
..

SAND76-8265

Unlimited Release

FORODT - Fortran Debug Routine
for the PDP-11 (RT-11)

D. N. Tanner

J

When printing a copy of any digitized SAND
Report, you are required to update the

markings to current standards.

Issued by Sandia laboratories, operated for the United States Energy
A esearch and Development Administration by Sandia Corporation .

NOTICE

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States nor
the United States Energy Research and Development Admini·
stration, nor any of their employees, nor any of their contrac·
tors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness or usefulness of any information,
apparatus, product or process disclosed, or represents that its use
would not infringe privately owned rights.

"'

".

SAND76-8265
Unlimited Release

Printed January 1977

FORODT - FORTRAN DEBUG ROUTINE
FOR THE PDP-II CRT-II)

Duncan N. Tanner
Electronics Development Division 8159
. Sandia Laboratories, Livermore

ABSTRACT

FORODT provides run time debug features to PDP-II Fortran
programs running with the RT-ll operating system. Digital
Equipment Corporation's ODT program has been extended to include
Fortran breakpoints, decimal integer and floating point data
input, and output options.

3/4

Introduction

Fortran Breakpoints

CONTENTS

Setting Threaded Code Breakpoints

Program Start and Continue

Single Instruction Mode

Fortran GOTO

Restarting a Program

Data Access

Local Variables

Blank Common

Labeled Common

Dummy Variables

Input/Output Radix

Restrictions

APPENDIX I - COMMAND SUMMARY

APPENDIX II - FORODT EXAMPLE

APPENDIX III - GOTO EXAMPLE

Page

7

7

8

12

12

13

13

14

14

15

15

15

15

17

18

21

27

5/6

FORODT - FORTRAN DEBUG ROUTINE
FOR THE PDP-II (RT-ll)

Introduction

FORODT allows breakpoints to be set in Fortran as well as
assembly language programs running on the PDP-II with the RT-ll
operating system. FORODT features are in addition to those pro­
vided in DEC ODT VOI-02. The new features include the setting
and clearing of Fortran breakpoints, a Fortran "GOTO" command,
and the change of type-in/type-out radix. Octal, integer, real
(2-word floating point), and double (4-word floating point) 1/0
conversions are available.

These features are summarized in Appendix I. Appendices II
and III contain detailed examples. It is assumed that the
reader is familiar with ODT. The following descriptions apply
to the FORODT features.

FORODT occupies about 2100 decimal words, about 600 more
than ODT. Two Fortran OTS routines require an additional 633
words, but are usually needed by the Fortran program so the
effect is user-dependent.

Fortran Breakpoints

ODT was designed to be used to debug assembly language pro­
grams. The RT-ll Fortran compiler does not generate assembly
language instructions; it generates a list of subroutine entry
points and arguments which perform the desired function when
executed in order. A pointer is used to thread through the list.
Actual execution occurs within subroutines which come from the
Fortran Library (FORLIB). Normal ODT breakpoints cannot be used
because the breakpoints must be at an executable location.

FORODT allows up to eight breakpoints to be set in Fortran
threaded code. This is in addition to the eight breakpoints
available for normal assembly language routines.

7

The Fortran compiler has an option which provides the in­
formation needed to set Fortran breakpoints. The following
program will be used as an example. It is compiled

ODTDEM,ODTDEM/L:7=ODTDEM

The L switch (/L:7) tells the Fortran compiler to generate the
generated code listing and the storage map in addition to the
listing. The listing of ODTDEM is shown in Figure 1, and a
list of two subroutines is shown in Figure 2.

Setting Threaded Code Breakpoints

The breakpoint must be chosen from the generated code
listing of the Fortran program. Once the absolute or relative
location is found the breakpoint is set:

r;nV

r is the address of the breakpoint
n is the breakpoint number 0 to 7.

The address of the breakpoint is either absolute or relative
form. The absolute address is the octal location in memory.
The relative form is K,l;nV where K is the relocation register
and l is the location relative to the contents of relocation
register K. It will be assumed that relocation registers have
been set for the example program:

Register 0
Register 1
Register 2

Main
Subroutine SUB
Function FUN

In this way, the relative locations for data and breakpoints
can be used.

The program 1S linked by:

ODTDEM,ODTDEM=FORODT,ODTDEM/F

Figure 3 shows the memory map. The main program starts at 11212
and a relocation register is set 11212;OR.

