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ABSTRACT 

This manual describes the use of the Set Equation 

Transformation System (SETS) for fault tree analysis. 

An algebraic minimal cut set algorithm is presented which 

determines all of the fundamental ways that an intermediate 

event can occur. A direct implementation of the algorithm 

using SETS is adequate for small fault trees, but for large 

fault trees several techniques are presented which increase 

the efficiency of the algorithm. These techniques include 

the separate processing of independent subtrees and the 

derivation of an equation in stages. The truncation of 

an equation to retain only those minimal cut sets with 

n or fewer components is also described. 

3 



4 

ACKNOWLEDGMENT 

We want to thank Francine F. Goldberg, a member of the Nuclear Regulatory 
Commission's Probabilistic Analysis Staff, for suggesting many improvements 
to this user's manual for the fault tree analyst. She was particularly helpful 
in identifying the community of users for which this manual is intended, and 
for proposing changes which kept the description focused on the needs of those 
users. 

The techniques that are described for finding minimal cut sets for large 
fault trees have been in use at Sandia Laboratories for several years, and 
many people have contributed to the evolution of these techniques. We especially 
want to thank Melvin D. Olman who first suggested the improved efficiency that 
could be achieved by creating additional independent subtrees and by reducing 
equation segments before inserting them into an equation that is being developed 
in stages. 

We also want to thank Allan M. Fine for the calligraphic rendering of the 
guideline flowchart in Chapter 5. 



1. Introduction 

2. Fault Tree Input 

2.1 Example Fault Tree Input 

2.2 Event Names 

2.3 Primary Event Definitions 

CONTENTS 

2.4 Intermediate (Gate) Event Definitions 

3. SETS User Programs 

3.1 A Minimal Cut Set Algorithm 

3.2 Understanding SETS User Programs 

3.2.1 Boolean Equations 

3.2.2 Procedure Calls 

3.2.3 The Block File 

3.2.4 The Equation File 

3.3 Example SETS User Programs 

3.3.1 Example 1. Minimal Cut Sets for the Top Event 
of a Fault Tree Without Complement Events 

3.3.2 Example 2. Minimal Cut Sets for the Top Event 
and Intermediate Events of a Fault Tree Without 
Complement Events 

3.3.3 Example 3. Prime Implicants for the Top Event 
of a Fault Tree With Complement Events 

4. Advanced Minimal Cut Set Techniques 

4.1 Separate Processing of Independent Subtrees 

4.1.1 Identifying Independent Subtrees 

4.1.2 Example Using Independent Subtrees 

4.2 Processing a Fault Tree in Stages 

4.2.1 A Method for Choosing Stages 

4.2.2 Example Using Processing in Stages 

4.3 Composite Technique 

4.4 Creating Independent Subtrees 

4.4.1 A Method for Creating Independent Subtrees 

4.4.2 Example Using Created Independent Subtrees 

4.5 Limiting the Size of Minimal Cut Sets 

5. Guidelines for Applying Advanced Techniques 

5.1 An Initial Approach 

5.2 Modifications to Use When Available Storage is Exceeded 

5.3 Modifications to Use When Run Time is Excessive 

5.4 A Guideline Flowchart 

6. Quantification of Minimal Cut Sets 

6.1 Types of Computation 

6.2 Variable Value Assignment 

6.3 The Compute Term Value Procedure 

6.4 The Truncate On Term Value Procedure 

Page 

9 

11 

11 

13 

13 

14 

17 

17 

18 

19 

19 

20 

21 

21 

21 

24 

27 

31 

35 

36 

37 

38 

39 

39 

40 

41 

42 

42 

45 

47 

47 

47 

48 

51 

55 

55 

55 

57 

60 

5 



6 

CONTENTS (Continued), 

Appendix A -- Procedures Available in SETS 

A.l Read Input Block 

A.2 Read Fault Tree 

A.3 Print Equation 

A.4 Print Equation In Disjunctive Normal Form 

A.5 Delete Equation 

A.6 Substitute In Equation 

A.7 Reduce Equation 

A.8 Form Block 

A.9 Load Block 

A.IO Print Block 

A.ll Delete Block 

A.12 Block Status 

Appendix B -- Executing SETS User Programs 

B.l Special Library Routines 

B.2 Creating Different Size SETS Object Programs 

B.3 Job Control Sequences for Executing SETS 

B.3.1 Block File on a Temporary Disk File 

B.3.2 Block File on a Magnetic Tape 

B.3.3 Block File on a Permanent Disk 

Appendix C -- Execution Diagnostics 

C.l SETS Errors 

C.2 SETS User Program Errors 

C.2.1 Special Fault Tree Error Messages 

C.2.2 Numbered Error Messages 

Appendix D -- Common Cause Analysis Using SETS 

D.l Common Cause Analysis 

D.2 Using SETS to Implement Common Cause Analysis 

References 

Page 

63 

63 

64 

64 

64 

65 

65 

67 

69 

69 

70 

70 

71 

73 

73 

74 

75 

75 

75 

76 

77 

77 

78 

79 

79 

89 

89 

91 

95 



.' 
Figure 

1 

2 

3 

4 

5 

6 

7 

8 

Table 

I 

II 

III 

IV 

0-1 

D-II 

D-III 

A Simple Fault Tree 

Fault 'Tree Symbols 

FIGURES 

Processing Schematic for Procedure Calls 

Another Simple Fault Tree 

A Fault Tree With Complement Events 

A Complex Fault Tree 

Illustration of Subtrees 

Flowcha~t for Applying Minimal Cut Set Techniques 

TABLES 

Execution Times for Different MCS Techniques 

Term Computations Available in SETS 

Variable Value Restrictions 

Values for Complement Variables 

Special Conditions 

Second~ry Causes 

Special Conditions and Secondary Causes for the 
Primary Events of the Example 

Page 

11 

12 

20 

24 

28 

33-34 

36 

51-53 

35 

55 

55 

56 

89 

90 

91 

7-8 



.' 

A SETS USER'S HANUAL FOR THE FAULT TREE ANALYST 

1. Introduction 

The Set Equation Transformation System (SETS) is a very general, flexible tool 

for manipulating Boolean equations--equations which mayor may not be derived from 

fault trees. This manual, however, is designed specifically to describe the appli­

cation of SETS to fault tree analysis. The occurrence of the top event or any 

intermediate event of a fault tree can be represented by a Boolean equation. When 

this equation is transformed in a certain way, the fundamental ways that the top or 

intermediate event can occur (i.e., the minimal cut sets) may be read directly from 

the equation. Thus, SETS provides basic capabilities for manipulating Boolean 

equations which can be used by the fault tree analyst to determine the minimal cut 

sets for the top event or any intermediate event of a fault tree. In this manual, 

the explanation of the use of SETS for fault tree analysis is provided primarily by 

illustrative examples. However, a more complete set of reference material has been 

included in the appendices for experienced users who require further information. 

The input to SETS consists of two parts: (1) the fault tree description, 

covered in Chapter 2; and (2) the SETS user program, explained in Chapter 3 and 

developed further in Chapters 4-6. The input fault tree description employed in 

SETS is simple, free format, and easily prepared from the graphical representation 

of a fault tree. A variety of predefined gates are available, including the 

standard AND and OR gates, as well as the INHIBIT, PRIORITY AND, and EXCLUSIVE OR 

gates. In addition, the user may define his own "SPECIAL" gates for any valid logic 

function, such as m-out-of-n logic. Unlike many other fault tree programs, SETS is 

capable of handling trees which contain both an event x and its complement x. 
However, as will be explained later, extra processing is usually required for these 

trees. The SETS fault tree input is described in detail in Chapter 2. 

In addition to the input description of the fault tree, the analyst must 

prepare a SETS user program. This program translates the fault tree into a set of 

Boolean equations, and transforms these equations in a way which allows the minimal 

cut sets to be obtained. The SETS user programs required for different fault trees 

will, in general, be quite similar. However, variations will be required depending 

on such factors as (1) the size of the tree, (2) whether or not complement events 

are present, and (3) whether or not minimal cut sets are to be computed for events 

other than the top event. 

SETS user programs are'discussed in Chapters 3-6. In Chapter 3, the elements 

of SETS user programs are described, and example programs are given which determine 

the minimal cut sets for the specified intermediate events of small fault trees with 

and without complement events. In general, the standard minimal cut set algorithm 

does not correctly determine all of the fundamental event occurrence causes for a 
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tree which contains both an event and its complement; therefore, the term "minimal 

cut sets" should not really be used for such trees. For these trees, a more 

complicated algorithm is required (see section 3.3.3) and the resulting fundamental 

causes are known as the "prime implicants" of the intermediate event of interest. 

The terms "prime implicant" and "minimal cut set" are equivalent for trees contain­

ing no complement events. In this manual we will use the more familiar term 

"minimal cut set" for trees without complement events and the term "prime implicant" 

for trees with complement events • 

. When a fault tree is relatively large or complex, the single step technique 

described in Chapter 3 for determining minimal cut sets is often impractical 

because of the large amount of computer storage or execution time required. In 

Chapter 4, three advanced techniques are described for finding minimal cut sets for 

large fault trees: 

1. Separate processing of independent subtrees. 

2. Processing a fault tree in stages. 

3. Composite of 1 and 2. 

Each of the advanced techniques is based on processing the fault tree in parts or 

stages, and each of them is inherently more efficient than the single step tech­

nique. Also.described in Chapter 4 is a way of creating independent subtrees and 

a description of how to truncate an equation so that only minimal cut sets with 

n or fewer variables are retained. 

Some general guidelines for deciding how and when to apply the advanced 

minimal cut set techniques, and the methods for creating independent subtrees and 

truncating equations are described in Chapter 5. 

The determination of minimal cut sets or prime implicants is often referred 

to as the "qualitative" assessment of a fault tree. This is because the results 

of such an assessment are independent of the probabilities associated with the 

basic events. Once the qualitative assessment has been made, it is often desirable 

to perform certain quantitative evaluations. The quantitative techniques available 

in SETS are described in Chapter 6. 

Appendices A-D provide additional reference material for the SETS user. 

Appendix A is a detailed discussion of SETS procedure calls; Appendix B provides 

information for running SETS user programs on CDC equipment; Appendix C describes 

the SETS error messages; and Appendix D explains how to use SETS for common cause 

analysis. 

.. 
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2. Fault Tree Input 

The generation of the SETS computer input description of a fault tree usually 

proceeds from the familiar graphic representation of the tree such as the one shown 

in Figure 1. 

Figure 1. A Simple Fault Tree 

We assume that the reader is familiar with the basic fault tree terminology and 

symbols. The latter are shown for convenient reference in Figure 2. 

2.1 Example Fault Tree Input 

A listing of the data cards which would be used to input the fault tree shown 

in Figure 1 is as follows: 

FAULT TREES FIG-i-FT. 
COMMENTS INTER"EOIAT E EVENT ( GATE) OEF! NITI ONS. $ 

OG$ Gl. IN$ G2, G3. 
AG$ G2. IN$ GIt, El. OUTS G1. 
AGS G3. IN$ G5, E2. DUn Gl. 
OGS G4. INS Go, £3. oun G2. 
AGS G5. IN$ G7, G8. OUTS 63. 
AG$ G6. IN! E4, E5. OUTS G4. 
OG3 G 7. INS E5, E3. OUTS G5. 
OG$ G8. INS £2, El. OUT$ G$. 

COMMENTS PRIMARY EVENT DEFINITIONS .$ 
8E$ El. Ours-"G2, G6. 
8E$ E 2. oun G3, G 8. 
BE$ E.3. OUTS G4, G7. 
BES E4. OUl$ G6. 
BH E5. OUTS G6, G7. 

The fault tree input is written in a free format language. The representation 

of a fault tree which SETS can interpret is simply the string of characters that has 

been read from punched cards after all blank (space) characters have been purged 

from the string. This means that the SETS user need not be concerned about entering 

11 
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GATE SYMBOLS 

AND - Output fault occurs if all of the input faults occur 

OR - Output fault occurs if at least one of the input faults occurs 

EXCLUSIVE OR - Output fault occurs if exactly one of the input faults 
occurs 

PRIORITY AND - Output fault occurs if all of the input faults occur in a 
specific sequence (the sequence is represented by a CONDITIONING 
EVENT drawn to the right of the gate) 

INHIBIT - Output fault occurs if the (single) input fault occurs in 
the presence of an enabling condition (the enabling condition is 
represented by a CONDITIONING EVENT drawn to the right of the gate) 

SPECIAL - Output fault occurs according to a logic function defined 
by the user 

PRIMARY EVENT SYMBOLS 

BASIC EVENT - An initiating fault requiring no further development 

CONDITIONING EVENT - Specific conditions or restrictions that apply 
to any logic gate (used primarily with PRIORITY AND and 
INHIBIT gates) 

UNDEVELOPED EVENT - An event which is not further developed either 
because it is of insufficient consequence, or because 
information is unavailable 

DEVELOPED EVENT - An event which could be further developed, or is 
developed elsewhere, but is treated here as a primary event 

EXTERNAL EVENT - An event which is normally expected to occur 

MISCELLANEOUS SYMBOLS 

DESCRIPTION - Contains the description of an event 

TRANSFER IN - Indicates that the tree is developed further at the 
occurrence of the corresponding TRANSFER OUT (e.g., on 
another page) 

TRANSFER OUT - Indicates 'that this portion of the tree must be 
attached at the corresponding TRANSFER IN 

Figure 2. Fault Tree Symbols 
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the input in certain columns or with certain spacing. As long as the delimiters 

(i.e., dollar signs, periods, and commas) are correctly placed, the input will be 

properly interpreted by SETS. 

form: 

where 

The first card in the fault tree input is the fault tree header which has the 

FAULT TREE$ fault-tree-name. 

"fault-tree-name" is an arbitrary name supplied by the analyst consisting of 

from 1 to 16 name symbols. (See section 2.2 for a description of valid names.) 

The delimiters "$" and are required. 

The second card is a comment card which has the form: 

COMMENT$ descriptive material $ 

where 

"descriptive material" is supplied by the analyst. 

Comments can occur throughout the input, but they must follow a "." delimiter. 

They do not contribute to the definition of the fault tree. The "$" delimiters are 

mandatory. 

The rest of the cards are the intermediate and primary event definitions. 

The event definitions can occur in any order, but there must be exactly one defini­

tion for every event in the fault tree. The event definitions are described in 

sections 2.3 and 2.4. 

2.2 Event Names 

As part of the event definitions, each primary and intermediate (gate) event 

must be assigned a name. Valid names consist of from 1 to 16 name symbols, where 

the name symbols are the capital letters A through Z, the digits 0 through 9 and 

the minus sign (used to represent a hyphen in a name). For example, 

CH1-SQB, G4, 113, 53-A-GRND4 

are all legitimate names, and, in fact, any ordering of from 1 to 16 name symbols 

is a name. Any name can be used as an event name in a fault tree with the exception 

of the name OMEGA which has special meaning. 

2.3 Primary Event Definitions 

The primary events of a fault tree are those events which, for one reason or 

another, have not been further developed. Five different types of primary events 

are provided for the convenience of the analyst, and they are described in Figure 2; 

however, it should be realized that all primary events are treated identically 

during processing by SETS. The primary event definition for a basic event has the 

form: 

BE$ basic-event-name. OUTS output-event-list. 

13 
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where 

"BE" identifies the primary event as a basic event 

"basic-event-name" is the name of the basic event supplied by the _analyst 

"output-event-list" is the list of gates to which the basic event has an 

output. 

The four other types of primary events have similar event definitions of the form: 

CE$ conditioning-event-name. OUTS output-event-list. 

UE$ undeveloped-event-name. OUTS output-event-list. 

DE$ developed-event-name. OUTS output-event-list. 

EE$ external-event-name. OUTS output-event-list. 

For example, the primary event definitions for the basic events E2 and E4 from the 

fault tree in Figure 1, are as follows: 

BE$ E2. 

BE$ E4. 

OUTS G3, G8. 

OUT$ G6. 

2.4 Intermediate (Gate) Event Definitions 

The intermediate events of a fault tree are defined as logical combinations 

of other intermediate or primary events in the fault tree. Figure 2 describes the 

six types of gates which are valid for use with SETS. They are: 

l. The AND Gate. 

2. The OR Gate. 

3. The EXCLUSIVE OR Gate. 

4. The PRIORITY AND Gate. 

5. The INHIBIT Gate. 

6. The SPECIAL Gate. 

The first five have standard predefined logic functions. Of these, the AND, OR, 

and EXCLUSIVE OR are distinct, while the PRIORITY AND and INHIBIT gates are really 

special cases of the AND gate. The differences between the AND, PRIORITY AND, and 

INHIBIT gates come into play during quantitative evaluation, but for the purpose of 

determining minimal cut sets or prime implicants, they all have the same logic 

function. 

The sixth gate, called "SPECIAL," is different from the other gates because 

its logic function is defined by the user in the form of a Boolean expression. The 

SPECIAL gate makes it easy for the SETS user to describe, directly, such logic 

functions as the m-out-of-n gate instead of having to express it in terms of 

several AND and OR gates. 

The intermediate event definition for an AND gate has the form: 

AG$ and-gate-name. IN$ input-event-list. OUT$ output-event-list. 

where 

"AG" identifies the intermediate event as an AND gate 



"and-gate-name" is the name of the AND gate supplied by the analyst 

"input-event-list" is a list of gates and primary events which are inputs to 

the AND gate 

"output-event-list" is a list of gates to which the AND gate has an output. 

The top event of the tree has no output event list. The other predefined gates have 

similar event definitions of the form: 

OG$ or-gate-name. IN$ input-event-list. OUTS output-event-list. 

EOG$ exclusive-or-gate-name. IN$ input-event-list. OUTS output-event-list. 

PAG$ priority-and-gate-name. IN$ input-event-list. OUTS output-event-list. 

IG$ inhibit-gate-name. IN$ input-event-list. OUTS output-event-list. 

For example, the intermediate event definitions for the OR gate Gl and the AND gate 

G2 from the fault tree in Figure 1 are as follows: 

OG$ Gl. IN$ G2, G3. 

AG$ G2. IN$ G4, El. OUTS Gl. 

The intermediate event definition for the SPECIAL gate has a slightly 

different form: 

where 

SG$ special-gate-name logic-function. IN$ input-event-list. 

OUTS output-event-list. 

"logic-function" is any properly formed Boolean expression. 

The Boolean operations of conjunction (A), disjunction (V), and negation (,) that 

appear in the expression are represented by the symbols *, +, and I, respectively. 

The event names that appear in the Boolean expression must be the event names that 

appear in the input event list. Conversely, every event name in the input event 

list must appear in the Boolean expression. For example, the intermediate event 

definition for a SPECIAL gate which specifies that the output event occurs when 

exactly two of the three input events occur, can be represented in the following 

way: 

I 
SIGNAL 

, Q I 
SIG-A SIG-B SIG-C 

I I I 

SG$ SIGNAL = SIG-A*(SIG-B*/SIG-C + ISIG-B*SIG-C) + 
/SIG-A*SIG-B*SIG-C. 

IN$ SIG-A, SIG-B, SIG-C. 

OUT$ ••• 

A more detailed discussion of all of the options available for the fault tree input, 

including the use of similar trees, is available in [1]. 
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3. SETS User Programs 

As mentioned earlier, a fault tree may be represented by a collection of 

interrelated Boolean equations, one for each intermediate event. These equations 

can be processed by SETS to determine the minimal cut sets for any intermediate 

event in the fault tree. The fault tree analyst must direct this processing by 

writing a SETS user program, which is then read, interpreted, and executed by SETS. 

The SETS user programs will vary depending on such factors as (1) the size and 

logical structure of the fault tree, (2) whether or not complement events occur in 

the tree, and (3) the intermediate event for which the minimal cut sets are to be 

obtained. It is the ability to direct the processing which gives the SETS system 

its great generality and flexibility. 

