SAND76-8265
Unlimited Release

- FORODT - Fortran Debug Routine
for the PDP-11 (RT-11)

D. N. Tanner

@ Sandia labo'ratories

Sk 2900 Q(7-73)

When printing a copy of any digitized SAND
Report, you are required to update the
markings to current standards.

Issued by Sandia Laboratories, operated for the United States Energy
Research and Development Administration by Sandia Corporation,

NOTICE

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States nor
the United States Energy Research and Development Admini-
stration, nor any of their employees, nor any of their contrac-
tors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness or usefulness of any information,
apparatus, product or process disclosed, or represents that its use
would not infringe privately owned rights.

-1

SAND76-8265
Unlimited Release
Printed January 1977

FORODT - FORTRAN DEBUG ROUTINE
FOR THE pPDP-11 (RT-11)

Duncan N. Tanner
Electronics Development Division 8159
Sandia Laboratories, Livermore

ABSTRACT

FORODT provides run time debug features to PDP-11 Fortran
programs running with the RT-11 operating system. Digital
Equipment Corporation's ODT program has been extended to include
Fortran breakpoints, decimal integer and floating point data
input, and output options.

3/4

CONTENTS

Introduction

Fortran Breakpoints

Setting Threaded Code Breakpoints

Program Start and Continue
Single Instruction Mode
Fortran GOTO

Restarting a Program

Data Access

Local Variables

Blank Common

Labeled Common

Dummy Variables

Input/Output Radix
Restrictions

APPENDIX I -~ COMMAND SUMMARY
APPENDIX II - FORODT EXAMPLE

APPENDIX III - GOTO EXAMPLE

Page

12
12
13
13
14
14
15
15
15
15
17
18
21

27

5/6

FORODT - FORTRAN DEBUG ROUTINE
FOR THE PDP-11 (RT-11)

Introduction

FORODT allows breakpoints to be set in Fortran as well as
assembly language programs running on the PDP-11 with the RT-11
operating system. FORODT features are in addition to those pro-
vided in DEC ODT V01-02. The new features include the setting
and clearing of Fortran breakpoints, a Fortran "GOTO" command,
and the change of type~in/type-out radix. Octal, integer, real
(2-word floating point), and double (4-word floating point) I/O
conversions are available.

These features are summarized in Appendix I. Appendices II
and III contain detailed examples. It is assumed that the
reader is familiar with ODT. The following descriptions apply
to the FORODT features.

FORODT occupies about 2100 decimal words, about 600 more
than ODT. Two Fortran OTS routines require an additional 633
words, but are usually needed by the Fortran program so the
effect is user-dependent.

Fortran Breakpoints

ODT was designed to be used to debug assembly language pro-
grams. The RT-11 Fortran compiler does not generate assembly
language instructionss; it generates a list of subroutine entry
points and arguments which perform the desired function when
executed in order. A pointer is used to thread through the list.
Actual execution occurs within subroutines which come from the
. Fortran Library (FORLIB). Normal ODT breakpoints cannot be used
because the breakpoints must be at an executable location.

FORODT allows up to eight breakpoints to be set in Fortran
threaded code. This is in addition to the eight breakpoints
available for normal assembly language routines.

The Fortran compiler has an option which provides the in-
formation needed to set Fortran breakpoints. The following
program will be used as an example. It is compiled

ODTDEM,ODTDEM/L:7=0DTDEM

The L switch (/L:7) tells the Fortran compiler to generate the
generated code listing and the storage map in addition to the
listing. The listing of ODTDEM is shown in Figure 1, and a
list of two subroutines is shown in Figure 2.

‘Setting Threaded Code Breakpoints

The breakpoint must be chosen from the generated code
listing of the Fortran program. Once the absolute or relative
location is found the breakpoint is set:

ri;nV

r is the address of the breakpoint
n is the breakpoint number 0 to 7.

The address of the breakpoint is either absolute or relative
form. The absolute address is the octal location in memory.
The relative form is K,£;nV where K is the relocation register
and £ is the location relative to the contents of relocation
register K. It will be assumed that relocation registers have
been set for the example program:

Register 0 Main
Register 1 Subroutine SUB
Register 2 Function FUN

In this way, the relative locations for data and breakpoints
can be used.

