand how the block file and the equation file

are used. The involvement of the block file and the equation file in the execution

of the various procedures is depicted schematically in Figure 3. One or both of

* A special version of SETS contains two additional procedures that are used
for the quantitative evaluation of the terms in an'equation. Since these procedures
are in a special version of SETS they are described separately in Chapter 6.

19

20

these files will be involved in the execution of every statement of a SETS user

program, and the contents of the equation file and block file will vary as the

execution of the SETS user program progresses.

r CARD
INPur

SUBINEQN
RDFT LDBLK-, ,

BLOCK EQUATION
RDINPBLK FILE

'"
FRMBLK FILE REDUCEQN

'"

~ PRI'BLK PRTEQN I
'"

DLTBLK DLTEQN , ,
BLKSTAT PRI'EQNDNF

~ II ,II "\I

PRINTER
OUTPUT

~

Figure 3. Processing Schematic for Procedure Calls*

I

I

3.2.3 The Block File -- The block file is used to store groups of Boolean

equations or blocks. As discussed earlier, a fault tree can be transformed into a

set of Boolean equations, and is therefore a type of block. Each block is identified

by a block name for easy reference. From Figure 3 it can be seen that SETS input

is always entered in the block file using either the Read Fault Tree (RDFT) or Read

Input Block (RDINPBLK) procedure. Once a block has been entered in the block file,

the Load Block (LDBLK) procedure may be used to load its equations into the equation

file for processing. In the case of a block that represents a fault tree, loading

the block is usually aimed at determining the minimal cut sets. As shown in

Figure 3, the other procedures which involve the block file are:

Delete Block (DLTBLK)

Print Block (PRTBLK)

Block Status (BLKSTAT)

Form Block (FRMBLK)

Delete Block deletes a block from the block file; Print Block prints the Boolean

equations that constitute a block (additional information is printed for fault tree

blocks); and Block Status lists the names of the blocks currently contained on the

block file. Form Block is used to create a new block made up of equations from the

equation file and to add that block to the block file. Using Form Block, it is thus

possible to save in the block file equations that are created during the execution

of one SETS user program for subsequent use in the same program, or for use in some

other SETS user program at a later time.

*w. K. Paulus suggested the use of a schematic depicting the processing of
procedure calls, and produced the original version of this diagram.

3.2.4 The Equation File -- In order to process the individual equations of a

block, the block must be loaded into the equation file using the Load Block proce­

dure call. In addition, equations may be entered in the equation file one at a

time by using Boolean equation statements in a SETS user program. Figure 3 shows

the procedures which reference the equation file. They are:

Print Equation (PRTEQN)

Print Equation In Disjunctive Normal. Form (PRTEQNDNF)

Delete Equation (DLTEQN)

Substitute In Equation (SUBINEQN)

Reduce Equation (REDUCEQN)

Print Equation prints an equation in factored form; Print Equation In Disjunctive

Normal Form prints an equation in sum of products form; and Delete Equation deletes

an equation from the equation file. Substitute In Equation and Reduce Equation

perform steps 2 and 3, respectively, of the minimal cut set algorithm that was

described in section 3.1. Specifically, Substitute In Equation performs repeated

substitutions on an equation until the right hand side of t.hat equation consists

entirely of primary events; and Reduce Equation applies the Boolean absorption

identities to an equation.

There is a fundamental difference in the way that the equation file and the

block file are maintained. There can never be more than one equation with the same

left side variable in the equation file, but it is possible to have more than one

block with the same name in the block file. If the equation file already contains

an equation for a particular variable when a new equation for that variable is

defined (i.e., entered in the equation file) then the new equation will replace the

existing equation. When a new block is defined, it is added to the block file

regardless of whether or not the block file already contains any blocks with the

same name.

A more detailed explanation of the SETS user program language is given in [2],
and further discussion of the individual procedure calls appears in Appendix A.

However, the example programs presented in the following sections will provide

sufficient information for most fault tree applications. Additional information on

the use of SETS for fault tree analysis is available in [3].

3.3 Example SETS User Programs

In this section we discuss three typical SETS user programs. These particular

programs are applicable only to small fault trees, but the same basic techniques can
- - - ---

be extended to much larger trees as is shown in Chapter 4.

3.3.1 Example 1. Minimal Cut Sets for the Top Event of a Fault Tree Without

Complement Events -- Suppose that we want to write a SETS user program to determine

the minimal cut sets for the top event of the fault tree in Figure 1 using the

algorithm defined in section 3.1. The SETS user program EXI-MCS, which is repeated

here for convenience, accomplishes this task:

21

22

PROGRAMS EX1-MCS.
ROFT (FIG-l-FT>.
PRTBlK (FIG-l-FT).
LOBLK (FIG-l-FT).
SUBINEQN (Gl, Gl-SU8).
PRTEQN (Gl-SUB).
REOUCfaN (Gl-SU8, Gl-MCS).
PRTEQNDNF (Gl-HCS).

The first three statements of the SETS user program EX1-MCS constitute an

implementation of Step 1 of the minimal cut set algorithm. The first statement,

RDFT (FIG-l-FT)

is a call of the Read Fault Tree procedure. This statement is used to read the

input description of the fault tree FIG-l-FT, and add to the block file a block

which contains the intermediate event equations for the fault tree. The block has the

same name as the fault tree. The second statement,

PRTBLK (FIG-l-FT)

is a call of the Print Block procedure. Part of the output produced by this proce­

dure is a list of all of the equations in the block FIG-l-FT:

• • • • BLOCK SET EQUATIONS • • • •
(FIG-l-FT)

Gl c GZ .., G3

G2 ::; 61t ,. E1

G3 ::; G5 ,. E2

Git ::; 66 .., £3

G5 = 67 ,. G8

Go = E4 ,. ES

G7 :: E3 .., E5

G8 ::; El .., E2

The third statement,

LDBLK (FIG-l-FT)

The symbols "V" and "1\"

represent the OR and AND

operators, respectively.

is a call of the Load Block procedure. Execution of this statement causes the

intermediate event equations contained in the block FIG-l-FT to be loaded (i.e.,

entered) in the equation file where they are available for further processing.

Statements 4 and 5 in the SETS user program EX1-MCS represent an implementation

of Step 2 in the minimal cut set algorithm. The fourth statement,

SUBINEQN (Gl, Gl-SUB)

is a call of the Substitute In Equation procedure. It is invoked to accomplish a

repeated substitution process which begins with the right side of the equation

specified by the first parameter in the call, Gl. The substitutions continue using

the equations that are currently in the equation file until no further substitutions

can be made. Then, a new equation is defined and entered in the equation file. The

left side variable of the new equation is the second parameter in the call, Gl-SUB,

and the right side is the expression that has been formed by the repeated substitu­

tion process. The fifth statement,

PRTEQN (Gl-SUB)

is a call of the Print Equation procedure that is used to print the equation for

Gl-SUB as it appears in the equation file:

G1-SU8 :: ((((£4 ,. £5) w E3) ,. .1) " (((E3 v £5) A (E1 "
1234 1+ 3 2 231t 4 It

EZ)) A EZ))
It 3 2 1

An integer is associated with each parenthesis in the equation and is printed

beneath it as an aid in interpreting the factored equation; paired parentheses have

the same number.

The last two statements of the SETS user program EX1-MCS represent an imple­

mentation of Step 3 of the minimal cut set algorithm. The sixth statement,

REDUCEQN (Gl-SUB, Gl-MCS)

is a call of the Reduce Equation procedure which is used to apply the identities

p*p = P and P + P*Q = P to the right side of the equation specified by the first

parameter in the call, Gl-SUB. Then, a new equation is defined with the second

parameter in the call, Gl-MCS, as its left side variable and the reduced expression

as its right side. The last statement,

PRTEQNDNF (Gl-MCS)

is a call of the Print Equation In Disjunctive Normal Form procedure which is used

to print the equation for Gl-MCS in a sum of products form. The product terms of

this equation are the minimal cut sets for the top event of the fault tree:

TERM
NUMBER

1

2

3

NUMBER OF
LITERALS

Z

z

2

3

G1-MCS ::

E2 " £3 v

E1 A £3 "

E2 ... E5 v

£1 ... Elt " E5

Thus, the four minimal cut sets for Gl are:

(El, E4, E5).
(E2, E3), (El, E3), (E2, E5), and

23

24

The SETS user program EXI-MCS is an implementation of the algebraic algorithm

for determining minimal cut sets. It shows what a SETS user program is like, and

illustrates the use of several procedures. The general form of a procedure call

statement is apparent from this example; a procedure call consists of a procedure

identifier followed by a parameter list enclosed in parentheses. There are a few

cases where parameters do not occur in the procedure call, but usually they are

present.

3.3.2 Example 2. Minimal Cut Sets for the Top Event and Intermediate Events

of a Fault Tree Without Complement Events -- Suppose we want to determine the

minimal cut sets for the top event GI, and for the intermediate events G4 and G8 ,

of the fault tree in Figure 4. Since GI is a function of G4 and G8 , and since the

minimal cut sets for G4 and G8 are to be obtained anyway, the equations that repre­

sent the minimal cut sets for G4 and G8 can be determined first, and then used in

the determination of the minimal cut sets for the top event, GI. This approach is

implemented in the SETS user program:

PROGRAMS EX2-MeS.
ROFT (FIG-It-FT).
LOBLK (FIG-4-Fr).
SUBIN£QN (G4, G4).
REDUCEQN (G4, G4).
SUBINEQN (G8, G8).
REOUCEQN (G8, G8).
SUBINEQN (G1, G1).
REOUCEQN (G1, G1).
PRTEQN (G1, GIt, G8).
PRTEQNONF (G1, 64, G8).

Figure 4. Another Simple Fault Tree

As the SETS user program EX2-MCS is executed, the equations for Gl, G4, and

G8 in the equation file are redefined. The first two statements of the SETS user

program,

RDFT (FIG-4-FT)

LDBLK (FIG-4-FT)

accomplish the processing of the fault tree and the loading of the intermediate

event equations into the equation file. This establishes the original equations

for Gl, G4, and G8. The rest of the processing specified in the SETS user program

for each of these three events is similar, and it will only be described for the

intermediate event G4.

After the execution of the Load Block procedure, the equation for G4 in the

equation file is:

Gi+ : G6 v G 7

The third statement in the SETS user program,

SUBINEQN (G4, G4)

is a call of the Substitute In Equation procedure. Beginning with a copy of the

right side of the equation specified by the first parameter, G4, the repeated sub­

stitution process is applied to form the right side of the new equation that will

be defined and entered in the equation file by this procedure. The left side

variable of the new equation is the second parameter in the procedure call, G4.

Thus, a new equation for G4 is defined, and it replaces the old equation for G4 in

the equation file. The equation for G4 that is in the equation file after the

execution of this statement is:

G4 = ((E3 " (E4 ., E2) , ., (E2 '" ([5 ., (E4 " E6))))
12 3 32 2 3 ,. 4321

The fourth statement in the SETS user program,

REDUCEQN (G4, G4)

is a call of the Reduce Equation procedure which will once more define a new equa­

tion for G4. A copy of the right side expression of the equation specified by the

first parameter, G4, is subjected to the application of the identities P*P = P and

P + P*Q = P which results in the elimination of one term from the expression. A

factored form of the remaining four terms becomes the right side of the new equation

that will be defined and entered in the equation file by this procedure. The second

parameter, G4, is the left side variable for the new equation. The new equation

for G4,

G4 = E4 " (E6 v £3) v E5 v E2
1 1

is a representation of the minimal cut sets for G4 and it replaces the old equation

for G4 in the equation file.

The equations representing the minimal cut sets for G8 and Gl are developed

in the same way that the equation representing the minimal cut sets for G4 is

developed. The development of the equation fOr Gl, however, makes use of the

25

26

minimal cut set equations for G4 and G8 which were previously computed. The final

two statements of the SETS user program,

PRTEQN (Gl, G4, G8l

PRTEQNDNF (Gl, G4, G8l

are used to print the minimal cut set equations for Gl, G4, and G8. The equations

are printed first in the factored form that they have in the equation file, and

then in a disjunctive normal form which is tantamount to a listing of the minimal

cut sets for Gl, G4, and G8:

&1 = £1 " (fit 1\ (£6 v £3 , v E5 v f2
1 2 2

G4 z E4 1\ (E6 v E3) ., E5 " E2
1 1

G& = E4 ,. E3 ,. A " E1 1\ B

TERM. NUM8ER OF
NUMBER LITERALS

1 2

Z Z

3 3

.. 3

5 4

TERM NUMBER OF
NUMBER LITERALS

1 1

2 1

3 Z

It Z

TERM NUMBER OF
N~"eE~ LITERALS

1

Z

2

3

G1 =

E1 1\ E5 v

£1,. £2 y

i1 1\ Elt It. Ev v

E1 " Elt 1\ E3 v

E4 1\ E2 1\ E3 1\ A

G4 =

ES .,

E2 v

E4 1\ E& v

Eit 1\ E3

&8 =
£1 ,. B v

fit 1\ E3 1\ A

) ., £4 1\ E2 1\ E3 " A
1

There is an undeveloped event, B, which occurs in the equation for Ga, but

does not occur in the reduced equation for GI. This may signify that it is not

necessary to develop the event B, because it is not involved in the minimal cut

sets for the top event of the fault tree.

3.3.3 Example 3. Prime Implicants for the Top Event of a Fault Tree with

Complement Events -- Up to now we have only considered trees which do not contain

complement events. This example illustrates the processing required to find the

fundamental ways that the top event can occur for a fault tree containing complement

events. The fault tree in Figure 5 contains a SPECIAL gate with the equation

G7 = F + /F*C, and an EXCLUSIVE OR gate. Both of these gates introduce complement

events. Consider the SETS user program:

PROGRAM$ EX3-PRIME-IHP.

COHMENT$ THE FIRST TWO STATEHENTS OF THE P~OGRAH PROCESS
THE FAULT TREE AND LOAD THE INTERMEDIATE EVENT
EQUATIONS INTO THE EQUATION FILE.S

ROFT (FIG-5-FT).
LDBLK (FIG-5-fT).

COMMENTS THE NEXT TWO STATEMENTS GENERATE A SIMPLE
REDUCED EQUATION FOR THE TOP EVENT, Gl.$

SU8INEQN (Gl, TREE-TOP).
REOUCEQN (TREE-TOP, TREE-TOP).

CO"MENT$ THE NEXT SIX STATEMENTS CONSTITUTE A PRIME
IMPLICANT ALGORITHM WHICH IS USED TO FIND
THE PRIME IHPLICANTS FOR THE iOP EVENT, Gl.$

Gl-CHP : .IG1.
SUBINEQ" (Gl-CHP, Gl-0MP).
REOUCeQN (Gl-CMP, Gl-eMP).
Gl-PRM-II1P :: IGi-CMP. '
SUBINEQN (Gl-PRM-IHP, Gl-PRH-IHP).
REDUCEQN (Gl-PRM-IMP, Gi-PRH-IMP).

COMMENTS THE FINAl STATEMENT PRINTS 80TH OF THE EQUATIONS
THAT HAVE BEEN GENERATED FOR THE top EVENT, Gi,
I to! 01 SJUNCT IVE. NORMAL FORM. $

PRTEQNONF (TREE-TOP, Gl-PRH-IHP).

Notice that comments occur in the above program and recall that a comment has the

form:

COMMENT$ descriptive material $

Also notice that the free field input has been exploited by indenting and by insert­

ing blank cards to enhance the readability of the program.

The first two statements of the SETS user program EX3-PRIME-IMP read and

process the fault tree FIG-5-FT and enter the intermediate event equations of the

fault tree in the equation file. The next two statements,

SUBINEQN (GI, TREE-TOP)

REDUCEQN (TREE-TOP, TREE-TOP)

generate an equation for TREE-TOP using the same approach that was used to determine

minimal cut sets in the SETS user program EXI-MCS.

27

28

Figure 5. A Fault Tree with Complement Events

The next six statements of the SETS user program EX3-PRIME-IMP constitute a

prime implicant algorithm which can be used for trees containing complement events

[4]. Execution of these statements will produce an equation for GI-PRM-IMP that

represents all and only the prime implicants for the top event of the fault tree.

Two of the statements in this prime implicant algorithm are Boolean equations.

They are the first Boolean equation statements that have appeared in the example

SETS user programs, and both of them are used to form an equation that is the

complement of an existing equation. The complement of the equation for GI is

generated first and, subsequently, the complement of the equation for GI-CMP is

generated.