Refer to the generated code listing in Figure 1. ISN#0007
in the listing refers to line 7 in the source listing. The
generated code follows the relative octal location followed by
the contents. Line 7 would look like this:

8

c
c

C
1313131
01302
00133
211304
01305
2006
elE:l07
00eS 10
13009

FORTRAN

NFl~1E

I
K
SUB
8

IV

PROGRAM TO DErluN~ fRATE THE THREADt:D
CODE BREAK POINT

cm1MON /lCOM/IA (lEn
COM!'lON A (0)

DO 10 1=1. 113
K=I-l
CALL SU8(K.B)
A (1) =8
IACl)=K
CONTINUE
END

STORAGE MAP

OFFSET ATTRIBUTES

0000136 INTEGER*2 VARIABLE
00!3010 INTEGER*2 VARIABLE
060000 REAL*4 PROCEDURE
1300012 REAL*4 VARIABLE

COMMON BLOCK //

A 00000a REAL*4

LENGTH 131301350

ARRAY (10)

LENGTH 13001324 COMMON BLOCK /LCOM/

IA 13013080 HiTEGER*2 ARRAY (10)

FORTRAN IV GENERRIt:D CODE

ISH *01303
600020 LSN$ *13130003
1300024 MOI$lM 081312106

ISN *81384
00131330 LSN$ *013130134
000034 MOI$MM 131308136 13013010
000042 DCI$M 8801310

IS~l *013135
8001346 ISN$
080850 REL$
0130054 REL$
£18£11360 CAL$

ISN #138136
808066 ISH$

000012
000010
*0013082 SUB+*000000

00007'13 SAF$MM 13008136 • $$$$. +:11:177774
800076 t10F$MA 000812

ISN *012187
000102 rSN$
0130104 SAI$MM 00000S LCOM+#177776
000112 MOI$MA 81210010

rSN #0008
000116 LSN$ *001301121
80a122 NMI$1I 12113001216 #131313012 80121030

IS~1 #90139
8013132 ISN$
000134 RET$

FIGURE 1. MAIN PROGRAM EXAMPLE

1313131
13082
ea03
00214
ee05

C
C
C

SAMPLE SU8ROUTINE

SUBROUTINE SUB(Kl~B1)
J= Kl + 1
81=FUN(J)
RETURH
END

FORTRAN IV STORAGE MAP

NAME

Kl
81

OFFSET ATTRIBUTES

J
FUH

88131314 IHTEGER*2 PARAMETER VARIABLE
8138016 REAL*4 PARAMETER VARIABLE
00138213 IHTEGER*2 VARIABLE
08130813 REAL*4 PROCEDURE

FORTRAN IV GENERATED CODE

ISN .a882
0138822 LSH$ +09130132
008826 MOI$PM 131313014 13130020
808834 ICI$M 001313213

ISH *131383
0001340 ISN$
8 EHl 042 REL$
0001346 CAL$
0081354 MOF$RP

ISH :1tB0e4
0000613 ISN$
000@62 RET$

€l8e828
#0881381 FUN+#0e0ee0
0081316

c
c
c

SAMPLE FUNCTIOH

0081
1312182
131303
0084
00135

FUHCTION FUN(J2)
Al=2.0**J2
FUN=Al
RETURN
END

FORTRAH IV STORAGE MAP

HAME

FUN
J2
Al

OFFSET ATTRIBUTES

8813016 REAL*4 VARIABLE
1388014 INTEGER*2 PARAMETER VARIABLE
01313822 REAL*4 VARIABLE

FORTRAN IV

ISN *21002
1313121826 LSN$
600032 MOF$IS
008836 MOI$PS
1308042 XFI$
80131344 MOF$SM

ISH .aa83
131308513 ISN$

GENERATED CODE

«=0888132
=11=13484130
813131314

ea8e22

000052 MOF$MM 088022 8eea16

ISH #13884
13130868 ISN$
131313062 RET$F 8138816

FIGURE 2. SUBROUTINES EXAMPLE

F17-11 LINK Vl34-04A LOAD NAP
ODTDEM.SAV 12-I-IOV-76

SECTION ADDR SIZE ENTRY ADDR ENTRY ADDR ENTRY ADDR

• ASS. elel130130 001080 $USRSW 0001300 $RFICI ElEl0El00 $HRDWR EleJ6elElel
.VeJIIA 0130001 $NLCHN 0000136 $WASIZ 00EH375
$lRECl. 000210 $TRACE 004737