This chapter on SETS user programs is divided into three main parts. The 

first part shows how the minimal cut sets of a fault tree may be obtained from the 

tree's equivalent set of Boolean equations; the second part discusses the elements 

of the SETS user program language; and the third part discusses two example SETS 

user programs that find minimal cut sets and one example that finds prime 

implicants. 

The names that occur in SETS user programs are constructed according to the 

same rules that were described for fault tree event names (section 2.2). 

3.1 A Minimal Cut Set Algorithm 

A fault tree can be represented by a collection of interrelated Boolean 

equations, one for each intermediate event. These equations can be transformed to 

determine the minimal cut sets for any intermediate event in the fault tree. 

Three steps are necessary to find the minimal cut sets for a particular inter­

mediate event: 

1. Generate all of the intermediate event equations defined by the fault 

tree. 

2. Generate an equation for the selected intermediate event as a function 

of only primary events by a repeated substitution process using the 

intermediate event equations generated in step 1. 

3. Reduce the equation resulting from step 2 by applying the Boolean 

absorption identities p*p = P and P + P*Q = P, or, if the equation 

contains both an event and its complement, apply a prime implicant 

algorithm. 

The resulting equation, when printed in disjunctive normal (sum of products) form, 

is tantamount to a listing of the minimal cut sets (or prime implicants). 

Suppose that we want to use this minimal cut set algorithm to determine the 

minimal cut sets for the top event of the fault tree in Figure 1 which does not 

~ontain any complement events. 

Step 1 -- Generate the intermediate event equations for the fault tree. To 

do this, simply write each intermediate gate event as a function of its input events: 
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Gl G2 + G3 

G2 G4 * El 

G3 GS * E2 

G4 G6 + E3 

GS G7 * G8 

G6 E4 * ES 

G7 ES + E3 

G8 E2 + El 

Step 2 -- Generate an equation for Gl that is a function of only primary events. 

To do ·this, systematically eliminate each intermediate event on the right side of 

the equation for Gl by repeated substitution (i.e., replace each intermediate event 

by the right side of its equation from step 1) until Gl is expressed entirely in 

terms of primary events. 

Gl G2 + G3 

Gl (G4 * El) + (GS * E2) 

Gl ((G6 + E3) * El) + ((G7 * G8) * E2) 

Gl (((E4 * ES) + E3) * El) + (((ES + E3) * (E2 + El» * E2). 

Step 3 -- Apply the identities p*p = P and P + P*Q = P to the equation generated 

in step 2. The application of the identities can be easily seen by looking at a 

disjunctive normal form of the equation: 

Gl = E4*ES*El + E3*El + ES*E2*E2 + ES*El*E2 + E3*E2*E2 + E3*El*E2. 

The identity p*p = P, when applied to the 3rd and Sth terms of the equation will 

reduce them to ES*E2 and E3*E2, respectively. The 4th and 6th ·terms of the equation are 

eliminated by the identity P + P*Q = P yielding the minimal cut sets for the top 

event of the fault tree: 

Gl = E4*ES*El + E3*El + ES*E2 + E3*E2. 

3.2 Understanding SETS User Programs 

The minimal cut set algorithm described in the previous section is implemented 

for the fault tree in Figure 1 by the following very simple SETS user program: 

PROGRAMS EX1-MCS. 
RDFT (FIG-1-FT). 
PRTBLK (FIG-l-FT). 
LDBLK (FIG-1-FT). 
SUBI NEON (G1, G 1-SUB) • 
PRTEQN (G1-SU6). 
REOUCEQN (G1-SUB, Gl-HCS). 
P~TEQNONF (G1-MCS). 

The first three statements read and error check the fault tree input description, 

print it, and load its equivalent set of Boolean equations into the equation file. 

The fourth statement performs the substitution process which generates an equation 

for the top event Gl completely in terms of primary events. The fifth statement, 

which is optional, prints the equation for Gl before it has been reduced. The last 

two statements perform the reduction process and print the final result in 

disjunctive normal form which is tantamount to a listing of the minimal cut sets. 



where 

A SETS user program begins with a program header of the form: 

PROGRAM$ program-name. 

"program-name" is any name comprised of from 1 to 16 name symbols (see 

section 2.2). 

Following the program header are the program statements which are executed in the 

order that they occur. Two kinds of statements can appear in a SETS user program: 

Boolean equations and procedure calls. 

3.2.1 Boolean Equations -- A Boolean equation, as used in SETS user programs, 

defines an equivalence relationship between a Boolean variable on the left side of 

the equation and a Boolean expression on the right side of the equation. The 

Boolean variable on the left side of the equation is represented by a variable name 

comprised of 1 to 16 name symbols. The Boolean expression on the right can be any 

logical combination of variables involving the operations of conjunction (A), 

disjunction (V), and negation (,). A Boolean equation can be identified and 

referred to by its left side variable; "the equation for X" means the equation that 

has X as its left side variable. No Boolean equations appeared in the SETS user 

program Exl-MCS above, but they will be used in later examples. 

3.2.2 Procedure Calls -- A procedure call statement causes a predefined proce­

dure to be executed. The following list summarizes the available procedure calls*: 

Procedures that 

process input 

Procedures that 

process Boolean 

equations 

___________ { Read Input Block 

Read Fault Tree 

Procedures that 

reference 

equations 

individually 

Procedures that 

reference 

blocks of 

equations 

Print Equation 

Print Equation In 
Disjunctive Normal 
Form 

Delete Equation 

Substi tute In ' 
Equation 

Reduce Equation 

Print Block 

Block Status 

Delete Block 

Form Block 

Load Block 

RDINPBLK 

RDFT 

PRTEQN 

PRTEQNDNF 

DLTEQN 

SUBINEQN 

REDUCEQN 

PRTBLK 

BLKSTAT 

DLTBLK 

FRMBLK 

LDBLK 

From the above list, it can be seen that procedure calls process input, 

individual equations, or blocks of equations. To understand how the procedures are 

used, it is first necessary to understand how the block file and the equation file 

are used. The involvement of the block file and the equation file in the execution 

of the various procedures is depicted schematically in Figure 3. One or both of 

* A special version of SETS contains two additional procedures that are used 
for the quantitative evaluation of the terms in an'equation. Since these procedures 
are in a special version of SETS they are described separately in Chapter 6. 
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these files will be involved in the execution of every statement of a SETS user 

program, and the contents of the equation file and block file will vary as the 

execution of the SETS user program progresses. 

r CARD 
INPur 

SUBINEQN 
RDFT .... LDBLK ..... ..-, , 

BLOCK EQUATION 
RDINPBLK ..... FILE 

'" 
FRMBLK FILE REDUCEQN 

'" 

~ PRI'BLK PRTEQN I 
'" 

DLTBLK DLTEQN , , 
BLKSTAT PRI'EQNDNF 

~ II ,II "\I 

PRINTER 
OUTPUT 

~ 

Figure 3. Processing Schematic for Procedure Calls* 

I 

I 

3.2.3 The Block File -- The block file is used to store groups of Boolean 

equations or blocks. As discussed earlier, a fault tree can be transformed into a 

set of Boolean equations, and is therefore a type of block. Each block is identified 

by a block name for easy reference. From Figure 3 it can be seen that SETS input 

is always entered in the block file using either the Read Fault Tree (RDFT) or Read 

Input Block (RDINPBLK) procedure. Once a block has been entered in the block file, 

the Load Block (LDBLK) procedure may be used to load its equations into the equation 

file for processing. In the case of a block that represents a fault tree, loading 

the block is usually aimed at determining the minimal cut sets. As shown in 

Figure 3, the other procedures which involve the block file are: 

Delete Block (DLTBLK) 

Print Block (PRTBLK) 

Block Status (BLKSTAT) 

Form Block (FRMBLK) 

Delete Block deletes a block from the block file; Print Block prints the Boolean 

equations that constitute a block (additional information is printed for fault tree 

blocks); and Block Status lists the names of the blocks currently contained on the 

block file. Form Block is used to create a new block made up of equations from the 

equation file and to add that block to the block file. Using Form Block, it is thus 

possible to save in the block file equations that are created during the execution 

of one SETS user program for subsequent use in the same program, or for use in some 

other SETS user program at a later time. 

*w. K. Paulus suggested the use of a schematic depicting the processing of 
procedure calls, and produced the original version of this diagram. 



3.2.4 The Equation File -- In order to process the individual equations of a 

block, the block must be loaded into the equation file using the Load Block proce­

dure call. In addition, equations may be entered in the equation file one at a 

time by using Boolean equation statements in a SETS user program. Figure 3 shows 

the procedures which reference the equation file. They are: 

Print Equation (PRTEQN) 

Print Equation In Disjunctive Normal. Form (PRTEQNDNF) 

Delete Equation (DLTEQN) 

Substitute In Equation (SUBINEQN) 

Reduce Equation (REDUCEQN) 

Print Equation prints an equation in factored form; Print Equation In Disjunctive 

Normal Form prints an equation in sum of products form; and Delete Equation deletes 

an equation from the equation file. Substitute In Equation and Reduce Equation 

perform steps 2 and 3, respectively, of the minimal cut set algorithm that was 

described in section 3.1. Specifically, Substitute In Equation performs repeated 

substitutions on an equation until the right hand side of t.hat equation consists 

entirely of primary events; and Reduce Equation applies the Boolean absorption 

identities to an equation. 

There is a fundamental difference in the way that the equation file and the 

block file are maintained. There can never be more than one equation with the same 

left side variable in the equation file, but it is possible to have more than one 

block with the same name in the block file. If the equation file already contains 

an equation for a particular variable when a new equation for that variable is 

defined (i.e., entered in the equation file) then the new equation will replace the 

existing equation. When a new block is defined, it is added to the block file 

regardless of whether or not the block file already contains any blocks with the 

same name. 

A more detailed explanation of the SETS user program language is given in [2], 
and further discussion of the individual procedure calls appears in Appendix A. 

However, the example programs presented in the following sections will provide 

sufficient information for most fault tree applications. Additional information on 

the use of SETS for fault tree analysis is available in [3]. 

3.3 Example SETS User Programs 

In this section we discuss three typical SETS user programs. These particular 

programs are applicable only to small fault trees, but the same basic techniques can 
- - - ---

be extended to much larger trees as is shown in Chapter 4. 

3.3.1 Example 1. Minimal Cut Sets for the Top Event of a Fault Tree Without 

Complement Events -- Suppose that we want to write a SETS user program to determine 

the minimal cut sets for the top event of the fault tree in Figure 1 using the 

algorithm defined in section 3.1. The SETS user program EXI-MCS, which is repeated 

here for convenience, accomplishes this task: 
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PROGRAMS EX1-MCS. 
ROFT (FIG-l-FT>. 
PRTBlK (FIG-l-FT). 
LOBLK (FIG-l-FT). 
SUBINEQN (Gl, Gl-SU8). 
PRTEQN (Gl-SUB). 
REOUCfaN (Gl-SU8, Gl-MCS). 
PRTEQNDNF (Gl-HCS). 

The first three statements of the SETS user program EX1-MCS constitute an 

implementation of Step 1 of the minimal cut set algorithm. The first statement, 

RDFT (FIG-l-FT) 

is a call of the Read Fault Tree procedure. This statement is used to read the 

input description of the fault tree FIG-l-FT, and add to the block file a block 

which contains the intermediate event equations for the fault tree. The block has the 

same name as the fault tree. The second statement, 

PRTBLK (FIG-l-FT) 

is a call of the Print Block procedure. Part of the output produced by this proce­

dure is a list of all of the equations in the block FIG-l-FT: 

• • • • BLOCK SET EQUATIONS • • • • 
(FIG-l-FT ) 

Gl c GZ .., G3 

G2 ::; 61t ,. E1 

G3 ::; G5 ,. E2 

Git ::; 66 .., £3 

G5 = 67 ,. G8 

Go = E4 ,. ES 

G7 :: E3 .., E5 

G8 ::; El .., E2 

The third statement, 

LDBLK (FIG-l-FT) 

The symbols "V" and "1\" 

represent the OR and AND 

operators, respectively. 

is a call of the Load Block procedure. Execution of this statement causes the 

intermediate event equations contained in the block FIG-l-FT to be loaded (i.e., 

entered) in the equation file where they are available for further processing. 

Statements 4 and 5 in the SETS user program EX1-MCS represent an implementation 

of Step 2 in the minimal cut set algorithm. The fourth statement, 



SUBINEQN (Gl, Gl-SUB) 

is a call of the Substitute In Equation procedure. It is invoked to accomplish a 

repeated substitution process which begins with the right side of the equation 

specified by the first parameter in the call, Gl. The substitutions continue using 

the equations that are currently in the equation file until no further substitutions 

can be made. Then, a new equation is defined and entered in the equation file. The 

left side variable of the new equation is the second parameter in the call, Gl-SUB, 

and the right side is the expression that has been formed by the repeated substitu­

tion process. The fifth statement, 

PRTEQN (Gl-SUB) 

is a call of the Print Equation procedure that is used to print the equation for 

Gl-SUB as it appears in the equation file: 

G1-SU8 :: ( ( ( ( £4 ,. £5 ) w E3 ) ,. .1 ) " ( ( ( E3 v £5 ) A ( E1 " 
1234 1+ 3 2 231t 4 It 

EZ ) ) A EZ ) ) 
It 3 2 1 

An integer is associated with each parenthesis in the equation and is printed 

beneath it as an aid in interpreting the factored equation; paired parentheses have 

the same number. 

The last two statements of the SETS user program EX1-MCS represent an imple­

mentation of Step 3 of the minimal cut set algorithm. The sixth statement, 

REDUCEQN (Gl-SUB, Gl-MCS) 

is a call of the Reduce Equation procedure which is used to apply the identities 

p*p = P and P + P*Q = P to the right side of the equation specified by the first 

parameter in the call, Gl-SUB. Then, a new equation is defined with the second 

parameter in the call, Gl-MCS, as its left side variable and the reduced expression 

as its right side. The last statement, 

PRTEQNDNF (Gl-MCS) 

is a call of the Print Equation In Disjunctive Normal Form procedure which is used 

to print the equation for Gl-MCS in a sum of products form. The product terms of 

this equation are the minimal cut sets for the top event of the fault tree: 

TERM 
NUMBER 

1 

2 

3 

NUMBER OF 
LITERALS 

Z 

z 

2 

3 

G1-MCS :: 

E2 " £3 v 

E1 A £3 " 

E2 ... E5 v 

£1 ... Elt " E5 

Thus, the four minimal cut sets for Gl are: 

(El, E4, E5). 
(E2, E3), (El, E3), (E2, E5), and 
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The SETS user program EXI-MCS is an implementation of the algebraic algorithm 

for determining minimal cut sets. It shows what a SETS user program is like, and 

illustrates the use of several procedures. The general form of a procedure call 

statement is apparent from this example; a procedure call consists of a procedure 

identifier followed by a parameter list enclosed in parentheses. There are a few 

cases where parameters do not occur in the procedure call, but usually they are 

present. 

3.3.2 Example 2. Minimal Cut Sets for the Top Event and Intermediate Events 

of a Fault Tree Without Complement Events -- Suppose we want to determine the 

minimal cut sets for the top event GI, and for the intermediate events G4 and G8 , 

of the fault tree in Figure 4. Since GI is a function of G4 and G8 , and since the 

minimal cut sets for G4 and G8 are to be obtained anyway, the equations that repre­

sent the minimal cut sets for G4 and G8 can be determined first, and then used in 

the determination of the minimal cut sets for the top event, GI. This approach is 

implemented in the SETS user program: 

PROGRAMS EX2-MeS. 
ROFT (FIG-It-FT). 
LOBLK (FIG-4-Fr). 
SUBIN£QN (G4, G4). 
REDUCEQN (G4, G4). 
SUBINEQN (G8, G8). 
REOUCEQN (G8, G8). 
SUBINEQN (G1, G1). 
REOUCEQN (G1, G1). 
PRTEQN (G1, GIt, G8). 
PRTEQNONF (G1, 64, G8). 

Figure 4. Another Simple Fault Tree 



As the SETS user program EX2-MCS is executed, the equations for Gl, G4, and 

G8 in the equation file are redefined. The first two statements of the SETS user 

program, 

RDFT (FIG-4-FT) 

LDBLK (FIG-4-FT) 

accomplish the processing of the fault tree and the loading of the intermediate 

event equations into the equation file. This establishes the original equations 

for Gl, G4, and G8. The rest of the processing specified in the SETS user program 

for each of these three events is similar, and it will only be described for the 

intermediate event G4. 

After the execution of the Load Block procedure, the equation for G4 in the 

equation file is: 

Gi+ : G6 v G 7 

The third statement in the SETS user program, 

SUBINEQN (G4, G4) 

is a call of the Substitute In Equation procedure. Beginning with a copy of the 

right side of the equation specified by the first parameter, G4, the repeated sub­

stitution process is applied to form the right side of the new equation that will 

be defined and entered in the equation file by this procedure. The left side 

variable of the new equation is the second parameter in the procedure call, G4. 

Thus, a new equation for G4 is defined, and it replaces the old equation for G4 in 

the equation file. The equation for G4 that is in the equation file after the 

execution of this statement is: 

G4 = ( ( E3 " ( E4 ., E2 ) , ., ( E2 '" ( [5 ., ( E4 " E6 ) ) ) ) 
12 3 32 2 3 ,. 4321 

The fourth statement in the SETS user program, 

REDUCEQN (G4, G4) 

is a call of the Reduce Equation procedure which will once more define a new equa­

tion for G4. A copy of the right side expression of the equation specified by the 

first parameter, G4, is subjected to the application of the identities P*P = P and 

P + P*Q = P which results in the elimination of one term from the expression. A 

factored form of the remaining four terms becomes the right side of the new equation 

that will be defined and entered in the equation file by this procedure. The second 

parameter, G4, is the left side variable for the new equation. The new equation 

for G4, 

G4 = E4 " ( E6 v £3 ) v E5 v E2 
1 1 

is a representation of the minimal cut sets for G4 and it replaces the old equation 

for G4 in the equation file. 

The equations representing the minimal cut sets for G8 and Gl are developed 

in the same way that the equation representing the minimal cut sets for G4 is 

developed. The development of the equation fOr Gl, however, makes use of the 
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minimal cut set equations for G4 and G8 which were previously computed. The final 

two statements of the SETS user program, 

PRTEQN (Gl, G4, G8l 

PRTEQNDNF (Gl, G4, G8l 

are used to print the minimal cut set equations for Gl, G4, and G8. The equations 

are printed first in the factored form that they have in the equation file, and 

then in a disjunctive normal form which is tantamount to a listing of the minimal 

cut sets for Gl, G4, and G8: 

&1 = £1 " ( fit 1\ ( £6 v £3 , v E5 v f2 
1 2 2 

G4 z E4 1\ ( E6 v E3 ) ., E5 " E2 
1 1 

G& = E4 ,. E3 ,. A " E1 1\ B 

TERM. NUM8ER OF 
NUMBER LITERALS 

1 2 

Z Z 

3 3 

.. 3 

5 4 

TERM NUMBER OF 
NUMBER LITERALS 

1 1 

2 1 

3 Z 

It Z 

TERM NUMBER OF 
N~"eE~ LITERALS 

1 

Z 

2 

3 

G1 = 

E1 1\ E5 v 

£1,. £2 y 

i1 1\ Elt It. Ev v 

E1 " Elt 1\ E3 v 

E4 1\ E2 1\ E3 1\ A 

G4 = 

ES ., 

E2 v 

E4 1\ E& v 

Eit 1\ E3 

&8 = 
£1 ,. B v 

fit 1\ E3 1\ A 

) ., £4 1\ E2 1\ E3 " A 
1 



There is an undeveloped event, B, which occurs in the equation for Ga, but 

does not occur in the reduced equation for GI. This may signify that it is not 

necessary to develop the event B, because it is not involved in the minimal cut 

sets for the top event of the fault tree. 