The program is linked by:
ODTDEM,ODTDEM=FORODT ,ODTDEM/F

Figure 3 shows the memory map. The main program starts at 11212
and a relocation register is set 11212;0R.

Refer to the generated code listing in Figure 1. ISN#0007
in the listing refers to line 7 in the source listing. The
generated code follows the relative octal location followed by
the contents. Line 7 would look like this:

OO0

PROGRAM TO DEMuns TRATE THE THREADED
CODE BREAK POINT

paal COMMON ~LEOM/IAC18)

8pa2 COMMON Adla)

eana bR 18 I=1.18

a6e4 K=1I-1

8885 CALL SUB(K.B)

e896 R{I)=B

&9a7 IACIY =K

egeg 18 CONTINUE

#8009 EHD

FORTRAN 1V STORAGE MAP

HAME OFFSET ATTRIBUTES

I 808996 INTEGER*2 YARIARLE
K @A3a19 INTEGER#2 VARIABLE
suR 809660 REALY4 PROCEDURE
B Ba2812 REAL#4 YARIRBLE
COMMON BLOCK ~~ LENGTH 980858
A 008pBa REAL*4 ARRAY (i@

COMMON BLOCK ~LCOM/

Ia agGorg

LENGTH 2360824
INTEGER®2 ARRAY (18)

FIGURE 1.

FORTRAN 1V

1SN #8883
0A9028 LSN%
688224 MOIEIM

1SN 20064
059838 LSNS
geaR34 MOTSMM
929842 DCISM

ISN #8885

20084 IS5H%
3858 RELE
032854 RELS
angsed CAaLs

ISN +0806
BO2066 ISNS
gusa7e SAFSMM
BO8B7E MOFEMA

ISN #g@aa?
Era1e2 ISNS
anaied SATEMM
g9g112 MOIsMA

ISN +0@888
BBO11i6 LSN$
6R3122 NMIslI

ISH #5889

809132 I5NS$
820134 RETS

MATIN PROGRAM EXAMPLE

GENERAED CODE

#080003
aRBRAG

#000604
ARGeac Bvoo18
20ag18a

aBee12
aedn10
#990002 SUB++8ABROA

fBa9ee
BBAA12

CSPES. HELTPTT4

808885
Bave 18

LCOM+#177776

#2000 18
ApBaBe +000012 ABNB39

0T

c c
C SAMPLE SUBRUUTINE C SAMPLE FUNCTION
C C
21712} SUBROUTINE SUB(K1.B1) 88081 FUNCTION FUNCI2)
Ba2 J= Kl + 1 0882 Al=2.8%KI2
8383 B1=FUN(J} 0003 FUN=A1
a0a4d RETURN , aen4 RETURN
Beas END B8a5 END
FORTRAN 1V STORAGE MAP FORTRAN IV STORAGE MAP
NAME OFFSET RTTRIBUTES NAME OFFSET ATTRIBUTES
K1 288014 INTEGER*2 PARAMETER VARIABLE FUN 80BB16 REALx4 VARIARBLE
B1 808816 REAL*4 PARAMETER VARIABLE J2 00814 INTEGER*2 PARAMETER VARIABLE
J 089828 INTEGER%*2 VARIABLE Al 868822 REAL*4 VARIABLE
FUN 2968098 REALx4 PROCEDURE
FORTRAN 1¥ GENERATED CODE
FORTRAN IV GENERATED CODE
1SN #8002
ISN #8882 862826 LSHNS #300002
209822 LSN$ #290082 600832 MOF$SIS +948490
669826 MOI$PM 000614 000820 020036 MOISPS 60PB14
#09034 ICISM 000020 BeBRd42 XF1%
92844 MOF$SM 890822
ISN #8883
200840 ISHS$ ISN #8283
800842 RELS 000820 Ba3a58 1SN$
oegn4s CALS #300081 FUN+#308000 6e8852 MOF$SMM 000822 980816
0ePOS54 MOF$RP ©00816
ISN #0884
ISN =0p0a4 B6P060 ISNS
880868 ISN$ Ba9962 RETSF @89816