001006 13113116 O.DDT 081312
.$$$$. 011116 08(J1356 \
LCO~l 011166 0013024

011212 000136
0113513 13130054 sua El11350
011434 000866 FUN 011434
011522 030835 CAI$ 011522 CAL$ 01153El
011568. 0813064 MOI$IP 011560 MOI$SP 011562 MOI$PP 011570

MOIS!'"!? .1311574 MOI$PS El11604 MOI$PM 011612
MOI$PA 011620 MOI$OP El11626 MOI!!::IP 011634

011644 008044 NMJ$IM 011644 NMI$1 I fJ11654 BLES> 011662
BEQ$ 011664 BGT$ 011672 BGE$ 011674
8RA$ 011676 8NE$ o I 17El2 BLT$ El117a4

0117Hl 0313826 MDF$RS G1l710 I"IOF$RM 011716 MOF$RA Ell 1726
MOF$RP 1311732 .

£111736 080614 HOF$IS 011736 ~10F$13S 011744
011752 08<31314 MOF$SM 011752 MOF$SP 011762
011766 000356 $OTIS 011766
012044 000102 ~iOI$SS 012044 MOL$SS 012044 MOI$SM 012050

MOI$SA 012854 MOI$IS 012060 1"10L$IS 012060
REL$ 012060 110I$IM 012064 MDI$IA 012070
HOI$MS £112074 MOI$MM 012100 MOI$MA 012104
HOI$0S 0121113 r-:01$0M 012114 MOI$OA 012120
MOI$IS 012124 MOI$Hl 012132 MDI$lA 012140

012146 000160 ISN$ 1312146 $ISNTR 012152 LSN$ 012166
$LSHTR 012172

012326 El00034 ICI$5 El12326 ICI$M 012332 ICI$P El12336
ICI$A El1234E1 DCI$S 012344 DC 1$1"1 0123513
DCI$P 012354 DCI$A 012356

012362 0013042 MOF$MM 012362 !'"IOF$MA El12374 MOF$MP 012402
HOF$PM 012410 MOF$PA 012414 MOF$PP El12420

012424 0E1E1044 RET$L 012424 RET$F 012430 RET$I 1312436
RET$ 012440

012470 El00414 OCI$ 012470 ICI$ 012476 $ECI 012512
OCO$ 1312672 ICO$ 0127E1El

$FI02 013104 000036
013142 000120 STP$ Cl13142 FOD$ 013146 $EXIT 013166

$CL02 013262 000002
013264 0001332 SAI$IM El13264 SAI$SM 013266 SVI$IM 1313274

SVI$SM 013276 SAI$MM 013306 SVI$MM 013312
013316 e00044 SAF$IM 013316 SAF$SI1 013:320 SVF$IM 01333E1

SVF$SM 1313332 SAF$MM 1313352 SVF$riM El13356
1313362 e00002 $AOTS 013362
013364 0131512 $OTI 013412
015076 002750 $ERRTB 015076 $ERRS 015176
El20B46 0317113 RCI$ 020046 GCO$ 021016 FCO$ 13211324

ECO$ 021030 DCO$ 021036
021756 000256 XF 1$ El21756 $PWRI 1321756
022234 000306 DIF$PS El22234 DIF$MS 0222413 DIF$IS 02225E1

DIF$SS El22254 $DVR El22254
022542 000350 MUF$PS 022542 MUF$MS 022546 MUF$IS 022556

MUFS',SS EI?2~62 !U1LR 022562

TRANSFER ADDRESS r. 001312
HIGH LIMIT· 023112

FIGURE 3. LOAD MAP EXAMPLE

11

Relative Absolute Actual
Location Contents Location Contents

102 ISN$ 011314 012146
104 SAI$MM 011316 013306
106 000006 011320 000006
110 LCOM-2 011322 011164
112 MOI$MA 011324 012104
114 000010 011326 000010

The absolute location and actual contents are determined by the
linker and are found from the load map (Figure 2). The absolute
location is found by adding the relative location to the start
of the routine (11314 = 102 + 11212).