3.3.3 Example 3. Prime Implicants for the Top Event of a Fault Tree with 

Complement Events -- Up to now we have only considered trees which do not contain 

complement events. This example illustrates the processing required to find the 

fundamental ways that the top event can occur for a fault tree containing complement 

events. The fault tree in Figure 5 contains a SPECIAL gate with the equation 

G7 = F + /F*C, and an EXCLUSIVE OR gate. Both of these gates introduce complement 

events. Consider the SETS user program: 

PROGRAM$ EX3-PRIME-IHP. 

COHMENT$ THE FIRST TWO STATEHENTS OF THE P~OGRAH PROCESS 
THE FAULT TREE AND LOAD THE INTERMEDIATE EVENT 
EQUATIONS INTO THE EQUATION FILE.S 

ROFT (FIG-5-FT). 
LDBLK (FIG-5-fT). 

COMMENTS THE NEXT TWO STATEMENTS GENERATE A SIMPLE 
REDUCED EQUATION FOR THE TOP EVENT, Gl.$ 

SU8INEQN (Gl, TREE-TOP). 
REOUCEQN (TREE-TOP, TREE-TOP). 

CO"MENT$ THE NEXT SIX STATEMENTS CONSTITUTE A PRIME 
IMPLICANT ALGORITHM WHICH IS USED TO FIND 
THE PRIME IHPLICANTS FOR THE iOP EVENT, Gl.$ 

Gl-CHP : .IG1. 
SUBINEQ" (Gl-CHP, Gl-0MP). 
REOUCeQN (Gl-CMP, Gl-eMP). 
Gl-PRM-II1P :: IGi-CMP. ' 
SUBINEQN (Gl-PRM-IHP, Gl-PRH-IHP). 
REDUCEQN (Gl-PRM-IMP, Gi-PRH-IMP). 

COMMENTS THE FINAl STATEMENT PRINTS 80TH OF THE EQUATIONS 
THAT HAVE BEEN GENERATED FOR THE top EVENT, Gi, 
I to! 01 SJUNCT IVE. NORMAL FORM. $ 

PRTEQNONF (TREE-TOP, Gl-PRH-IHP). 

Notice that comments occur in the above program and recall that a comment has the 

form: 

COMMENT$ descriptive material $ 

Also notice that the free field input has been exploited by indenting and by insert­

ing blank cards to enhance the readability of the program. 

The first two statements of the SETS user program EX3-PRIME-IMP read and 

process the fault tree FIG-5-FT and enter the intermediate event equations of the 

fault tree in the equation file. The next two statements, 

SUBINEQN (GI, TREE-TOP) 

REDUCEQN (TREE-TOP, TREE-TOP) 

generate an equation for TREE-TOP using the same approach that was used to determine 

minimal cut sets in the SETS user program EXI-MCS. 
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Figure 5. A Fault Tree with Complement Events 

The next six statements of the SETS user program EX3-PRIME-IMP constitute a 

prime implicant algorithm which can be used for trees containing complement events 

[4]. Execution of these statements will produce an equation for GI-PRM-IMP that 

represents all and only the prime implicants for the top event of the fault tree. 

Two of the statements in this prime implicant algorithm are Boolean equations. 

They are the first Boolean equation statements that have appeared in the example 

SETS user programs, and both of them are used to form an equation that is the 

complement of an existing equation. The complement of the equation for GI is 

generated first and, subsequently, the complement of the equation for GI-CMP is 

generated. 

In addition to the identities p*p = P and P + P*Q = P that are applied by the 

Reduce Equation procedure and have already been described, DeMorgan's Rules and the 

identity P*,P = ~ are also applied by this procedure. DeMorgan's Rules and all of 

these identities are required in the execution of the prime implicant algorithm in 

the SETS user program EX3-PRIME-IMP. (A detailed description of the processing 

achieved by the Reduce Equation procedure appears in Appendix A.) 

The final statement of the program is used to print the equations for 

TREE-TOP and GI-PRM-IMP in disjunctive normal form: 



TERM 
NUMBER 

1 

2 

3 

It 

5 

6 

TERM 
NUMBER 

1 

2 

3 

it 

NUMBER. OF 
LITERALS 

2 

2 

3 

3 

4 

5 

NUMBER OF 
LITERALS 

1 

3 

3 

It 

TREE -TOP = 

8 1\ .. c y 

8 A F y 

o 1\ E A "c II 

8 1\ C " "F y 

o A E A "08 A "A ., 

0 A C A A A .. s 1\ "E 

G1-PRM-IHP = 

a II 

D A E 1\ "OA v 

o 1\ E 1\ .. c v 

o A C 1\ A A "E 

The equations for TREE-TOP and Gl-PRM-IMP are equivalent, but a comparison of the 

terms of the two equations shows that the fundamental ways that the top event of 

the fault tree can occur are represented by the terms of the prime implicant 

equation Gl-PRM-IMP, rather than the terms of the equation for TREE-TOP. For 

example, the equation for Gl-PRM-IMP shows that the occurrence of the single primary 

event B is enough to cause the occurrence of the top event of the fault tree--a fact 

that is not readily apparent in the equation for TREE-TOP. The SETS user program 

EX3-PRIME-IMP illustrates that for fault trees which contain complement events, it 

is the prime implicants of an intermediate event equation which represent the 

fundamental ways that the intermediate event can occur. 
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4. Advanced Minimal Cut Set Techniques 

In section 3, a minimal cut set algorithm was presented. The second step of 

this algorithm expresses the selected intermediate event as a function of primary 

events, and the third step reduces the resulting equation. For large fault trees, 

a prohibitive amount of computer time can be required to reduce this equation in 

one step. The single step technique was used in the following program to determine 

the minimal cut sets for the top event of the fault tree in Figure 6: 

PROGRAM! SINGLE-STEP. 
ROFT (FIG-6-FT). 
LDBLK (FIG-6-FT). 
SU8IHEQN (G1, G1-SUB). 
REOUCEQN <G1-SUS, Gl-MCS). 

Execution of this SETS user program required 7,686 seconds of CPU time on a CDC 6600 

to determine the 1,053 minimal cut sets for Gl. Virtually all of the time (7,683 

seconds) was spent in reducing the equation as shown by the output of the Reduce 

Equation procedure: 

THE MAXIMUM NUMBE~ OF TE~MS THAT CAN BE 
GENERATED BY EXPAN~10N IS 5769050. 
THE WORK MEASURE FO~ EXPANSION IS 9046985. 

TERMS GENERATED BY EXPANSION; 
1 TERMS CONTAIN 2 LITERALS. 
4 TERMS CONTAIN 3 LITERALS. 

14 TER"S CONTAIN 4 LITERALS. 
37 TERMS CONTAIN 5 LITERALS. 

178 TERMS CONTAIN 6 LITERALS. 
710 TERMS CONTAIN 7 LITERALS. 

3259 TERMS CONTAIN 8 LITERALS. 
13116 TERMS CONTAIN 9 LITERALS. 
"3783 TERMS CONTAIN 10 LITERALS. 

123616 TERMS CONTAIN 11 LITERALS. 
2~2351 TERMS CONTAIN 12 LITERALS. 
566881 TERMS CONTAIN 13 LITERALS. 
903974 TERMS CONTAIN 14 LITERALS. 

1153698 TERMS CONTAIN 15 LITERALS. 
11a7196 TERNS CONTAIN 16 LITERALS. 

854968 TERMS CONTAIN 17 LITERALS. 
466284 TERMS CONTAIN 18 LITERALS. 
170776 TERMS CONTAIN 19 LITERALS. 

35264 TERMS CONrAIN 20 LITERALS. 
2880 TERMS CONTAIN 21 LITERALS. 

TOTAL TERMS GENERATED: 5769050. 
EXPANSION TOCK E654.792 SECONDS. 

TERMS RETAINED BY SIMPLIFICATION' 
1 TERMS CONTAIN 2 LITERALS. 
2 TERMS CONTAIN 3 LITERALS. 

11 TERMS CONTAIN 4 LITERALS. 
11 TERMS CONTAIN 5 LITERALS. 
38 TER"S CONTAIN 0 LITERALS. 

1~6 TERMS CONTAIN 7 LITERALS. 
290 TERMS CONTAIN 8 LITERALS. 
312 TERMS CONTAIN 9 LITERALS. 

Number of minimal 
cut sets of size 

/2,3, 4, ... , 12 

183 TERMS CONTAIN 10 LITERALS. Total number of 
53 TERMS CONTAIN 11 LITERALs~minimal cut sets 

6 TERMS CONTAIN 12 LITERALS. 
TOTAL TERMS RETAINEO: 1053. 

SIMPLIFICATION rOOK 1020.642 SECONDS. Execution time for 
the Reduce Equation 

NUHEER OF ITERATIONS REQUIREDI procedure 
FACTORIZIITION TOOK 7.883 SECONDS. 

STATEMENT EXECUTICN REQUIRED 7683.331 FOR REDUCEGN 
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Clearly, 7,686 seconds (over 2 hours) of CPU time is an excessive amount of computer 

time to determine the minimal cut sets for this fault tree, and more efficient 

methods are needed. 

The techniques described in sections 4.1, 4.2, and 4.3 of this chapter are 

methods for processing a fault tree in parts or stages. Each of these techniques 

is inherently more efficient than deriving a minimal cut set equation in a single 

step. To illustrate the kind of savings that can be realized by these techniques 

over the single step technique, the execution time required by each technique to 

determine the 1,053 minimal cut sets for the top event of the fault tree in 

Figure 6 is recorded in Table I. By inspection of Table I it is clear that 

methods 2-4 can result in very large savings over the single step technique. The 

actual savings is, of course, dependent on the structure of the particular tree 

being processed. 

TABLE I 

Execution Times for Different MCS Techniques 

Technique 

1. Single step equation reduction 

2. Separate processing of independent subtrees 
(section 4.1) 

3. Processing a fault tree in stages (section 4.2) 

4. Composite of 2 and 3 (section 4.3) 

CPU seconds on a 
CDC 6600 

7,686 

150 

30 

10 

In section 4.4, a way of creating new independent subtrees is described. The 

creation of additional independent subtrees in a fault tree is not a new technique 

for finding minimal cut sets, but the creation of additional independent subtrees 

can make the techniques that involve the separate processing of independent 

subtrees even more effective. 

In section 4.5, a method is described for limiting the size of the minimal 

cut sets to be determined. Sometimes it is simply not necessary to obtain minimal cut 

sets containing more than a few primary events. When the fault tree of Figure 6 

was processed by the single step method, but with minimal cut set size limited to 

8 events or less, it required only 14 seconds of CPU time to determine the 499 

minimal cut sets with 8 or less primary events. 

4.1 Separate Processing of Independent Subtrees 

The first technique involves identifying independent portions of the fault 

tree, reducing these portions separately, and then putting them together for final 

processing with the rest of the tree. To do this, it is necessary to understand 

the concept of an independent subtree. 
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4.1.1 Identifying Independent Subtrees -- The development of each intermediate 

event in a fault tree is a subtree which has the intermediate event as its base 

event. A subtree with base event G will be denoted SG. For example, the subtree 

with base event G3 is circled in Figure 7. This subtree is denoted SG3. 

/ 
( 

/ 
/ 

/ 

/ "' / \ 
\ 

\ 
\ 

\ 
) 

Figure 7. Illustration of Subtrees 

A subtree S. is independent with respect to a subtree S. if none of the events in S. 
l J l 

(except i) appears in S. after removing S. from S .• For example, in Figure 7, the 
J l J 

subtree SG3 is an independent subtree with respect to SGl' the entire fault tree. 

Subtree SG4' however, is not independent with respect to SGI because E2, which 

appears in SG4' also appears as an input to gate G9. 

The minimal cut set equation for the top event of a fault tree can be formed 

from the equations for its largest independent subtrees and the stem equation for 

the top event. A largest independent subtree is an independent subtree that is not 

contained in another independent subtree. The stem equation for the top event of a 

fault tree is the equation derived for the top event of the fault tree, but with the 

base events of the largest independent subtrees treated as primary events. For 

example, with respect to the top event in Figure 7, we can identify the independent 

subtrees SG3' SG6' SG7' and SGS· The largest independent subtrees are SG3 and SGS' 

and the stem equation for Gl is simply 

Gl = (E3 A (E2 V EIO) V El) V G3 V (E2 A GS). 

After the equations for the largest independent subtrees and the stem equation 

have been derived, the minimal cut set equation for the top event can be formed by 

substituting the equations for the largest independent subtrees into the stem 

equation. Sometimes, one or more of the independent, subtree equations may be too 

large to derive in a single step. In this case, the independent subtree process can 

be applied recursively, that is, the subtree itself can be divided into its largest 

independent subtrees and stem equation, etc., until ultimately the equations are 

small enough to be derived efficiently. 
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4.1.2 Example Using Independent Subtrees -- The fault tree in Figure 6 has 

seven independent subtrees with respect to the top event, Gl • The four largest 

independent subtrees are SG13' SG22' SG31' and SG39' These largest independent 

subtrees are used to derive the minimal cut set equation for Gl in the SETS user 

program: 

PROGRAMS INO-SUBTREES. 

COMMENTS READ THE FAULT TREE AND LOAD THE INTERMEDIATE 
EVENT t::QUATIONS.$ 

RDFT (FIG-6-FTl. 
LOBLK (FIG-6-FT). 

COMMENTS DERIVE AND SAVE THE REDUCED STEM EGUATION 
FOR G1 BY TREATING THE BASE EVENTS OF 
THE LARGEST INDEPENDENT SUBTREES AS IF 
THEY ARE PRIMARY EVENTS.S 

SUBINEQN (G1, 61-STE". STOP$ G13, G22, G31, G39). 
R£DUCEQN (G1-STEH, Gl-STEM'. 
FRH8LK (STEM-EON. ONUS G1-STE.0. 

COHKENTS DERIVE AND SAVE THE REDUCED EQUATIONS 
FOR THE LARGEST INDEPENDENT SUBTREES.$ 

SU8INEQN (G13, G13). 
REOUCEON (G13, G13). 
SU8INEQN (G22, G22). 
SUBINEON (G39, 639). 
FRK8LK (LARGEST-INO-ST. ONlYS G13, G22, G31, G39). 

COMMENTS SUBSTITUTE THE EQUATIONS FOR THE LARGEST 

01.. TEQN. 

INDEPENDENT SUBTREES INTO THE STEM 
EQUATION FOR G1 TO FORM THE MINIMAL CUT 
SET EQUATION FOR G1.$ 

L08LK (STEM-EQN, LARGEST-IND-ST). 
SUBINEQN (G1-STEH, G1-HCS). 

Execution of IND-SUBTREES required 150 seconds of CPU time compared to the 7,686 

seconds of CPU time required to execute SINGLE-STEP. Both_programs produced the 

1,053 minimal cut sets for Gl. 

In the SETS user program, IND-SUBTREES, a stop list occurs in one of the 

calls of the Substitute In Equation procedure. A stop list has the form: 

STOPS stop-point-list 

where 

" s top-point-list" is a list of intermediate events. A stop list occurs after 

the two regular parameters in a call of the Substitute In Equation procedure, and 

is separated from them by an asterisk. In the statement, 

SUBINEQN (Gl, Gr-~TEM*-STOP$ G13, G22, G31, G39) 

the stop list causes the substitution process to be halted at the base events of 

the largest independent subtrees. Although the intermediate event equations for 

G13, G22, G31, and G39 are in the equation file, no substitutions will take place 

for them because they appear in ·the stop list. The stem equation, Gl-STEM, is then 

simplified by a call of the Reduce Equation procedure, and saved in the block 

STEM-EQN by the statement: 

FRMBLK (STEM-EQN* ONLY$ Gl-STEM). 
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After the stem equation has been derived, the equations for the largest 

independent subtrees are derived. The reduced equation for the subtree SG3l is 

just the intermediate event equation for G3l, and it is in the equation file after 

the fault tree equations are loaded. The reduced equations for the subtrees 

SG22 and SG39 can be derived using only a call of the Substitute In Equation 

procedure, because there is no possibility of reduction in the equations for these 

subtrees since they do not contain any replicated (i.e., multiple output) events. 

The derivation of the reduced equation for the subtree SG13' however, requires a 

call of the substitute In Equation procedure and a call Qf_the Reduce Equation 

procedure because there is at least one replicated event in SG13 and some reduction 

may occur. 

The call of the Form Block procedure, 

FRMBLK (LARGEST-IND-ST* ONLY$ G13, G22, G3l, G39) 

causes a block to be formed and added to the block file. The first parameter, 

LARGEST-IND-ST, is the name of the new block and it will contain only those equa­

tions from the equation file that are specified in the parameter part of the call; 

namely, the equations for G13, G22, G3l, and G39. Thus, the equations for the 

four largest independent subtrees are saved in the block LARGEST-IND-ST. 

The call of the Delete Equation procedure without any parameters (i.e., just 

the procedure identifier DLTEQN) causes every equation to be deleted from the 

equation file. Then, after loading the blocks STEM-EQN and LARGEST-IND-ST, the 

minimal cut set equation for Gl, Gl-MCS, can be determined by calling the Substitute 

In Equation procedure, 

SUBINEQN (Gl-STEM, Gl-MCS). 

4.2 Processing a Fault Tree in Stages 

A second technique for increasing the efficiency of SETS user programs for 

large fault trees is to derive the minimal cut set equation for an intermediate 

event in a series of steps. This usually requires much less computer time than the 

derivation of the equation in a single step because many terms are either 

(1) eliminated or (2) factored by the Reduce Equation procedure at an interim stage 

instead of being propagated- through the derivation of the whole equation. Elimina­

tion of terms and variables at an interim stage by application of the identities 

P*P = P and P + P*Q = P in the Reduce Equation procedure is beneficial because it 

eliminates the time consuming expansion and subsequent reduction of these terms 

and variables. For example, if (x+y)*(x+z) occurs as an interim stage in the 

development of some equation, then continued development of the equation without 

reduction involves four two-variable terms: x*x, x*z, y*x, and y*z. However, 

continuing the development after reduction at this stage involves only one one­

variable term and one two-variable term: x and y*z. 

Factorization of an equation by the Reduce Equation procedure at an interim 

stage of development can also produce savings in computer time. Factoring tends to 

decrease the number of times that a repeated variable appears in the equation. By 



decreasing the number of variables in the equation, less work is required later to 

expand the equation by the distributive law and this saves computer time. If 

(x*y)+(x*z) occurs as an interim stage in the development of some equation, for 

example, then continued development of the equation without reduction requires that 

the later expansion of the part of the equation which stems from the substitution 

for the variable x, be done twice. However, after factoring at this stage to 

x*(y+z), the later expansion of that part of the equation which stems from x is 

done only once. 

4.2.1 A Method for Choosing Stages -- An interim stage in the development of 

an equation can be created by stopping the substitution process at some selected 

intermediate events. After reduction of the equation at an interim stage, the sub­

stitution process is reinitiated with perhaps another set of selected intermediate 

events serving as stop points to create another interim stage. Ultimately, the 

substitution process will be reinitiated without any specified stop points and this 

will produce the final equation. A stop list can be used with the Substitute In 

Equation procedure which allows the user to selectively stop the substitution process 

and create interim stages in the development of an equation. 

There are many ways that the stop points for deriving a minimal cut set 

equation in stages can be selected. The effect of factoring and the application of 

the identities P*P = P and P + P*Q = P, can be exploited by choosing replicated 

(i.e., mUltiple output) intermediate events as stop points. To derive the minimal 

cut set equation for an intermediate event, i, in stages, first identify the 

replicated intermediate events in Si' the subtree with base event i. 

After the replic~ted intermediate events in Si have been identified, begin 

with the base event i and traverse every branch of the subtree Si until it terminates 

with a primary event, or until one of the replicated intermediate events of Si is 

encountered. The stop points for the first stage are the replicated intermediate 

events so encountered. (Do not traverse a branch past the first replicated inter-

mediate event encountered.) To find the stop points for the second stage, repeat 

this procedure for every stop point in the first stage. That is, for each stop 

point j from stage one, traverse every branch of the subtree S. until it terminates 
J 

of the replicated intermediate in a primary event, or until one events of S. is 
1 

encountered. The stop points for the second stage are the replicated intermediate 

events so encountered. The stop points for successive stages are found in a similar 

manner; by using the stop points for the current stage and traversing every branch 

of the subtrees which have the current stop points as their base events until they 

terminate in a primary event or a replicated intermediate event of Si is encountered. 