In addition to the identities p*p = P and P + P*Q = P that are applied by the

Reduce Equation procedure and have already been described, DeMorgan's Rules and the

identity P*,P = ~ are also applied by this procedure. DeMorgan's Rules and all of

these identities are required in the execution of the prime implicant algorithm in

the SETS user program EX3-PRIME-IMP. (A detailed description of the processing

achieved by the Reduce Equation procedure appears in Appendix A.)

The final statement of the program is used to print the equations for

TREE-TOP and GI-PRM-IMP in disjunctive normal form:

TERM
NUMBER

1

2

3

It

5

6

TERM
NUMBER

1

2

3

it

NUMBER. OF
LITERALS

2

2

3

3

4

5

NUMBER OF
LITERALS

1

3

3

It

TREE -TOP =

8 1\ .. c y

8 A F y

o 1\ E A "c II

8 1\ C " "F y

o A E A "08 A "A .,

0 A C A A A .. s 1\ "E

G1-PRM-IHP =

a II

D A E 1\ "OA v

o 1\ E 1\ .. c v

o A C 1\ A A "E

The equations for TREE-TOP and Gl-PRM-IMP are equivalent, but a comparison of the

terms of the two equations shows that the fundamental ways that the top event of

the fault tree can occur are represented by the terms of the prime implicant

equation Gl-PRM-IMP, rather than the terms of the equation for TREE-TOP. For

example, the equation for Gl-PRM-IMP shows that the occurrence of the single primary

event B is enough to cause the occurrence of the top event of the fault tree--a fact

that is not readily apparent in the equation for TREE-TOP. The SETS user program

EX3-PRIME-IMP illustrates that for fault trees which contain complement events, it

is the prime implicants of an intermediate event equation which represent the

fundamental ways that the intermediate event can occur.

29-30

4. Advanced Minimal Cut Set Techniques

In section 3, a minimal cut set algorithm was presented. The second step of

this algorithm expresses the selected intermediate event as a function of primary

events, and the third step reduces the resulting equation. For large fault trees,

a prohibitive amount of computer time can be required to reduce this equation in

one step. The single step technique was used in the following program to determine

the minimal cut sets for the top event of the fault tree in Figure 6:

PROGRAM! SINGLE-STEP.
ROFT (FIG-6-FT).
LDBLK (FIG-6-FT).
SU8IHEQN (G1, G1-SUB).
REOUCEQN <G1-SUS, Gl-MCS).

Execution of this SETS user program required 7,686 seconds of CPU time on a CDC 6600

to determine the 1,053 minimal cut sets for Gl. Virtually all of the time (7,683

seconds) was spent in reducing the equation as shown by the output of the Reduce

Equation procedure:

THE MAXIMUM NUMBE~ OF TE~MS THAT CAN BE
GENERATED BY EXPAN~10N IS 5769050.
THE WORK MEASURE FO~ EXPANSION IS 9046985.

TERMS GENERATED BY EXPANSION;
1 TERMS CONTAIN 2 LITERALS.
4 TERMS CONTAIN 3 LITERALS.

14 TER"S CONTAIN 4 LITERALS.
37 TERMS CONTAIN 5 LITERALS.

178 TERMS CONTAIN 6 LITERALS.
710 TERMS CONTAIN 7 LITERALS.

3259 TERMS CONTAIN 8 LITERALS.
13116 TERMS CONTAIN 9 LITERALS.
"3783 TERMS CONTAIN 10 LITERALS.

123616 TERMS CONTAIN 11 LITERALS.
2~2351 TERMS CONTAIN 12 LITERALS.
566881 TERMS CONTAIN 13 LITERALS.
903974 TERMS CONTAIN 14 LITERALS.

1153698 TERMS CONTAIN 15 LITERALS.
11a7196 TERNS CONTAIN 16 LITERALS.

854968 TERMS CONTAIN 17 LITERALS.
466284 TERMS CONTAIN 18 LITERALS.
170776 TERMS CONTAIN 19 LITERALS.

35264 TERMS CONrAIN 20 LITERALS.
2880 TERMS CONTAIN 21 LITERALS.

TOTAL TERMS GENERATED: 5769050.
EXPANSION TOCK E654.792 SECONDS.

TERMS RETAINED BY SIMPLIFICATION'
1 TERMS CONTAIN 2 LITERALS.
2 TERMS CONTAIN 3 LITERALS.

11 TERMS CONTAIN 4 LITERALS.
11 TERMS CONTAIN 5 LITERALS.
38 TER"S CONTAIN 0 LITERALS.

1~6 TERMS CONTAIN 7 LITERALS.
290 TERMS CONTAIN 8 LITERALS.
312 TERMS CONTAIN 9 LITERALS.

Number of minimal
cut sets of size

/2,3, 4, ... , 12

183 TERMS CONTAIN 10 LITERALS. Total number of
53 TERMS CONTAIN 11 LITERALs~minimal cut sets

6 TERMS CONTAIN 12 LITERALS.
TOTAL TERMS RETAINEO: 1053.

SIMPLIFICATION rOOK 1020.642 SECONDS. Execution time for
the Reduce Equation

NUHEER OF ITERATIONS REQUIREDI procedure
FACTORIZIITION TOOK 7.883 SECONDS.

STATEMENT EXECUTICN REQUIRED 7683.331 FOR REDUCEGN

31-32

Figure 6.

D----,
G5
G6

A Complex Fault Tree

33-34

Clearly, 7,686 seconds (over 2 hours) of CPU time is an excessive amount of computer

time to determine the minimal cut sets for this fault tree, and more efficient

methods are needed.

The techniques described in sections 4.1, 4.2, and 4.3 of this chapter are

methods for processing a fault tree in parts or stages. Each of these techniques

is inherently more efficient than deriving a minimal cut set equation in a single

step. To illustrate the kind of savings that can be realized by these techniques

over the single step technique, the execution time required by each technique to

determine the 1,053 minimal cut sets for the top event of the fault tree in

Figure 6 is recorded in Table I. By inspection of Table I it is clear that

methods 2-4 can result in very large savings over the single step technique. The

actual savings is, of course, dependent on the structure of the particular tree

being processed.

TABLE I

Execution Times for Different MCS Techniques

Technique

1. Single step equation reduction

2. Separate processing of independent subtrees
(section 4.1)

3. Processing a fault tree in stages (section 4.2)

4. Composite of 2 and 3 (section 4.3)

CPU seconds on a
CDC 6600

7,686

150

30

10

In section 4.4, a way of creating new independent subtrees is described. The

creation of additional independent subtrees in a fault tree is not a new technique

for finding minimal cut sets, but the creation of additional independent subtrees

can make the techniques that involve the separate processing of independent

subtrees even more effective.

In section 4.5, a method is described for limiting the size of the minimal

cut sets to be determined. Sometimes it is simply not necessary to obtain minimal cut

sets containing more than a few primary events. When the fault tree of Figure 6

was processed by the single step method, but with minimal cut set size limited to

8 events or less, it required only 14 seconds of CPU time to determine the 499

minimal cut sets with 8 or less primary events.

4.1 Separate Processing of Independent Subtrees

The first technique involves identifying independent portions of the fault

tree, reducing these portions separately, and then putting them together for final

processing with the rest of the tree. To do this, it is necessary to understand

the concept of an independent subtree.

35

36

4.1.1 Identifying Independent Subtrees -- The development of each intermediate

event in a fault tree is a subtree which has the intermediate event as its base

event. A subtree with base event G will be denoted SG. For example, the subtree

with base event G3 is circled in Figure 7. This subtree is denoted SG3.

/
(

/
/

/

/ "' / \
\

\
\

\
)

Figure 7. Illustration of Subtrees

A subtree S. is independent with respect to a subtree S. if none of the events in S.
l J l

(except i) appears in S. after removing S. from S .• For example, in Figure 7, the
J l J

subtree SG3 is an independent subtree with respect to SGl' the entire fault tree.

Subtree SG4' however, is not independent with respect to SGI because E2, which

appears in SG4' also appears as an input to gate G9.

The minimal cut set equation for the top event of a fault tree can be formed

from the equations for its largest independent subtrees and the stem equation for

the top event. A largest independent subtree is an independent subtree that is not

contained in another independent subtree. The stem equation for the top event of a

fault tree is the equation derived for the top event of the fault tree, but with the

base events of the largest independent subtrees treated as primary events. For

example, with respect to the top event in Figure 7, we can identify the independent

subtrees SG3' SG6' SG7' and SGS· The largest independent subtrees are SG3 and SGS'

and the stem equation for Gl is simply

Gl = (E3 A (E2 V EIO) V El) V G3 V (E2 A GS).

After the equations for the largest independent subtrees and the stem equation

have been derived, the minimal cut set equation for the top event can be formed by

substituting the equations for the largest independent subtrees into the stem

equation. Sometimes, one or more of the independent, subtree equations may be too

large to derive in a single step. In this case, the independent subtree process can

be applied recursively, that is, the subtree itself can be divided into its largest

independent subtrees and stem equation, etc., until ultimately the equations are

small enough to be derived efficiently.

"

4.1.2 Example Using Independent Subtrees -- The fault tree in Figure 6 has

seven independent subtrees with respect to the top event, Gl • The four largest

independent subtrees are SG13' SG22' SG31' and SG39' These largest independent

subtrees are used to derive the minimal cut set equation for Gl in the SETS user

program:

PROGRAMS INO-SUBTREES.

COMMENTS READ THE FAULT TREE AND LOAD THE INTERMEDIATE
EVENT t::QUATIONS.$

RDFT (FIG-6-FTl.
LOBLK (FIG-6-FT).

COMMENTS DERIVE AND SAVE THE REDUCED STEM EGUATION
FOR G1 BY TREATING THE BASE EVENTS OF
THE LARGEST INDEPENDENT SUBTREES AS IF
THEY ARE PRIMARY EVENTS.S

SUBINEQN (G1, 61-STE". STOP$ G13, G22, G31, G39).
R£DUCEQN (G1-STEH, Gl-STEM'.
FRH8LK (STEM-EON. ONUS G1-STE.0.

COHKENTS DERIVE AND SAVE THE REDUCED EQUATIONS
FOR THE LARGEST INDEPENDENT SUBTREES.$

SU8INEQN (G13, G13).
REOUCEON (G13, G13).
SU8INEQN (G22, G22).
SUBINEON (G39, 639).
FRK8LK (LARGEST-INO-ST. ONlYS G13, G22, G31, G39).

COMMENTS SUBSTITUTE THE EQUATIONS FOR THE LARGEST

01.. TEQN.

INDEPENDENT SUBTREES INTO THE STEM
EQUATION FOR G1 TO FORM THE MINIMAL CUT
SET EQUATION FOR G1.$

L08LK (STEM-EQN, LARGEST-IND-ST).
SUBINEQN (G1-STEH, G1-HCS).

Execution of IND-SUBTREES required 150 seconds of CPU time compared to the 7,686

seconds of CPU time required to execute SINGLE-STEP. Both_programs produced the

1,053 minimal cut sets for Gl.

In the SETS user program, IND-SUBTREES, a stop list occurs in one of the

calls of the Substitute In Equation procedure. A stop list has the form:

STOPS stop-point-list

where

" s top-point-list" is a list of intermediate events. A stop list occurs after

the two regular parameters in a call of the Substitute In Equation procedure, and

is separated from them by an asterisk. In the statement,

SUBINEQN (Gl, Gr-~TEM*-STOP$ G13, G22, G31, G39)

the stop list causes the substitution process to be halted at the base events of

the largest independent subtrees. Although the intermediate event equations for

G13, G22, G31, and G39 are in the equation file, no substitutions will take place

for them because they appear in ·the stop list. The stem equation, Gl-STEM, is then

simplified by a call of the Reduce Equation procedure, and saved in the block

STEM-EQN by the statement:

FRMBLK (STEM-EQN* ONLY$ Gl-STEM).

37 -,

38

After the stem equation has been derived, the equations for the largest

independent subtrees are derived. The reduced equation for the subtree SG3l is

just the intermediate event equation for G3l, and it is in the equation file after

the fault tree equations are loaded. The reduced equations for the subtrees

SG22 and SG39 can be derived using only a call of the Substitute In Equation

procedure, because there is no possibility of reduction in the equations for these

subtrees since they do not contain any replicated (i.e., multiple output) events.

The derivation of the reduced equation for the subtree SG13' however, requires a

call of the substitute In Equation procedure and a call Qf_the Reduce Equation

procedure because there is at least one replicated event in SG13 and some reduction

may occur.

The call of the Form Block procedure,

FRMBLK (LARGEST-IND-ST* ONLY$ G13, G22, G3l, G39)

causes a block to be formed and added to the block file. The first parameter,

LARGEST-IND-ST, is the name of the new block and it will contain only those equa­

tions from the equation file that are specified in the parameter part of the call;

namely, the equations for G13, G22, G3l, and G39. Thus, the equations for the

four largest independent subtrees are saved in the block LARGEST-IND-ST.

The call of the Delete Equation procedure without any parameters (i.e., just

the procedure identifier DLTEQN) causes every equation to be deleted from the

equation file. Then, after loading the blocks STEM-EQN and LARGEST-IND-ST, the

minimal cut set equation for Gl, Gl-MCS, can be determined by calling the Substitute

In Equation procedure,

SUBINEQN (Gl-STEM, Gl-MCS).

4.2 Processing a Fault Tree in Stages

A second technique for increasing the efficiency of SETS user programs for

large fault trees is to derive the minimal cut set equation for an intermediate

event in a series of steps. This usually requires much less computer time than the

derivation of the equation in a single step because many terms are either

(1) eliminated or (2) factored by the Reduce Equation procedure at an interim stage

instead of being propagated- through the derivation of the whole equation. Elimina­

tion of terms and variables at an interim stage by application of the identities

P*P = P and P + P*Q = P in the Reduce Equation procedure is beneficial because it

eliminates the time consuming expansion and subsequent reduction of these terms

and variables. For example, if (x+y)*(x+z) occurs as an interim stage in the

development of some equation, then continued development of the equation without

reduction involves four two-variable terms: x*x, x*z, y*x, and y*z. However,

continuing the development after reduction at this stage involves only one one­

variable term and one two-variable term: x and y*z.

Factorization of an equation by the Reduce Equation procedure at an interim

stage of development can also produce savings in computer time. Factoring tends to

decrease the number of times that a repeated variable appears in the equation. By

decreasing the number of variables in the equation, less work is required later to

expand the equation by the distributive law and this saves computer time. If

(x*y)+(x*z) occurs as an interim stage in the development of some equation, for

example, then continued development of the equation without reduction requires that

the later expansion of the part of the equation which stems from the substitution

for the variable x, be done twice. However, after factoring at this stage to

x*(y+z), the later expansion of that part of the equation which stems from x is

done only once.

4.2.1 A Method for Choosing Stages -- An interim stage in the development of

an equation can be created by stopping the substitution process at some selected

intermediate events. After reduction of the equation at an interim stage, the sub­

stitution process is reinitiated with perhaps another set of selected intermediate

events serving as stop points to create another interim stage. Ultimately, the

substitution process will be reinitiated without any specified stop points and this

will produce the final equation. A stop list can be used with the Substitute In

Equation procedure which allows the user to selectively stop the substitution process

and create interim stages in the development of an equation.

There are many ways that the stop points for deriving a minimal cut set

equation in stages can be selected. The effect of factoring and the application of

the identities P*P = P and P + P*Q = P, can be exploited by choosing replicated

(i.e., mUltiple output) intermediate events as stop points. To derive the minimal

cut set equation for an intermediate event, i, in stages, first identify the

replicated intermediate events in Si' the subtree with base event i.

After the replic~ted intermediate events in Si have been identified, begin

with the base event i and traverse every branch of the subtree Si until it terminates

with a primary event, or until one of the replicated intermediate events of Si is

encountered. The stop points for the first stage are the replicated intermediate

events so encountered. (Do not traverse a branch past the first replicated inter-

mediate event encountered.) To find the stop points for the second stage, repeat

this procedure for every stop point in the first stage. That is, for each stop

point j from stage one, traverse every branch of the subtree S. until it terminates
J

of the replicated intermediate in a primary event, or until one events of S. is
1

encountered. The stop points for the second stage are the replicated intermediate

events so encountered. The stop points for successive stages are found in a similar

manner; by using the stop points for the current stage and traversing every branch

of the subtrees which have the current stop points as their base events until they

terminate in a primary event or a replicated intermediate event of Si is encountered.