To set a breakpoint, the relative location. of line 7 is
found in the generated code list. It is set with 0,102;V. It
is important to note that breakpoints could also be set at 0,104
and 0.112, but not at 0,106, 0,110, and 0,114 since these words
contain arguments for the threaded code, not threaded code
routine names or entry points.

The Fortran breakpoint command r;V operates identically to
the normal ODT breakpoint command r;B.

Program Start and Continue

When the program is run, it will start up in FORODT. Break­
points can be set and the program is started at the beginning of
the main program for Fortran programs. In our example, the pro­
gram is started at 011212 or 0,0. O,O,;G will start the program.
When a breakpoint occurs, FORODT types

Vn;r

where r is the location of the breakpoint and n is the
breakpoint number. This is identical in form to the ODT break­
point Bn;r.

The program execution is continued by typing ;P or n;P.
This is also identical to ODT. FORODT knows which type of
breakpoint occurred.

Single Instruction Mode

The ODT single instruction mode cannot be set when the
breakpoint is a Fortran breakpoint (;V). The single instruc­
tion mode is available following an ODT breakpoint (;B).

12

Fortran GOTO

The "GOTO" command allows program execution to proceed at
any Fortran instruction. The command causes execution to assume
at a threaded code location with the same rules which apply to
the Fortran breakpoint (;V). The GOTO command is

r;T

where r 1S the location of the start of the Fortran
instruction.

While the command allows the user to change the order of
program execution, there are some pitfalls which must be con­
sidered. Some of the restrictions and precautions are:

1. The Fortran program should always start initially
with the r;G command because the first few words
of the program are instruction which initializes
the Fortran work space and tables and start the
threaded code execution.

2. Many Fortran instructions are meant to be executed
only once. For example, instructions which set up
and open 1/0 channels. A second execution of these
instructions could produce fatal or unpredictable
results.

3. Disrupting the normal subroutine nesting 1S risky.
As an example:

Subroutine A calls B
Subroutine B calls C
If we GOTO an instruction in Subroutine B,
the return link to Subroutine A will not be
set up and the program will not run correctly.

4. The GOTO should not start in the middle of a Fortran
statement. In line 7 location 0,102 is the start of
the statement and 0,102;T is valid. Resuming at •
0,104, 0,110 and 0,112 are not recommended unless
the user is fully aware of the requirements of the
routines skipped in that line. Many of the OTS
routines require that information be placed on the
stack in correct order, and this may not be accom­
plished correctly if execution startes in the middle
of the line.

Restarting a Program

Once the program has been started using the r;G command,
it should not be attempted again without exiting to Monitor (0).

13

This is necessary because the first action Fortran takes is to
set up the Fortran OTS workspace and tables. This cannot be
done more than once.

The r;T command can be used to restart as long as the
restrictions which apply to this command are observed. If the
restart follows a breakpoint in a subroutine, stack overflow
could result. By returning to the main part of the program
subroutine, linkage problems are avoided, but the stack pointer
is not reset to clear out the linkage. If this is done several
times the stack will continue to grow to the point where the
hardware flags the overflow.

Data Access

ODT and FORODT requlre that the absolute or relative loca­
tion be known for each word to be opened. The Fortran listing
provides this information in the storage map. In the example,
the variable I is located at relative location 6 in the main
portion of the program. This variable can be examined by
typing

0,61

The value of I lS displayed following the I.

There are four variable storage classifications:

1. Local variables.

2. Variables stored in blank common ..

3. Variables stored In labeled common.

4. Variables which are parameters or arguments In a
subroutine.

The Fortran storage map listing and the load map are used to
determine the actual location of each variable .

•

Local Variables

The Fortran storage map gives the relative location. In
our example, the variable I is located at 6 and can be examined
by typing

0,61

14

Blank Common

Blank common appears in the load map as the .$$$$. and any
variable in blank common is referenced relative to that location.
In the example, blank common starts at 11116 and variable array
A starts there.

Labeled Common

Labeled common appears in the load map with the label.
The variable is referenced relative to that location. In the
example, labeled common block LCOM starts at 11166 and array
IA starts there.

Dummy Variables

Dummy variables (arguments in a subroutine) are referenced
differently. Within the subroutine the storage map indicates
the argument is a p~rameter variable. The relative location
given does not contain the value, it contains the location of
the value.