8720862 RETH

FIGURE 2. SUBROUTINES EXAMPLE

RT-11 LINK
ODTDEM. SAY

SECTION ADDR
. ABS. 0B00RE

061030
LIE$%. 811116
LCOM atiles
a11212
811358
611434
811522

811568

011644

811718
811736
611752

811766
a12044

212146
812326

812362
812424
012478
$FI102 813184
813142
$CLO2 813262
013264

813316

813362
813354
615076
a2u84e

021756
0822234

822542

VB4-04A

SIZE
go10908
giatie

£50058
pegaz24

BeO13E

0908954
08cus6
520836
ByBac4d

Baepe44d

830826
0eeo14
pagni4
602356
pogiez

000160
0886834

065642
000044
088414
0080636
aeo1zn
8e3002
0609832
£00844
eaoap2
e81512
8p2rse
eatz19

009256
80386

060358

LOAD MAP
12-NOV-76

ENTRY

SUSRSW
.Va11a
$LRECL
0.0D7
' |

sug
FUN
crls
MOISIP
MO ISP
MOI$PR
NMI$1IM
BEQs$
ERRS
MOF$RS
MOF$RP
MOFs$IS
MOF$SM
$0TIS
MO 1$58
MO 1s5A
REL$
MO I$MS
MO 1$8S
MOIsIS
ISN$
FLONTR
ICI$S
ICIsA
DCIsP
MOF $MM
MOF $PM
RETSL
RETS
ocls
0cos

STP$

SAISIM
SVISSM
SAFSIM
SVF$SM
$Q0TS
$0TI
$ERRTB
RCI$
ECOS
WF1S$
DIF$PS
DIF$SS
MUF$PS
MUF$SS

TRAMSFER ADDRESS = 881312
HIGH LIMIT = 823112

FIGURE 3.

ADDR

080398
oeeag!
060218
831312

811358
811434
@11522
811568

.B11574

611624
a11644
B11664
811676
611718

811732 |

211736
p11732
g11766
012344
812054
812360
612074
8i2119
g12124
812146
glzlev2
812326
012348
012354
812362
812410
012424
012448
pl24ra
812672

013142

913264
813276

813316

913332

913362
p13412
815876
820046
$21830
921756
922234
922254
822542
922562

ENTRY

$RFICI
$NLCHN
$TRACE

CALs
MOI$SP
MOISPS
MO IsBP
NMIs1]
BGTS
BNES
MOF$RM

MOF$BS
MOF$SP

MOL$SS
MDI$1S
HMOISIM
MO I$MM
MO I$8M
MOI$IM
$ISNTR

ICIsM
DCI%S
DCIsA
MOF<MA
MOFsPR
RET¢F

ICI%
1COs

FO0$
SAT$SM

SAISMM
SAF$SM

SAFSMM

$ERRS
GCOs
DCOS
$PWRI
DIFSMS
$DVR
MUF$MS
$MLR

ADDR

po0e9e
688806
684737

211538
g11562
211684
811626
811654
a11672
elivez2
glivlie

g1ir44
Bi1ive2

212844
2912860
012864
2121008
812114
@12132
812152

012332
012344.
012356
012374
912414
012439

812476
0l27a8

813146

0132266
8133086
813328
813352

B8151rve
821816
821836
a21756
822249
022254
0822546
822562

LOAD MAP EXAMPLE

ENTRY

$HRDUR
$UWAS 12

MI1%PP
MO I%PM
MOISIP
BLES
BEGES
BLTS
MOFSRA

MO I$SHM
MOLSIS
MOISIA
MOIsMA
MDI%$BA
MOI%IA
LSNs

ICIsP
DCI$M

MOF$MP
MOF$PP
RETS$I

$ECI

$EXIT
SVI$IM
SVIS$MM

SVF$IM
SVFs$MM

FCOs

DIF$IS
MUF$IS

ADDR
e0o008

000875

at1sre
811612
811634
B8l1662
811674
811704
811726

212850
012068
g12e78
8l2184
a12128
812140
elaies

812336
0812356

912482
212420
0812436

812512

813166
813274
913312

813330
0813356

821024

@22256
822556

11

Relative Absolute Actual

Location ~Contents Location Contents
102 ISNS 011314 012146
104 SATI$MM 011316 013306
106 000006 011320 000006 -
110 LCOM-2 011322 011164
112 MOISMA 011324 012104
114 000010 011326 000010

The absolute location and actual contents are determined by the
linker and are found from the load map (Figure 2). The absolute
location is found by adding the relative location to the start
of the routine (11314 = 102 + 11212).