The replicated intermediate events encountered are the stop points for the next 

stage. Eventually, a stage will be reached for which every stop point is the base 

event of a subtree which does not contain any replicated intermediate events of Si' 

At this point, the final stage equation, which has no stop points, is derived. 

4.2.2 Example Using Processing in Stages -- The replicated intermediate , 
events with respect to the top event, Gl, for the fault tree in Figure 6 are G8, 

GIO, G14, and G32. There are four stages for this example: 
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Stage 1 stop points; G8, G10, G14 

Stage 2 stop points; G14, G32 

Stage 3 stop points; G32 

Stage 4 stop points; none. 

Notice that the event G14 is not a stop point for stage 2 because it was a stop 

point for stage 1; rather, G14 is a stop point for stage 2 because it was encountered 

when traversing the branches of some stop point for stage 1 other than G14 (in this 

case both G8 and G10). The same argument applies to G32 which is a stop point for 

both stage 2 and stage 3. 

The four stages are used to derive the minimal cut set equation for G1 in the 

SETS user program: 

PROGRAM' ST AGES. 

COMMENTS READ THE FAULT TREE AND LOAD THE INTERMEDIATE 
E VENT EQUATIONS. $ 

ROFT (FIG-6-FT).' 
LDBLK (FIG-6-FT). 

COMMENTS OERIWE THE MINIMAL CUT SET EQUATION 
FOR G1 IN STAGES.! 

SU6INEQM (G1, GI-ST~1~ STOPS G8, G 10, G14). 
REOUCEQN (G1-STG1, GI-STG!) • 
SUtlINEQN (Gl-5TG1, Cat-STGZ'" STOPS G14, G32). 
REOUCEQN (Gl-STG2, Gl-5TG2) • 
SU8INEQN (G1-STG2, G1-STG3~ STOPS GlZ) • 
REOUCEQN (Gl-STG3, Gl-STG3). 
SUBINEQN (G1-STG3, Gl-STG~). 
REDUCEQN (G1-STG4, GI-HC5). 

Execution of STAGES produced the 1,053 minimal cut sets for G1, but it only required 

30 seconds of CPU time compared to the 7,686 seconds of CPU time required to 

execute SINGLE-STEP. 

4.3 Composite Technique 

The identification of independent subtrees and the separate derivation of 

the equations for them, coupled with the derivation of the remaining stem equation 

in stages, can be used to produce the minimal cut set equations for selected inter­

mediate events in many large fault trees. When this composite technique is used, 

the final step in creating the equation representing the minimal cut sets is to 

substitute the equations for the largest independent subtrees into the stem 

equation. Although this substitution creates the minimal cut set equation and it 

cannot be further reduced because of the way it was generated, the number of 

minimal cut sets (terms) and the number of events in each of them are usually not 

known at this point. However, a call of the Reduce Equation procedure following 

the SUBINEQN call will print the maximum number of terms that can occur in the 

equation (which in this case is the number of terms in the equation) and will then 

begin to expand the equation and list the number of terms which contain 1, 2, ••• , n 

events. Depending on the number of terms in the equation, this REDUCEQN call can be 

allowed to finish, or the job time can be restricted so that a time limit on 

execution will occur after some reasonable amount of information about the equation 

has been printed. 



The composite technique is a reasonable approach for the user to employ first 

and it is often successful. The composite technique was used to derive the minimal 

cut set equation for Gl in the Figure 6 fault tree in the SETS user program. 

PROGRAM$ COMPOSITE. 

COMMENT$ READ THE FAULT TREE AND LOAD THE INTERMEDIATE 
EVENT EQUATIONS.$ 

RDFT (FIG-6-FTl. 
LOBLK (FIG-6-FT). 

COMHENT$ CHANGE THE BASE EVENTS OF THE LARGEST 
INDEPENDENT SUBTREES TO BE TREATED AS IF 
THEY ARE PRIMARY EVENTS. DERIVE THE 
REDUCED STEM EQUATION FOR G1 IN STAGES 
AND SAVE IT IN A SLOCK.$ 

OlTEQN (G13, G22, G31, G39). 
SUBINEQN (G1, G1-STG1¥ STOP$ G8, G10, G14). 
REOUCEQM (G1-5TG1, G1-STG1). 
SUBINEQN (G1-STG1, Gl-STG2¥ STOPS G14. G32). 
REOUCEQN (G1-STG2, G1-5TG2). 
SU8INEQN (G1-5TG2, Gl-STG3¥ SlOP$ 632). 
REDUCEQN (G1-STG3, 61-STG3). 
SUBINEQN (G1-STG3, Gl-STEM). 
REOUCEQN (G1-STEM, G1-STEM). 
FRMBlK (STEM-EQH¥ ONLY$ G1-STEH). 

COMMENTS RELOAD THE INTERMEDIATE EVENT EQUATIONS, 
AND THEN DERIVE AND SAVE THE REDUCED 
EQUATIONS FOR ~HE LARGEST INDEPENDENT 
SUBTREES. S 

Dl TEaN. 
LOeLK (FIG-6-FT>. 
SUBINEQN (G13, G13). 
REOUCEQH (G13, G13). 
SUBINEON (G22, G22). 
SUeINEQN (G39, G39'. 
FIU'BlK (LARGEST-IND-S'" ONLYS &13, G22, G31, (39). 

COHHfHT$ SUBSTITUTE THE- EQUAIIONS FOR THE LARGEST 

OL TEQN. 

INDEPENDENT SUBTREES INTO THE STEM 
EQUATION FOR G1 TO FORM THE MINIMAL CUT 
SET EQUATION FOR G1.$ 

LDBLK (ST EM-EQN, LARGEST-INO-ST). 
S08INEQN (Gl-STEM, Gl-MCS). 

Execution of COMPOSITE produced the 1,053 minimal cut sets for Gl in 10 seconds 

of CPU time. 

4.4 Creating Independent Subtrees 

It is sometimes possible to create independent subtrees in a subtree Si by 

redefining gates in Si. Fh<?1:her or not a created independent subtree will 

increase the effectiveness of the independent subtree technique or the composite 

technique, both of which involve the separate processing of independent subtrees, 

depends on the created independent subtree and where it is located in the fault 

tree. If the created independent subtree is within an existing independent subtree 

for which the equation can already be derived in a reasonable amount of time, then 

little will be gained by creating the new subtree. However, a created independent 

subtree that is a largest independent subtree in Si may, for example, significaptly 

decrease the time and storage required to derive the stem equation for the base 
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event i. The user can choose which independent subtrees to create or simply 

create all of the possible ones, but in either case all of the existing independent 

subtrees should be identified before any new independent subtrees are created. 

4.4.1 A Method for Creating Independent Subtrees -- An AND or OR gate, G, 

in Si can be redefined to create an independent subtree with respect to Si' if at 

least two of the inputs to G are nonreplicated primary events or nonreplicated 

intermediate events that are base events of existing independent subtrees. All of 

the nonreplicated primary events and nonreplicated base-events of independent sub­

trees that are inputs to G are replaced by a single input from a new gate, G'. The 

created gate G' has a single output to the gate G and it has as its inputs, all of 

the nonreplicated primary events and nonreplicated base events of independent 

subtrees that were inputs to G. The created gate G' is the same kind of gate as G, 

and it is the base event of a new independent subtree. 

A pair of consecutive OR gates or a pair of consecutive AND gates can often 

be coalesced into a single gate. Any OR gate, G, which has an input from a non­

replicated OR gate, G', can be equivalently represented by replacing the input to 

G from G' with all of the inputs to G', and deleting the gate G'. Similarly, 

an AND gate, G, which has an input from a nonreplicated AND gate, G', can be 

coalesced into a single equivalent AND gate. Coalescing does not create an 

independent subtree, but by coalescing consecutive gates of the same kind wherever 

possible, including gates which are the result of previous coalescing, it is some­

times possible to collect, as inputs to the same gate, at least two inputs which 

are nonreplicated primary events or nonreplicated base events of independent 

subtrees. Such a gate can then be redefined to create an independent subtree. 

As a general rule, coalescing should be done before the creation of independent 

subtrees, but it should only be done if it leads to the creation of an independent 

subtree. 

The creation of independent subtrees can be achieved by redefining the fault 

tree and then reading and processing the modified fault tree. Independentsubtrees 

can also be created by simply changing the intermediate event equations from the 

original fault tree to reflect the redefined structure of the fault tree. Both of 

these methods can be used for creating independent subtrees, but only the method 

of changing the intermediate event equations will be illustrated. 

4.4.2 Example using Created Independent Subtrees -- There are four pairs of 

gates in the Figure 6 fault tree that can be coalesced: G7 and G12, G25 and G27, 

G28 and G30, and G34 and G36. However, coalescing the AND gates G34 and G36 would 

not produce a gate that could be redefined to create an independent subtree., 

because the inputs to the gate would include only one nonreplicated primary event 

(E27) and no nonreplicated base events of independent subtrees. 

After coalescing, each of the gates G7, G25, and G28 has two nonreplicated 

primary events among its inputs. In addition, the OR gate, G43, also has two 

nonreplicated primary events among its inputs. Thus, each of these gates can be 



redefined to create an independent subtree. The equations for the redefined gates 

and the created independent subtrees are as follows: 

G7 = IST-G7 + E7 

G25 IST-G25 + G29 

G28 = IST-G28 + G32 

G43 = IST-G43 + E2 

IST-G7 = E3 + E6 

IST-G25 El8 + E20 

IST-G28 

IST-G43 

E2l + E22 

E33 + E34. 

The creation of independent subtrees and the subsequent application of the 

composite technique to determine the minimal cut sets for the top gate in the 

Figure 6 fault tree are illustrated in the SETS user program: 

PROGRAMS CREATE-INO-ST. 

COMMENTS READ THE GATE EQUAT IONS THAT CREATE INDEPENDENT 
SUBTREES, AND THE EQUATIONS FOR THE INDEPENDENT 
SUBTREES .$ 

RDINPBLK (HEW-GATE-EQNS, NEW-IHD-ST). 

COHMENT$ REIID THE FAULT TREE, LOAD THE INTERMEDIATE 
EVENT EQUATIONS, AND THEN LOAD THE GATE 
EQU'ATIONS THAT CREATE INDEPENDENT SUBTREES. S 

RDFT (FIG-6-FT). 
LD8lK (FIG-6-FT, NEW-GATE-EQ"S). 

COMMENTS FOR THOSE LARGEST INDEPENDENT SUBTREES THAT 
REQUIRE IT, CHANGE THE BASE EVENTS TO BE 
,REATED A~ IF. THEY ARE PRIMARY EVENTS. 
DERIVE THE REDUCED STEM EQUATION FOR G1 IN 
S1 AGES AND SAVE IT IN A BLOCK. S 

DLTEQN (G13, G22, G31, G39). 
SUBINEQN (G1, G1-STG1. srops G6, G10, G14). 
REOUCEON (G1-STG1, G1-STG1). 
SUBINEQN (G1-STG1, Gl-STG2. STOPS G14, G32). 
REOUCEQN (G1-5TG2, G1-S1G2). 
SOBINEQN (G1-$IG2, '1-STG3. STOPS G32). 
REOUCEQN (G1-STG3, G1-STG3). 
SUBINEQN (Gl-STG3, G1-STEH). 
REOUCEQN (GI-STEH, GI-STEH). 
FRHBLK (STEM-fQN. ONLY$ GI-S1EM). 

COMt1ENU RELOAD THE INTERMEDIATE (VENT EQUATIONS, AND 
THEN LOAD THE EOUATIONS FOR THE CREATED 
INDEPENDENT SUBTREES. DERIVE· THE REDUCED 
EQUATIONS FOR THE lARGEST INDEPENDENT 
SUBTREES AND SAVE THEM IN A BLOCK.S 

DLTEQN. 
LDBLK (FIG-6-FT, NE~-IND-ST). 
SUBIN€QN (G13, G13). 
REDUCEQN (G13, G13). 
SU8INECN (GZZ, G2Z). 
SUBINEON (G39, G39'. 
FRK8Lk (LARGEST-IND-ST. ONlY$ G13, G22, G31, G39, 151'-G7, 

IST-G25, I5T-G2-8, IST-G43). 

43 



44 

COMMENT$ SUBSTITUTE THE EQUATIONS FOR. THE LARGEST 
INDEPENDENT SUBTREES INTO TfiE STEM 
EQUATION FoR G1 TO FORM THE MINIMAL CUT 
SET EQUATION FOR G1.$ 

OLTEliiN. 
lDBLK (STEM-EflN, LARGEST-INO-STl. 
SU6INEQN «(;1-STEM, G1-MCS). 

Execution of CREATE-IND-ST required 7 seconds of CPU time. This does not represent 

much of a savings over the 10 seconds required to derive the minimal cut set 

equations for Gl without coalescing gates and creating independent subtrees. 

However, for larger fault trees than the fault tree in Figure 6, coalescing gates 

and creating independent subtrees will usually improve the effectiveness of those 

minimal cut set techniques that involve separate processing of the independent 

subtrees. For the Figure 6 fault tree, the execution time was already down to 

10 seconds, and the time required to coalesce gates and create independent subtrees 

offset the savings that were achieved. 

In the SETS user program, CREATE-IND-ST, the first statement, 

RDINPBLK (NEW-GATE-EQNS, NEW-IND-ST) 

is a call of the Read Input Block procedure. An input block is a group of one or 

more Boolean equations that are to be read as input. Each of the equations must be 

terminated with a period and they are preceded by an input block header of the form: 

INPUT BLOCK$ input-block-name. 

where 

"input-block-name" is the name of the input block. 

A block is created and added to the block file for each input block that is read. 

The block contains all of the equations from the input block and the block name is 

the same as the input block name. The input block~ NEW-GATE-EQNS and NEW-IND-ST, 

contain the equations: 

INPUT SlOCKS NEW-GATE-EQNS. 
G7 = IST-G1 + E1. 
GZ5 = IST-GZ5 + G29. 
G28 = IST-G28 • G32. 
G43 ;: 15T-643 + E2. 

INPUT 8l0CK$ NEW-INC-ST. 
15T-G7 = E3 + E6. 
151-G25 : E18 + E20. 
151-G26 ;: E2l • E22. 
IST-G43 = £33 + E34. 

Statements similar to the rest of the statements in CREATE-IND-ST appeared 

in previous examples and the effect of their execution has already been described. 



4.5 Limiting the Size of Minimal Cut Sets 

If the minimal cut set equation for a selected intermediate event cannot be 

derived exactly, then the truncation option of the Reduce Equation procedure can be 

used to generate the most important minimal cut sets. Suppose that it had not been 

possible to derive the exact minimal cut set equation for Gl in the Figure 6 fault 

tree, but that it would be helpful to determine all of the minimal cut sets with n 

or fewer events. An equation which represents all of the minimal cut sets for Gl 

with n = 8 or fewer events is derived in a single step by the SETS user program: 

PROGRAM$ SINGlE-STEP-ORD8. 
ROFT (F! G-6-FTl • 
lDBLK (FIG-6-FT). 
SUBI NEGN (Gl, Gl-SUBI. 
REDUCEQN (Gl-SUS, ORDS-MeS. 51. 

The truncation value, n, is a positive integer that is specified as the third param­

eter in the call of the Reduce Equation procedure. Execution of SINGLE-STEP-ORD8 

required 14 seconds of CPU time and produced the following output from the Reduce 

Equation procedure: 

THE MAXIMUM NUMBER OF TERMS THAT CAN BE 
GENERATED BY EXPANSION IS 5769050. 
THE WORI( IiEASURE FOR E)(PANSION IS 91146985. 

TERMS GENERATED BY EXPANSION: 
1 TERMS CaNT AIN 2 LITERALS. 
4 TERMS CONTAIN 3 lITERALS. 

14 TERMS CONTAIN 4 LITERALS. 
37 TERMS CONTAIN 5 LITERALS. 

176 TERMS CONTAIN 6 LITERALS. 
770 TERMS CONTAIN 7 LITERALS. 

3259 TERMS CONTAIN 8 LITERALS. 
TOTAL TERMS GENERATED: 4263. 

THERE WERE TERMS DISCARDED BECAUSE OF THE 
COUNTED LITERALS MAXIMUM OF 8. 

EXPANSION TOOl( 8.113 SECONDS. 

TERMS RerAINEO BY SIMPLIFICATION: 
1 TERMS CONT AIN Z LITERALS. 
2 T£RMS CONTAIN 3 LITERALS. 

11 TERMS CONTAIN 4 LITERALS. 
11 TERMS CONTAIN 5 LITERALS. 
38 TERMS CONTAIN & LITERALS. 

146 TERMS CONTAI"! 7 LIlERALS. 
290 TERMS CONTAIN 8 LITERALS. 

TOTAL TERMS REiAINEI): 1+99. 
SIMPLIFICATION TOOl( .885 SECONDS. 

NUMBER OF ITERATIONS REQUIREDI 8. 
F~C10RIZATION TOOK 2.91+3 SECONDS. 

An equation can be truncated even if it is being developed in stages, but the 

stop points used to determine an interim stage in the development of the equation 

must not be counted toward the truncation of a term in which they occur. For 

example, if a truncation value of n = 3 is being used and the stop points for the 

j-th stage are A and B, then a term like x*y*z*A in the j-th stage equation cannot 

be truncated even though it appears to contain 4 variables. Later substitution for 

A may involve combinations of the variables x, y, and z, which would combine with 

the occurrences of those variables that are already in the term to produce a 

45 



46 

3 variable term: x*y*z. However, a term like w*x*y*z*B, can be truncated at the 

j-th stage, because it will never contain fewer than the 4 variables w, x, y, and z, 

that are already present. An equation which represents all of the minimal cut sets 

with n = 8 or fewer variables for Gl in the Figure 6 fault tree is developed in 

stages by the SETS user program: 

PROGRAH$ STAGES-OR08. 
RDFT (FIG-G-FTl. 
LDel~ (FIG-6-FT). 
SUBINEQN (Gl, 61-STG1· STOPS G8, Gl0, G14). 
REOUCEQN (G1-STG1, bl-STG1, 8· EXCEPTNONCHP$ G8-,_t.;_10, 614). 
SUBINEQN (Gl-STG1, Gl-ST62. STOPS G14, G32). 
REDUCEQN (Gl-STG2, G1-STG2, 8. EXCEPTNONCKP$ 614, G32). 
SUBINEQN (G1-ST62, Gl-STG3. STOPS G32). 
REDUCEUN (61-5TG3, Gl-5TG3, 8. EXCEPTNONCHP$ G32). 
SU8INEQN (Gl-5TG3, Gl-STG4). 
REDUCEON (61-5TG4, OR06-HCS. 8). 

Execution of STAGES-ORD8 required 15 seconds of CPU time which is approximately the 

same amount of time required to execute SINGLE-STEP-ORD8 and derive the equation 

for ORD8-MCS in a single step. For this small example, the savings produced by 

developing the equation in stages is again being offset by the additional SETS user 

program statements that must be executed. However, the truncation of a large 

equation while it is being developed in stages is a much more efficient approach 

than truncating the equation in a single step. 

The except noncomplement options that appear in the Reduce Equation procedure 

calls in STAGES-ORD8, are used to specify the noncomplemented variables that are 

not to be counted toward the truncation value of 8. (Further information concerning 

the options that are available for the various procedures are described in 

Appendix A.) 