In our example, relocation register 1 is set to the start
of subroutine SUB. To look at the parameter variable KIln
subroutine SUB, we type

1,14/011364~

O,lO/XXXX the value of Kl is displayed

The character @ directs FORODT to open the location contained ln
word 1,14 which is in fact the location of the variable Kl in
the main program. This address scheme is meaningful only if the
current breakpoint is within the subroutine or routines called
by the subroutine.

InputlOutput Radix

FORODT has the feature to change the 1/0 radix from octal
to decimal integer or floating point. When FORODT is first
started, the default 1/0 radix is octal. When a word is opened
the contents are displayed in the current radix.

To better explain the 1/0 radix operation, it is necessary
to define two terms:

1. Current Radix

The 1/0 radix which is in effect for when a word is
open and is the radix used last to display the contents
to that word.

15

2. Default Radix

The current radix is restored to the default radix
when FORODT types an * If successive words are
opened by typing a line feed, the current radix is
retained until a carriage return is typed or an
error occurs.

Both the current radix and default radix can be changed. The
current radix is changed by typing a single # followed by the
letter I, F, D, or O. This will cause the contents of the
current word to be displayed in the new current radix. Input
to change a word must always be in the current radix. Word
addresses are always octal. For example, the default radix is
octal and the location 1202 is opened

1202/000020 #1 16 18<CR>

Location 1202 contained 20 octal. The #1 changed the current
radix to decimal integer, and the contents of 1202 were dis­
played as 16 decimal. 18<CR> changed the contents of 1202 to
18 decimal or 22 octal.

Real and double floating point numbers occupy two or four
words, so if a location is opened with a real radix, that word
and the next word are opened and displayed in floating point.
The reply is converted back and two words are modified. If a
line feed is typed, the next real number is opened and displayed.
Example:

*1012/ 034100 #F 0.1148000E-04 1.158E-5<LF>

1016/0.1296000E-03

The second location opened is four more than the first.

The current radix determines the number of words displayed
and modified. Example:

*1044/ 000000 #F 0.0000000 #1 0 l<LF>

In this case, the current radix was changed from real to integer
and only one word was modified. The line feed caused the next
word to open and it was displayed as a decimal integer.

The default radix is set by typing two #'s and the letter
I, F, D, or O. When FORODT is first run, the default radix is
octal.

16

*##F

*1012/0.1158000E-04<LF>

1014/0.129000E-03

*##F

Set the default radix to
2 word floating point.

*1012/0.158000E-04 #1 14400 l<CR>

Here only location 1044 is changed because the current radix
was changed to decimal integer (1 word).

*##1

*1012/ 14400 #F 0.158000E-4 1.23<CR>

Here the floating point number 1.23 is stored in locations 1012
and 1014.

Restrictions

Programs which use overlays require special caution.
Breakpoints cannot be set in overlay regions if a new segment
will be swapped in, as the breakpoint will be destroyed.
Breakpoints in the root segment will work fine.

FORODT will operate with assembly language programs if the
decimal I/O features are desired, but the program must be linked
with the F switch because FORODT uses Fortran I/O conversion
routines.

17

Command

v

18

APPENDIX I - COMMAND SUMMARY

Format

;V

r;V

r;nV

;nV

##1

##F

##D

##0

#1

#F

#D

Explanation

Removes all Fortran breakpoints.

Sets Fortran breakpoint at absolute
location r. The next available break­
point number is used.

Sets Fortran breakpoint n at location
r. The location r is either the
absolut~'location (octal) or the loca­
tion relative to a relocation register.
r ~K,l where K is the relocation
register number and l is the relative
location. r = l + contents of reloca­
tion register K.

Removes breakpoint n.

Sets default 1/0 radix to I-word
decimal integer.

Sets default 1/0 radix to 2-word
floating point (real).

Sets default 1/0 radix to 4-word
floating point (double).

Sets default 1/0 radix to I-word octal.

Used only when a location is open to
change the current 1/0 radix. The
currently opened location is displayed
in the radix indicated following the
#. This new current 1/0 radix is
maintained until a carriage return 1S
typed or FORODT types an *.

Sets current 1/0 radix to I-word
decimal integer.

Sets current 1/0 radix to 2-word
floating point (real).

Sets current 1/0 radix to 4-word
floating point (double).

Command Format

#0

$ $V/

T r;T

Explanation

Sets current 1/0 radix to I-word
octal.