To set a breakpoint, the relative location of line 7 is
found in the generated code list. It is set with 0,102:;V. It
is important to note that breakpoints could also be set at 0,104
and 0.112, but not at 0,106, 0,110, and 0,114 since these words
contain arguments for the threaded code, not threaded code
routine names or entry points.

The Fortran breakpoint command r;V operates identically to
the normal ODT breakpoint command r;B.

Program Start and Continue

When the program is run, it will start up in FORODT. Break-
points can be set and the program is started at the beginning of
the main program for Fortran programs. In our example, the pro-
gram is started at 011212 or 0,0. 0,0,;G will start the program.
When a breakpoint occurs, FORODT types

Vnsr
where r is the location of the breakpoint and n is the
breakpoint number. This is identical in form to the ODT break-
point Bnjr.
The program execution is continued by typing ;P or n;P.

This is also identical to ODT. FORODT knows which type of
breakpoint occurred.

Single Instruction Mode

" The ODT single instruction mode cannot be set when the
breakpoint is a Fortran breakpoint (3;V). The single instruc-
tion mode is available following an ODT breakpoint (;B).

12

Fortran GOTO

The "GOTO" command allows program execution to proceed at
any Fortran instruction. The command causes execution to assume
at a threaded code location with the same rules which apply to
the Fortran breakpoint (3;V). The GOTO command is

r;T

where r is the location of the start of the Fortran
instruction.

While the command allows the user to change the order of
program execution, there are some pitfalls which must be con-
sidered. Some of the restrictions and precautions are:

1. The Fortran program should always start initially
with the r;G command because the first few words
of the program are instruction which initializes
the Fortran work space and tables and start the
threaded code execution.

2. Many Fortran instructions are meant to be executed
only once. For example, instructions which set up
and open I/0 channels. A second execution of these
instructions could produce fatal or unpredictable
results.

3. Disrupting the normal subroutine nesting is risky.
As an example:

Subroutine A calls B

Subroutine B calls C

If we GOTO an instruction in Subroutine B,

the return link to Subroutine A will not be
set up and the program will not run correctly.

4. The GOTO should not start in the middle of a Fortran
statement. In line 7 location 0,102 is the start of
the statement and 0,102;T is valid. Resuming at |,
0,104, 0,110 and 0,112 are not recommended unless
the user is fully aware of the requirements of the
routines skipped in that line. Many of the OTS
routines require that information be placed on the
stack in correct order, and this may not be accom- -
plished correctly if execution startes in the middle
of the line.

Restarting a Program

Once the program has been started using the r;G command,
it should not be attempted again without exiting to Monitor (-).

13

This is necessary because the first action Fortran takes is to
set up the Fortran OTS workspace and tables. This cannot be
done more than once.

The r3T command can be used to restart as long as the
restrictions which apply to this command are observed. If the
restart follows a breakpoint in a subroutine, stack overflow
could result. By returning to the main part of the program
subroutine, linkage problems are avoided, but the stack pointer
is not reset to clear out the linkage. If this is done several
times the stack will continue to grow to the point where the
hardware flags the overflow.

Data Access

ODT and FORODT require that the absolute or relative loca-
tion be known for each word to be opened. The Fortran listing
provides this information in the storage map. In the example,
the variable I is located at relative location 6 in the main
portion of the program. This variable can be examined by

typing
0,6/
The value of I is displayed following the /.
There are four variable storage classifications:
1. Local variables.
2. Variables stored in blank common..
3. Variables stored in labeled common.

4. Variables which are parameters or arguments in a
subroutine.

The Fortran storage map listing and the load map are used to

determine the actual location of each variable.
L]

Local Variables

The Fortran storage map gives the relative location. In
our example, the variable I is located at 6 and can be examined

by typing
0,6/

14

Blank Common

Blank common appears in the load map as the .$$$$. and any
variable in blank common is referenced relative to that location.
In the example, blank common starts at 11116 and variable array
A starts there.