5. Guidelines for Applying Advanced Techniques 

The "size" of a fault tree is often related to the number of gates, primary 

events, and minimal cut sets associated with the fault tree. However, these 

characteristics can be misleading when deciding which of the described techniques 

to use in the evaluation of a particular fault tree. For example, the High 

Pressure Injection System (HPIS) fault tree in Appendix 2 of WASH-1400 [5], has 

68 gates, 299 primary events, and 8,179 minimal cut sets; whereas, the Figure 6 

fault tree in Chapter 4 has 43 gates, 34 primary events, and 1,053 minimal cut 

sets. Yet the HPIS fault tree runs in 150 seconds using the single step method 

of section 3.3.1; while the Figure 6 fault tree which has fewer gates, fewer 

primary events, and fewer minimal cut sets, requires 7,686 seconds of computer 

time using the single step method. For either fault tree, applying any of the 

techniques in Chapter 4 will substantially reduce the computer time required 

to determine the minimal cut sets. For example, by removing largest independent 

subtrees and solving them separately, the HPIS fault tree runs in 12 seconds and 

the Figure 6 fault tree runs in 150 seconds. 

5.1 An Initial Approach 

A reasonable starting point for a large fault tree is the composite technique 

using the existing largest independent subtrees. The composite technique was 

illustrated in the SETS user program, COMPOSITE, for the top gate of the Figure 6 

fault tree. Using this technique, the 1053 minimal cut sets for Gl were determined 

in 10 seconds of computer time. 

If the composite technique with the existing largest independent subtrees 

is not successful, it is because the available computer storage has been exceeded 

or the amount of computer time required is excessive. These problems will be 

encountered either when trying to derive a particular stage of the stem equation 

or when trying to find the equation for one of the largest independent subtrees. 

5.2 Modifications to Use When Available Storage is Exceeded 

If the available computer storage is exceeded (Error 27), while some stage 

of the stem equation is being derived, coalescing gates and creating independent 

subtrees may be helpful. Any additional largest independent subtrees that can be 

created will result in a corresponding decrease in the size of the remaining stem 

equation. Coalescing gates and creating independent subtrees are illustrated in 

the SETS user program, CREATE-IND-ST, in section 4.4.2. 

Choosing a different set of stop points for a stage in the development of a 

stem equation may also be helpful in reducing computer storage requirements for 

that stage, unless it is the stem equation (i.e., the final stage) that is too 

large. Using the rule in section 4.2, it is possible to select a stop point for 

a particular stage which keeps a segment of equation from being introduced which 

would result in further reduction of that stage. Any set of stop points can be 

chosen, and the analyst may find a better scheme for selecting stop points than 

the one described in section 4.2. However, if the stem equation is too large for 

47 



48 

the available storage, then there is no choice of stop points which will reduce 

the final stage in the development of the stem equation. For this case, some other 

technique such as truncation (section 4.5) must be used. 

If the derivation of the equation for a particular largest independent 

subtree exceeds the available computer storage, then its equation can be derived 

using the composite technique. The stages can be chosen using the rule in 

section 4.2. If the derivation of the equation for Si using stages still exceeds 

the available storage, then it may contain subtrees which are independent with 

respect to its base event, i. Thus, the composite technique can be applied 

recursively to largest independent subtrees that are too large to be derived in 

a single step. 

5.3 Modifications to Use When Run Time is Excessive 

The decision that the computer run time is excessive is a relative judgment 

that is made by the user. What is usually meant is that the run time for a 

particular SETS user program is excessive. This problem can often be solved by 

separating the program into a sequence of SETS user programs so that each program 

has an acceptable run time, and together they produce the same result as the 

original SETS user program. The block file is used to save the equations 

~~nerated by one program for use in the subsequent programs in the sequence. 

Suppose, for example, that the composite technique to determine the minimal 

cut sets for some fault tree is implemented in a single SETS user program, and that 

the run time for this program is excessive. One way that this program can be 

separated into a sequence of programs, is to begin with a SETS user program to 

derive and save the equation for the first stage of the stem equation. Then, a 

separate SETS user program can be written to derive and save each succeeding stage 

of the stem equation. The final SETS user program derives the stem equation 

(i.e., the final stage equation), and the equations for the largest independent 

subtrees. The final program also determines the minimal cut sets by substituting 

the equations for the largest independent subtrees into the stem equation. This 

approach is shown for the Figure 6 fault tree in the sequence of SETS user programs: 

PROGRAMS STAGE-i. 
COMMENTS READ THE FAULT TREE AND LOAD THE INTERMEDIATE 

EVENT EQUATIONS.$ 
RDFT (FIG-6-Fn. 
LOBLK (FIG-6-FT). 

COMMENT! CHANGE THE BASE EVENTS OF THE LARGEST 
INDEPENDENT SUBTREES TO BE TREATED AS IF 
THEY ARE PRIMARY EVENTS. DERIVE THE FIRST 
STAGE EQUATION FOR TtiE STEM AND SAVE IT 
IN A BLOCK FOR USE IN DERIVING THE SECOND 
STAGE EQUATION FOR THE STEM.S 

DLTEQtoI (G13, G22, G31, G39). 
SUaINEQN (Gi, Gl-STG1· STOPS G8, 610, G14). 
REOUCEQN (G1-STG1, Gl-STGll. 
FRH8LK (G1-STG1-EQN. ONLYS G1-STG1). 



PROGRAM$ STAGE-2. 
LD8LK (FIG-6-FT, G1-STG1-EQN'. 

DL lEQN (G13, G22, G31, G39). 
SUBINEQN (Gl-5TG1, G1-STG2" STOP$ G14, G32). 
REOUCEON (G1-STG2, G1-STG2). 
FRM8LK (G1-STG2-EQN- ONLY$ G1-STG2). 

PROGRAMS STAGE-3. 
LDBLK (FIG-6-FT, Gl-STG2-EQN). 

Ol TEQN' (G13, G22, G31, G39). 
SUBINEQN (Gl-STG2, G1-STG3" STOPS G32). 
REDUCEQN (G1-STG3, G1-STG3). 
FRHBLK (Gl-STG3-EQN" ONlY$ G1-STG3). 

PROGRAMS STEM-ANO-HC5-EQN. 
LOBLK (FIG-6-FT, G1-STG3-EGN). 

DlTEOH (G13, G22, 631, G39). 
SUBINEON (G1-STG3, Gl-5TEM). 
REDUCfQN (G1-STEM, G1-STEM). 
FRMBU( (S1-STEM-EQN'" ONLYS G1-STEfoO. 
COI'UtENT$ RELOAD THE INTERMEDIATE EIJENT EQUATIONS 

AND THEN DERIVE THE REDUCED EQUATIONS 
FOR THE LARGEST INDEPENDENT SUBTREES AND 
SAVE THEM IN A BLOCK. S 

DLTEQN. 
lOBlK (FIG-6-FT). 
SUBINEON (G13, G13'. 
REDUCEON (G13, G13). 
SUBINEQN (G22. G22). 
5U8INEON (G39, G39). 
FAHBLK (lARGEST-INO-ST" ONLYS G13, G22, 631, G39). 

COMMENTS SUBSTITUTE THE EQUATIONS FOR THE LARGEST 
INDEPENDENT SUBTREES INTO THE STEM EQUATION 
FOR 61 TO FORM THE MINIMAL CUT SET EQUATION 
FOR G1.$ 

DlTEON. 
lD8LK (G1-STEH-EQN, LARGEST-INO-Sf). 
SUBINEQN (G1-STEM, G1-MCSI. 
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The mere separation of a SETS user program into a sequence of SETS user 

programs does not decrease the computer time required to achieve the final result. 

Actually, the total time required may increase slightly. What happens is that the 

time required to run each program is brought within an acceptable limit. 

There are techniques which can result in an actual decrease in the run 

time of a program. The release of a stop point (i.e., its removal from a stop 

list) allows a segment of equation to replace each occurrence of the released 

variable in the stage equation being formed. However, the equation segment is 

usually not in a reduced form when it is inserted into the stage equation. The 

equation segment can be reduced before inserting it into the stage equation. 

This can result in a substantially reduced form of the equation segment and a 

subsequent significant decrease in the time required to reduce the stage equation. 

The reduction of exactly that segment of equation that is intended to replace the 

released variable in the stage equation, requires that the stop points for the 

next stage equation mU,st also be employed in the reduction of the equation 

segment. In section 4.2.2 the SETS user program, STAGES, shows how to derive 

the minimal cut set equation for the top event in the Figure 6 fault tree. A 

modification of that program illustrates how each equation segment can be reduced 

before being inserted into a stage equation: 

PROGRA"S REDUCE-SEGMENTS. 

CO"MENTS READ THE fAULT T~EE AND LOAD THE INTE,HEDIATE 
EVENT EQUATIONS.S 

RDfT (FIG-6-FT). 
lDBLk (fIG-6-FT). 

CO""£NTS OERIVE THE MINIMAL CUT SET EQUATION 
FOR '1 IN STAGES.S 

SU8INEQN (Gl, G1-STG1. STOPS G8. G10, G14). 
REOUCEQN (G1-STG1, G1-STG1). 

COMMENTS G8 AND G10 ARE TO SE RELEASED Ai 
THE NEXT STAGE.S 

SUBINEQN (G8, G8. STOPS 614, G32). 
REDUCEQH (G8, G8). 
SUBINEQN (G10, G10. STOPS G14, G3Z). 
REDUCEQN (G10, 610). 

SU8INEQN (61-ST61, G1-ST62· STOPS 614, G32). 
RfOUCiQN (G1-STG2, 61-5TG2). 

COMMENTS G14 IS TO BE RELEASED 4T THE NEXT 
StAGE. $ 

SU8INEQN (G14, G14· STOPS G3Z). 
REDUCEQN (G14, G14). 

SUBINEON (G1-ST6Z. Gl-STG3. STOPS G3Z). 
REOUCEON (Gl-STG3; 61-STG3). 

COMMENTS G32 IS TO BE RELEASED AT THE NEXT 
S1 AGE. S 

SUBINEQN (G3Z, G32). 
REOUCEQN (G3Z. G32). 

5UBINEQN ('1-51G3, G1-5TG4). 
REDUCEQN (G1-5T64, Gl-MCS). 



If the run time is still judged to be excessive after these modifications have 

been employed, then a technique such as truncation (section 4.5) will probably 

have to be used. 

5.4 A Guideline Flowchart 

The guidelines for applying the techniques for determining minimal cut sets 

are depicted schematically in the flowchart in Figure 8. 

r---

Figure 8. Flowchart for Applying 
Minimal Cut Set Techniques 
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1lcduce the ~UcM 
f"or the stoJ.' ~s NO 

before sub~tutiDn 
S.dion~U 

••• 

YES 

:I'ntrodua a tn~t.tionl 
"atue or tUcrQSe 
ctu,ttn,.g value 

(Scrclion +.,) 

'Thi.S may actual1r 
be' $£v4tral seTS 
U$~r ",-~a1RS 

Figure 8. Flowchart for Applying 
Minimal Cut Set Techniques (Continued) 



END 

Figure 8. Flowchart for Applying 
Minimal Cut Set Techniques (Continued) 
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6. Quantification of Minimal Cut Sets 

There are two procedures available in a special version of SETS which 

provide certain quantitative capabilities. The procedures are called Compute 

Term Value (COMTRMVAL) and Truncate On Term Value (TRNTRMVAL). Both of these 

procedures are concerned with the quantification of the terms of an equation in 

disjunctive normal form, as opposed to the quantification of the entire equation. 

6.1 Types of Computation 

There a~e nine different computations that can be made. All of these 

computations are available in both of the procedures that will be described. 

l. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

TABLE II 

Term Computations Available in SETS 

Computation Type 

SUM 

PRODUCT 

COUNT 

DISTINCT-SUM 

DISTINCT-PRODUCT 

DISTINCT-COUNT 

MAXIMUM 

MINIMUM 

PROBABILITY 

Term Value 

Sum of the variable values. 

Product of the variable values. 

Number of variables. 

Sum of the different variable values. 

Product of the different variable values. 

Number of variables with different values. 

Maximum of the variable values. 

Minimum of the variable values. 

Product of the variable probabilities. 

6.2 Variable Value Assignment 

The variable values that can be used with the different computations are 

restricted according to the type of computation. The restrictions on the variable 

value ranges make every computation either a monotone increasing or monotone 

decreasing function. The variable values are restricted as shown in Table III. 

TABLE III 

Variable Value Restrictions 

Value Range 

o < v. < 1 
:L -

1 < V. 
:L 

o < v. 
:L 

Computation Type 

PROBABILITY 

PRODUCT, DISTINCT-PRODUCT 

All other computations 

Thus, PROBABILITY and MINIMUM are monotone decreasing computations and all of 

the other computations are monotone increasing. 
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A value group is a unit of data that is used to assign values to the 

variables in an equation. A value group is comprised of a collection of value 

assignments preceded by a value group header of the form: 

VALUE$ value-group-name. 

where 

"value-group-name" is any name comprised of from 1 to 16 name symbols. 

Value groups can be read by both the Compute Term Value procedure and the 

Truncate On Term Value procedure. 

where 

Each value ~ssignment in a value group has the form: 

number $ vl ' v 2 ' . 

"number" is a decimal number and the vi' 1 < i < n, are variables 

in the equation. 

The number can be any decimal number; but if a decimal point occurs, then there 

must be a nonempty decimal fraction part. A number can have an exponent of 

the form En or E-n where E must occur; the sign of the exponent must not occur 

if it is positive, and it must occur if it is negative; and n is an integer. 

For example, the numbers 82, 1.75 E-3, 17.6 E2, and 3.0 are all legitimate, but 

the numbers 18. E-l and 7.0 E+l are not legitimate because the first one has an 

empty decimal fraction part and the second one has a plus sign in the exponent. 

Each variable listed in a value assignment is assigned the number at the 

beginning of the value assignment as its value. For example, 

VALUE$ GIVEN-CONDITIONS . 
. 07$ A, X, T$ 
.01$ B$ 
.4$ Y, Z$ 

is a value group named GIVEN-CONDITIONS that will assign the value .07 to A, X, 

and T; the value .01 to B; and the value .4 to Y and Z. 

Complement variables cannot be assigned a value directly. If a complement 

variable (i.e., v.l occurs in an equation, its value is determined according to 
l 

the computation that is being made as shown in Table IV. 

TABLE IV 

Values for Complement Variables 

Complement Value 

o 

1 

Computation Type 

SUM, COUNT, DISTINCT-SUM, 
DISTINCT-COUNT, MAXIMUM, 
MINIMUM 

PRODUCT, DISTINCT-PRODUCT 

PROBABILITY 



6.3 The Compute Term Value Procedure 

The Compute Term Value procedure is used to compute and print the term 

values for the terms of the equations specified. Up to ten computations can be 

made for each of the specified equations in a single call of this procedure, but 

a value group must be submitted as input for each computation. Even if the same 

variable values are to be used for more than one computation, a value group must 

be supplied for each computation; there is currently no mechanism for saving 

variable values from one computation to the next. 

A limiting term value can also be specified for each computation. For 

monotone decreasing computations, terms with a value less than the associated 

limiting term value will be discarded; and for monotone increasing computations, 

terms with a value.greater than the associated limiting term value will be 

discarded. If a term exceeds the limiting term value for any computation, then 

it will be discarded and it will not appear in the printed equation. 

In Chapter 4, several different techniques were described for finding the 

minimal cut set equation GI-MCS for the fault tree in Figure 6. Suppose that 

this equation, GI-MCS, has already been derived and that we want to perform the 

following computations on the terms of the equation: 

1. Compute the probability that all of the components in each minimal 

cut set will fail (i.e., the probability that the minimal cut set 

will occur), and discard any minimal cut set with a probability 

<10- 6 • 

2. Determine the maximum component failure probability in each 

minimal cut set. 

3. Compute the cost of repairing all of the components in each 

minimal cut set. 

Three value groups will be needed. A value group specifying component 

failure probabilities is needed for the first computation, and the same value 

group (i.e., a second copy) is also needed for the second computation. A value 

group specifying component repair cost is needed for the third computation. 

Assume that the required values for the primary events EI, E2, ••. , E34 in 

the Figure 6 fault tree are specified in the value groups FAIL-PROB and 

REPAIR-COST: 

VALUES$ FAIL-PROB • 
• oooa E7, E11, £24$ 
.ODit E8, E16$ 
.005$ £20$ 
.0015$ El0, E17, E34$ 
.01$ E19, E33$ 
.025$ E15, E22, £28$ 
.05$ E9, E12, H4, E21, E23, £26, E30, E32$ 
.07$ E3, E5, E13, E29, LSi$ 
.075$ E2, E18$ 
.08$ El, E6, £27$ 
.09$ E4, E2~$ 
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VALUES$ 
25$ 
50$ 
80$ 
100 $ 
1 .. 0$ 
21t$ 
300$ 

REPAIR-COST. 
El, E9, E24, £32$ 
£1, E7, E11, E15, E21, E29,!; 
E5, E8, E13, E19, E26, E31, £34$ 
H, E14, E25, £28, E30, El3$ 
E.2, El0, E23$ 
E4, E12, 1:::17, E27$ 
E16, E18, E20, E22$ 

There can be as many as 

Compute Term Value procedure. 

call of each computation that 

10 computations specified in a single call of the 

A pair of parameters must occur in the procedure 

is to be made. The first parameter specifies the 

computation type, and the second parameter identifies the value group to be used 

in the computation. If the computation is subject to a limiting term value, this 

number follows the computation type and is separated from it by a "/" delimiter. 

An asterisk and a list of the equations for which the term values are to be 

computed follows the parameters that specify the computations to be made. 

Assuming that the minimal cut set equation GI-MCS has been derived and is in the 

equation file, the computations that have been called for can be made with the 

procedure call: 

COHTRHVAL (PROBABILITY/l.0 E-6, FAIL-PROS, MAXlMUH, FAIL-PROS, 
SUH, REPAIR-COST· Gl-HCS). 

Execution of this call of the Compute Term Vaiue procedure printed the following 

output: 

TERM flROB. MAXIMUM SUM 
NUMBER OF TERM OF TERM OF TERM 

Gl-MCS = 

1 1.8900E-06 9.0000E-02 505.0 El A £2 A Elt A E31 1\ E32 ., 

2 2.0160E-06 9 .. 0000E-(l2 620.0 E1 A E4 1\ £30 II. E27 II. E29 ., 

.3 2.1000E-06 9.0000E-02 440.0 El 1\ £4 " £30 " E34 ., 

4 3.6000E-06 9.0000E-02 460.0 El A £4 " E31l " E33 ., 

5 5.0000E-06 8.0000E-02 330.0 El " E30 " E26 " £28 ., 

6 7.5000E-06 8.0000E-02 340.0 El A E2 " E14 " E15 v 

1 1.0000E-05 8.0000£-02 330.0 El " £14 " E30 1\ E26 v 

8 2.1000E-05 9.0000E-02 500.0 El II. E2 " E4 " E14 v 

9 2.7000£-05 9.0000E-02 500.0 El A £2 " E4 " E30 ., 

10 It.2000E-04 8.iJOOOE-02 270.0 El II. E2 " Ell ., 

11 4.0000E-03 8.0000E-02 75.00 El " £9 



Of the 1,053 minimal cut sets, all but 11 were discarded because their term 

probability was <10- 6 • Notice that the terms printed are arranged in increasing 

order based on the term values computed for the first computation specified in 

the call--in this case the term probability. (To print the terms in decreasing 

order on the values of the first computation, DECREASING$ must occur as the 

first parameter in the call.) 

Many of the minimal cut set equations that are derived simply have too many 

terms to consider computing and printing a value for all of the terms. In the 

first example, a limiting term value was use_ to select the subset of the minimal 

cut sets with a term probability <10- 6 It is also possible to specify a 

truncation value for any of the equations listed in the procedure call. The 

truncation value is an integer that follows the equation identifier (i.e., the 

left side variable) in the call, and is separated from the identifier by a 

"/" delimiter. Suppose that a truncation value of 4 had been used in the 

example instead of a limiting term probability of 10-6 • The COMTRMVAL call 

would have been: 

GO~TRMVAL (PROBABILITY, FAIL-PROS, MAXIMUM, FAIL-fROB, 
SUM, REPAIR-COST. Gl-MCS/4). 