The replicated intermediate events encountered are the stop points for the next

stage. Eventually, a stage will be reached for which every stop point is the base

event of a subtree which does not contain any replicated intermediate events of Si'

At this point, the final stage equation, which has no stop points, is derived.

4.2.2 Example Using Processing in Stages -- The replicated intermediate ,
events with respect to the top event, Gl, for the fault tree in Figure 6 are G8,

GIO, G14, and G32. There are four stages for this example:

39

40

Stage 1 stop points; G8, G10, G14

Stage 2 stop points; G14, G32

Stage 3 stop points; G32

Stage 4 stop points; none.

Notice that the event G14 is not a stop point for stage 2 because it was a stop

point for stage 1; rather, G14 is a stop point for stage 2 because it was encountered

when traversing the branches of some stop point for stage 1 other than G14 (in this

case both G8 and G10). The same argument applies to G32 which is a stop point for

both stage 2 and stage 3.

The four stages are used to derive the minimal cut set equation for G1 in the

SETS user program:

PROGRAM' ST AGES.

COMMENTS READ THE FAULT TREE AND LOAD THE INTERMEDIATE
E VENT EQUATIONS. $

ROFT (FIG-6-FT).'
LDBLK (FIG-6-FT).

COMMENTS OERIWE THE MINIMAL CUT SET EQUATION
FOR G1 IN STAGES.!

SU6INEQM (G1, GI-ST~1~ STOPS G8, G 10, G14).
REOUCEQN (G1-STG1, GI-STG!) •
SUtlINEQN (Gl-5TG1, Cat-STGZ'" STOPS G14, G32).
REOUCEQN (Gl-STG2, Gl-5TG2) •
SU8INEQN (G1-STG2, G1-STG3~ STOPS GlZ) •
REOUCEQN (Gl-STG3, Gl-STG3).
SUBINEQN (G1-STG3, Gl-STG~).
REDUCEQN (G1-STG4, GI-HC5).

Execution of STAGES produced the 1,053 minimal cut sets for G1, but it only required

30 seconds of CPU time compared to the 7,686 seconds of CPU time required to

execute SINGLE-STEP.

4.3 Composite Technique

The identification of independent subtrees and the separate derivation of

the equations for them, coupled with the derivation of the remaining stem equation

in stages, can be used to produce the minimal cut set equations for selected inter­

mediate events in many large fault trees. When this composite technique is used,

the final step in creating the equation representing the minimal cut sets is to

substitute the equations for the largest independent subtrees into the stem

equation. Although this substitution creates the minimal cut set equation and it

cannot be further reduced because of the way it was generated, the number of

minimal cut sets (terms) and the number of events in each of them are usually not

known at this point. However, a call of the Reduce Equation procedure following

the SUBINEQN call will print the maximum number of terms that can occur in the

equation (which in this case is the number of terms in the equation) and will then

begin to expand the equation and list the number of terms which contain 1, 2, ••• , n

events. Depending on the number of terms in the equation, this REDUCEQN call can be

allowed to finish, or the job time can be restricted so that a time limit on

execution will occur after some reasonable amount of information about the equation

has been printed.

The composite technique is a reasonable approach for the user to employ first

and it is often successful. The composite technique was used to derive the minimal

cut set equation for Gl in the Figure 6 fault tree in the SETS user program.

PROGRAM$ COMPOSITE.

COMMENT$ READ THE FAULT TREE AND LOAD THE INTERMEDIATE
EVENT EQUATIONS.$

RDFT (FIG-6-FTl.
LOBLK (FIG-6-FT).

COMHENT$ CHANGE THE BASE EVENTS OF THE LARGEST
INDEPENDENT SUBTREES TO BE TREATED AS IF
THEY ARE PRIMARY EVENTS. DERIVE THE
REDUCED STEM EQUATION FOR G1 IN STAGES
AND SAVE IT IN A SLOCK.$

OlTEQN (G13, G22, G31, G39).
SUBINEQN (G1, G1-STG1¥ STOP$ G8, G10, G14).
REOUCEQM (G1-5TG1, G1-STG1).
SUBINEQN (G1-STG1, Gl-STG2¥ STOPS G14. G32).
REOUCEQN (G1-STG2, G1-5TG2).
SU8INEQN (G1-5TG2, Gl-STG3¥ SlOP$ 632).
REDUCEQN (G1-STG3, 61-STG3).
SUBINEQN (G1-STG3, Gl-STEM).
REOUCEQN (G1-STEM, G1-STEM).
FRMBlK (STEM-EQH¥ ONLY$ G1-STEH).

COMMENTS RELOAD THE INTERMEDIATE EVENT EQUATIONS,
AND THEN DERIVE AND SAVE THE REDUCED
EQUATIONS FOR ~HE LARGEST INDEPENDENT
SUBTREES. S

Dl TEaN.
LOeLK (FIG-6-FT>.
SUBINEQN (G13, G13).
REOUCEQH (G13, G13).
SUBINEON (G22, G22).
SUeINEQN (G39, G39'.
FIU'BlK (LARGEST-IND-S'" ONLYS &13, G22, G31, (39).

COHHfHT$ SUBSTITUTE THE- EQUAIIONS FOR THE LARGEST

OL TEQN.

INDEPENDENT SUBTREES INTO THE STEM
EQUATION FOR G1 TO FORM THE MINIMAL CUT
SET EQUATION FOR G1.$

LDBLK (ST EM-EQN, LARGEST-INO-ST).
S08INEQN (Gl-STEM, Gl-MCS).

Execution of COMPOSITE produced the 1,053 minimal cut sets for Gl in 10 seconds

of CPU time.

4.4 Creating Independent Subtrees

It is sometimes possible to create independent subtrees in a subtree Si by

redefining gates in Si. Fh<?1:her or not a created independent subtree will

increase the effectiveness of the independent subtree technique or the composite

technique, both of which involve the separate processing of independent subtrees,

depends on the created independent subtree and where it is located in the fault

tree. If the created independent subtree is within an existing independent subtree

for which the equation can already be derived in a reasonable amount of time, then

little will be gained by creating the new subtree. However, a created independent

subtree that is a largest independent subtree in Si may, for example, significaptly

decrease the time and storage required to derive the stem equation for the base

41

42

event i. The user can choose which independent subtrees to create or simply

create all of the possible ones, but in either case all of the existing independent

subtrees should be identified before any new independent subtrees are created.

4.4.1 A Method for Creating Independent Subtrees -- An AND or OR gate, G,

in Si can be redefined to create an independent subtree with respect to Si' if at

least two of the inputs to G are nonreplicated primary events or nonreplicated

intermediate events that are base events of existing independent subtrees. All of

the nonreplicated primary events and nonreplicated base-events of independent sub­

trees that are inputs to G are replaced by a single input from a new gate, G'. The

created gate G' has a single output to the gate G and it has as its inputs, all of

the nonreplicated primary events and nonreplicated base events of independent

subtrees that were inputs to G. The created gate G' is the same kind of gate as G,

and it is the base event of a new independent subtree.

A pair of consecutive OR gates or a pair of consecutive AND gates can often

be coalesced into a single gate. Any OR gate, G, which has an input from a non­

replicated OR gate, G', can be equivalently represented by replacing the input to

G from G' with all of the inputs to G', and deleting the gate G'. Similarly,

an AND gate, G, which has an input from a nonreplicated AND gate, G', can be

coalesced into a single equivalent AND gate. Coalescing does not create an

independent subtree, but by coalescing consecutive gates of the same kind wherever

possible, including gates which are the result of previous coalescing, it is some­

times possible to collect, as inputs to the same gate, at least two inputs which

are nonreplicated primary events or nonreplicated base events of independent

subtrees. Such a gate can then be redefined to create an independent subtree.

As a general rule, coalescing should be done before the creation of independent

subtrees, but it should only be done if it leads to the creation of an independent

subtree.

The creation of independent subtrees can be achieved by redefining the fault

tree and then reading and processing the modified fault tree. Independentsubtrees

can also be created by simply changing the intermediate event equations from the

original fault tree to reflect the redefined structure of the fault tree. Both of

these methods can be used for creating independent subtrees, but only the method

of changing the intermediate event equations will be illustrated.

4.4.2 Example using Created Independent Subtrees -- There are four pairs of

gates in the Figure 6 fault tree that can be coalesced: G7 and G12, G25 and G27,

G28 and G30, and G34 and G36. However, coalescing the AND gates G34 and G36 would

not produce a gate that could be redefined to create an independent subtree.,

because the inputs to the gate would include only one nonreplicated primary event

(E27) and no nonreplicated base events of independent subtrees.

After coalescing, each of the gates G7, G25, and G28 has two nonreplicated

primary events among its inputs. In addition, the OR gate, G43, also has two

nonreplicated primary events among its inputs. Thus, each of these gates can be

redefined to create an independent subtree. The equations for the redefined gates

and the created independent subtrees are as follows:

G7 = IST-G7 + E7

G25 IST-G25 + G29

G28 = IST-G28 + G32

G43 = IST-G43 + E2

IST-G7 = E3 + E6

IST-G25 El8 + E20

IST-G28

IST-G43

E2l + E22

E33 + E34.

The creation of independent subtrees and the subsequent application of the

composite technique to determine the minimal cut sets for the top gate in the

Figure 6 fault tree are illustrated in the SETS user program:

PROGRAMS CREATE-INO-ST.

COMMENTS READ THE GATE EQUAT IONS THAT CREATE INDEPENDENT
SUBTREES, AND THE EQUATIONS FOR THE INDEPENDENT
SUBTREES .$

RDINPBLK (HEW-GATE-EQNS, NEW-IHD-ST).

COHMENT$ REIID THE FAULT TREE, LOAD THE INTERMEDIATE
EVENT EQUATIONS, AND THEN LOAD THE GATE
EQU'ATIONS THAT CREATE INDEPENDENT SUBTREES. S

RDFT (FIG-6-FT).
LD8lK (FIG-6-FT, NEW-GATE-EQ"S).

COMMENTS FOR THOSE LARGEST INDEPENDENT SUBTREES THAT
REQUIRE IT, CHANGE THE BASE EVENTS TO BE
,REATED A~ IF. THEY ARE PRIMARY EVENTS.
DERIVE THE REDUCED STEM EQUATION FOR G1 IN
S1 AGES AND SAVE IT IN A BLOCK. S

DLTEQN (G13, G22, G31, G39).
SUBINEQN (G1, G1-STG1. srops G6, G10, G14).
REOUCEON (G1-STG1, G1-STG1).
SUBINEQN (G1-STG1, Gl-STG2. STOPS G14, G32).
REOUCEQN (G1-5TG2, G1-S1G2).
SOBINEQN (G1-$IG2, '1-STG3. STOPS G32).
REOUCEQN (G1-STG3, G1-STG3).
SUBINEQN (Gl-STG3, G1-STEH).
REOUCEQN (GI-STEH, GI-STEH).
FRHBLK (STEM-fQN. ONLY$ GI-S1EM).

COMt1ENU RELOAD THE INTERMEDIATE (VENT EQUATIONS, AND
THEN LOAD THE EOUATIONS FOR THE CREATED
INDEPENDENT SUBTREES. DERIVE· THE REDUCED
EQUATIONS FOR THE lARGEST INDEPENDENT
SUBTREES AND SAVE THEM IN A BLOCK.S

DLTEQN.
LDBLK (FIG-6-FT, NE~-IND-ST).
SUBIN€QN (G13, G13).
REDUCEQN (G13, G13).
SU8INECN (GZZ, G2Z).
SUBINEON (G39, G39'.
FRK8Lk (LARGEST-IND-ST. ONlY$ G13, G22, G31, G39, 151'-G7,

IST-G25, I5T-G2-8, IST-G43).

43

44

COMMENT$ SUBSTITUTE THE EQUATIONS FOR. THE LARGEST
INDEPENDENT SUBTREES INTO TfiE STEM
EQUATION FoR G1 TO FORM THE MINIMAL CUT
SET EQUATION FOR G1.$

OLTEliiN.
lDBLK (STEM-EflN, LARGEST-INO-STl.
SU6INEQN «(;1-STEM, G1-MCS).

Execution of CREATE-IND-ST required 7 seconds of CPU time. This does not represent

much of a savings over the 10 seconds required to derive the minimal cut set

equations for Gl without coalescing gates and creating independent subtrees.

However, for larger fault trees than the fault tree in Figure 6, coalescing gates

and creating independent subtrees will usually improve the effectiveness of those

minimal cut set techniques that involve separate processing of the independent

subtrees. For the Figure 6 fault tree, the execution time was already down to

10 seconds, and the time required to coalesce gates and create independent subtrees

offset the savings that were achieved.

In the SETS user program, CREATE-IND-ST, the first statement,

RDINPBLK (NEW-GATE-EQNS, NEW-IND-ST)

is a call of the Read Input Block procedure. An input block is a group of one or

more Boolean equations that are to be read as input. Each of the equations must be

terminated with a period and they are preceded by an input block header of the form:

INPUT BLOCK$ input-block-name.

where

"input-block-name" is the name of the input block.

A block is created and added to the block file for each input block that is read.

The block contains all of the equations from the input block and the block name is

the same as the input block name. The input block~ NEW-GATE-EQNS and NEW-IND-ST,

contain the equations:

INPUT SlOCKS NEW-GATE-EQNS.
G7 = IST-G1 + E1.
GZ5 = IST-GZ5 + G29.
G28 = IST-G28 • G32.
G43 ;: 15T-643 + E2.

INPUT 8l0CK$ NEW-INC-ST.
15T-G7 = E3 + E6.
151-G25 : E18 + E20.
151-G26 ;: E2l • E22.
IST-G43 = £33 + E34.

Statements similar to the rest of the statements in CREATE-IND-ST appeared

in previous examples and the effect of their execution has already been described.

4.5 Limiting the Size of Minimal Cut Sets

If the minimal cut set equation for a selected intermediate event cannot be

derived exactly, then the truncation option of the Reduce Equation procedure can be

used to generate the most important minimal cut sets. Suppose that it had not been

possible to derive the exact minimal cut set equation for Gl in the Figure 6 fault

tree, but that it would be helpful to determine all of the minimal cut sets with n

or fewer events. An equation which represents all of the minimal cut sets for Gl

with n = 8 or fewer events is derived in a single step by the SETS user program:

PROGRAM$ SINGlE-STEP-ORD8.
ROFT (F! G-6-FTl •
lDBLK (FIG-6-FT).
SUBI NEGN (Gl, Gl-SUBI.
REDUCEQN (Gl-SUS, ORDS-MeS. 51.

The truncation value, n, is a positive integer that is specified as the third param­

eter in the call of the Reduce Equation procedure. Execution of SINGLE-STEP-ORD8

required 14 seconds of CPU time and produced the following output from the Reduce

Equation procedure:

THE MAXIMUM NUMBER OF TERMS THAT CAN BE
GENERATED BY EXPANSION IS 5769050.
THE WORI(IiEASURE FOR E)(PANSION IS 91146985.

TERMS GENERATED BY EXPANSION:
1 TERMS CaNT AIN 2 LITERALS.
4 TERMS CONTAIN 3 lITERALS.

14 TERMS CONTAIN 4 LITERALS.
37 TERMS CONTAIN 5 LITERALS.

176 TERMS CONTAIN 6 LITERALS.
770 TERMS CONTAIN 7 LITERALS.

3259 TERMS CONTAIN 8 LITERALS.
TOTAL TERMS GENERATED: 4263.

THERE WERE TERMS DISCARDED BECAUSE OF THE
COUNTED LITERALS MAXIMUM OF 8.

EXPANSION TOOl(8.113 SECONDS.

TERMS RerAINEO BY SIMPLIFICATION:
1 TERMS CONT AIN Z LITERALS.
2 T£RMS CONTAIN 3 LITERALS.

11 TERMS CONTAIN 4 LITERALS.
11 TERMS CONTAIN 5 LITERALS.
38 TERMS CONTAIN & LITERALS.

146 TERMS CONTAI"! 7 LIlERALS.
290 TERMS CONTAIN 8 LITERALS.

TOTAL TERMS REiAINEI): 1+99.
SIMPLIFICATION TOOl(.885 SECONDS.

NUMBER OF ITERATIONS REQUIREDI 8.
F~C10RIZATION TOOK 2.91+3 SECONDS.