Labeled Common

Labeled common appears in the load map with the label.
The variable is referenced relative to that location. In the
example, labeled common block LCOM starts at 11166 and array
IA starts there.

Dummy Variables

Dummy variables (arguments in a subroutine) are referenced
differently. Within the subroutine the storage map indicates
the argument is a parameter variable. The relative location
given does not contain the value, it contains the location of
the value.

In our example, relocation register 1 is set to the start
of subroutine SUB. To look at the parameter variable K1 in
subroutine SUB, we type

1,14/011364@
0,10/XXXX the value of K1 is displayed

The character @ directs FORODT to open the location contained in
word 1,14 which is in fact the location of the variable K1l in
the main program. This address scheme is meaningful only if the
current breakpoint is within the subroutine or routines called
by the subroutine.

Input/Output Radix

FORODT has the feature to change the I/0 radix from octal
to decimal integer or floating point. When FORODT is first
started, the default I/0 radix is octal. When-a word is opened
" the contents are displayed in the current radix.

To better explain the I/0 radix operation, it is necessary
to define two terms:

1. Current Radix

The I/0 radix which is in effect for when a word is
open and is the radix used last to display the contents
to that word.

15

2. Default Radix

The current radix is restored to the default radix
when FORODT types an *. If successive words are
opened by typing a line feed, the current radix is
retained until a carriage return is typed or an
error occurs.

Both the current radix and default radix can be changed. The
current radix is changed by typing a single # followed by the
letter I, F, D, or O. This will cause the contents of the
current word to be displayed in the new current radix. Input
to change a word must always be in the current radix. Word
addresses are always octal. For example, the default radix is
octal and the location 1202 is opened

1202/000020 #I 16 18<CR>

Location 1202 contained 20 octal. The #I changed the current
radix to decimal integer, and the contents of 1202 were dis-
played as 16 decimal. 18<CR> changed the contents of 1202 to
18 decimal or 22 octal.

Real and double floating point numbers occupy two or four
words, so if a location is opened with a real radix, that word
and the next word are opened and displayed in floating point.
The reply is converted back and two words are modified. If a
line feed is typed, the next real number is opened and displayed.
Example:

*1012/ 034100 #F 0.1148000E-0O4 1.158E-5<LF>

1016/0.1296000E-03
The second location opened is four more than the first.

The current radix determines the number of words displayed
and modified. Example:

%1044/ 000000 #F 0.0000000 #I 0 1<LF>
In this case, the current radix was changed from real to integer
and only one word was modified. The line feed caused the next
"word to open and it was displayed as a decimal integer.
The default radix is set by typing two #'s and the letter

I, F, D, or O. When FORODT is first run, the default radix is
octal.

16

*HHT Set the default radix to
2 word floating point.
#1012/0.1158000E~0U4<LF>

1014/0.129000E-03

*#4F
*1012/0.158000E-04 #I 14400 1<CR>

Here only location 1044 is changed because the current radix
was changed to decimal integer (1 word).

AT
#1012/ 14400 #F 0.158000E-4% 1.23<CR>
Here the floating point number 1.23 is stored in locations 1012

and 1014.

Restrictions

Programs which use overlays require special caution.
Breakpoints cannot be set in overlay regions if a new segment
will be swapped in, as the breakpoint will be destroyed. .
Breakpoints in the root segment will work fine.

FORODT will operate with assembly language programs if the
decimal I/0 features are desired, but the program must be linked
with the F switch because FORODT uses Fortran I/0 conversion

routines.

17

Command

18

\%

##

APPENDIX I - COMMAND SUMMARY

Format

3V

ynV

##1
##F
##D

##0

#I
#E

#D

Explanation

Removes all Fortran breakpoints.

Sets Fortran breakpoint at absolute
location r. The next available break-
point number is used.

Sets Fortran breakpoint n at location
r. The location r is either the
absolute location (octal) or the loca-
tion relative to a relocation register.
r = K,£ where K is the relocation
register number and £ is the relative
location. r = £ + contents of reloca-
tion register K.

Removes breakpoint n.

Sets default I/0 radix to l-word
decimal integer.

Sets default I/0 radix to 2-word
floating point (real).

Sets default I/0 radix to b-word
floating point (double).

Sets default I/0 radix to l-word octal.