Execution of this statement printed 14 terms: 

TERM PROE. MAXI M!.IM SUM 
NUMBER OF' TERM. OF' TER.M OF TERM 

Gl-MCS/4 = 
1 3.00"OE-09 8.0000E-02 280.0 El " £7 " £30 A E34 v 

2 3.0000£-09 8.0000£-02 450.0 £1 " El0 " Ell " E12 v 

3 4.0000E-09 8.0000E-02 300.0 E1 A E7 " Eli! A E33 II 

4 3.0000E-08 8.0000£-02 340.0 E1 " £2 " E7 " £30 v 

5 6.0 1100E-07 8.0000£-02 270.0 £1 " £8 " El0 '1/ 

(, 2.7COOE-06 9.0000£-02 440.0 El " E4 " E30 " £34 v 

7 3.6000£-06 9.0000E-02 46u.0 E1 A £4 " £30 " E33 II 

8 5.0000E-06 8.0000E-02 330.0 E1 " £30 " E26 A £28 II 

9 7.5000£-06 8.0000£-02 34C.O £1 " £2 " E14 " £15 v 

10 1.000eE-05 8.0000E-1l2 330.0 E1 " £14 " E30 " £26 y 

11 2.7000£-05 9.0000E-02 500.0 E1 " E2 " E4 " E14 v 

12 2.7000E-u5 9.0000E-02 500.C El " E2 " E4 " E30 v 

13 4.200,0£-04 8.0000£-02 270.0 £1 " E2 " E13 v 

14 4.0000E-03 8.0000E-02 15.00 E1 " E9 
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Limiting term values and an equation truncation value can be used together. 

A truncation value of 4 and a limiting term probability of 10-6 are combined in 

the procedure call: 

COHTRHVAL (PROBABILITY/l.O E-6, FAIL-PROS, MAXIMUM, FAIL-PROB, 
SUM, REPAIR-COST. Gl-MCS/4l. 

Execution of this statement printed the 9 terms that have no more than 4 variables 

and a term probability >10- 6 : 

6.4 

TERM 
NUMBER 

1 

2 

~ 

.. 
5 

6 

7 

8 

C3 

PROBe 
OF TERM 

2.7000E-C6 

3.6000E-06 

S.DODOE-D6 

7.5000E-06 

1.0000E-05 

2.7000E-05 

2.7000E-05 

4.2000E-04 

4.0000E-03 

MAXI MUM 
OF TERM 

9.0000£-02 

9.0000£-02 

8.0aOOE-il2 

8.0oaO£-02 

8.0000E-02 

9.0000E-02 

9.0000E-02 

8.0000E-02 

8.0000£-02 

SUM 
OF TERM 

440.C 

460.(; 

330.0 

340.0 

330.0 

500.0 

500.0 

270.0 

15.00 

The Truncate On Term Value Procedure 

The Truncate On Term Value procedure is 

Gl-MCS/4 = 

£1 A E4 " £30 " 1:34 ., 

£1 A E4 " E30 A E33 v 

£1 A E30 " E26 " £28 y 

El A E2 " E14 A E15 y 

1':1 A f14 A E30 " E26 y 

El A £2 " E4 A E14 y 

El " E2 A E4 " E30 y 

E1 A E2 A E13 y 

El A E9 

used to create a new equation and 

add it to the equation file. The right side of the new equation is comprised 

of all of the terms from an existing equation that are not discarded because of 

a truncation value or a limiting term value. The basic difference between the 

Truncate On Term Value procedure and the Compute Term Value procedure is that 

the former creates an equation based on term values, and the latter prints 

term values. Also, each TRNTRMVAL call creates a single equation; whereas, any 

number of equations can be printed by a COMTRMVAL call. 

The parameters used in a TRNTRMVAL call to specify the computations, 

limiting term values, and value groups have the same form that they have in a 

call of the COMTRMVAL procedure. However, the remainder of the parameter part 

in a TRNTRMVAL call is not a list of equations as it is in a COMTRMVAL call. 

The rest of the parameter part in a TRNTRMVAL call is the same as the parameter 

part for a call of REDUCEQN. (A description of the parameter options for the 

Reduce Equation procedure appears in Appendix A.) 

Suppose that we want to form a new equation from the equation for Gl-MCS 

which is comprised of those minimal cut sets that contain no more than 4 events 

and have a probability of occurrence >10- 6 • There are 9 terms from the equation 

for Gl-MCS that satisfy these conditions as can be seen in the final example 

for the COMTRMVAL procedure. A TRNTRMVAL call to form an equation comprised of 

these ter.ms is as follows: 



TRNTRMVAL (PROBABILITY/1.0 E-6, FAIL-PROS, MAXIMUM, FAIL-PROS, 
SUM, REPAIR-COST. G1-MCS, TRN-G1-MCS, 4). 

PRTEQN (TRN-G1-MCS). 

Notice that the parameters following the asterisk conform to the parameter 

structure used in the Reduce Equation procedure. During the expansion of the 

equation for GI-MCS, terms with more than 4 variables are discarded in accordance 

with the truncation value of 4 that appears as the final parameter. Moreover, 

the specified computations are also carried out during the expansion of the 

equation and terms with a term probability <10- 6 are also discarded. The terms 

that remain are then simplified (P + P*Q = P) and factored, and become the right 

side of a new equation that has TRN-GI-MCS as its left side variable. The 

equatio~ for TRN-GI-MCS, 

TRN-G1-HCS : E1 A ( E2 ~ ( E14 A ( E15 y E4 ) v E13 ) v f30 A ( E26 A ( 
1 2 3 l 2 2 3 

E28 • E14 ) v E4 A ( f34 • E3l y E2 ) ) v £9 ) 
3 3 3 2 1 

is then added to the equation file. 
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APPENDIX A 

Procedures Available in SETS 

Each of the procedures available in SETS is invoked by a procedure call 

statement in a SETS user program. A procedure call begins with a procedure 

identifier and is usually followed by a parameter part that is enclosed in 

parentheses. There are options that can be specified in the calls for some of 

the procedures which affect the processing that is achieved with those procedures. 

Some of the options involve the concepts of phi and omega. In the context of 

set theory, phi represents the empty set (¢), and omega represents the universal 

set (~); while in the context of Boolean algebra, phi 0 and omega = 1. The 

processing that is accomplished by the execution of a procedure and any options 

that can be used to affect that processing will be described for each procedure 

that is available. (The quantitative procedures described in Chapter 6 are not 

included in this Appendix because they are available only in a special version 

of SETS.) 

A.l Read Input Block 

A call of the Read Input Block procedure has the form: 

RDINPBLK (ibl , ib 2 , 

This procedure is used to read input blocks. The parameters ib
l

, ib2 , .•. , ibk 
are the names of the input blocks that are to be read. The input blocks must be 

supplied as input in the same left to right order that the input block names 

occur as parameters in the procedure call. 

An input block is a data structure that can be read by the Read Input 

Block procedure. An input block is comprised of an input block header and a 

group of one or more Boolean equations. The input block header precedes the 

equations and has the form: 

INPUT BLOCK$ input-block-name. 

where 

"input-block-name" is the name of the input block. 

Each equation in the input block must be terminated with a period. 

The equations in an input block are checked as they are read to ensure that 

they are correctly formed equations. After each input block has been read and 

the equations have been checked, a block is created for that input block and 

added to the block file. The block contains the group of Boolean equations that 

are in the input block, and the block name is the same as the input block name 

which occurs in the header. 
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A.2 Read Fault Tree 

A call of the Read Fault Tree procedure has the form: 

RDFT (ft
l

, ft
2

, ... , ftk ,. 

This procedure is used to read fault trees. The parameters ft l , ft 2 , ... , ftk 

are the names of the fault trees that are to be read. The fault trees must be 

supplied as input in the same left to right order that the fault tree names occur 

as parameters in the procedure call. 

The fault tree input that was defined in Chapter 2 is a data structure that 

can be read by the Read Fault Tree procedure. The redundancy inherent in the 

input representation of a fault tree is used to check the structure of each fault 

tree as it is read and processed. After each fault tree is read and checked, a 

block is created for that fault tree and added to the block file. The block 

contains the intermediate event equations for the fault tree, and the block name 

is the same as the fault tree name. 

Each block that is generated by the Read Fault Tree procedure contains a 

representation of the fault tree in addition to the equations that are contained 

in the block. This internal representation of the fault tree is used to produce 

a graphic representation of the fault tree using the Fault Tree Drawing Program [6) 

and, when the block is printed using the Print Block procedure, it is used to 

produce the Fault Tree Event Table. 

A.3 Print Equation 

A call of the Print Equation procedure has the form: 

PRTEQN (vI' v 2 ' ... , v k '· 

This procedure is used to print equations that are in the equation file. The 

parameters vI' v 2 ' ..• , v k are processed from left to right and the equation for 

each variable is printed as it is encountered. If the equation file does not 

contain an equation for a particular vi' the message 

THERE IS NO SET EQUATION FOR vi 

is printed. 

The equations in the equation file are in a factored form, and they are 

printed in this form by the Print Equation procedure. If there are any paren­

theses in an equation, an integer will be printed immediately below each 

parenthesis when the equation is printed. The numbers are provided to aid in 

the interpretation of complex equations. Paired parentheses have the same number 

and the numbering begins with the number 1 for an outermost set of parentheses. 

In a printed equation, the operations of AND, OR, and NOT are represented by 

/\, V, and -" respectively. 

A.4 Print Equation In Disjunctive Normal Form 

A call of the Print Equation In Disjunctive Normal Form procedure has the 

form: 



This procedure is used to print equations that are in the equation file. Each 

of·the parameters PI' P2' ... , Pk is either a variable name vi' or it is a 

variable name and a truncation value of the form vi/n, where n is a positive integer. 

The parameters are processed from left to right and the equation for each variable 

is printed as it is encountered. 

for a particular vi' the message 

If the equation file does not contain an equation 

THERE IS NO SET EQUATION FOR vi 

is printed. 

When a truncation value is specified, only those terms of the equation 

with n or fewer variables are printed. 

more than n variables, the message 

THE SET EQUATION IS PHI 

is printed. 

If every term of an equation contains 

A Literal Occurrence Table is printed preceding each equation that is 

printed. The table indicates the number of times that a variable (literal) 

occurs in the printed equation. Since the equation is printed in a disjunctive 

normal form, the number of occurrences of a variable is also the number of terms 

which contain the variable. If any terms of an equation are discarded because 

of a truncation value, some variables that occur in the full equation may not 

occur in the truncated equation that is printed. The Literal Occurrence Table 

contains a count of only those variables which occur in the printed equation. 

Following the Literal Occurrence Table for an equation, the equation is 

printed in a disjunctive normal form. The terms are numbered and they are printed 

in the order of an increasing number of variables per term. 

A.S Delete Equation 

A call of the Delete Equation procedure has one of the forms: 

a. DLTEQN. 

b. DLTEQN (vI' v 2 ' ... , v k ). 

This procedure is used to delete equations from the equation file. if there is 

no parameter list in the procedure call (form a.), every equation is deleted 

from the equation file. When a parameter list occurs in the call (form b.), 

only the equations for the variables vI' v 2 ' "', v k are deleted from the 

equation file. If there is no equation in the equation file for a particular 

variable vi' then no action is taken for that parameter. 

A.6 Substitute In Equation 

A call of the Substitute In Equation procedure has one of the forms: 

b. SUBINEQN (vI' v * 2 
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This procedure is used to create a new equation and enter it into the equation 

file. The right side of the new equation is generated from the equation for v l 
by a repeated process of substituting equals for equals. The left side variable 

for the new equation is v 2 . 

For both forms of the procedure call, a copy of the equation for the first 

parameter, v l ' is used to start the substitution process. If there is no equation 

for v l in the equation file, then v l is taken as the right side expression for the 

new equation. If there is an equation for v l in the equation file, then each 

variable in the right side expression of the equation for v l which has an equation 

in the equation file, is replaced by the right side of the equation for that 

variable. By repeating this substitution process for every variable in the right 

side expression, including variables that have been introduced by a prior sub­

stitution, the expression will ultimately contain only variables for which there 

is no equation in the equation file and no further substitutions can be made. 

If there are no substitution control options in the procedure call (form a.), 

the substitution process will terminate when none of the variables remaining in 

the expression have an equation in the equation file. However, if substitution 

control options occur in the call (form b.), these options are used to arrest 

the substitution process prior to its normal completion. The parameters 01' 02' and 

03 represent the three options that can occur in this form of the procedure call. 

An omega option has the form: 

OMEGA$ v l ' v 2 ' ... , vk 

The omega option causes every occurrence of each vi to be replaced by the variable 

OMEGA rather than the right side of the equation for vi. The equation for vi 

in the equation file is not affected. 

A phi option has the form: 

PHI$ v l ' v 2 ' ••. , vk 

The phi option causes every occurrence of each vi to be replaced by the variable 

-,OMEGA rather than the right side of the equation for vi. The equation for vi 

in the equation file is not affected. 

A stop option has the form: 

STOP$ v l ' v 2 ' .•• , v k 

The stop option causes every occurrence of each v. to be treated as if there is 
1 

no equation for vi in the equation file (i.e., no sUbstitution for vi will take 

place), and vi will remain in the expression. The equation for vi in the equation 

file is not affected. One or more of the options 01' 02' or 03 can occur in the 

procedure call separated by "/" delimiters. Moreover, the options can occur in 

any order. 



A.7 Reduce Equation 

A call of the Reduce Equation procedure has one of the forms: 

a. REDUCEQN (vI' v
2

) . 

b. REDUCEQN (vI' v 2 * °1/°2) . 

c. REDUCEQN (vI' v 2 ' n) . 

d. REDUCEQN (vi' v 2 ' n * °1/°2/°3/°4) . 

This procedure is used to create a new equation and enter it into the equation 

file. The right side of the new equation is generated by applying certain 

Boolean identities to the right side of the equation for vI. The left side 

variable for the new equation is v 2 . 

The processing by the Reduce Equation procedure is concerned primarily with 

the reduction of a Boolean expression. During the processing, the form of the 

expression changes from a factored form, to a disjunctive normal form, and then 

back again to a factored form. The processing begins with a copy of the right 

side expression from the equation for vI and is achieved in three steps: 

1. Expansion 

a. Apply DeMorgan's Rules to the factored form of the 

expression to eliminate NOT operators. 

b. Repeatedly apply the distributive law to the factored 

form of the expression to generate a disjunctive normal 

form of the expression. 

c. Apply the identities p*p = P and p*-,p = ~ to the 

expression to eliminate repeated variables in a 

term and terms with zero products. 

2. Simplification 

Apply the identity P + P*Q = P to the disjunctive normal form 

of the exprespion to eliminate terms that are logically 

contained in other terms (absorption rule). 

3. Factorization 

Factor (group) the disjunctive normal form of the expression 

to create a factored form of the reduced expression. (The 

factoring scheme is based on choosing as a factor the most 

often occurring variable whenever a factor is selected.) 

For all forms of the procedure call, a copy of the right side expression from 

the equation for vI is expanded, simplified, and factored to form the right side of 

the new equation. If there is no equation for vI in the equation file, then vI 

is taken as the right side expression of the new equation. If there is no 

truncation value and there are no reduction control options in the procedure call 

(form a.), the processing will consist of the equation reduction already described. 

If there is no truncation value but there are reduction control options (form b.), 

the parameters 01 and 02 are the reduction control options that can occur in this 

form of the procedure call. 
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An omega option has the form: 

OMEGA$ v l ' v 2 ' ... , v k 

The omega option causes every occurrence of each vi to be replaced by the variable 

OMEGA. The~ the identities ~ + P = ~ and ~*P = P will be applied to the expression 

prior to expansion. 

A phi option has the form: 

PHI$ v l ' v 2 ... , vk 

The phi option causes every occurrence of each vi to be replaced by the variable 

~ OMEGA. Then, the identities ~ + P = P and ~*p = ~ will be applied to the 

expression prior to expansion. Any number of the 01 or 02 options can occur 

in the procedure call separated by "j" delimiters, and they can occur in any order. 

If there is a truncation value but there are no reduction control options 

(form c.), the expression will be truncated during expansion. The parameter n is 

a counted literals maximum (i.e., the truncation value). Every term which contains 

more than n variables will be discarded. 

If there is a truncation value and there are reduction control options 

(form d.), the parameters 01' 02' 03' and 04 are the options for this form of 

the procedure call. These options may be included in any order. The first 

option, 01' is the omega option and the second option, 02' is the phi option. 

These are the same options that were described for form b. 

The options 03 and 04 are related to n, the counted literals maximum 

parameter. The option, 03' is the except complement option and it has one of 

the following forms: 

1. EXCEPTCMP$ 

2. EXCEPTCMP$ vI' v 2 ' ... , vk 

If the except complement option does not have a variable list (form l.), all 

complement variables are excluded from counting toward the truncation value. 

If the except complement option has a variable list (form 2.), only the complement 

variables corresponding to each vi in the list are not counted toward the trunca­

tion value. 

The option, 04' is the except noncomplement option and it has one of the 

following forms: 

1. EXCEPTNONCMP$ 

2. EXCEPTNONCMP$ v
l

' v 2 ' ... , vk 

These options function exactly like the except complement options (03)' but 

it is the noncomplement variables that are excluded from counting toward the 

truncation value rather than the complement variables. 



Any number of the 01' 02' 03' or 04 options can occur in the procedure 

call separated by "I" delimiters, and they can occur in any order. 

A.S Form Block 

A call of the Form Block procedure has one of the forms: 

a. FRMBLK (b). 

b. FRMBLK (b * °1 ), 

This procedure is used to form a block and add it to the block file. In all 

forms of the procedure call, the parameter b is the block name for the block 

to be formed. If there is no selection control option in the procedure call 

(form a.), a block is formed which contains all of the equations that are in 

the equation file when the procedure is executed. 

If there is a selection control option in the procedure call (form b.), a 

block will be formed which contains a subset of the equations in the equatlon 

file. The selection control option, 01' will have one of the following forms: 

1. ONLY$ vI' v 2 ' •.. , vk 

2. EXCEPT$ vI' v 2 ' "', v k 

Only one selection control option can occur in a call of the Form Block procedure. 

If the only option is used (form 1.), the block that is formed will contain only 

those equations from the equation file that have a left side variable which occurs 

in the variable list of the option. If the except option is used (form 2.), 

the block that is formed will contain every equation from the equation file except 

those that have a left side variable which occurs in the variable list of the 

option. If there is no equation in the equation file for a variable that occurs 

in the selection control option, the effect is as if the variable had not occurred 

in the option. 

It is possible to form a block which does not contain any equations, 

although such a block serves no useful purpose. However, if a selection control 

option results in excluding all of the equations that are in the equation file, 

or if there are no equations in the equation file, then a block without any 

equations will be generated. 

A.9 Load Block 

A call of the Load Block procedure has the form: 

LDBLK (bl , b 2 , • ", bk ). 

This procedure is used to load the equations contained in a block into the 

equation file. The parameters b
l

, b 2 , .•. , bk are the names of the blocks to be 

loaded. The parameters are processed from left to right and as each block name 

is encountered, the equations contained in that block are loaded into the equation 

file. The blocks in the block file are not affected by this loading process. 

69 



70 

If the equation file already contains an equation for some variable vi' 

and an equation for vi is contained in a block to be loaded, the equation for vi 

from the block will replace the equation for vi in the equation file. Otherwise, 

equations in the equation file will not be changed when a block is loaded. Thus, 

after each block is loaded, the equation file will consist of all of the equations 

from the block, together with those equations which were in the equation file 

when the block was loaded and were not replaced by an equation from the block. 

Loading a block does not change the block file in any way. Also, if a block is 

specified for loading which is not in the block file, an error condition will 

be detected and an error message will be printed. 