An equation can be truncated even if it is being developed in stages, but the

stop points used to determine an interim stage in the development of the equation

must not be counted toward the truncation of a term in which they occur. For

example, if a truncation value of n = 3 is being used and the stop points for the

j-th stage are A and B, then a term like x*y*z*A in the j-th stage equation cannot

be truncated even though it appears to contain 4 variables. Later substitution for

A may involve combinations of the variables x, y, and z, which would combine with

the occurrences of those variables that are already in the term to produce a

45

46

3 variable term: x*y*z. However, a term like w*x*y*z*B, can be truncated at the

j-th stage, because it will never contain fewer than the 4 variables w, x, y, and z,

that are already present. An equation which represents all of the minimal cut sets

with n = 8 or fewer variables for Gl in the Figure 6 fault tree is developed in

stages by the SETS user program:

PROGRAH$ STAGES-OR08.
RDFT (FIG-G-FTl.
LDel~ (FIG-6-FT).
SUBINEQN (Gl, 61-STG1· STOPS G8, Gl0, G14).
REOUCEQN (G1-STG1, bl-STG1, 8· EXCEPTNONCHP$ G8-,_t.;_10, 614).
SUBINEQN (Gl-STG1, Gl-ST62. STOPS G14, G32).
REDUCEQN (Gl-STG2, G1-STG2, 8. EXCEPTNONCKP$ 614, G32).
SUBINEQN (G1-ST62, Gl-STG3. STOPS G32).
REDUCEUN (61-5TG3, Gl-5TG3, 8. EXCEPTNONCHP$ G32).
SU8INEQN (Gl-5TG3, Gl-STG4).
REDUCEON (61-5TG4, OR06-HCS. 8).

Execution of STAGES-ORD8 required 15 seconds of CPU time which is approximately the

same amount of time required to execute SINGLE-STEP-ORD8 and derive the equation

for ORD8-MCS in a single step. For this small example, the savings produced by

developing the equation in stages is again being offset by the additional SETS user

program statements that must be executed. However, the truncation of a large

equation while it is being developed in stages is a much more efficient approach

than truncating the equation in a single step.

The except noncomplement options that appear in the Reduce Equation procedure

calls in STAGES-ORD8, are used to specify the noncomplemented variables that are

not to be counted toward the truncation value of 8. (Further information concerning

the options that are available for the various procedures are described in

Appendix A.)

5. Guidelines for Applying Advanced Techniques

The "size" of a fault tree is often related to the number of gates, primary

events, and minimal cut sets associated with the fault tree. However, these

characteristics can be misleading when deciding which of the described techniques

to use in the evaluation of a particular fault tree. For example, the High

Pressure Injection System (HPIS) fault tree in Appendix 2 of WASH-1400 [5], has

68 gates, 299 primary events, and 8,179 minimal cut sets; whereas, the Figure 6

fault tree in Chapter 4 has 43 gates, 34 primary events, and 1,053 minimal cut

sets. Yet the HPIS fault tree runs in 150 seconds using the single step method

of section 3.3.1; while the Figure 6 fault tree which has fewer gates, fewer

primary events, and fewer minimal cut sets, requires 7,686 seconds of computer

time using the single step method. For either fault tree, applying any of the

techniques in Chapter 4 will substantially reduce the computer time required

to determine the minimal cut sets. For example, by removing largest independent

subtrees and solving them separately, the HPIS fault tree runs in 12 seconds and

the Figure 6 fault tree runs in 150 seconds.

5.1 An Initial Approach

A reasonable starting point for a large fault tree is the composite technique

using the existing largest independent subtrees. The composite technique was

illustrated in the SETS user program, COMPOSITE, for the top gate of the Figure 6

fault tree. Using this technique, the 1053 minimal cut sets for Gl were determined

in 10 seconds of computer time.

If the composite technique with the existing largest independent subtrees

is not successful, it is because the available computer storage has been exceeded

or the amount of computer time required is excessive. These problems will be

encountered either when trying to derive a particular stage of the stem equation

or when trying to find the equation for one of the largest independent subtrees.

5.2 Modifications to Use When Available Storage is Exceeded

If the available computer storage is exceeded (Error 27), while some stage

of the stem equation is being derived, coalescing gates and creating independent

subtrees may be helpful. Any additional largest independent subtrees that can be

created will result in a corresponding decrease in the size of the remaining stem

equation. Coalescing gates and creating independent subtrees are illustrated in

the SETS user program, CREATE-IND-ST, in section 4.4.2.

Choosing a different set of stop points for a stage in the development of a

stem equation may also be helpful in reducing computer storage requirements for

that stage, unless it is the stem equation (i.e., the final stage) that is too

large. Using the rule in section 4.2, it is possible to select a stop point for

a particular stage which keeps a segment of equation from being introduced which

would result in further reduction of that stage. Any set of stop points can be

chosen, and the analyst may find a better scheme for selecting stop points than

the one described in section 4.2. However, if the stem equation is too large for

47

48

the available storage, then there is no choice of stop points which will reduce

the final stage in the development of the stem equation. For this case, some other

technique such as truncation (section 4.5) must be used.

If the derivation of the equation for a particular largest independent

subtree exceeds the available computer storage, then its equation can be derived

using the composite technique. The stages can be chosen using the rule in

section 4.2. If the derivation of the equation for Si using stages still exceeds

the available storage, then it may contain subtrees which are independent with

respect to its base event, i. Thus, the composite technique can be applied

recursively to largest independent subtrees that are too large to be derived in

a single step.

5.3 Modifications to Use When Run Time is Excessive

The decision that the computer run time is excessive is a relative judgment

that is made by the user. What is usually meant is that the run time for a

particular SETS user program is excessive. This problem can often be solved by

separating the program into a sequence of SETS user programs so that each program

has an acceptable run time, and together they produce the same result as the

original SETS user program. The block file is used to save the equations

~~nerated by one program for use in the subsequent programs in the sequence.

Suppose, for example, that the composite technique to determine the minimal

cut sets for some fault tree is implemented in a single SETS user program, and that

the run time for this program is excessive. One way that this program can be

separated into a sequence of programs, is to begin with a SETS user program to

derive and save the equation for the first stage of the stem equation. Then, a

separate SETS user program can be written to derive and save each succeeding stage

of the stem equation. The final SETS user program derives the stem equation

(i.e., the final stage equation), and the equations for the largest independent

subtrees. The final program also determines the minimal cut sets by substituting

the equations for the largest independent subtrees into the stem equation. This

approach is shown for the Figure 6 fault tree in the sequence of SETS user programs:

PROGRAMS STAGE-i.
COMMENTS READ THE FAULT TREE AND LOAD THE INTERMEDIATE

EVENT EQUATIONS.$
RDFT (FIG-6-Fn.
LOBLK (FIG-6-FT).

COMMENT! CHANGE THE BASE EVENTS OF THE LARGEST
INDEPENDENT SUBTREES TO BE TREATED AS IF
THEY ARE PRIMARY EVENTS. DERIVE THE FIRST
STAGE EQUATION FOR TtiE STEM AND SAVE IT
IN A BLOCK FOR USE IN DERIVING THE SECOND
STAGE EQUATION FOR THE STEM.S

DLTEQtoI (G13, G22, G31, G39).
SUaINEQN (Gi, Gl-STG1· STOPS G8, 610, G14).
REOUCEQN (G1-STG1, Gl-STGll.
FRH8LK (G1-STG1-EQN. ONLYS G1-STG1).

PROGRAM$ STAGE-2.
LD8LK (FIG-6-FT, G1-STG1-EQN'.

DL lEQN (G13, G22, G31, G39).
SUBINEQN (Gl-5TG1, G1-STG2" STOP$ G14, G32).
REOUCEON (G1-STG2, G1-STG2).
FRM8LK (G1-STG2-EQN- ONLY$ G1-STG2).

PROGRAMS STAGE-3.
LDBLK (FIG-6-FT, Gl-STG2-EQN).

Ol TEQN' (G13, G22, G31, G39).
SUBINEQN (Gl-STG2, G1-STG3" STOPS G32).
REDUCEQN (G1-STG3, G1-STG3).
FRHBLK (Gl-STG3-EQN" ONlY$ G1-STG3).

PROGRAMS STEM-ANO-HC5-EQN.
LOBLK (FIG-6-FT, G1-STG3-EGN).

DlTEOH (G13, G22, 631, G39).
SUBINEON (G1-STG3, Gl-5TEM).
REDUCfQN (G1-STEM, G1-STEM).
FRMBU((S1-STEM-EQN'" ONLYS G1-STEfoO.
COI'UtENT$ RELOAD THE INTERMEDIATE EIJENT EQUATIONS

AND THEN DERIVE THE REDUCED EQUATIONS
FOR THE LARGEST INDEPENDENT SUBTREES AND
SAVE THEM IN A BLOCK. S

DLTEQN.
lOBlK (FIG-6-FT).
SUBINEON (G13, G13'.
REDUCEON (G13, G13).
SUBINEQN (G22. G22).
5U8INEON (G39, G39).
FAHBLK (lARGEST-INO-ST" ONLYS G13, G22, 631, G39).

COMMENTS SUBSTITUTE THE EQUATIONS FOR THE LARGEST
INDEPENDENT SUBTREES INTO THE STEM EQUATION
FOR 61 TO FORM THE MINIMAL CUT SET EQUATION
FOR G1.$

DlTEON.
lD8LK (G1-STEH-EQN, LARGEST-INO-Sf).
SUBINEQN (G1-STEM, G1-MCSI.

49

50

The mere separation of a SETS user program into a sequence of SETS user

programs does not decrease the computer time required to achieve the final result.

Actually, the total time required may increase slightly. What happens is that the

time required to run each program is brought within an acceptable limit.

There are techniques which can result in an actual decrease in the run

time of a program. The release of a stop point (i.e., its removal from a stop

list) allows a segment of equation to replace each occurrence of the released

variable in the stage equation being formed. However, the equation segment is

usually not in a reduced form when it is inserted into the stage equation. The

equation segment can be reduced before inserting it into the stage equation.

This can result in a substantially reduced form of the equation segment and a

subsequent significant decrease in the time required to reduce the stage equation.

The reduction of exactly that segment of equation that is intended to replace the

released variable in the stage equation, requires that the stop points for the

next stage equation mU,st also be employed in the reduction of the equation

segment. In section 4.2.2 the SETS user program, STAGES, shows how to derive

the minimal cut set equation for the top event in the Figure 6 fault tree. A

modification of that program illustrates how each equation segment can be reduced

before being inserted into a stage equation:

PROGRA"S REDUCE-SEGMENTS.

CO"MENTS READ THE fAULT T~EE AND LOAD THE INTE,HEDIATE
EVENT EQUATIONS.S

RDfT (FIG-6-FT).
lDBLk (fIG-6-FT).

CO""£NTS OERIVE THE MINIMAL CUT SET EQUATION
FOR '1 IN STAGES.S

SU8INEQN (Gl, G1-STG1. STOPS G8. G10, G14).
REOUCEQN (G1-STG1, G1-STG1).

COMMENTS G8 AND G10 ARE TO SE RELEASED Ai
THE NEXT STAGE.S

SUBINEQN (G8, G8. STOPS 614, G32).
REDUCEQH (G8, G8).
SUBINEQN (G10, G10. STOPS G14, G3Z).
REDUCEQN (G10, 610).

SU8INEQN (61-ST61, G1-ST62· STOPS 614, G32).
RfOUCiQN (G1-STG2, 61-5TG2).

COMMENTS G14 IS TO BE RELEASED 4T THE NEXT
StAGE. $

SU8INEQN (G14, G14· STOPS G3Z).
REDUCEQN (G14, G14).

SUBINEON (G1-ST6Z. Gl-STG3. STOPS G3Z).
REOUCEON (Gl-STG3; 61-STG3).

COMMENTS G32 IS TO BE RELEASED AT THE NEXT
S1 AGE. S

SUBINEQN (G3Z, G32).
REOUCEQN (G3Z. G32).

5UBINEQN ('1-51G3, G1-5TG4).
REDUCEQN (G1-5T64, Gl-MCS).

If the run time is still judged to be excessive after these modifications have

been employed, then a technique such as truncation (section 4.5) will probably

have to be used.

5.4 A Guideline Flowchart

The guidelines for applying the techniques for determining minimal cut sets

are depicted schematically in the flowchart in Figure 8.

r---

Figure 8. Flowchart for Applying
Minimal Cut Set Techniques

51

52

1lcduce the ~UcM
f"or the stoJ.' ~s NO

before sub~tutiDn
S.dion~U

•••

YES

:I'ntrodua a tn~t.tionl
"atue or tUcrQSe
ctu,ttn,.g value

(Scrclion +.,)

'Thi.S may actual1r
be' $£v4tral seTS
U$~r ",-~a1RS

Figure 8. Flowchart for Applying
Minimal Cut Set Techniques (Continued)

END

Figure 8. Flowchart for Applying
Minimal Cut Set Techniques (Continued)

53-54

6. Quantification of Minimal Cut Sets

There are two procedures available in a special version of SETS which

provide certain quantitative capabilities. The procedures are called Compute

Term Value (COMTRMVAL) and Truncate On Term Value (TRNTRMVAL). Both of these

procedures are concerned with the quantification of the terms of an equation in

disjunctive normal form, as opposed to the quantification of the entire equation.

6.1 Types of Computation

There a~e nine different computations that can be made. All of these

computations are available in both of the procedures that will be described.

l.

2.

3.

4.

5.

6.

7.

8.

9.

TABLE II

Term Computations Available in SETS

Computation Type

SUM

PRODUCT

COUNT

DISTINCT-SUM

DISTINCT-PRODUCT

DISTINCT-COUNT

MAXIMUM

MINIMUM

PROBABILITY

Term Value

Sum of the variable values.

Product of the variable values.

Number of variables.

Sum of the different variable values.

Product of the different variable values.

Number of variables with different values.

Maximum of the variable values.

Minimum of the variable values.

Product of the variable probabilities.

6.2 Variable Value Assignment

The variable values that can be used with the different computations are

restricted according to the type of computation. The restrictions on the variable

value ranges make every computation either a monotone increasing or monotone

decreasing function. The variable values are restricted as shown in Table III.

TABLE III

Variable Value Restrictions

Value Range

o < v. < 1
:L -

1 < V.
:L

o < v.
:L

Computation Type

PROBABILITY

PRODUCT, DISTINCT-PRODUCT

All other computations

Thus, PROBABILITY and MINIMUM are monotone decreasing computations and all of

the other computations are monotone increasing.

55

56

A value group is a unit of data that is used to assign values to the

variables in an equation. A value group is comprised of a collection of value

assignments preceded by a value group header of the form:

VALUE$ value-group-name.

where

"value-group-name" is any name comprised of from 1 to 16 name symbols.

Value groups can be read by both the Compute Term Value procedure and the

Truncate On Term Value procedure.

where

Each value ~ssignment in a value group has the form:

number $ vl ' v 2 ' .

"number" is a decimal number and the vi' 1 < i < n, are variables

in the equation.

The number can be any decimal number; but if a decimal point occurs, then there

must be a nonempty decimal fraction part. A number can have an exponent of

the form En or E-n where E must occur; the sign of the exponent must not occur

if it is positive, and it must occur if it is negative; and n is an integer.

For example, the numbers 82, 1.75 E-3, 17.6 E2, and 3.0 are all legitimate, but

the numbers 18. E-l and 7.0 E+l are not legitimate because the first one has an

empty decimal fraction part and the second one has a plus sign in the exponent.

Each variable listed in a value assignment is assigned the number at the

beginning of the value assignment as its value. For example,

VALUE$ GIVEN-CONDITIONS .
. 07$ A, X, T$
.01$ B$
.4$ Y, Z$

is a value group named GIVEN-CONDITIONS that will assign the value .07 to A, X,

and T; the value .01 to B; and the value .4 to Y and Z.

Complement variables cannot be assigned a value directly. If a complement

variable (i.e., v.l occurs in an equation, its value is determined according to
l

the computation that is being made as shown in Table IV.

TABLE IV

Values for Complement Variables

Complement Value

o

1

Computation Type

SUM, COUNT, DISTINCT-SUM,
DISTINCT-COUNT, MAXIMUM,
MINIMUM

PRODUCT, DISTINCT-PRODUCT

PROBABILITY

6.3 The Compute Term Value Procedure

The Compute Term Value procedure is used to compute and print the term

values for the terms of the equations specified. Up to ten computations can be

made for each of the specified equations in a single call of this procedure, but

a value group must be submitted as input for each computation. Even if the same

variable values are to be used for more than one computation, a value group must

be supplied for each computation; there is currently no mechanism for saving

variable values from one computation to the next.