Used only when a location is open to
change the current I/0 radix. The
currently opened location is displayed
in the radix indicated following the
#. This new current I/0 radix is
maintained until a carriage return is
typed or FORODT types an *.

Sets current I/0 radix to l-word
decimal integer.

Sets current I/0 radix to 2~-word
floating point (real).

Sets current I/0 radix to u-word
floating point (double).

Command Format
#0
$ sv/
T r;T

Explanation

Sets current I/0 radix to l-word
octal.

Opens the first word of the Fortran
breakpoint table.

GOTO ~- resumes program at threaded
code location r.

ODT Commands

All of the ODT commands are available in FORODT. Those
most useful to the Fortran programmer are summarized here.

Command

/

<CR>

<LF>

Format

r/

;nR

ri;nR

Explanation

Opens the word at location r.

The contents displayed in the current
radix. The location may be modified
by typing a new value in the current
radix followed by a <CR> or <LF>.

Carriage return. Closes an open loca-
tion modifying it if a number was typed
and it types an * for the next command.

Line feed. Closes the current location,
modifying it if a number was typed and
opens the next sequential location.

The F and D radix options modify two

and four words and open the next two

or four word group.

Resets all relocation register to -1
(unassigned).

Resets relocation register n to -1.

Sets relocation register n to value
of r.

Goes to location r and starts the pro-
gram. 1r3;G should be to the beginning

of the main Fortran program. r;G to
threaded code locations will not operate
properly.

19

Command Format Explanation

P 3P Proceed with program execution from
the breakpoint B or V.

KsP Proceed with programvexecution from

the breakpoint B or V; and skips K-1
encounters with this breakpoint

20

APPENDIX II - FORODT EXAMPLE

An example of FORODT with the example program. The user

inputs are underlined.

.R _ODTDEM<CR>

FORODT V01-02

*®*11212,0R

#11350,1R

%11434,2R

%11116,3R

%#11166,4R

*0,116,V

©3,000004/
3,000010/
3,000014/
3,000020/
3,000030/
3,000034/
3,000040/
3,000044/

O<LF>
O<LF>
O<LF>
O<LF>
O<LF>
O<LF>
O<LF>
O<LF>

Run example program.

Set relocation register 0 to
start of main program.

Set relocation register 1 to
start subroutine SUB.

Set relocation register 2 to
start of function FUN.

Set relocation register 3 to
start of blank common.

Set relocation register U4 to
start of common block LCOM.

Set Fortran breakpoint 0 to line
8 in main program.

Set Fortran breakpoint 1 to line
4 in subroutine SUB.

Set Fortran breakpoint 2 to line
4 in function FUN.

Initialize arrays A and IA to

zero. %% indicates the number
could be any value.

21

4,000000/ %% HT %%
4,000002/ %%
4,000004/ #**
4,000006/ #*%
4,000010/ #*
4,000012/ **
4,000014/ **
4,000016/ #**
4,000020/ ®%*
4,000022/ %%

O<LF>

%0,0;G

V232,000060
%#2,14/011370 @
1,000020 /000001<CR>

%2,22/040400 #F 2.000000<CR>
®*2,16/ 2.000000<CR>
*;P

V1;1,000060

*1,14/011164 @
0,000010 /000000<CR>
*1,16/011224 @

0,000012 /040400 #F 2.000000

%1,20/000001<CR>
*;P

v03;0,000116

%0,6/000001<LF>

0,000010 /000000<LF>

0,000012 /040400 #F 2.000000<CR>

22

Start program.

Breakpoint occurred at line X
in function FUN.

Examine dummy variable J2 in
function FUN.

Actual ¥ariable is J in sub-
routine SUB.

Examine Al.
Examine FUN value.
Continue execution.

Breakpoint occurred at line 4
in SUB. '

Examine dummy variable K1.
Actual vairable is K in main.
Examiﬁe dummy variable Bl.

Actual variable is B in main.

J = 1.
Continue program.

Breakpoint at line 8 in main
program.

Examine I.
Examine XK.

Examine B.