A block cannot contain more than one equation with the same left side 

variable because such a block cannot be formed. However, if several blocks are 

to be loaded, an equation with the same left side variable can occur in more 

than one of the blocks. Sinc~ each block is loaded as its b~ock name is 

encountered while processing the parameters b
l

, b 2 , ... , bk from left to right, 

the last equation loaded for a particular variable will be the equation in the 

equation file when execution of the procedure is completed. 

A.10 Print Block 

A call of the Print Block procedure has the form: 

PRTBLK (b l , b 2 , ••. , b k ). 

This procedure is used to print the information contained in a block. The 

parameters b
l

, b
2

, ..• , b k are the names of the blocks to be printed. As the 

block names b l , b 2 , ••• , b k are processed from left to right and as each block 

name is encountered, the information from that block will be printed. If the 

block was generated by the Read Fault Tree procedure, it contains an internal 

representation of the fault tree, and the first thing to be printed will be the 

Fault Tree Event Table. Each event of the fault tree is listed in the Fault Tree 

Event Table together with the information specifying its relationship to the other 

events of the fault tree. The numbering of the events begins with 2 because 

OMEGA is always treated as the first variable in SETS and given the number 1. 

Since OMEGA cannot occur in a fault tree, it is simply not printed in the Fault 

Tree Event Table, and the number of events in a fault tree is one less than the 

number of the last event in the Fault Tree Event Table. 

The remainder of the information printed by the Print Block procedure is 

printed in the same form for all blocks regardless of how they were formed.· The 

equations contained in the block are printed one after the other in the same 

format used by the Print Equation procedure to print factored equations. 

A.ll Delete Block 

A call of the Delete Block procedure has one of the forms: 

a. DLTBLK. 



This procedure is used to delete blocks from the block file. If there is no 

parameter list in the procedure call (form a.), all blocks are deleted from the 

block file. Careful consideration of the consequences should precede the use 

of this form of the procedure call. However, such a call should occur at the 

beginning of any SETS user program intended to create a new block file. 

If the parameter list is used with the procedure call (form b.), the 

parameters b l , b 2 , ... , b k are the names of the blocks to be deleted. Only 

those blocks with a block name that occurs in the procedure call will be deleted. 

If more than one block on the block file has the same block name, and if that 

block name occurs as a parameter in the procedure call, every block with that 

block name will be deleted from the block file. 

A.12 Block Status 

A call of the Block Status procedure has the form: 

BLKSTAT. 

This procedure is used to ascertain what blocks are on the block file. 

are no blocks on the block file, the message 

THE BLOCK FILE IS EMPTY 

If there 

will be printed. If the block file is not empty, the block names of the blocks 

on the block file will be printed in the same order that they occur on the 

block file. 
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APPENDIX B 

Executing SETS User Programs 

The SETS program is an interpreter. It is used to read, interpret, and 

execute the statements of a SETS user program. Thus, execution of a SETS user 

program is achieved by supplying the SETS user program and its data (i.e., 

any fault trees or input blocks required by the SETS user program) as input for 

an execution of the SE'l'S pJ:·ogram. 

The SETS program is coded in the FORTRAN extended language for the CDC 6600 

computer running under version 3.3 of the SCOPE operating system. This same 

version'of SETS will compile and execute under SCOPE 2.1 on the CDC 7600. Some 

file processing differences exist between SCOPE 3.3 and 3.4, but the SETS program 

can be converted to run on the CDC 6600 under SCOPE 3.4 by the UPDATE directives: 

·rNSERT SETS.488 
BUFFER OUT (SEPFL,1)(OUM,DUM) 

IF (UN ITLSEPFLI ) 195.3,1280,1283 
1953 BUFFER CUT (SLKFL2,U (OU,"" DUH) 

IF (UNIT (BLKFL2» 1954,1280,1283 
1954 BUFFER CUT (TRMFL,1)(DUH,DUH) 

IF (uNIT<TRHFL) 1955,1280,1283 
1955 REWIND SEPFL 

RE WIND 8L J<FL 2 
REWIND TRHFL 

FLRDY=UNIT(SEPFL) 
FLRDY=UNIT(BLKFL21 
FLROY =UNIT (TRHFL) 

For CDC hardware configurations which do not include Extended Core Storage (ECS), 

a disk or tape storage scheme would have to be substituted for the ECS scheme 

used i.n the program to store equations. Nevertheless, conversion of the SETS 

program for use on CDC equipment that is compatible with the CDC 6600, is 

usually not too difficult. However, conversion of the SETS program to other 

computer systems would require a substantial reprogramming effort because of 

the extensive use of masking instructions within the program. 

B.l Special Library Routines 

There are calls in the SETS program for two library routines that are 

peculiar to Sandia's operating system: SETEP and HOROLOG. The SETEP routine 

causes control to be returned to the SETS program if a parity error is detected, 

rather than to retain control in the operating system (SCOPE). The calls for 

SETEP can be deleted by the UPDATE directive: 

.O~LETE SETS.382,SETS.386 

With this change, termination of a SETS execution, and consequently termination 

of a SETS user program execution, will be achieved by SCOPE rather than SETS 

following the detection of a parity error. 
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The HOROLOG routine returns a value for three output parameters: 

PI--Execution time remaining for the job, a floating point value in 

milliseconds. 

P
2
--Time of day (clock time), an integer in Hollerith form 

~HH.MM.S~ representing hours, minutes, and seconds. 

P
3
--Date, an integer in Hollerith form~MM/DD/YYD representing 

month, day, and year. 

Any routine which returns these values could be used to replace HOROLOG, but PI 

is the amount of job time remaining during execution, and most timing routines 

return the amount of job time already used. However, the HOROLOG routine can be 

removed from the SETS program by the UPDATE directives; 

"OELETE 

'":JELE.TE 
1035 

"'OELETE 

.... OELETE 
1650 

"'DELETE 
1663 

"'OELETE 

"OEL€TE 
1901t 

·DELETE 
1941 

SETS.241 
PGMTIM=FGMOAT=10R 

SETS .E>1lt 
CPUTIM2;:: 1.0 

SETS .2282 
CPUTIM2=(J.O 

5ETS.2833 
CFUTIH3=Q.1) 

SETS.2902 
CPUTI H2=,0. 0 

SETS.3186 
CPUTIH3=O.O 

SETS.3913 
CPUTI H2= 0.0 

SETS.It080 
CPUTH13= 0. il 

With this change, the time and date in the page headings of printer output will 

be blank and the execution times printed in the output will be zero. Execution 

of SETS, however, will not be affected. 

B.2 Creating Different Size SETS Object Programs 

The Expression Vector (EXPVC) is used in the SETS program for several of 

the equation processing tasks. The maximum size that this vector can be 

dimensioned is 32,767. The object program compiled with this vector size requires 

205,100 (octal) words of core storage. By decreasing the size of EXPVC to 10,000 

(which will still accommodate quite large equations), the corresponding object 

program requires 131,600 (octal) words of core storage. Different size SETS 

object programs can be compiled by changing the size of EXPVC with the UPDATE 

directives: 

-OELETE 5£15.36 
OIMENSION CHRVC(S), CPY'IC (XXXXX), CTVC(1945) 

·OELETE SETS.38 
DIMENSION EXPVC(XXX(X) 

"OELETE SETS.327 
MXEXPVC=XXXXX 

where XXXXX is the size of EXPVC and CPYVC--a vector that is equivalenced to 

EXPVC in the program. An object program with a small EXPVC may work for many 

examples, but if an Error 27 occurs, it is an indication that an object program 

with a larger EXPVC should be used. 
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Be3 Job Control Sequences for Executing SETS 

The job control sequences for executing the SETS program will differ 

depending on the auxiliary storage media used for the block file. (Equations are 

saved in a SETS user program by creating blocks that contain the equations and 

adding these blocks to the block file.) The job control sequences used at 

Sandia Laboratories for three different choices of auxiliary storage for the block 

file will be described. In each example job control sequence, it is indicated at 

what point the SETS user program and its data are to be included. Although it is 

not specified in the examples, each data unit that occurs (Le., fault tree or 

input block) must be preceded by a 7/8/9 card. Moreover, it is assumed that a 

SETS object program with a 10,000 word EXPVC is available on a permanent disk 

file called SETS-PERM-FILE. 

B.3el Block File on a Temporary Disk File -- The use of a temporary disk 

file for the block file is illustrated by the job control sequence: 

EXMPL1,CM131600,TiC,EC100. NAME - BOX XXX -
ACCOUNT,$XXXXXXXXX,DXXXXX,GXXXX,AXXXXXXX,RX,KXXXX. 
ATTACH,SETS,SETS-PER~-FILE,CY=10. 
SETS. 
7/13/9 
SETS USER PROGRAM AND DATA 
6/7/8/9 

When a temporary disk file is used for the block file, all blocks are lost when 

the job terminates. This type of run can be useful for SETS user programs that 

require very little execution time. For these cases, it is sometimes easier to 

regenerate any equations produced than to save them by using a permanent block 

file. A run of this type is also useful for the first few runs of a SETS user 

program aimed at checking a fault tree to make certain that it is correctly 

structured. Once it has been ascertained that a fault tree is correctly 

structured, it is usually helpful to switch to the use of a block file that can 

be retained so that the fault tree does not have to be read and processed during 

every succeeding run. 

B.3.2 Block File on Magnetic Tape -- The use of a magnetic tape for the 

block file is illustrated by the job control sequence: 

EXMPL2,CM131600,T10,EC100,MT1. NAME - BOX XXX -
ACCOUNT,SXXXXXXXXX,DXXXXX,GXXXX,AXXXXXXX,RX,KXXXX. 
ATTACH,SETS,SETS-PERM-FILE,CY=10. 
REQUEST,TAPE4,HI. VSN=XXXXX NAME 
REWIND, T APE4. 
SETS. 
UNLOAD, T APE4. 
EXI T. 
lJNLOAD,TAPE4. 
718/9 
SETS USER PROGRAM AND DATA 
b1718/9 

When a magnetic tape is used for the block file, the tape will contain all of 

the blocks that are on the block file when the job terminates. This type of run 

allows blocks to be saved for later use by another SETS user program simply by 
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using the same magnetic tape for the block file. The user specifies the magnetic 

tape to be used by giving the volume serial number (VSN) in the REQUEST card 

for TAPE4. 

B.3.3 Block File on a Permanent Disk File -- The use of a permanent disk 

file for the block file is illustrated by the job control sequence. 

EXMPlJ,CM131600,Tl0,EC100. NAME - BOX XXX -
ACCOUNT,SXXXXXXXXX,OXXXXX,GXXXX.AXXxxxxX,Rx,KXXXX. 
ATTACH,SETS,SETS-PER~-fIlE,CY:l0. 
REQU£ST,TAPE4,·PF. 
REWIND,TAPE4. 

* COPY,BlKFL,TAPE4. I
ATTACH,BlKFL,SAVEo-eLKFL. 

RETURN,8LKFl. 
REWIND,TAFf4. 
SETS. 

* PURGE,BlKFl,SAVEO-BlKFL,CN=SVBlKFL. 
CATALOG,TAPE4,SAVED-BlKFl,CN=SVBLKFL. 
EXIT. 

* PURGE,8lKFL,SAVED-BLKFL,CN=SV8LKFL. 
CATAlOG,TAPE4,SAVED-BLKFl,CN=SV8lKFL. 
7/8/9 
SETS USER PROGRAM AND DATA 
6/7/8/9 

When a permanent disk file is used for the block file, the permanent disk file 

will contain all of the blocks that are on the block file when the job terminates. 

This type of run allows blocks to be saved for later use in another SETS user 

program by creating a permanent disk file that contains the blocks. The user 

specifies the permanent file to be used by giving the permanent file name in the 

ATTACH card, the two PURGE cards, and the two CATALOG cards. Also, the control 

password for the permanent file must be used in the PURGE and CATALOG cards. 

In order to use a permanent disk file for the block file, the user must be 

familiar with the use of these files and the password requirements associated with 

them. In the example it is assumed that the permanent file SAVED-BLKFL already 

exists, that it contains only one cycle, and that all passwords except the control 

password SVBLKFL have their default values. If the job is to create the permanent 

file SAVED-BLKFL for the first time, the SCOPE control card sequence should be 

altered by removing those cards marked with an asterisk. 

L 
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APPENDIX C 

Execution Diagnostics 

During the execution of the SETS program (i.e., during the interpretive 

execution of a SETS user program), there are several errors that will be detected 

if they should occur. The errors will be described in two groups. The first 

group is concerned with the logic and implementation of the SETS program, and the 

second group concerns errors in a SETS user program. 

C.l SETS Errors 

In general, errors detected in the execution of the SETS program indicate 

a serious breakdown. Although these errors occur rarely if at all, tests are 

included in SETS to detect them in order to preclude further execution that would 

produce erroneous results. All of these errors,will cause the execution of SETS 

to be terminated after an appropriate message has been printed. 

There are three illegal branch errors that can occur. The messages 

corresponding to these errors are as follows: 

AN ILLEGAL TRANSFER HAS OCCURRED FROM A COMPUTED 

GOTO STATEMENT 

AN ITERATION PROCESS HAS BEEN COMPLETED WHICH SHOULD 

HAVE BEEN EXITED PRIOR TO COMPLETION 

THERE HAS BEEN A COMPUTER MALFUNCTION OR AN ERROR 

EXISTS IN THE SETS PROGRAM. 

An illegal branch error will occur if a character is used which is ,not a valid 

character in a SETS user program. An illegal branch error may also be caused by 

a computer malfunction and the job should be run again to make certain that the 

error was not the result of such a malfunction. An illegal branch error can also 

occur if a situation occurs that was not anticipated when the SETS program was 

coded. In this case, the cause of the error must be determined and changes made 

in the SETS program to correct the error. 

There are three file processing errors that can occur. The messages 

corresponding to these errors are as follows: 

AN END OF FILE ERROR HAS OCCURRED 

A PARITY ERROR HAS OCCURRED 

A READY ERROR HAS OCCURRED. 

All of the file processing errors can result from a bad file, or from the fact that 

the file used was not the correct one. The user should first ascertain that the 

files specified are indeed the ones he intended to use and then run the job again. 
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If the error persists, then the file in question may simply be a bad file and 

need to be regenerated--particularly if a parity error is occurring. Like the 

illegal branch errors, file processing errors can be the result of a situation 

that was not anticipated when the SETS program was coded. A change in the SETS 

program would then be required to correct the error. 

There is one further error that can occur during the execution of the SETS 

program. This error concerns the printed output generated by SETS, and the 

message for this error is as follows: 

THE MAXIMUM NUMBER OF LINES PER PAGE IS TOO 

SMALL TO ALLOW PROPER PAGING OF THE OUTPUT. 

This error cannot occur when the standard version of SETS is used. However, the 

error can occur if a version of SETS is created that reduces the maximum number 

of printed lines per page to a value that is too small to allow the printing of 

the headings that can occur in the printed output. This error can be eliminated 

by using a version of SETS with a larger value for the maximum number of lines 

per page. 

C.2 SETS User Program Errors 

The SETS user program errors are syntax errors, and errors that occur during 

the execution of the statements of the SETS user program. In general, these 

errors will not-cause execution of the SETS program to be terminated. However, 

the processing of the SETS user program following the detection of one of these 

errors will be significantly different than normal processing. The processing 

that occurs after the detection of an error is intended to determine whether or 

not any remaining input is syntactically correct. It is not possible to accom­

plish this task completely because recovery after a detected error is based on 

some syntactic characteristic (e.g., the period at the end of each statement). 

Nevertheless, many of the syntax errors can be detected during a single execution 

of a SETS user program. 

The execution of a SETS user program occurs in two phases. First, the SETS 

user program itself is read and tested to determine that it is syntactically 

correct. If an error is detected while reading the SETS user program, an attempt 

is made to read and test the remainder of the SETS user program unless the error 

occurred in the program header in which case execution will be terminated. The 

SETS user program will not be executed if any errors occur while it is being read. 

Once the SETS user program can be read without error, its execution will 

proceed normally unless an error is detected during execution. If an error is 

detected during execution, an attempt will be made to execute all remaining 

procedure calls that process input (RDFT and RDINPBLK), but execution of all other 

statements in the SETS user program will be bypassed. However, no blocks will be 

formed from fault trees or input blocks after an error has been detected. 



C.2.l Special Fault Tree Error Messages -- In addition to the numbered 

error conditions that are described in the next section, there are certain fault 

tree errors which will cause special messages to be printed. These special 

messages are as follows: 

where 

ERRORS OCCURRED IN THE DEFINITION OF THE EVENT event-name 

THERE WAS NO DEFINITION FOR THE EVENT event-name 

THE DEFINITION FOR THE EVENT event-name DOES NOT INCLUDE 
ITS RELATIONSHIP TO THE EVENT event-name 

THE RELATIONSHIP BETWEEN THE EVENTS event-name AND 
event-name IS INCONSISTENT. 

"event-name" is the name of a fault tree event. 

These special messages are the result of tests performed after the entire fault 

tree has been read. As a result, they provide information which is sometimes 

already known. For example, when processing the event definition for an event X, 

if a name is encountered that contains more than the maximum number of name 

characters allowed, a numbered error message (Error 33) will be printed. Later 

in the processing the message 

ERRORS OCCURRED IN THE DEFINITION OF THE EVENT X 

will also be printed even though both messages are the result of the same error. 

Nevertheless, the special messages are helpful in tracking down errors in the 

fault .tree. Correction of the input will then eliminate the errors. 

C.2.2 Numbered Error Messages -- Except for the special messages concerning 

certain fault tree errors, the detection of an error during the execution of a 

SETS user program will result in a numbered error message of the form: 

where 

******ERROR NUMBER: n, name 

"n" is the error number 

"name" is either empty or it is the name of some entity in the SETS 

user program or its associated input. 

The descriptions of the errors that cause numbered error messages are listed 

below along with the error number that will appear in the message. Furthermore, 

steps for correcting the error will be indicated if they can be carried out by 

the user. 

Error Number 

1 

Error Description 

A special character is incorrect in the context 

in which it occurs. The characters that occur 

in the input between the previous special 

character and the special character that is 

incorrect will be printed. Correct the input. 
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Error Number 

2 

3 

4 

5 

6 

7 

8 

80 

Error Description 

A program header, an input block header, or a 

fault tree header is incorrect. The characters 

that begin the header will be pritited. Correct 

the input. 

The SETS user program exceeds the size of the 

vector used to store the program. The name of 

the SETS user program will be printed. Break 

up the SETS user program into two or more 

programs that achieve the same result as the 

original program. 

The procedure identifier of a procedure call is 

incorrect. The incorrect procedure identifier 

will be printed. Correct the input. 

The parameter part of a procedure call is 

incorrect. The procedure identifier of the 

procedure call will be printed. Correct the 

input. 

The input block name in an input block header, 

or the fault tree name in a fault tree header 

is not the same as the next parameter in a 

RDINPBLK call or a RDFT call, respectively. 

The input block name or the fault tree name 

from the header will be printed. Correct the 

input. 

The number of variables exceeds the s.ize of 

the table used to hold them. Initialize 

the number of variables in the table by 

inserting a call of DLTEQN with no parameters 

in the SETS user program after taking steps 

to save all meaningful equations in blocks. 

Also, whenever possible, minimize the number 

of variables in the table before calls of 

RDFT, RDINPBLK, and PRTBLK since execution 

of these procedures temporarily adds additional 

variables to the table. 

One of the records of a block exceeds the 

size of the vector used as a temporary 

transfer area for a DLTBLK call with a 

nonempty parameter part. Use a version of 

SETS with a larger copy vector (equivalenced 

to the expression vector). 
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Error Number 

9 

10 

11 

12 

13 

• 
14 

15 

16 

17 

Error Description 

The substitution control part of a SUBINEQN call 

or the reduction control part of a REDUCEQN call 

is incorrect. Specifically, a variable has 

occurred more than once in the same kind of 

control element, or a variable has occurred 

in both an omega and a phi control element. 