A limiting term value can also be specified for each computation. For

monotone decreasing computations, terms with a value less than the associated

limiting term value will be discarded; and for monotone increasing computations,

terms with a value.greater than the associated limiting term value will be

discarded. If a term exceeds the limiting term value for any computation, then

it will be discarded and it will not appear in the printed equation.

In Chapter 4, several different techniques were described for finding the

minimal cut set equation GI-MCS for the fault tree in Figure 6. Suppose that

this equation, GI-MCS, has already been derived and that we want to perform the

following computations on the terms of the equation:

1. Compute the probability that all of the components in each minimal

cut set will fail (i.e., the probability that the minimal cut set

will occur), and discard any minimal cut set with a probability

<10- 6 •

2. Determine the maximum component failure probability in each

minimal cut set.

3. Compute the cost of repairing all of the components in each

minimal cut set.

Three value groups will be needed. A value group specifying component

failure probabilities is needed for the first computation, and the same value

group (i.e., a second copy) is also needed for the second computation. A value

group specifying component repair cost is needed for the third computation.

Assume that the required values for the primary events EI, E2, ••. , E34 in

the Figure 6 fault tree are specified in the value groups FAIL-PROB and

REPAIR-COST:

VALUES$ FAIL-PROB •
• oooa E7, E11, £24$
.ODit E8, E16$
.005$ £20$
.0015$ El0, E17, E34$
.01$ E19, E33$
.025$ E15, E22, £28$
.05$ E9, E12, H4, E21, E23, £26, E30, E32$
.07$ E3, E5, E13, E29, LSi$
.075$ E2, E18$
.08$ El, E6, £27$
.09$ E4, E2~$

57

58

VALUES$
25$
50$
80$
100 $
1 .. 0$
21t$
300$

REPAIR-COST.
El, E9, E24, £32$
£1, E7, E11, E15, E21, E29,!;
E5, E8, E13, E19, E26, E31, £34$
H, E14, E25, £28, E30, El3$
E.2, El0, E23$
E4, E12, 1:::17, E27$
E16, E18, E20, E22$

There can be as many as

Compute Term Value procedure.

call of each computation that

10 computations specified in a single call of the

A pair of parameters must occur in the procedure

is to be made. The first parameter specifies the

computation type, and the second parameter identifies the value group to be used

in the computation. If the computation is subject to a limiting term value, this

number follows the computation type and is separated from it by a "/" delimiter.

An asterisk and a list of the equations for which the term values are to be

computed follows the parameters that specify the computations to be made.

Assuming that the minimal cut set equation GI-MCS has been derived and is in the

equation file, the computations that have been called for can be made with the

procedure call:

COHTRHVAL (PROBABILITY/l.0 E-6, FAIL-PROS, MAXlMUH, FAIL-PROS,
SUH, REPAIR-COST· Gl-HCS).

Execution of this call of the Compute Term Vaiue procedure printed the following

output:

TERM flROB. MAXIMUM SUM
NUMBER OF TERM OF TERM OF TERM

Gl-MCS =

1 1.8900E-06 9.0000E-02 505.0 El A £2 A Elt A E31 1\ E32 .,

2 2.0160E-06 9 .. 0000E-(l2 620.0 E1 A E4 1\ £30 II. E27 II. E29 .,

.3 2.1000E-06 9.0000E-02 440.0 El 1\ £4 " £30 " E34 .,

4 3.6000E-06 9.0000E-02 460.0 El A £4 " E31l " E33 .,

5 5.0000E-06 8.0000E-02 330.0 El " E30 " E26 " £28 .,

6 7.5000E-06 8.0000E-02 340.0 El A E2 " E14 " E15 v

1 1.0000E-05 8.0000£-02 330.0 El " £14 " E30 1\ E26 v

8 2.1000E-05 9.0000E-02 500.0 El II. E2 " E4 " E14 v

9 2.7000£-05 9.0000E-02 500.0 El A £2 " E4 " E30 .,

10 It.2000E-04 8.iJOOOE-02 270.0 El II. E2 " Ell .,

11 4.0000E-03 8.0000E-02 75.00 El " £9

Of the 1,053 minimal cut sets, all but 11 were discarded because their term

probability was <10- 6 • Notice that the terms printed are arranged in increasing

order based on the term values computed for the first computation specified in

the call--in this case the term probability. (To print the terms in decreasing

order on the values of the first computation, DECREASING$ must occur as the

first parameter in the call.)

Many of the minimal cut set equations that are derived simply have too many

terms to consider computing and printing a value for all of the terms. In the

first example, a limiting term value was use_ to select the subset of the minimal

cut sets with a term probability <10- 6 It is also possible to specify a

truncation value for any of the equations listed in the procedure call. The

truncation value is an integer that follows the equation identifier (i.e., the

left side variable) in the call, and is separated from the identifier by a

"/" delimiter. Suppose that a truncation value of 4 had been used in the

example instead of a limiting term probability of 10-6 • The COMTRMVAL call

would have been:

GO~TRMVAL (PROBABILITY, FAIL-PROS, MAXIMUM, FAIL-fROB,
SUM, REPAIR-COST. Gl-MCS/4).

Execution of this statement printed 14 terms:

TERM PROE. MAXI M!.IM SUM
NUMBER OF' TERM. OF' TER.M OF TERM

Gl-MCS/4 =
1 3.00"OE-09 8.0000E-02 280.0 El " £7 " £30 A E34 v

2 3.0000£-09 8.0000£-02 450.0 £1 " El0 " Ell " E12 v

3 4.0000E-09 8.0000E-02 300.0 E1 A E7 " Eli! A E33 II

4 3.0000E-08 8.0000£-02 340.0 E1 " £2 " E7 " £30 v

5 6.0 1100E-07 8.0000£-02 270.0 £1 " £8 " El0 '1/

(, 2.7COOE-06 9.0000£-02 440.0 El " E4 " E30 " £34 v

7 3.6000£-06 9.0000E-02 46u.0 E1 A £4 " £30 " E33 II

8 5.0000E-06 8.0000E-02 330.0 E1 " £30 " E26 A £28 II

9 7.5000£-06 8.0000£-02 34C.O £1 " £2 " E14 " £15 v

10 1.000eE-05 8.0000E-1l2 330.0 E1 " £14 " E30 " £26 y

11 2.7000£-05 9.0000E-02 500.0 E1 " E2 " E4 " E14 v

12 2.7000E-u5 9.0000E-02 500.C El " E2 " E4 " E30 v

13 4.200,0£-04 8.0000£-02 270.0 £1 " E2 " E13 v

14 4.0000E-03 8.0000E-02 15.00 E1 " E9

59

60

Limiting term values and an equation truncation value can be used together.

A truncation value of 4 and a limiting term probability of 10-6 are combined in

the procedure call:

COHTRHVAL (PROBABILITY/l.O E-6, FAIL-PROS, MAXIMUM, FAIL-PROB,
SUM, REPAIR-COST. Gl-MCS/4l.

Execution of this statement printed the 9 terms that have no more than 4 variables

and a term probability >10- 6 :

6.4

TERM
NUMBER

1

2

~

..
5

6

7

8

C3

PROBe
OF TERM

2.7000E-C6

3.6000E-06

S.DODOE-D6

7.5000E-06

1.0000E-05

2.7000E-05

2.7000E-05

4.2000E-04

4.0000E-03

MAXI MUM
OF TERM

9.0000£-02

9.0000£-02

8.0aOOE-il2

8.0oaO£-02

8.0000E-02

9.0000E-02

9.0000E-02

8.0000E-02

8.0000£-02

SUM
OF TERM

440.C

460.(;

330.0

340.0

330.0

500.0

500.0

270.0

15.00

The Truncate On Term Value Procedure

The Truncate On Term Value procedure is

Gl-MCS/4 =

£1 A E4 " £30 " 1:34 .,

£1 A E4 " E30 A E33 v

£1 A E30 " E26 " £28 y

El A E2 " E14 A E15 y

1':1 A f14 A E30 " E26 y

El A £2 " E4 A E14 y

El " E2 A E4 " E30 y

E1 A E2 A E13 y

El A E9

used to create a new equation and

add it to the equation file. The right side of the new equation is comprised

of all of the terms from an existing equation that are not discarded because of

a truncation value or a limiting term value. The basic difference between the

Truncate On Term Value procedure and the Compute Term Value procedure is that

the former creates an equation based on term values, and the latter prints

term values. Also, each TRNTRMVAL call creates a single equation; whereas, any

number of equations can be printed by a COMTRMVAL call.

The parameters used in a TRNTRMVAL call to specify the computations,

limiting term values, and value groups have the same form that they have in a

call of the COMTRMVAL procedure. However, the remainder of the parameter part

in a TRNTRMVAL call is not a list of equations as it is in a COMTRMVAL call.

The rest of the parameter part in a TRNTRMVAL call is the same as the parameter

part for a call of REDUCEQN. (A description of the parameter options for the

Reduce Equation procedure appears in Appendix A.)

Suppose that we want to form a new equation from the equation for Gl-MCS

which is comprised of those minimal cut sets that contain no more than 4 events

and have a probability of occurrence >10- 6 • There are 9 terms from the equation

for Gl-MCS that satisfy these conditions as can be seen in the final example

for the COMTRMVAL procedure. A TRNTRMVAL call to form an equation comprised of

these ter.ms is as follows:

TRNTRMVAL (PROBABILITY/1.0 E-6, FAIL-PROS, MAXIMUM, FAIL-PROS,
SUM, REPAIR-COST. G1-MCS, TRN-G1-MCS, 4).

PRTEQN (TRN-G1-MCS).

Notice that the parameters following the asterisk conform to the parameter

structure used in the Reduce Equation procedure. During the expansion of the

equation for GI-MCS, terms with more than 4 variables are discarded in accordance

with the truncation value of 4 that appears as the final parameter. Moreover,

the specified computations are also carried out during the expansion of the

equation and terms with a term probability <10- 6 are also discarded. The terms

that remain are then simplified (P + P*Q = P) and factored, and become the right

side of a new equation that has TRN-GI-MCS as its left side variable. The

equatio~ for TRN-GI-MCS,

TRN-G1-HCS : E1 A (E2 ~ (E14 A (E15 y E4) v E13) v f30 A (E26 A (
1 2 3 l 2 2 3

E28 • E14) v E4 A (f34 • E3l y E2)) v £9)
3 3 3 2 1

is then added to the equation file.

61-62

APPENDIX A

Procedures Available in SETS

Each of the procedures available in SETS is invoked by a procedure call

statement in a SETS user program. A procedure call begins with a procedure

identifier and is usually followed by a parameter part that is enclosed in

parentheses. There are options that can be specified in the calls for some of

the procedures which affect the processing that is achieved with those procedures.

Some of the options involve the concepts of phi and omega. In the context of

set theory, phi represents the empty set (¢), and omega represents the universal

set (~); while in the context of Boolean algebra, phi 0 and omega = 1. The

processing that is accomplished by the execution of a procedure and any options

that can be used to affect that processing will be described for each procedure

that is available. (The quantitative procedures described in Chapter 6 are not

included in this Appendix because they are available only in a special version

of SETS.)

A.l Read Input Block

A call of the Read Input Block procedure has the form:

RDINPBLK (ibl , ib 2 ,

This procedure is used to read input blocks. The parameters ib
l

, ib2 , .•. , ibk
are the names of the input blocks that are to be read. The input blocks must be

supplied as input in the same left to right order that the input block names

occur as parameters in the procedure call.

An input block is a data structure that can be read by the Read Input

Block procedure. An input block is comprised of an input block header and a

group of one or more Boolean equations. The input block header precedes the

equations and has the form:

INPUT BLOCK$ input-block-name.

where

"input-block-name" is the name of the input block.

Each equation in the input block must be terminated with a period.

The equations in an input block are checked as they are read to ensure that

they are correctly formed equations. After each input block has been read and

the equations have been checked, a block is created for that input block and

added to the block file. The block contains the group of Boolean equations that

are in the input block, and the block name is the same as the input block name

which occurs in the header.

63

64

A.2 Read Fault Tree

A call of the Read Fault Tree procedure has the form:

RDFT (ft
l

, ft
2

, ... , ftk ,.

This procedure is used to read fault trees. The parameters ft l , ft 2 , ... , ftk

are the names of the fault trees that are to be read. The fault trees must be

supplied as input in the same left to right order that the fault tree names occur

as parameters in the procedure call.

The fault tree input that was defined in Chapter 2 is a data structure that

can be read by the Read Fault Tree procedure. The redundancy inherent in the

input representation of a fault tree is used to check the structure of each fault

tree as it is read and processed. After each fault tree is read and checked, a

block is created for that fault tree and added to the block file. The block

contains the intermediate event equations for the fault tree, and the block name

is the same as the fault tree name.

Each block that is generated by the Read Fault Tree procedure contains a

representation of the fault tree in addition to the equations that are contained

in the block. This internal representation of the fault tree is used to produce

a graphic representation of the fault tree using the Fault Tree Drawing Program [6)

and, when the block is printed using the Print Block procedure, it is used to

produce the Fault Tree Event Table.

A.3 Print Equation

A call of the Print Equation procedure has the form:

PRTEQN (vI' v 2 ' ... , v k '·

This procedure is used to print equations that are in the equation file. The

parameters vI' v 2 ' ..• , v k are processed from left to right and the equation for

each variable is printed as it is encountered. If the equation file does not

contain an equation for a particular vi' the message

THERE IS NO SET EQUATION FOR vi

is printed.

The equations in the equation file are in a factored form, and they are

printed in this form by the Print Equation procedure. If there are any paren­

theses in an equation, an integer will be printed immediately below each

parenthesis when the equation is printed. The numbers are provided to aid in

the interpretation of complex equations. Paired parentheses have the same number

and the numbering begins with the number 1 for an outermost set of parentheses.

In a printed equation, the operations of AND, OR, and NOT are represented by

/\, V, and -" respectively.

A.4 Print Equation In Disjunctive Normal Form

A call of the Print Equation In Disjunctive Normal Form procedure has the

form:

This procedure is used to print equations that are in the equation file. Each

of·the parameters PI' P2' ... , Pk is either a variable name vi' or it is a

variable name and a truncation value of the form vi/n, where n is a positive integer.

The parameters are processed from left to right and the equation for each variable

is printed as it is encountered.

for a particular vi' the message

If the equation file does not contain an equation

THERE IS NO SET EQUATION FOR vi

is printed.

When a truncation value is specified, only those terms of the equation

with n or fewer variables are printed.

more than n variables, the message

THE SET EQUATION IS PHI

is printed.

If every term of an equation contains

A Literal Occurrence Table is printed preceding each equation that is

printed. The table indicates the number of times that a variable (literal)

occurs in the printed equation. Since the equation is printed in a disjunctive

normal form, the number of occurrences of a variable is also the number of terms

which contain the variable. If any terms of an equation are discarded because

of a truncation value, some variables that occur in the full equation may not

occur in the truncated equation that is printed. The Literal Occurrence Table

contains a count of only those variables which occur in the printed equation.

Following the Literal Occurrence Table for an equation, the equation is

printed in a disjunctive normal form. The terms are numbered and they are printed

in the order of an increasing number of variables per term.

A.S Delete Equation

A call of the Delete Equation procedure has one of the forms:

a. DLTEQN.

b. DLTEQN (vI' v 2 ' ... , v k).

This procedure is used to delete equations from the equation file. if there is

no parameter list in the procedure call (form a.), every equation is deleted

from the equation file. When a parameter list occurs in the call (form b.),

only the equations for the variables vI' v 2 ' "', v k are deleted from the

equation file. If there is no equation in the equation file for a particular

variable vi' then no action is taken for that parameter.

A.6 Substitute In Equation

A call of the Substitute In Equation procedure has one of the forms:

b. SUBINEQN (vI' v * 2

65

66

This procedure is used to create a new equation and enter it into the equation

file. The right side of the new equation is generated from the equation for v l
by a repeated process of substituting equals for equals. The left side variable

for the new equation is v 2 .

For both forms of the procedure call, a copy of the equation for the first

parameter, v l ' is used to start the substitution process. If there is no equation

for v l in the equation file, then v l is taken as the right side expression for the

new equation. If there is an equation for v l in the equation file, then each

variable in the right side expression of the equation for v l which has an equation

in the equation file, is replaced by the right side of the equation for that

variable. By repeating this substitution process for every variable in the right

side expression, including variables that have been introduced by a prior sub­

stitution, the expression will ultimately contain only variables for which there

is no equation in the equation file and no further substitutions can be made.