%3,0/040400 #F 2.000000<LF>

3,000004 / 0.0000000<LE>
3,000010 / 0.0000000<LEF>
3,000014 / 0.0000000<LF>
3,000020 / 0.0000000<LF>
3,000024% / 0.0000000<LE>
3,000030 / 0.0000000<LE>
3,000034 / 0.0000000<LE>
3,000040 / 0.0000000<LF>
3,000044 / 0.0000C000<LE>
4,000000 / 0.0000000 #I O0<LF>
4,000002 / 0<LF>
4,000004 / O<LF>
4,000006 / 0<LF>
4,000010 / 0
4,000012 / O<LF>
4,000014 / 0<LF>
4,000016 / 0<LF>
4,000020 / 0<LF>
4,000022 / 0<CR>

k3 ;P

V232,000060
%2,14/011370 @
1,000020 /000002

%2,16/040600 #F 4.000000<LF>

2,000022 / 4.000000<CR>

& 5]_3

V1;1,000060

O
-> ,P

V03;0,0001186

b _2—1:1
V232,000060
& 5 P
v131,000060
*3P

V0;0,000116

Examine array A in blank common.

Examine array IA in common block

LCOM.

Continue program.
Breakpoint at line 4 in FUN.

Dummy variable J2 = 2.

Al.

FUN.

Continue.

Breakpoint at line 4 in SUB.
Continue.

Breakpoint at line 8 in main.

Breakpoint at line 8 in main.

23

%3,0/ 2.000000 LF
3,000004 / 4.000000<LF>
3,000010 / '8.000000<LES .
3.000014 / 0.0000000<LES
3,000020 / 0.0000000<LES
3,000024 / 0.0000000<LE>
3,000030 / 0.0000000<LE>
3,000034 / 0.0000000<LE>
3,000040 / 0.0000000<LE>
3,000044% / 0.0000000<LE>
4,000000 / 0.0000000 #I O<LF>
4,000002 / 1<LF>
4,000004 / 23LES
4.000006 / 03TES
4.,000010 / 0<LES
4,000012 / 0<CR>

*##0

*0,6/000003<LF>

0,000010 /000002<LF>

0,000012 /041000 #F 8.000000<CR>

*3P
V2;2,000060

*33P

V13;1,000060

*3;P

Vv0;0,000116
:’:_;_E
v03;0,000116

*;P

v0;0,000116

24

Set radix to 2-word floating
point.

Examine array A in blank common.-

Array IA (integer).

Set radix to octal.
Examine TI.

Examine K.

Examine B.
Continue.

Line 4 in FUN.

Continue skipping breakpoint 2
two times.

Line 4 in SUB.

Continue skipping breakpoint 1
two times.

Line 8 in main.
Line 8 in main.

Line 8 in main.

*;P

V232,000060.

*;P

V131,000060

E3 -,P

V030,000116

%0,6/000007<LF>

0,000010
0,000012

E #_#.E

:':3,0/ 2.

3,000004
3,000010
3,000014
3,000020
3,000024
3,000030
3,000034
3,000040
3,000044

4,000000

4,000002
4,000004
4,000006
4,000010
4,000012
4,000014
4,000016
4,000020
4,000022

A :':.#_ﬂ

/000006<LF>

Line 4 in FUN.

I.ine 4 in SUB.

. . . |
Line 8 in main.

Examine I.

/042000 #F 128.0000<CR>

000000<LE>

/ 4.000000<LE>
/ 8.000000<LF>
/ 16.00000<LF>
/ 32.00000<LE>
/ 64.00000<LEF>
/
/
/
/

128.0000<LE>
.0000000<LF>
.0000000<LF>
.0000000<LF>

OO O

~
(]

.0000000 #I 0_LF

1<LF>
2<LF>
3<LF>
Y<LF>
5<LF>
6<LF>
O<LF>
O<LF>
0<CR>

NN N N NI NI NI NN

7 9<CR>

Examine array A.

Examine array IA.

Change I to 9.

Clear all breakpoints.

Set breakpoint at line 9 in main

program.

25

*;P

Continue.

VO;0,000132 Breakpoint at line 9.

*0,6/ 11<LF> I=11.

0,000010 / 9<LF>

0,000012 / 17792 ﬁz 1024.000

*H#F

%#3,0/ 2.000000<LF> Examine A.