Opens the first word of the Fortran
breakpoint table.

GOTO -- resumes program at threaded
code location r.

ODT Commands

All of the ODT commands are available in FORODT. Those
most useful to the Fortran programmer are summarized here.

Command Format

I rl

<CR>

<LF>

R ;R

;nR

r;nR

G r;G

Explanation

Opens the word at location r.

The contents displayed in the current
radix. The location may be modified
by typing a new value in the current
radix followed by a <CR> or <LF>.

Carriage return. Closes an open loca­
tion modifying it if a number was typed
and it types an * for the next command.

Line feed. Closes the current location,
modifying it if a number was typed and
opens the next sequential location.
The F and D radix options modify two
and four words and open the next two
or four word group.

Resets all relocation register to -1
(unassigned).

Resets relocation register n to -1.

Sets relocation register n to value
of r.

Goes to location r and starts the pro­
gram. r;G should be to the beginning
of the main Fortran program. r;G to
threaded code locations will not operate
properly.

19

Command Format

P ;P

K;P

20

Explanation

Proceed with program execution from
the breakpoint B or V.

Proceed with program execution from
the breakpoint B or V; and skips K-l
encounters with this breakpoint

APPENDIX II - FORODT EXAMPLE

An example of FORODT with the example program. The user
inputs are underlined.

. R ODTDEM<CR>

FORODT VOI-02

~"11212,OR

~"11350,lR

~"11434,2R

1'11116,3R

~"11166,4R

~', 0 ,116 , V

*3,0/ ** #F ** O<LF>

3,000004/ -;'~ -;':. O<LF>
3,000010/ ~~ ~~ O<LF>
3,00001I,l/ }'~ "i'~ O<LF>
3,000020/ ~', ~', O<LF>
3,000030/ '1: ~~ O<LF>
3,000034/ ~', ~', O<LF>
3,000040/),:,,: O<LF>
3,000044/ ~', ~', O<LF>

Run example program .

Set relocation register 0 to
start of main program.

Set relocation register 1 to
start subroutine SUB.

Set relocation register 2 to
start of function FUN.

Set relocation register 3 to
start of blank common.

Set relocation register 4 to
start of common block LCOM.

Set Fortran breakpoint 0 to line
8 in main program.

Set Fortran breakpoint 1 to line
4 in subroutine SUB.

Set Fortran breakpoint 2 to line
4 in function FUN.

Initialize arrays A and IA to
zero. ** indicates the number
could be any value.

21

4,000000/ ** #1;'0', O<LF>
4,000002/ ;"* (RtF>
4,000004/ ,"* O<LF>
4,000006/ ** O<LF>
4,000010/ in" O<LF>
4,000012/ ,'(1~ O<LF>
4,000014/ ;b" O<LF>
4,000016/ *,,, O<LF>
4,000020/ *,,, O<LF>
4,000022/ ,', * O<CR>

"'(),O;G

V2 ;2,000060

i'2, 14/ 0113 7 0 @

1,000020 /OOOOOl<CR>

Start program.

Breakpoint occurred at line X
in function FUN.

Examine dummy variable J2. in
function FUN.

Actual variable is J in sub­
routine SUB.

*2,22/040400 #F 2.000000<CR> Examine Al.

*2,16/ 2.000000<CR>

Vl;1,000060

*1,14/011164 @

0,000010 /OOOOOO<CR>

*1,16/011224 ~

0,000012/040400 #F 2.000000

*1,20/000001<CR>

VO;0,000116

;"0,6/000001<LF>

0,000010 /OOOOOO<LF>

Examine FUN value.

Continue execution.

Breakpoint occurred at line 4
in SUB.

Examine dummy variable Kl.

Actual vairable is K in main.

Examine dummy variable Bl.

Actual variable is B in main.

J = 1.

Continue program.

Breakpoint at line 8 in main
program.

Examine I.

Examine K.

0,000012 /040400 #F 2.000000<CR> Examine B.