If there are no substitution control options in the procedure call (form a.),

the substitution process will terminate when none of the variables remaining in

the expression have an equation in the equation file. However, if substitution

control options occur in the call (form b.), these options are used to arrest

the substitution process prior to its normal completion. The parameters 01' 02' and

03 represent the three options that can occur in this form of the procedure call.

An omega option has the form:

OMEGA$ v l ' v 2 ' ... , vk

The omega option causes every occurrence of each vi to be replaced by the variable

OMEGA rather than the right side of the equation for vi. The equation for vi

in the equation file is not affected.

A phi option has the form:

PHI$ v l ' v 2 ' ••. , vk

The phi option causes every occurrence of each vi to be replaced by the variable

-,OMEGA rather than the right side of the equation for vi. The equation for vi

in the equation file is not affected.

A stop option has the form:

STOP$ v l ' v 2 ' .•• , v k

The stop option causes every occurrence of each v. to be treated as if there is
1

no equation for vi in the equation file (i.e., no sUbstitution for vi will take

place), and vi will remain in the expression. The equation for vi in the equation

file is not affected. One or more of the options 01' 02' or 03 can occur in the

procedure call separated by "/" delimiters. Moreover, the options can occur in

any order.

A.7 Reduce Equation

A call of the Reduce Equation procedure has one of the forms:

a. REDUCEQN (vI' v
2

) .

b. REDUCEQN (vI' v 2 * °1/°2) .

c. REDUCEQN (vI' v 2 ' n) .

d. REDUCEQN (vi' v 2 ' n * °1/°2/°3/°4) .

This procedure is used to create a new equation and enter it into the equation

file. The right side of the new equation is generated by applying certain

Boolean identities to the right side of the equation for vI. The left side

variable for the new equation is v 2 .

The processing by the Reduce Equation procedure is concerned primarily with

the reduction of a Boolean expression. During the processing, the form of the

expression changes from a factored form, to a disjunctive normal form, and then

back again to a factored form. The processing begins with a copy of the right

side expression from the equation for vI and is achieved in three steps:

1. Expansion

a. Apply DeMorgan's Rules to the factored form of the

expression to eliminate NOT operators.

b. Repeatedly apply the distributive law to the factored

form of the expression to generate a disjunctive normal

form of the expression.

c. Apply the identities p*p = P and p*-,p = ~ to the

expression to eliminate repeated variables in a

term and terms with zero products.

2. Simplification

Apply the identity P + P*Q = P to the disjunctive normal form

of the exprespion to eliminate terms that are logically

contained in other terms (absorption rule).

3. Factorization

Factor (group) the disjunctive normal form of the expression

to create a factored form of the reduced expression. (The

factoring scheme is based on choosing as a factor the most

often occurring variable whenever a factor is selected.)

For all forms of the procedure call, a copy of the right side expression from

the equation for vI is expanded, simplified, and factored to form the right side of

the new equation. If there is no equation for vI in the equation file, then vI

is taken as the right side expression of the new equation. If there is no

truncation value and there are no reduction control options in the procedure call

(form a.), the processing will consist of the equation reduction already described.

If there is no truncation value but there are reduction control options (form b.),

the parameters 01 and 02 are the reduction control options that can occur in this

form of the procedure call.

67

68

An omega option has the form:

OMEGA$ v l ' v 2 ' ... , v k

The omega option causes every occurrence of each vi to be replaced by the variable

OMEGA. The~ the identities ~ + P = ~ and ~*P = P will be applied to the expression

prior to expansion.

A phi option has the form:

PHI$ v l ' v 2 ... , vk

The phi option causes every occurrence of each vi to be replaced by the variable

~ OMEGA. Then, the identities ~ + P = P and ~*p = ~ will be applied to the

expression prior to expansion. Any number of the 01 or 02 options can occur

in the procedure call separated by "j" delimiters, and they can occur in any order.

If there is a truncation value but there are no reduction control options

(form c.), the expression will be truncated during expansion. The parameter n is

a counted literals maximum (i.e., the truncation value). Every term which contains

more than n variables will be discarded.

If there is a truncation value and there are reduction control options

(form d.), the parameters 01' 02' 03' and 04 are the options for this form of

the procedure call. These options may be included in any order. The first

option, 01' is the omega option and the second option, 02' is the phi option.

These are the same options that were described for form b.

The options 03 and 04 are related to n, the counted literals maximum

parameter. The option, 03' is the except complement option and it has one of

the following forms:

1. EXCEPTCMP$

2. EXCEPTCMP$ vI' v 2 ' ... , vk

If the except complement option does not have a variable list (form l.), all

complement variables are excluded from counting toward the truncation value.

If the except complement option has a variable list (form 2.), only the complement

variables corresponding to each vi in the list are not counted toward the trunca­

tion value.

The option, 04' is the except noncomplement option and it has one of the

following forms:

1. EXCEPTNONCMP$

2. EXCEPTNONCMP$ v
l

' v 2 ' ... , vk

These options function exactly like the except complement options (03)' but

it is the noncomplement variables that are excluded from counting toward the

truncation value rather than the complement variables.

Any number of the 01' 02' 03' or 04 options can occur in the procedure

call separated by "I" delimiters, and they can occur in any order.

A.S Form Block

A call of the Form Block procedure has one of the forms:

a. FRMBLK (b).

b. FRMBLK (b * °1),

This procedure is used to form a block and add it to the block file. In all

forms of the procedure call, the parameter b is the block name for the block

to be formed. If there is no selection control option in the procedure call

(form a.), a block is formed which contains all of the equations that are in

the equation file when the procedure is executed.

If there is a selection control option in the procedure call (form b.), a

block will be formed which contains a subset of the equations in the equatlon

file. The selection control option, 01' will have one of the following forms:

1. ONLY$ vI' v 2 ' •.. , vk

2. EXCEPT$ vI' v 2 ' "', v k

Only one selection control option can occur in a call of the Form Block procedure.

If the only option is used (form 1.), the block that is formed will contain only

those equations from the equation file that have a left side variable which occurs

in the variable list of the option. If the except option is used (form 2.),

the block that is formed will contain every equation from the equation file except

those that have a left side variable which occurs in the variable list of the

option. If there is no equation in the equation file for a variable that occurs

in the selection control option, the effect is as if the variable had not occurred

in the option.

It is possible to form a block which does not contain any equations,

although such a block serves no useful purpose. However, if a selection control

option results in excluding all of the equations that are in the equation file,

or if there are no equations in the equation file, then a block without any

equations will be generated.

A.9 Load Block

A call of the Load Block procedure has the form:

LDBLK (bl , b 2 , • ", bk).

This procedure is used to load the equations contained in a block into the

equation file. The parameters b
l

, b 2 , .•. , bk are the names of the blocks to be

loaded. The parameters are processed from left to right and as each block name

is encountered, the equations contained in that block are loaded into the equation

file. The blocks in the block file are not affected by this loading process.

69

70

If the equation file already contains an equation for some variable vi'

and an equation for vi is contained in a block to be loaded, the equation for vi

from the block will replace the equation for vi in the equation file. Otherwise,

equations in the equation file will not be changed when a block is loaded. Thus,

after each block is loaded, the equation file will consist of all of the equations

from the block, together with those equations which were in the equation file

when the block was loaded and were not replaced by an equation from the block.

Loading a block does not change the block file in any way. Also, if a block is

specified for loading which is not in the block file, an error condition will

be detected and an error message will be printed.

A block cannot contain more than one equation with the same left side

variable because such a block cannot be formed. However, if several blocks are

to be loaded, an equation with the same left side variable can occur in more

than one of the blocks. Sinc~ each block is loaded as its b~ock name is

encountered while processing the parameters b
l

, b 2 , ... , bk from left to right,

the last equation loaded for a particular variable will be the equation in the

equation file when execution of the procedure is completed.

A.10 Print Block

A call of the Print Block procedure has the form:

PRTBLK (b l , b 2 , ••. , b k).

This procedure is used to print the information contained in a block. The

parameters b
l

, b
2

, ..• , b k are the names of the blocks to be printed. As the

block names b l , b 2 , ••• , b k are processed from left to right and as each block

name is encountered, the information from that block will be printed. If the

block was generated by the Read Fault Tree procedure, it contains an internal

representation of the fault tree, and the first thing to be printed will be the

Fault Tree Event Table. Each event of the fault tree is listed in the Fault Tree

Event Table together with the information specifying its relationship to the other

events of the fault tree. The numbering of the events begins with 2 because

OMEGA is always treated as the first variable in SETS and given the number 1.

Since OMEGA cannot occur in a fault tree, it is simply not printed in the Fault

Tree Event Table, and the number of events in a fault tree is one less than the

number of the last event in the Fault Tree Event Table.

The remainder of the information printed by the Print Block procedure is

printed in the same form for all blocks regardless of how they were formed.· The

equations contained in the block are printed one after the other in the same

format used by the Print Equation procedure to print factored equations.

A.ll Delete Block

A call of the Delete Block procedure has one of the forms:

a. DLTBLK.

This procedure is used to delete blocks from the block file. If there is no

parameter list in the procedure call (form a.), all blocks are deleted from the

block file. Careful consideration of the consequences should precede the use

of this form of the procedure call. However, such a call should occur at the

beginning of any SETS user program intended to create a new block file.

If the parameter list is used with the procedure call (form b.), the

parameters b l , b 2 , ... , b k are the names of the blocks to be deleted. Only

those blocks with a block name that occurs in the procedure call will be deleted.

If more than one block on the block file has the same block name, and if that

block name occurs as a parameter in the procedure call, every block with that

block name will be deleted from the block file.

A.12 Block Status

A call of the Block Status procedure has the form:

BLKSTAT.

This procedure is used to ascertain what blocks are on the block file.

are no blocks on the block file, the message

THE BLOCK FILE IS EMPTY

If there

will be printed. If the block file is not empty, the block names of the blocks

on the block file will be printed in the same order that they occur on the

block file.

71-72

APPENDIX B

Executing SETS User Programs

The SETS program is an interpreter. It is used to read, interpret, and

execute the statements of a SETS user program. Thus, execution of a SETS user

program is achieved by supplying the SETS user program and its data (i.e.,

any fault trees or input blocks required by the SETS user program) as input for

an execution of the SE'l'S pJ:·ogram.

The SETS program is coded in the FORTRAN extended language for the CDC 6600

computer running under version 3.3 of the SCOPE operating system. This same

version'of SETS will compile and execute under SCOPE 2.1 on the CDC 7600. Some

file processing differences exist between SCOPE 3.3 and 3.4, but the SETS program

can be converted to run on the CDC 6600 under SCOPE 3.4 by the UPDATE directives:

·rNSERT SETS.488
BUFFER OUT (SEPFL,1)(OUM,DUM)

IF (UN ITLSEPFLI) 195.3,1280,1283
1953 BUFFER CUT (SLKFL2,U (OU,"" DUH)

IF (UNIT (BLKFL2» 1954,1280,1283
1954 BUFFER CUT (TRMFL,1)(DUH,DUH)

IF (uNIT<TRHFL) 1955,1280,1283
1955 REWIND SEPFL

RE WIND 8L J<FL 2
REWIND TRHFL

FLRDY=UNIT(SEPFL)
FLRDY=UNIT(BLKFL21
FLROY =UNIT (TRHFL)

For CDC hardware configurations which do not include Extended Core Storage (ECS),

a disk or tape storage scheme would have to be substituted for the ECS scheme

used i.n the program to store equations. Nevertheless, conversion of the SETS

program for use on CDC equipment that is compatible with the CDC 6600, is

usually not too difficult. However, conversion of the SETS program to other

computer systems would require a substantial reprogramming effort because of

the extensive use of masking instructions within the program.

B.l Special Library Routines

There are calls in the SETS program for two library routines that are

peculiar to Sandia's operating system: SETEP and HOROLOG. The SETEP routine

causes control to be returned to the SETS program if a parity error is detected,

rather than to retain control in the operating system (SCOPE). The calls for

SETEP can be deleted by the UPDATE directive:

.O~LETE SETS.382,SETS.386

With this change, termination of a SETS execution, and consequently termination

of a SETS user program execution, will be achieved by SCOPE rather than SETS

following the detection of a parity error.

73

74

The HOROLOG routine returns a value for three output parameters:

PI--Execution time remaining for the job, a floating point value in

milliseconds.

P
2
--Time of day (clock time), an integer in Hollerith form

~HH.MM.S~ representing hours, minutes, and seconds.

P
3
--Date, an integer in Hollerith form~MM/DD/YYD representing

month, day, and year.

Any routine which returns these values could be used to replace HOROLOG, but PI

is the amount of job time remaining during execution, and most timing routines

return the amount of job time already used. However, the HOROLOG routine can be

removed from the SETS program by the UPDATE directives;

"OELETE

'":JELE.TE
1035

"'OELETE

.... OELETE
1650

"'DELETE
1663

"'OELETE

"OEL€TE
1901t

·DELETE
1941

SETS.241
PGMTIM=FGMOAT=10R

SETS .E>1lt
CPUTIM2;:: 1.0

SETS .2282
CPUTIM2=(J.O

5ETS.2833
CFUTIH3=Q.1)

SETS.2902
CPUTI H2=,0. 0

SETS.3186
CPUTIH3=O.O

SETS.3913
CPUTI H2= 0.0

SETS.It080
CPUTH13= 0. il

With this change, the time and date in the page headings of printer output will

be blank and the execution times printed in the output will be zero. Execution

of SETS, however, will not be affected.

B.2 Creating Different Size SETS Object Programs

The Expression Vector (EXPVC) is used in the SETS program for several of

the equation processing tasks. The maximum size that this vector can be

dimensioned is 32,767. The object program compiled with this vector size requires

205,100 (octal) words of core storage. By decreasing the size of EXPVC to 10,000

(which will still accommodate quite large equations), the corresponding object

program requires 131,600 (octal) words of core storage. Different size SETS

object programs can be compiled by changing the size of EXPVC with the UPDATE

directives:

-OELETE 5£15.36
OIMENSION CHRVC(S), CPY'IC (XXXXX), CTVC(1945)

·OELETE SETS.38
DIMENSION EXPVC(XXX(X)

"OELETE SETS.327
MXEXPVC=XXXXX

where XXXXX is the size of EXPVC and CPYVC--a vector that is equivalenced to

EXPVC in the program. An object program with a small EXPVC may work for many

examples, but if an Error 27 occurs, it is an indication that an object program

with a larger EXPVC should be used.

t

Be3 Job Control Sequences for Executing SETS

The job control sequences for executing the SETS program will differ

depending on the auxiliary storage media used for the block file. (Equations are

saved in a SETS user program by creating blocks that contain the equations and

adding these blocks to the block file.) The job control sequences used at

Sandia Laboratories for three different choices of auxiliary storage for the block

file will be described. In each example job control sequence, it is indicated at

what point the SETS user program and its data are to be included. Although it is

not specified in the examples, each data unit that occurs (Le., fault tree or

input block) must be preceded by a 7/8/9 card. Moreover, it is assumed that a

SETS object program with a 10,000 word EXPVC is available on a permanent disk

file called SETS-PERM-FILE.

B.3el Block File on a Temporary Disk File -- The use of a temporary disk

file for the block file is illustrated by the job control sequence:

EXMPL1,CM131600,TiC,EC100. NAME - BOX XXX -
ACCOUNT,$XXXXXXXXX,DXXXXX,GXXXX,AXXXXXXX,RX,KXXXX.
ATTACH,SETS,SETS-PER~-FILE,CY=10.
SETS.
7/13/9
SETS USER PROGRAM AND DATA
6/7/8/9

When a temporary disk file is used for the block file, all blocks are lost when

the job terminates. This type of run can be useful for SETS user programs that

require very little execution time. For these cases, it is sometimes easier to

regenerate any equations produced than to save them by using a permanent block

file. A run of this type is also useful for the first few runs of a SETS user

program aimed at checking a fault tree to make certain that it is correctly

structured. Once it has been ascertained that a fault tree is correctly

structured, it is usually helpful to switch to the use of a block file that can

be retained so that the fault tree does not have to be read and processed during

every succeeding run.