3,000004 / 4.00000O0<LF>

3,000010 / 8.000000<LF>

3,000014 / 16.00000<LF>

3,000020 / 32.00000<LF>

3,000024 / 64.00000<LF>

3,000030 / 128.0000<LF>

3,000034 / 0.0000000<LF> } Note that these two did not get
3,000040 / 0.0000000<LF> set since we changed I from 7 to S.
3,000044 / 1024.000<LF>

4,000000 / 0.0000000 ﬁ; 0<LF> Examine TIA.

4,000002 / 1<LF> ‘

4,00000u / 2<LF>

4,000006 / - 3<LE>

4,000010 / 4<LF>

4,000012 / 5<LES

4,000014 / 6<LE>

4,000016 / O<LF> .

4,000020 / 0<LES } These two also did not get set.
4,000022 / 9<CR>

%P Continue.

STOP -- Exit.

26

APPENDIX III - GOTO EXAMPLE

Example program showing the use of the GOTO command (r;T):

.R ODTDEM CR

FORODT V01-02

%11212;0R

%0,66;V

%0,03;G

V03;0,000066

*0,116;T

V03;0,000066
®2:P
V03;0,000066
%0,6/000004
%0,116;T
V03;0,000066
%0,6/000005<CR>

*30V

%0,132;V

:':;_]_D

V03;0,000132
*#0,6/ 000013 #I 11<CR>

B3 #—#F_

Set relocation register to main
program.

Set breakpoint at main line 6.
Start program.r
Breakpoint at line 6.

Skip to line 8, arrays A and IA
do not get set for I = 1.

Breakpoint at line 6.
Continue skipping one breakpoint.
Breakpoint at line 6.

I = 4.

Skip to line 8.

Breakpoint at line 6.

I = 5.

Clear breakpoint at line 6.
Set breakpoint at line 9.
Continue

Breakpoint at line 9.

I =11.

Set default I/0 to real.

27

The two positions in Array A were not set since

#3,0/ 0.0000000<LF>

3,000004/
3,000010/

4L.0000000<LF>
8.0000000<LF>

3,000014/0.00000000<LF>

3,000020/
3,000024/
3,000030/
3,00003L/
3,000040/
3,000044/

E3

32.000000<LEF>

256.00000<LEF>
512.00000<LEF>
1024.0000<CR>

skip those steps.

28

Would have been 2.0

Would have been 16.0

;T was used to

UNLIMITED RELEASE
INITIAL DISTRIBUTION

Bendix Corporation
Kansas City Division
P. 0. Box 1159
Kansas City, MO 64141
Attn: R. Douglass, D/845

R. Hayes, D/131

D. R. Lemon, D/131

W. E. Simes, D/131

J. J. Zimmerman, D/131

Decus Program Librarian

Digital Equipment Computer User's Society
146 Main Street

Maynard, MA 01754

Mead Technology Laboratories
3481 Dayton Xenia Road
Dayton, OH 45432

Attn: Martin W. Roth

Bradley, 1245
Hayenga, 2532
Roberts, 2534
Horne, 2634
Magee, 2643
Cook, Jr., 8000
utierrez, 8100
Hartley, 8115
Gregson, 8150
Skoog, 8159
Soderstrand, 8159
Tanner, 8159 (20)
Watkins, 8159
Burris, 8166
Schoeppe, 8166
Sneddon, 8166
Tilley, 8166
Zirkle, 8166
Tockey, 8181
DeSelm, 8200
Murphey, 8300
Lee, 8322

Jones, 8322
Short, 8323

. Huddleston, 8325
Berkbigler, 8325

E. Marion, 8332

D. Gildea, 8335
Barr, 8342

=)

szﬁ§4$gU?:F;UUJo:Ur*wP%E:xt*Cjz<3tjc1r+ﬂhjmtu7jw
ngFj%*ﬂn:Qtjoaztﬁr*Z:zD>otﬁr*mtwk4t72

INITIAL DISTRIBUTION (Continued)

D. Benthusen, 8342

W. C. Scrivner, 8400

J. D. Benton, 8411

R. W. Kelley, 8411

F. J. Cupps, 8265/Classification and Technical Library

Processing Division, 314l

Technical Publications and Art Division, 8265, for TIC (2)

Classification and Technical Library Processing Division,
3141 (2)

Library and Security Classification Division, 8266-2 (3)

30