The variable that caused the error will be 

printed. Correct the input. 

The left side variable of an equation is OMEGA. 

Correct the input. 

A fault tree does not have any event definitions 

(i.e., the fault tree body is empty). The fault 

tree name will be printed. Correct the input. 

A fault tree has an incorrect alphabetic 

delimiter. The incorrect alphabetic delimiter 

will be printed. Correct the input. 

An event definition does not contain any 

relationship declarations. The name of the 

event being defined will be printed. Correct 

the input . 

A fault tree contains OMEGA as an event name. 

Correct the input. 

An event has more than one event definition. 

The name of the event with multiple definitions 

will be printed. Correct the input. 

A fault tree body begins with a relationship 

declaration instead of an event declaration. 

The name of the fault tree will be printed. 

Correct the input. 

The number of prefixes used in a fault tree 

exceeds the size of the table used to store 

them. The prefix that causes the error will 

be printed. Alter the fault tree so that 

fewer prefixes are required. 
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Error Number 

18 

19 

20 

21 

22 

23 

24 

82 

Error Description 

The number of relationships in a fault tree exceeds 

the size of the vector used to hold them. The 

fault tree name will be printed. If possible, 

break up the fault tree into two or more smaller 

fault trees that represent the same logic as the 

original fault tree. 

An event exceeds the maximum rank (i.e., the number 

of events related to it). The name of the event 

with the excessive rank will be printed. Insert 

one or more additional intermediate events into 

the fault tree so that the logic is preserved, 

but none of the events in the fault tree exceed 

the maximum rank. 

An event in a relationship declaration is the 

same as the event being defined, or it occurs 

in more than one relationship declar~tion in 

the same event definition. (The same event can 

occur in a similar input or a similar output 

declaration if the prefixes are not identical.) 

The name of the event being defined will be 

printed. Correct the input. 

An intermediate event definition with a similar 

output declaration also has an output declaration 

or a similar input declaration. The name of the 

event being defined will be printed. Correct the 

input. 

A primary event definition has relationship 

declarations other than output declarations. 

The name of the event being defined will be 

printed. Correct the input. 

A special intermediate event definition contains 

a similar input declaration. The name of the 

event being defined will be printed. Correct 

the input. 

An intermediate event definition does not 

contain any input declarations. The name of 

the event being defined will be printed. 

Correct the input. 
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Error Number 

25 

• 26 

27 

28 

29 

30 

31 

32 

Error Description 

The logic expression in a special intermediate 

event definition does not contain all of the 

events that occur in the input declarations. The 

name of the event being defined will be printed. 

Correct the input. 

The logic expression in a special intermediate 

event definition contains at least one event 

that does not occur in an input declaration. The 

name of the event being defined will be printed. 

Correct the input. 

A Boolean expression exceeds the size of the 

vector used to hold it. Use a version of SETS 

with a larger expression vector. 

A conditioning event is related to an event that 

is not the output event of a PRIORITY AND gate 

or an INHIBIT gate. The name of the conditioning 

event will be printed. Correct the input. 

The output event of a PRIORITY AND gate or an 

INHIBIT gate does not have exactly one condi­

tioning event related to it. The name of the 

output event of the PRIORITY AND gate or the 

INHIBIT gate will be printed. Correct the 

input. 

The output event of a PRIORITY AND gate does 

not have at least two input events related 

to it. The name of the output event of the 

PRIORITY AND gate will be printed. Correct 

the input. 

The output event of an INHIBIT gate does not 

have exactly two input events related to it. 

The name of the output event of the INHIBIT 

gate will be printed. Correct the input. 

A fault tree contains at least two similar 

trees that overlap (i.e., generated event 

names have more than one prefix). The 

generated name of the event that causes the 

error will be printed. Correct the input. 
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Error Number 

33 

34 

35 

36 

37 

38 

39 

40 

41 

84 

Error Description 

The number of characters in a name or alphabetic 

delimiter exceeds the size of the vector used to 

build these entities. The first sixteen characters 

of the name or alphabetic delimiter will be printed. 

Correct the input. 

Two special characters (excluding the minus) 

occur in juxtaposition in a context where such 

an occurrence is incorrect. Correct the input. 

Two special characters (excluding the minus) 

do not occur in j"uxtaposition in a context where 

such an occurrence is required. The characters 

that occur between the two special characters 

will be printed. Correct the input. 

A generated event name is OMEGA, or it is 

identical to a nongenerated event name, or it 

is identical to a generated event name but the 

prefixes are not the same. The generated event 

name will be printed. Correct the input. 

The block file does not contain a block with 

the block name that occurs as a parameter in a 

LDBLK or a PRTBLK call. The block name will be 

printed. Correct the input. 

An equation cannot be printed without 

exceeding the maximum length allowed for each 

line of print. Use a version of SETS with a 

larger maximum printed line length. 

The right side of an equation is incorrect. 

Specifically, a variable follows a right 

parenthesis. The left side variable of the 

equation will be printed. Correct the input. 

The right side of an equation is incorrect. 

Specifically, there is at least one unpaired 

left parenthesis. The left side variable 

of the equation will be printed. Correct 

the input. 

The right side of an equation is incorrect. 

Specifically, the period terminating the right 

side follows the equivalence operator, a 



Error Number 

42 

• 

43 

44 

45 

J 

46 

47 

Error'Description 

left parenthesis, or an operator. The left side 

variable of the equation will be printed. Correct 

the input. 

The right side of an equation is incorrect. 

Specifically, an AND or OR operator follows a 

left parenthesis or another operator. The left 

side variable of the equation will be printed. 

Correct the input. 

The right side of an equation is incorrect. 

Specifically, a NOT operator follows another 

NOT operator, a right parenthesis, or a 

variable. The left side variable of the equation 

will be printed. Correct the input. 

The right side of an equation is incorrect. 

Specifically, a left parenthesis follows a 

right parenthesis or a variable. The left 

side variable of the equation will be 

printed. Correct the input. 

The right side of an equation is incorrect. 

Specifically, a right parenthesis follows a 

left parenthesis or an operator. The left 

side variable of the equation will be printed. 

Correct the input. 

The right side of an equation is incorrect. 

Specifically, there is at least one unpaired 

right parenthesis. The left side variable 

of the equation will be printed. Correct the 

input. 

The level of an AND or OR operator exceeds 

the maximum that can be accommodated during 

expansion of an expression. The left side 

variable of the equation which contains the 

operator will be printed. If possible, break 

up the equation and reduce it in stages 

instead of all at once. 
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Error Number 

48 

49 

50 

51 

52 

86 

Error Description 

The left side variable of an equation occurs in 

the right side of the equation, or the process of 

substituting equals for equals into the right side 

of an equation generates a sequence of substitutions 

that is repetitive and nonending. For the first 

case the left side variable of the equation will be 

printed, and for the second case the left side 

variable from one of the equations in the repetitive 

sequence will be printed. Correct the input. 

An integer contains a character other than a 

digit, or an integer has occurred that is 

>99999999. Correct the input. 

The number of variables in a term exceeds the 

maximum that can be accommodated during the 

expansion of an expression. Use a counted 

literals maximum in the REDUCEQN or PRTEQNDNF 

call to truncate the equation. 

The number of equations that either are or have 

been in the equation file since this numbering 

was last initialized exceeds the maximum number 

that can be accommodated. The name of the SETS 

user program will be printed. Initialize the 

numbering of equations by inserting a call of 

DLTEQN with no parameters in the SETS user 

program after taking steps to save all meaning­

ful equations in blocks. 

The number of terms in an expression exceeds 

the size of the vector used to hold them. If 

this occurs during simplification or 

factorization of an equation, break up the 

equation and reduce it in stages instead of 

all at once, or use a counted literals 

maximum in the REDUCEQN call to truncate the 

equation. If it occurs when an equation is 

being printed in disjunctive normal form, 

use a counted literals maximum in the PRTEQNDNF 

call to truncate the equation. 
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Error Number 

53 

• 
54 

• 

Error Description 

The region of Extended Core Storage (ECS) used to 

store the right sides of equations has been 

exceeded. The name of the SETS user program will 

be printed. Initialize the use of ECS by insert­

ing a call of DLTEQN with no parameters in the 

SETS user program after taking steps to save all 

meaningful equations in blocks • 

The number of variables in an expression exceeds 

the size of the vector used to count the number 

of occurrences of each literal. If this occurs 

during factorization, break up the equation and 

reduce it in stages rather than all at once, 

or use a counted literals maximum in the 

REDUCEQN call to truncate the equation. If it 

occurs when an equation is being printed in 

disjunctive normal form, use a counted literals 

maximum in the PRTEQNDNF call to truncate the 

equation . 
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APPENDIX D 

Common Cause Analysis Using SETS 

There can be special conditions which are not represented in a fault tree 

that closely link some of the primary events in the fault tree. Also, secondary 

(causal) events that do not appear in the fault tree may contribute to the occur­

rence of some of the primary events that do appear in the fault tree. A 

methodology has been developed to analyze the impact of special conditions and 

secondary events on the behavior of a system, without requiring an explicit 

representation of the special conditions and secondary events in the fault tree. 

The methodology is called common cause analysis and it was developed at the 

Aerojet Nuclear Company [7]. Additional information concerning the methodology 

and its implementation using SETS can be found in [8, 9]. 

D.l Common Cause Analysis 

Common cause analysis is related to fault tree analysis and provides a way 

to analyze the behavior of a system that is affected by special conditions and 

secondary causes. A special condition is a characteristic which closely links 

some of the primary events in the fault tree. For example, components that are 

located in the same box are linked by their proximity to one another, and 

components produced by the same manufacturer are linked because they are built 

by the same company. 

listed in Table D-I. 

Some special conditions that can link primary events are 

Symbol * Condition 

E Energy source 

C Calibration 

F Manufacturer 

I Installation 
contractor 

M Maintenance 

*Followed by an integer. 

TABLE D-I 

Special Conditions 

Example Source 

Common drive shaft, same power supply 

Misprinted calibration instructions 

Components constructed by same 
manufacturer 

Same subcontractor or crew 

Incorrect procedure, inadequately 
trained personnel 

A secondary cause is an event which may contribute to the occurrence of 

some of the primary events in the fault tree. An exposure area for a secondary 

cause is a region that does not contain any barriers to the secondary cause. 

Components are located in the same exposure area for a particular secondary cause 

if they are not separated by a barrier to the secondary cause. Some possible 

secondary causes are listed in Table D-II. 
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Symbol 

I 

v 
P 

G 

S 

T 

Event 

Impact 

Vibration 

Pressure 

Grit 

Stress 

Temperature 

TABLE D-II 

Secondary Causes 

Example Sources 

Pipewhip, water hammer, missiles, 
earthquake, structural failure 

Machinery in motion, earthquake 

Explosion, pump overspeed, flow 
blockage 

Dust, metal fragments 

Thermal stress at welds 

Fire, lightning, cooling system 
faults 

Tables D-I and D-II contain some of the special conditions and secondary 

causes that an analyst may want to consider. Additional special conditions or 

secondary causes can be defined provided that all of the symbols used for the 

special conditions and secondary causes are distinct. The integer in the symbols 

for special conditions is used to distinguish different manufacturers Fl, F2, 

• , Fi, different maintenance crews Ml, M2, ••• , Mj, etc. 

The existence of a special condition which closely links some of the primary 

events in a fault tree, or the existence of a secondary cause that contributes to 

the occurrence of some of the primary events in a fault tree, introduces the 

possibility that not all of the primary events in the fault tree are pairwise 

independent. It is important to ascertain how this possible lack of independence 

for some pairs of primary events might affect the behavior of the system. A 

common cause candidate is a minimal cut set which satisfies at least one of the 

following criteria: 

1. All of the primary events of the minimal cut set are linked 

by a special condition. 

2. All of the primary events of the minimal cut set are 

susceptible to the same secondary cause and they are 

located in the same exposure area for that secondary 

cause. 

The purpose of common cause analysis is to identify every common cause candidate 

and, for each common cause candidate, to determine all of the special conditions 

that satisfy the first criteria and all of the secondary causes that satisfy the 

second criteria. 

Consider an application of common cause analysis to the Figure 1 fault 

tree in section 3.3.1. The minimal cut sets for the top gate, Gl, of this fault 

tree are represented by the equation: 

Gl-MCS = E2AE3 V E1AE3 V E2AE5 V E1AE4AE5 

• 



Suppose that the special conditions and secondary causes for the primary events 

El, E2, • , ES are as indicated in Table D-III. Notice that the secondary 

causes have exposure areas associated with them. For example, the primary events 

E2 and ES have a secondary cause of Al-T meaning that they have a secondary cause 

of temperature and they are both in the same exposure area (area 1) for tempera­

ture. 

TABLE D-III 

Special Conditions and Secondary Causes 
for the Primary Events of the Example 

Primary Special 
Event Condition Secondary Cause 

El Fl, M3 Al-I, A2-T 

E2 F2, M2 Al-I, Al-T 

E3 F3, M3 A2-I, A2-T 

E4 Fl, Ml A2-I, A3-T 

ES Fl, M2 A3-I, Al-T 

Some of the common cause candidates can be identified by inspection of 

Table D-III. For example, by the first criteria E1AE3 is a common cause candidate 

with respect to maintenance (M3) and by the second criteria it is also a common 

cause candidate with respect to temperature (A2-T). Notice that none of the 

minimal cut sets are common cause candidates with respect to impact, and that the 

minimal cut set E2AE3 is not a common cause candidate with respect to any special 

condition or secondary cause. 

D.2 Using SETS to Implement Common Cause Analysis 

The implementation of common cause analysis using SETS is based on a trans­

formation of variables (i.e., a substitution of equals for equals). The variable 

transformation is carried out on the equation that represents the minimal cut sets 

for the top event (or any other intermediate event) of the fault tree. Thus, the 

determination of the minimal cut set equation for the selected intermediate event 

of the fault tree is the first step in applying common cause analysis. For some 

fault trees, it may actually be more efficient to perform the variable transfor­

mation at some interim point in the development of the minimal cut set equation 

if the equation is being developed in stages. However, in this description of 

how SETS is used to implement common cause analysis, the generation of a minimal 

cut set equation will constitute the first step in applying the methodology. To 

illustrate the implementation we shall continue with the example of section 0.1. 

Prior to the transformation of variables, a Boolean equation must be defined 

for every primary event in the fault tree. The equation for a primary event 

specifies the special conditions and secondary causes that are applicable to the 

primary event. The equation also indicates which exposure area the primary event 

is located in with respect to each secondary cause. Since the transformation of 

variables will replace each primary event in the minimal cut sets with the right 
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side of the equation for that primary event, the primary event must be represented 

in every term on the right side of the equation if it is to survive the transforma­

tion. A similar but different name is used to represent the primary event on the 

right side of the equation because SETS does not allow the same name to occur on 

both sides of an equation. In the equations for the example, EOI represents 

El, E02 represents E2, etc. 

The equations for the primary events EI, E2, •.• , ES of the example can 

be determined from Table D-III and they are contained in the following input block: 

INPUT BLeCK! CMMN-CAUSE-T~ANS. 
El = (Fl + H3 • Al-I + A2-T) • Eel. 
E2 : (F2 + H2 + A1-1 + A1-T) • £02. 
E3 = (F3 + M3 + A2-I + A2-T) • Eu3. 
E4 = (Fl + H1 + A2-1 + A3-TI • E04. 
ES = (Fl + H2 + A3-I + A1-T) • E05. 

Interpretation of the equation for El, for example, indicates that the component 

represented by primary event El was produced by manufacturer Fl and is serviced 

by maintenance team M3. Furthermore, the component is susceptible to impact and 

it is located in exposure area 1 with respect to impact (AI-I); and the component 

is susceptible to temperature and it is located in exposure area 2 with respect 

to temperature (A2-T). After the transformation of variables, the primary event 

El will be represented by EOI. 

The original notation for the primary events can be restored by another 

transformation of variables after the common cause candidates have been determined. 

This step is optional. If the step is included, an equation is required for each 

primary event which will replace the representation of that primary event in the 

common cause candidate equation with the original representation for the primary 

event. The input block to restore the original notation for the example is: 

INPUT BLCCK$ CR1G-NOTN-TRANS. 
E01 = El. Eu2 = E2. E03 = E3. 
E04 = £4. EJ5 = E5. 

For both of the input blocks, CMMN-CAUSE-TRANS and ORIG-NOTN-TRANS, it is 

only necessary to have an equation for each primary event that occurs in the 

minimal cut sets. Sometimes, however, it is simpler to provide an equation for 

every primary event than it is to determine which equations can be omitted. 

A SETS user program to determine the common cause candidates for the 

example is as follows: 

PROGRAM$ CC-ANALYSIS. 
LDBLK (Gl-MCS-EQN). 
RDINFBLK (CHHN-CAUSE-TRANS, ORIG-NOTN-iRANS). 
LOBLK (CMHN-CAUSE-TRANS). 
SUBlKEQN (Gl-HCS. TEMP). 
REOUCECN (TEMP, CC-CNO, 1· EXCEPiNONCHP$ Eel, f02, E~3, 

E04, £05). 
FRH8LK (ee-eND-EQN· ONLY$ cc-eNOI. 
OLTEQN. 
LDBLK 'CC-CND-fQN, ORIG-NOTN-TRANS). 
SUBINEQN (CC-GNO, CC-CNO). 
PRTECNONF (CC-CNO). 
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The first statement in the SETS user program causes the equation for Gl-MCS 

contained in the block Gl-MCS-EQN to be loaded (i.e., entered, into the equation 

file) where it is available for further processing_ 

The transformation of variables that produces the equation which contains 

the common cause candidates is accomplished by the first call of the Substitute 

In Equation procedure. Each primary event in the equation for Gl~MCS is replaced 

with the right side of its equation from the input block CMMN-CAUSE-TRANS. The 

equation produced by the transformation of variables contains all of the common 

cause candidates, but it also contains terms that do not represent common cause 

candidates. The terms that do not represent common cause candidates can be 

eliminated by a call of the Reduce Equation procedure which is the next statement 

in the SETS user program. 

The first part of the processing by the Reduce Equation procedure is to 

apply the distributive law to the equation produced by the transformation of 

variables (i.e., the equation for TEMP), to obtain a disjunctive normal form of 

the equation. At the same time, the identity PAP = P is applied to eliminate all 

occurrences of repeated variables save one from each term. The terms which contain 

exactly one special condition or secondary cause are the common cause candidates. 

Conversely, any term which has more than one special condition or secondary cause 

after the identi~y PAP = P has been applied, is not a common cause candidate. 

The terms of the equation that are not common cause candidates are eliminated 

by using a counted literals maximum of 1 in the Reduce Equation call, while at 

the same time excluding the primary events from the counting process. The equation 

that is produced (i.e., the equation for CC-CND), contains all and only the common 

cause candidates. 

The sixth through the ninth statements of the SETS user program restore the 

original notation for the primary events. Again this step is optional. The final 

statement of the SETS user program prints the common cause candidates for the 

example: 

TERM 
NUMBER 

1 

2 

3 

4 

5 

NUHEER OF 
LITERALS 

3 

3 

3 

3 

4 

CC-CNO = 

Al-T A E2 A E5 v 

M2 A E2 A E5 v 

A2-T A El A E3 v 

M3 A El A E3 v 

Fl A El A E4 A E5 
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Common cause analysis is a method for studying the effect of special 

conditions and secondary causes on the behavior of a system, and it can be 

implemented using SETS. The primary responsibility of the analyst is to define 

the equations in the input block CMMN-CAUSE-TRANS. These equations specify the 

special conditions and secondary causes that are pertinent to each of the primary 

events. If the original notation for the primary events is to be restored, the 

analyst must also define the equations in the input block ORIG-NOTN-TRANS. A 

SETS user program similar to CC-ANALYSIS can then be used to perform the trans­

formation of variables and produce the common cause candidates. • 

• 
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