B.3.2 Block File on Magnetic Tape -- The use of a magnetic tape for the

block file is illustrated by the job control sequence:

EXMPL2,CM131600,T10,EC100,MT1. NAME - BOX XXX -
ACCOUNT,SXXXXXXXXX,DXXXXX,GXXXX,AXXXXXXX,RX,KXXXX.
ATTACH,SETS,SETS-PERM-FILE,CY=10.
REQUEST,TAPE4,HI. VSN=XXXXX NAME
REWIND, T APE4.
SETS.
UNLOAD, T APE4.
EXI T.
lJNLOAD,TAPE4.
718/9
SETS USER PROGRAM AND DATA
b1718/9

When a magnetic tape is used for the block file, the tape will contain all of

the blocks that are on the block file when the job terminates. This type of run

allows blocks to be saved for later use by another SETS user program simply by

75

76

using the same magnetic tape for the block file. The user specifies the magnetic

tape to be used by giving the volume serial number (VSN) in the REQUEST card

for TAPE4.

B.3.3 Block File on a Permanent Disk File -- The use of a permanent disk

file for the block file is illustrated by the job control sequence.

EXMPlJ,CM131600,Tl0,EC100. NAME - BOX XXX -
ACCOUNT,SXXXXXXXXX,OXXXXX,GXXXX.AXXxxxxX,Rx,KXXXX.
ATTACH,SETS,SETS-PER~-fIlE,CY:l0.
REQU£ST,TAPE4,·PF.
REWIND,TAPE4.

* COPY,BlKFL,TAPE4. I
ATTACH,BlKFL,SAVEo-eLKFL.

RETURN,8LKFl.
REWIND,TAFf4.
SETS.

* PURGE,BlKFl,SAVEO-BlKFL,CN=SVBlKFL.
CATALOG,TAPE4,SAVED-BlKFl,CN=SVBLKFL.
EXIT.

* PURGE,8lKFL,SAVED-BLKFL,CN=SV8LKFL.
CATAlOG,TAPE4,SAVED-BLKFl,CN=SV8lKFL.
7/8/9
SETS USER PROGRAM AND DATA
6/7/8/9

When a permanent disk file is used for the block file, the permanent disk file

will contain all of the blocks that are on the block file when the job terminates.

This type of run allows blocks to be saved for later use in another SETS user

program by creating a permanent disk file that contains the blocks. The user

specifies the permanent file to be used by giving the permanent file name in the

ATTACH card, the two PURGE cards, and the two CATALOG cards. Also, the control

password for the permanent file must be used in the PURGE and CATALOG cards.

In order to use a permanent disk file for the block file, the user must be

familiar with the use of these files and the password requirements associated with

them. In the example it is assumed that the permanent file SAVED-BLKFL already

exists, that it contains only one cycle, and that all passwords except the control

password SVBLKFL have their default values. If the job is to create the permanent

file SAVED-BLKFL for the first time, the SCOPE control card sequence should be

altered by removing those cards marked with an asterisk.

L

,

•

APPENDIX C

Execution Diagnostics

During the execution of the SETS program (i.e., during the interpretive

execution of a SETS user program), there are several errors that will be detected

if they should occur. The errors will be described in two groups. The first

group is concerned with the logic and implementation of the SETS program, and the

second group concerns errors in a SETS user program.

C.l SETS Errors

In general, errors detected in the execution of the SETS program indicate

a serious breakdown. Although these errors occur rarely if at all, tests are

included in SETS to detect them in order to preclude further execution that would

produce erroneous results. All of these errors,will cause the execution of SETS

to be terminated after an appropriate message has been printed.

There are three illegal branch errors that can occur. The messages

corresponding to these errors are as follows:

AN ILLEGAL TRANSFER HAS OCCURRED FROM A COMPUTED

GOTO STATEMENT

AN ITERATION PROCESS HAS BEEN COMPLETED WHICH SHOULD

HAVE BEEN EXITED PRIOR TO COMPLETION

THERE HAS BEEN A COMPUTER MALFUNCTION OR AN ERROR

EXISTS IN THE SETS PROGRAM.

An illegal branch error will occur if a character is used which is ,not a valid

character in a SETS user program. An illegal branch error may also be caused by

a computer malfunction and the job should be run again to make certain that the

error was not the result of such a malfunction. An illegal branch error can also

occur if a situation occurs that was not anticipated when the SETS program was

coded. In this case, the cause of the error must be determined and changes made

in the SETS program to correct the error.

There are three file processing errors that can occur. The messages

corresponding to these errors are as follows:

AN END OF FILE ERROR HAS OCCURRED

A PARITY ERROR HAS OCCURRED

A READY ERROR HAS OCCURRED.

All of the file processing errors can result from a bad file, or from the fact that

the file used was not the correct one. The user should first ascertain that the

files specified are indeed the ones he intended to use and then run the job again.

77

78

If the error persists, then the file in question may simply be a bad file and

need to be regenerated--particularly if a parity error is occurring. Like the

illegal branch errors, file processing errors can be the result of a situation

that was not anticipated when the SETS program was coded. A change in the SETS

program would then be required to correct the error.

There is one further error that can occur during the execution of the SETS

program. This error concerns the printed output generated by SETS, and the

message for this error is as follows:

THE MAXIMUM NUMBER OF LINES PER PAGE IS TOO

SMALL TO ALLOW PROPER PAGING OF THE OUTPUT.

This error cannot occur when the standard version of SETS is used. However, the

error can occur if a version of SETS is created that reduces the maximum number

of printed lines per page to a value that is too small to allow the printing of

the headings that can occur in the printed output. This error can be eliminated

by using a version of SETS with a larger value for the maximum number of lines

per page.

C.2 SETS User Program Errors

The SETS user program errors are syntax errors, and errors that occur during

the execution of the statements of the SETS user program. In general, these

errors will not-cause execution of the SETS program to be terminated. However,

the processing of the SETS user program following the detection of one of these

errors will be significantly different than normal processing. The processing

that occurs after the detection of an error is intended to determine whether or

not any remaining input is syntactically correct. It is not possible to accom­

plish this task completely because recovery after a detected error is based on

some syntactic characteristic (e.g., the period at the end of each statement).

Nevertheless, many of the syntax errors can be detected during a single execution

of a SETS user program.

The execution of a SETS user program occurs in two phases. First, the SETS

user program itself is read and tested to determine that it is syntactically

correct. If an error is detected while reading the SETS user program, an attempt

is made to read and test the remainder of the SETS user program unless the error

occurred in the program header in which case execution will be terminated. The

SETS user program will not be executed if any errors occur while it is being read.

Once the SETS user program can be read without error, its execution will

proceed normally unless an error is detected during execution. If an error is

detected during execution, an attempt will be made to execute all remaining

procedure calls that process input (RDFT and RDINPBLK), but execution of all other

statements in the SETS user program will be bypassed. However, no blocks will be

formed from fault trees or input blocks after an error has been detected.

C.2.l Special Fault Tree Error Messages -- In addition to the numbered

error conditions that are described in the next section, there are certain fault

tree errors which will cause special messages to be printed. These special

messages are as follows:

where

ERRORS OCCURRED IN THE DEFINITION OF THE EVENT event-name

THERE WAS NO DEFINITION FOR THE EVENT event-name

THE DEFINITION FOR THE EVENT event-name DOES NOT INCLUDE
ITS RELATIONSHIP TO THE EVENT event-name

THE RELATIONSHIP BETWEEN THE EVENTS event-name AND
event-name IS INCONSISTENT.

"event-name" is the name of a fault tree event.

These special messages are the result of tests performed after the entire fault

tree has been read. As a result, they provide information which is sometimes

already known. For example, when processing the event definition for an event X,

if a name is encountered that contains more than the maximum number of name

characters allowed, a numbered error message (Error 33) will be printed. Later

in the processing the message

ERRORS OCCURRED IN THE DEFINITION OF THE EVENT X

will also be printed even though both messages are the result of the same error.

Nevertheless, the special messages are helpful in tracking down errors in the

fault .tree. Correction of the input will then eliminate the errors.

C.2.2 Numbered Error Messages -- Except for the special messages concerning

certain fault tree errors, the detection of an error during the execution of a

SETS user program will result in a numbered error message of the form:

where

******ERROR NUMBER: n, name

"n" is the error number

"name" is either empty or it is the name of some entity in the SETS

user program or its associated input.

The descriptions of the errors that cause numbered error messages are listed

below along with the error number that will appear in the message. Furthermore,

steps for correcting the error will be indicated if they can be carried out by

the user.

Error Number

1

Error Description

A special character is incorrect in the context

in which it occurs. The characters that occur

in the input between the previous special

character and the special character that is

incorrect will be printed. Correct the input.

79

Error Number

2

3

4

5

6

7

8

80

Error Description

A program header, an input block header, or a

fault tree header is incorrect. The characters

that begin the header will be pritited. Correct

the input.

The SETS user program exceeds the size of the

vector used to store the program. The name of

the SETS user program will be printed. Break

up the SETS user program into two or more

programs that achieve the same result as the

original program.

The procedure identifier of a procedure call is

incorrect. The incorrect procedure identifier

will be printed. Correct the input.

The parameter part of a procedure call is

incorrect. The procedure identifier of the

procedure call will be printed. Correct the

input.

The input block name in an input block header,

or the fault tree name in a fault tree header

is not the same as the next parameter in a

RDINPBLK call or a RDFT call, respectively.

The input block name or the fault tree name

from the header will be printed. Correct the

input.

The number of variables exceeds the s.ize of

the table used to hold them. Initialize

the number of variables in the table by

inserting a call of DLTEQN with no parameters

in the SETS user program after taking steps

to save all meaningful equations in blocks.

Also, whenever possible, minimize the number

of variables in the table before calls of

RDFT, RDINPBLK, and PRTBLK since execution

of these procedures temporarily adds additional

variables to the table.

One of the records of a block exceeds the

size of the vector used as a temporary

transfer area for a DLTBLK call with a

nonempty parameter part. Use a version of

SETS with a larger copy vector (equivalenced

to the expression vector).

•

Error Number

9

10

11

12

13

•
14

15

16

17

Error Description

The substitution control part of a SUBINEQN call

or the reduction control part of a REDUCEQN call

is incorrect. Specifically, a variable has

occurred more than once in the same kind of

control element, or a variable has occurred

in both an omega and a phi control element.

The variable that caused the error will be

printed. Correct the input.

The left side variable of an equation is OMEGA.

Correct the input.

A fault tree does not have any event definitions

(i.e., the fault tree body is empty). The fault

tree name will be printed. Correct the input.

A fault tree has an incorrect alphabetic

delimiter. The incorrect alphabetic delimiter

will be printed. Correct the input.

An event definition does not contain any

relationship declarations. The name of the

event being defined will be printed. Correct

the input .

A fault tree contains OMEGA as an event name.

Correct the input.

An event has more than one event definition.

The name of the event with multiple definitions

will be printed. Correct the input.

A fault tree body begins with a relationship

declaration instead of an event declaration.

The name of the fault tree will be printed.

Correct the input.

The number of prefixes used in a fault tree

exceeds the size of the table used to store

them. The prefix that causes the error will

be printed. Alter the fault tree so that

fewer prefixes are required.

81

Error Number

18

19

20

21

22

23

24

82

Error Description

The number of relationships in a fault tree exceeds

the size of the vector used to hold them. The

fault tree name will be printed. If possible,

break up the fault tree into two or more smaller

fault trees that represent the same logic as the

original fault tree.

An event exceeds the maximum rank (i.e., the number

of events related to it). The name of the event

with the excessive rank will be printed. Insert

one or more additional intermediate events into

the fault tree so that the logic is preserved,

but none of the events in the fault tree exceed

the maximum rank.

An event in a relationship declaration is the

same as the event being defined, or it occurs

in more than one relationship declar~tion in

the same event definition. (The same event can

occur in a similar input or a similar output

declaration if the prefixes are not identical.)

The name of the event being defined will be

printed. Correct the input.

An intermediate event definition with a similar

output declaration also has an output declaration

or a similar input declaration. The name of the

event being defined will be printed. Correct the

input.

A primary event definition has relationship

declarations other than output declarations.

The name of the event being defined will be

printed. Correct the input.

A special intermediate event definition contains

a similar input declaration. The name of the

event being defined will be printed. Correct

the input.

An intermediate event definition does not

contain any input declarations. The name of

the event being defined will be printed.

Correct the input.

•

Error Number

25

• 26

27

28

29

30

31

32

Error Description

The logic expression in a special intermediate

event definition does not contain all of the

events that occur in the input declarations. The

name of the event being defined will be printed.

Correct the input.

The logic expression in a special intermediate

event definition contains at least one event

that does not occur in an input declaration. The

name of the event being defined will be printed.

Correct the input.

A Boolean expression exceeds the size of the

vector used to hold it. Use a version of SETS

with a larger expression vector.

A conditioning event is related to an event that

is not the output event of a PRIORITY AND gate

or an INHIBIT gate. The name of the conditioning

event will be printed. Correct the input.

The output event of a PRIORITY AND gate or an

INHIBIT gate does not have exactly one condi­

tioning event related to it. The name of the

output event of the PRIORITY AND gate or the

INHIBIT gate will be printed. Correct the

input.

The output event of a PRIORITY AND gate does

not have at least two input events related

to it. The name of the output event of the

PRIORITY AND gate will be printed. Correct

the input.

The output event of an INHIBIT gate does not

have exactly two input events related to it.

The name of the output event of the INHIBIT

gate will be printed. Correct the input.

A fault tree contains at least two similar

trees that overlap (i.e., generated event

names have more than one prefix). The

generated name of the event that causes the

error will be printed. Correct the input.

83

Error Number

33

34

35

36

37

38

39

40

41

84

Error Description

The number of characters in a name or alphabetic

delimiter exceeds the size of the vector used to

build these entities. The first sixteen characters

of the name or alphabetic delimiter will be printed.

Correct the input.

Two special characters (excluding the minus)

occur in juxtaposition in a context where such

an occurrence is incorrect. Correct the input.

Two special characters (excluding the minus)

do not occur in j"uxtaposition in a context where

such an occurrence is required. The characters

that occur between the two special characters

will be printed. Correct the input.

A generated event name is OMEGA, or it is

identical to a nongenerated event name, or it

is identical to a generated event name but the

prefixes are not the same. The generated event

name will be printed. Correct the input.

The block file does not contain a block with

the block name that occurs as a parameter in a

LDBLK or a PRTBLK call. The block name will be

printed. Correct the input.

An equation cannot be printed without

exceeding the maximum length allowed for each

line of print. Use a version of SETS with a

larger maximum printed line length.

The right side of an equation is incorrect.

Specifically, a variable follows a right

parenthesis. The left side variable of the

equation will be printed. Correct the input.

The right side of an equation is incorrect.

Specifically, there is at least one unpaired

left parenthesis. The left side variable

of the equation will be printed. Correct

the input.

The right side of an equation is incorrect.

Specifically, the period terminating the right

side follows the equivalence operator, a

Error Number

42

•

43

44

45

J

46

47

Error'Description

left parenthesis, or an operator. The left side

variable of the equation will be printed. Correct

the input.

The right side of an equation is incorrect.

Specifically, an AND or OR operator follows a

left parenthesis or another operator. The left

side variable of the equation will be printed.

Correct the input.

The right side of an equation is incorrect.

Specifically, a NOT operator follows another

NOT operator, a right parenthesis, or a

variable. The left side variable of the equation

will be printed. Correct the input.

The right side of an equation is incorrect.

Specifically, a left parenthesis follows a

right parenthesis or a variable. The left

side variable of the equation will be

printed. Correct the input.

The right side of an equation is incorrect.

Specifically, a right parenthesis follows a

left parenthesis or an operator. The left

side variable of the equation will be printed.

Correct the input.

The right side of an equation is incorrect.

Specifically, there is at least one unpaired

right parenthesis. The left side variable

of the equation will be printed. Correct the

input.

The level of an AND or OR operator exceeds

the maximum that can be accommodated during

expansion of an expression. The left side

variable of the equation which contains the

operator will be printed. If possible, break

up the equation and reduce it in stages

instead of all at once.

85

Error Number

48

49

50

51

52

86

Error Description

The left side variable of an equation occurs in

the right side of the equation, or the process of

substituting equals for equals into the right side

of an equation generates a sequence of substitutions

that is repetitive and nonending. For the first

case the left side variable of the equation will be

printed, and for the second case the left side

variable from one of the equations in the repetitive

sequence will be printed. Correct the input.

An integer contains a character other than a

digit, or an integer has occurred that is

>99999999. Correct the input.

The number of variables in a term exceeds the

maximum that can be accommodated during the

expansion of an expression. Use a counted

literals maximum in the REDUCEQN or PRTEQNDNF

call to truncate the equation.