22

1:3,0/040400 #F 2.000000<LF>

3,000004 /
3,000010 /
3,000014 /
3,000020 /
3,000024 /
3,000030 /
3,000034 /
3,000040 /
3,000044 /

4,000000 /

4,000002 /
4,000004 /
4,000006 /
4,000010 /
4,000012 /
4,000014 /
4,000016 /
4,000020 /
4,000022 /

':Jt~ • P
-'-

V2;2,000060

O.OOOOOOO<LF>
O.OOOOOOO<LF>
O.OOOOOOO<LF>
O.OOOOOOO<LF>
O.OOOOOOO<LF>
O.OOOOOOO<LF>
O.OOOOOOO<LF>
O.OOOOOOO<LF>
O.OOOOOOO<LF>

0.0000000

O<LF>
O<LF>
O<LF>
O<LF>
O<LF>
O<LF>
O<LF>
O<LF>
O<CR>

#1

~':2,14/011370 @

1,000020 /000002

O<LF>

Examine array A In blank common.

Examine array 1A in common block
LCOM.

Continue program.

Breakpoint at line 4 in FUN.

Dummy variable J2 =2.

*2,16/040600 #F 4.000000<LF> AI.

2,000022 / 4.000000<CR>

':Jt~ • P
-'-

Vl;1,000060

':J'~ • p
-'-

. VO;0,000116

':J'~ ; p
V2;2,000060
':i'e ; p
Vl;1,000060

VO;0,000116

FUN.

Continue.

Breakpoint at line 4 in SUB.

Continue.

Breakpoint at line 8 In main .

Breakpoint at line 8 in maln.

23

~':##F

,'; 3 01 -'- 2.000000 LF

3,000004 1 4.000000<LF>
3,000010 1 8.000000<LF>
3,000014 I O.OOOOOOO<LF>
3,000020 1 O.OOOOOOO<LF>
3,000024 1 O.OOOOOOO<LF>
3,000030 1 O.OOOOOO.O<LF>
3,000034 1 O.OOOOOOO<LF>
3,000040 1 O.OOOOOOO<LF>
3,000044 1 O.OOOOOOO<LF>

4,000000 1 0.0000000 #1

4,000002 1 l<LF>
4,000004 1 2<LF>
4,000006 1 O<LF>
4,000010 1 O<LF>
4,000012 1 O<CR>

'';##0

;': 0 ,6/000003 < LF>

0,000010 1000002<LF>

O<LF>

Set radix to 2-word floating
point.

Examine array A in blank common.

Array 1A (integer).

Set radix to octal.

Examine I.

Examine K.

0,000012 1041000 #F 8.000000<CR> Examine B.

V2;2,000060

Vl;1,000060

VO;0,000116

VO;0,OOOl16

,': . p
-'-

VO;0,000116

24

Continue.

Line 4 in FUN.

Continue skipping breakpoint 2
two times.

Line 4 in SUB.

Continue skipping breakpoint 1
two times.

Line 8 in main.

Line 8 in main.

Line 8 in main.

~'~ . p
-'-

V2;2,000060.

~'c • p
-'-

Vl;1,000060

~'~ . p
-'-

VO;0,000116

1:0,6/000007<LF>

0,000010 1000006<LF>

Line 4 in FUN.

Line 4 in SUB.

Line 8 in main.

Examine I.

0,000012 1042000 #F 128.0000<CR>

~':3,01 2.000000<LF>

3,000004 1 4.000000<LF>
3,000010 1 8.000000<LF>
3,000014 1 16.00000<LF>
3,000020 1 32.00000<LF>
3,000024 1 64.00000<LF>
3,000030 1 128.0000<LF>
3,000034 1 O.OOOOOOO<LF>
3,000040 1 O.OOOOOOO<LF>
3,000044 1 O.OOOOOOO<LF>

4,000000 1 0.0000000 #1

4,000002 1 l<LF>
4,000004 1 2<LF>
4,000006 1 3<LF>
4,000010 1 4<LF>
4,000012 1 5<LF>
4,000014 1 6<LF>
4,000016 1 O<LF>
4,000020 1 O<LF>
4,000022 1 O<CR>

1:##1

~':0,61 7 9<CR>

~'c • V
-'-

~':0,132;V

0 LF

Examine array A.

Examine array IA.

Change I to 9.

Clear all breakpoints.

Set breakpoint at line 9 In main
program.