The number of equations that either are or have

been in the equation file since this numbering

was last initialized exceeds the maximum number

that can be accommodated. The name of the SETS

user program will be printed. Initialize the

numbering of equations by inserting a call of

DLTEQN with no parameters in the SETS user

program after taking steps to save all meaning­

ful equations in blocks.

The number of terms in an expression exceeds

the size of the vector used to hold them. If

this occurs during simplification or

factorization of an equation, break up the

equation and reduce it in stages instead of

all at once, or use a counted literals

maximum in the REDUCEQN call to truncate the

equation. If it occurs when an equation is

being printed in disjunctive normal form,

use a counted literals maximum in the PRTEQNDNF

call to truncate the equation.

..

Error Number

53

•
54

•

Error Description

The region of Extended Core Storage (ECS) used to

store the right sides of equations has been

exceeded. The name of the SETS user program will

be printed. Initialize the use of ECS by insert­

ing a call of DLTEQN with no parameters in the

SETS user program after taking steps to save all

meaningful equations in blocks •

The number of variables in an expression exceeds

the size of the vector used to count the number

of occurrences of each literal. If this occurs

during factorization, break up the equation and

reduce it in stages rather than all at once,

or use a counted literals maximum in the

REDUCEQN call to truncate the equation. If it

occurs when an equation is being printed in

disjunctive normal form, use a counted literals

maximum in the PRTEQNDNF call to truncate the

equation .

87-88

•

•

APPENDIX D

Common Cause Analysis Using SETS

There can be special conditions which are not represented in a fault tree

that closely link some of the primary events in the fault tree. Also, secondary

(causal) events that do not appear in the fault tree may contribute to the occur­

rence of some of the primary events that do appear in the fault tree. A

methodology has been developed to analyze the impact of special conditions and

secondary events on the behavior of a system, without requiring an explicit

representation of the special conditions and secondary events in the fault tree.

The methodology is called common cause analysis and it was developed at the

Aerojet Nuclear Company [7]. Additional information concerning the methodology

and its implementation using SETS can be found in [8, 9].

D.l Common Cause Analysis

Common cause analysis is related to fault tree analysis and provides a way

to analyze the behavior of a system that is affected by special conditions and

secondary causes. A special condition is a characteristic which closely links

some of the primary events in the fault tree. For example, components that are

located in the same box are linked by their proximity to one another, and

components produced by the same manufacturer are linked because they are built

by the same company.

listed in Table D-I.

Some special conditions that can link primary events are

Symbol * Condition

E Energy source

C Calibration

F Manufacturer

I Installation
contractor

M Maintenance

*Followed by an integer.

TABLE D-I

Special Conditions

Example Source

Common drive shaft, same power supply

Misprinted calibration instructions

Components constructed by same
manufacturer

Same subcontractor or crew

Incorrect procedure, inadequately
trained personnel

A secondary cause is an event which may contribute to the occurrence of

some of the primary events in the fault tree. An exposure area for a secondary

cause is a region that does not contain any barriers to the secondary cause.

Components are located in the same exposure area for a particular secondary cause

if they are not separated by a barrier to the secondary cause. Some possible

secondary causes are listed in Table D-II.

89

90

Symbol

I

v
P

G

S

T

Event

Impact

Vibration

Pressure

Grit

Stress

Temperature

TABLE D-II

Secondary Causes

Example Sources

Pipewhip, water hammer, missiles,
earthquake, structural failure

Machinery in motion, earthquake

Explosion, pump overspeed, flow
blockage

Dust, metal fragments

Thermal stress at welds

Fire, lightning, cooling system
faults

Tables D-I and D-II contain some of the special conditions and secondary

causes that an analyst may want to consider. Additional special conditions or

secondary causes can be defined provided that all of the symbols used for the

special conditions and secondary causes are distinct. The integer in the symbols

for special conditions is used to distinguish different manufacturers Fl, F2,

• , Fi, different maintenance crews Ml, M2, ••• , Mj, etc.

The existence of a special condition which closely links some of the primary

events in a fault tree, or the existence of a secondary cause that contributes to

the occurrence of some of the primary events in a fault tree, introduces the

possibility that not all of the primary events in the fault tree are pairwise

independent. It is important to ascertain how this possible lack of independence

for some pairs of primary events might affect the behavior of the system. A

common cause candidate is a minimal cut set which satisfies at least one of the

following criteria:

1. All of the primary events of the minimal cut set are linked

by a special condition.

2. All of the primary events of the minimal cut set are

susceptible to the same secondary cause and they are

located in the same exposure area for that secondary

cause.

The purpose of common cause analysis is to identify every common cause candidate

and, for each common cause candidate, to determine all of the special conditions

that satisfy the first criteria and all of the secondary causes that satisfy the

second criteria.

Consider an application of common cause analysis to the Figure 1 fault

tree in section 3.3.1. The minimal cut sets for the top gate, Gl, of this fault

tree are represented by the equation:

Gl-MCS = E2AE3 V E1AE3 V E2AE5 V E1AE4AE5

•

Suppose that the special conditions and secondary causes for the primary events

El, E2, • , ES are as indicated in Table D-III. Notice that the secondary

causes have exposure areas associated with them. For example, the primary events

E2 and ES have a secondary cause of Al-T meaning that they have a secondary cause

of temperature and they are both in the same exposure area (area 1) for tempera­

ture.

TABLE D-III

Special Conditions and Secondary Causes
for the Primary Events of the Example

Primary Special
Event Condition Secondary Cause

El Fl, M3 Al-I, A2-T

E2 F2, M2 Al-I, Al-T

E3 F3, M3 A2-I, A2-T

E4 Fl, Ml A2-I, A3-T

ES Fl, M2 A3-I, Al-T

Some of the common cause candidates can be identified by inspection of

Table D-III. For example, by the first criteria E1AE3 is a common cause candidate

with respect to maintenance (M3) and by the second criteria it is also a common

cause candidate with respect to temperature (A2-T). Notice that none of the

minimal cut sets are common cause candidates with respect to impact, and that the

minimal cut set E2AE3 is not a common cause candidate with respect to any special

condition or secondary cause.

D.2 Using SETS to Implement Common Cause Analysis

The implementation of common cause analysis using SETS is based on a trans­

formation of variables (i.e., a substitution of equals for equals). The variable

transformation is carried out on the equation that represents the minimal cut sets

for the top event (or any other intermediate event) of the fault tree. Thus, the

determination of the minimal cut set equation for the selected intermediate event

of the fault tree is the first step in applying common cause analysis. For some

fault trees, it may actually be more efficient to perform the variable transfor­

mation at some interim point in the development of the minimal cut set equation

if the equation is being developed in stages. However, in this description of

how SETS is used to implement common cause analysis, the generation of a minimal

cut set equation will constitute the first step in applying the methodology. To

illustrate the implementation we shall continue with the example of section 0.1.

Prior to the transformation of variables, a Boolean equation must be defined

for every primary event in the fault tree. The equation for a primary event

specifies the special conditions and secondary causes that are applicable to the

primary event. The equation also indicates which exposure area the primary event

is located in with respect to each secondary cause. Since the transformation of

variables will replace each primary event in the minimal cut sets with the right

91

92

side of the equation for that primary event, the primary event must be represented

in every term on the right side of the equation if it is to survive the transforma­

tion. A similar but different name is used to represent the primary event on the

right side of the equation because SETS does not allow the same name to occur on

both sides of an equation. In the equations for the example, EOI represents

El, E02 represents E2, etc.

The equations for the primary events EI, E2, •.• , ES of the example can

be determined from Table D-III and they are contained in the following input block:

INPUT BLeCK! CMMN-CAUSE-T~ANS.
El = (Fl + H3 • Al-I + A2-T) • Eel.
E2 : (F2 + H2 + A1-1 + A1-T) • £02.
E3 = (F3 + M3 + A2-I + A2-T) • Eu3.
E4 = (Fl + H1 + A2-1 + A3-TI • E04.
ES = (Fl + H2 + A3-I + A1-T) • E05.

Interpretation of the equation for El, for example, indicates that the component

represented by primary event El was produced by manufacturer Fl and is serviced

by maintenance team M3. Furthermore, the component is susceptible to impact and

it is located in exposure area 1 with respect to impact (AI-I); and the component

is susceptible to temperature and it is located in exposure area 2 with respect

to temperature (A2-T). After the transformation of variables, the primary event

El will be represented by EOI.

The original notation for the primary events can be restored by another

transformation of variables after the common cause candidates have been determined.

This step is optional. If the step is included, an equation is required for each

primary event which will replace the representation of that primary event in the

common cause candidate equation with the original representation for the primary

event. The input block to restore the original notation for the example is:

INPUT BLCCK$ CR1G-NOTN-TRANS.
E01 = El. Eu2 = E2. E03 = E3.
E04 = £4. EJ5 = E5.

For both of the input blocks, CMMN-CAUSE-TRANS and ORIG-NOTN-TRANS, it is

only necessary to have an equation for each primary event that occurs in the

minimal cut sets. Sometimes, however, it is simpler to provide an equation for

every primary event than it is to determine which equations can be omitted.

A SETS user program to determine the common cause candidates for the

example is as follows:

PROGRAM$ CC-ANALYSIS.
LDBLK (Gl-MCS-EQN).
RDINFBLK (CHHN-CAUSE-TRANS, ORIG-NOTN-iRANS).
LOBLK (CMHN-CAUSE-TRANS).
SUBlKEQN (Gl-HCS. TEMP).
REOUCECN (TEMP, CC-CNO, 1· EXCEPiNONCHP$ Eel, f02, E~3,

E04, £05).
FRH8LK (ee-eND-EQN· ONLY$ cc-eNOI.
OLTEQN.
LDBLK 'CC-CND-fQN, ORIG-NOTN-TRANS).
SUBINEQN (CC-GNO, CC-CNO).
PRTECNONF (CC-CNO).

J

•

•

The first statement in the SETS user program causes the equation for Gl-MCS

contained in the block Gl-MCS-EQN to be loaded (i.e., entered, into the equation

file) where it is available for further processing_

The transformation of variables that produces the equation which contains

the common cause candidates is accomplished by the first call of the Substitute

In Equation procedure. Each primary event in the equation for Gl~MCS is replaced

with the right side of its equation from the input block CMMN-CAUSE-TRANS. The

equation produced by the transformation of variables contains all of the common

cause candidates, but it also contains terms that do not represent common cause

candidates. The terms that do not represent common cause candidates can be

eliminated by a call of the Reduce Equation procedure which is the next statement

in the SETS user program.

The first part of the processing by the Reduce Equation procedure is to

apply the distributive law to the equation produced by the transformation of

variables (i.e., the equation for TEMP), to obtain a disjunctive normal form of

the equation. At the same time, the identity PAP = P is applied to eliminate all

occurrences of repeated variables save one from each term. The terms which contain

exactly one special condition or secondary cause are the common cause candidates.

Conversely, any term which has more than one special condition or secondary cause

after the identi~y PAP = P has been applied, is not a common cause candidate.

The terms of the equation that are not common cause candidates are eliminated

by using a counted literals maximum of 1 in the Reduce Equation call, while at

the same time excluding the primary events from the counting process. The equation

that is produced (i.e., the equation for CC-CND), contains all and only the common

cause candidates.

The sixth through the ninth statements of the SETS user program restore the

original notation for the primary events. Again this step is optional. The final

statement of the SETS user program prints the common cause candidates for the

example:

TERM
NUMBER

1

2

3

4

5

NUHEER OF
LITERALS

3

3

3

3

4

CC-CNO =

Al-T A E2 A E5 v

M2 A E2 A E5 v

A2-T A El A E3 v

M3 A El A E3 v

Fl A El A E4 A E5

93

94

Common cause analysis is a method for studying the effect of special

conditions and secondary causes on the behavior of a system, and it can be

implemented using SETS. The primary responsibility of the analyst is to define

the equations in the input block CMMN-CAUSE-TRANS. These equations specify the

special conditions and secondary causes that are pertinent to each of the primary

events. If the original notation for the primary events is to be restored, the

analyst must also define the equations in the input block ORIG-NOTN-TRANS. A

SETS user program similar to CC-ANALYSIS can then be used to perform the trans­

formation of variables and produce the common cause candidates. •

•

J

1f'

. .

References

[1]. M. D. alman, R. B. Worrell, A Fault Tree Representation Designed for
Computer Analysis, SC-RR-71 0615A, Sandia Laboratories, Albuquerque,
New Mexico, July 1972.

[2]. R. B. Worrell, Set Equation Transformation System (SETS), SLA-73-0028A,
Sandia Laboratories, Albuquerque, New Mexico, May 1974.

[3]. R. B. Worrell, Using the Set Equation Transformation System in Fault
Tree Analysis, SAND74 0240, Sandia Laboratories, Albuquerque, New Mexico,
September 1974. Also condensed in Reliability and Fault Tree Analysis,
SIAM, September 1975.

[4]. B. L. Hulme, R. B. Worrell, "A prime implicant algorithm with factoring,"
IEEE Trans. Comput., Vol. C-24, pp. 1129-1131, November 1975.

[5]. Reactor Safety Study--An Assessment of Accident Risks in U.S. Commercial
Nuclear Power Plants, WASH 1400, U.S. Nuclear Regulatory Commission,
October 1975.

[6]. D. A. Oliver, Fault Tree Drawing Program Users Instructions, SLA-73-0409,
Sandia Laboratories, Albuquerque, New Mexico, April 1973.

[7]. J. B. Fussell, D. M. Rasmuson, J. R. Wilson, G. R. Burdick, J. C. Zipperer,
A Collection of Methods for Reliability and Safety Engineering, ANCR-1273,
Aerojet Nuclear Company, Idaho Falls, Idaho, April 1976.

[8]. R. B. Worrell, G. R. Burdick, "Qualitative analysis in reliability and
safety studies," IEEE Trans. Rel., Vol. R-25, pp. 164-170, August 1976.

[9]. R. B. Worrell, D. W. Stack, Common-Cause Analysis Using SETS, SAND77-1832,
Sandia Laboratories, Albuquerque, New Mexico, December 1977 •

95

96

Distribution:

F. F. Goldberg (50)
Probabilistic Analysis Staff
Mail Stop MNBB 3106
U.S. Nuclear Regulatory Commission
Washington, DC 20555

Mr. Frank Martin
U.S. Department of Energy
Office of Safeguards & Security
Washington, DC 20545

Mr. Burton Newmark
U.S. Department of Energy
Office of Safeguards & Security
Washington, DC 20545

Dr. Giuseppe Volta
Division Head Engineering
Commission of the European Community
Joint Research Center
Ispra Establishment
21020 ISPRA (VA)
Italy

Commanding Officer
Naval Weapons Evaluation
Kirtland Air Force' Base
Code 502

AFWL/NSEX
D. M. Bush
Kirtland APB

W. Hatch, LASL, WX-8
A. T. Oyer, LASL, WX-8
L. M. Petrie, ORNL
H. E. Lambert, LLL, Ll16

1222 G. T. Merren
1233 R. E. Smith
1233 M. D. Olman
1710 V. E. Blake
1730 C. H. Mauney
1750 J. E. Stiegler
1758 C. E. Olson
1758 D. D. Boozer
1758 A. M. Fine
1758 G. A. Kinemond
1758 W. K. Paulus
1758 D. W. Stack
1758 R. B. Worrell (3)
1760 J. Jacobs
1760A M. N. Cravens
1761 T. A. Sellers
1761 C. P. Cameron
1761 J. L. Darby
1761 J. A. Schmitz
1761 A. E. Winblad
1763 1. G. Waddoups
2113 L. H. Goldstein
2610 R. J. Detry

Attn: M. R. Scott
4412 J. W. Hickman
4412 S. V. Asselin
4412 W. R. Cramond
4412 D. J. Murphy
4413 N. R. Ortiz
4414 G. B. Varnado

Facility

4414 D. E. Bennett
4414 S. L. Daniel
4414 A. W. Frazier
4414 M. S. Hill
4415 D. A. Dahlgren

Attn: M. Rios
4416 L. D. Chapman
4514 D. Holdridge
4551 J. D. McClure
5642 B. L. Hulme
8321 R. L. Rinne

Attn: Pat DeLaquil
3141 T. L. Werner (5)
3151 W. L. Garner (3)

For DOE/TIC
3172-3 R. P. campbell (25)

For DOE/TIC
8266 E. A. Aas

•

.,<

~

•