25

~'c. P
-'-

VO;0,000132

11<LF>

0,000010 / 9<LF>

0,000012 / 17792 #F 1024.000

*3,0/ 2.000000<LF>

3,000004 /
3,000010 /
3,000014 /
3,000020 /
3,000024 /
3,000030 /
3,000034 /
3,000040 /
3,000044 /

4.000000<LF>
8.000000<LF>
16.00000<LF>
32.00000<LF>
64.00000<LF>
128.0000<LF>

O.OOOOOOO<LF>
O.OOOOOOO<LF>
1024.000<LF>

4,000000 / 0.0000000 #1 O<LF>

4,000002 / l<LF>
4,000004 / 2<LF>
4,000006 / 3<LF>
4,000010 / 4<LF>
4,000012 / 5<LF>
4,000014 / 6<LF>
4,000016 / O<LF>
4,000020 / O<LF>
4,000022 / 9<CR>

~'c ; p

STOP

26

Continue.

Breakpoint at line 9.

I = 11.

Examine A.

}
Note that these two did not get
set since we changed I from 7 to 9.

Examine IA.

} These two also did not get set.

Continue.

Exit.

APPENDIX III - GOTO EXAMPLE

Example program showing the use of the GOTO command (r;T):

.R ODTDEM CR

FORODT VOI-02

~"11212;OR

~:O,O;G

VO;0,000066

~"0,116;T

VO;0,000066

VO;0,000066

VO;0,000066

~:O, 6/000005<CR>

VO;0,000132

*0,6/ 000013 #1 11<CR>

Set relocation register to main
program.

Set breakpoint at main line 6.

Start program.

Breakpoint at line 6.

Skip to line 8, arrays A and IA
do not get set for I = 1.

Breakpoint at line 6.

Continue skipping one breakpoint.

Breakpoint at line 6.

I = 4.

Skip to line 8.

Breakpoint at line 6.

I = 5.

Clear breakpoint at line 6.

Set breakpoint at line 9.

Continue

Breakpoint at line 9.

I = 11.

Set default I/O to real.

27

*3,0/ O.OOOOOOO<LF>

3,000004/ 4.0000000<LF>
3,000010/ 8.0000000<LF>
3,000014/0.00000000<LF>
3,000020~ 32.000000<LF>
3,000024/ 64.000000<LF>
3,00003D/ 128.00000<LF>
3,000034/ 2S6.00000<LF>
3,000040/ S12.00000<LF>
3,000044/ 1024.0000<CR>

Would have been 2.0

Would have been 16.0

The two positions in Array A were not set since ;Twas used to
skip those steps.

28

f

UNLIMITED RELEASE

INITIAL DISTRIBUTION

Bendix Corporation
Kansas City Division
P. O. Box 1159
Kansas City, MO 64141
Attn: R. Douglass, D/845

R. Hayes, D/131
D. R. Lemon, D/131
W. E. Simes, D/131
J. J. Zimmerman, D/131

Decus Program Librarian
Digital Equipment Computer User's Society
146 Main Street
Maynard, MA 01754

Mead Technology Laboratories
3481 Dayton Xenia Road
Dayton, OH 45432
Attn: Martin W. Roth

R. G. Bradley, 1245
R. A. Hayenga, 2532
R. W. Roberts, 2534
G. D. Horne, 2634
F. I. Magee, 2643
T. B. Cook, Jr., 8000
L. Gutierrez, 8100
D. L. Hartley, 8115
D. E. Gregson, 8150
C. D. Skoog, 8159
M. A. Soderstrand, 8159
D. N. Tanner, 8159 (20)
L. M. Watkins, 8159
K. L. Burris, 8166
H. E. Schoeppe, 8166
T. W. Sneddon, 8166
R. S. Tilley, 8166
L. D. Zirkle, 8166
R. J. Tockey, 8181
C. H. DeSe1m, 8200
B. F. Murphey, 8300
R. Y. Lee, 8322
H. D. Jones, 8322
H. G. Short, 8323
R. E. Huddleston, 8325
K. Berkbig1er, 8325
J. E. Marion, 8332
P. D. Gildea, 8335
v. Barr, 8342

29

INITIAL DISTRIBUTION (Continued)

D. Benthusen, 8342
W. C. Scrivner, 8400
J. D. Benton, 8411
R. W. Kelley, 8411
F. J. Cupps, 8265/Classification and Technical Library

Processing Division, 3141
Technical Publications and Art Division, 8265, for TIC (2)
Classification and Technical Library Processing Division,

3141 (2)
Library and Security Classification Division, 8266-2 (3)

30

