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ABSTRACT 

The transport of gaseous species in dead-end tubes having selectively 

permeating walls is investigated. The limits of validity for the modeling 

assumptions used are established and are given in terms of a series of 

inequalities involving the key parameters. Detailed analytical results are 

generated via exact limiting solutions as well as numerical integration of 

the governing equations for both positive and negative global velocity cases. 

Tube materials having specie separation ratios varying from unity to very 

large or very small values are included in the study. The resulting effective 

separation ratio for a tube may be either greater or less than that for the 

tube material in slab form. The possibility of using secondary control 

species to favorably alter the flow characteristics of primary species is 

demonstrated. Some experimental data is given which verifies the large 

effects which the presence of a low permeating specie in the tube bore can 

have on the flow of another specie which readily permeates the tube walls. 

It is shown, in the near perfect filter limit,that the analytical model 

properly describes the effects obtained in both the balanced pressure and 

the convection dominated limits. 
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SUMMARY 

The transport of gaseous species in dead-end tubes having selectively 

permeating walls is investigated. The assumptions of continuum, quasi-steady, 

fully developed, laminar bore flow of perfect gases which behave like an 

axially diffused plug flow through an approximately straight tube with nearly 

uniform bore temperature and pressure are used; the supply and receiving 

, reservoirs are assumed to be well mixed so that uniform reservoir temperature 

and concentrations exist. The limits of validity for these assumptions are 

established and are given in terms of a series of inequalities involving the 

key parameters. 

Detailed results are generated via exact physically limiting solutions 

as well as numerical integration of the governing equations for cases 

involving up to five species. Both positive and negative global velocity 

cases are examined and are used to show that better results can sometimes be 

obtained if the tube is immersed in the opposite reservoir. Tube materials 

having specie separation ratios varying from unity (non-selective) to very 

large or very small values (near perfect filters) are included in the study. 

It is shown that the flow of a given specie can be either enhanced or dehanced, 

and even reversed in direction, relative to the corresponding perfect mixing 

value due to the presence of other species. This leads to the definition of 

an effective separation ratio for specie flow from the tube which may be 

greater or less than that of the tube material in slab form which is 

approached in the perfect mixing limit. It is also shown that in certain 
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cases an individual specie can exhibit wall and bore stagnation points at 

different locations where the flow direction changes for that specie. From 

the consideration of such phenomena it is demonstrated, as a possible mode 

of operation, that secondary control species having very large or very 

small permeation rates can be used to favorably alter the flow characteristics 

of primary species. 

Finally, some experimental data is given to verify the large effect 

which the presence of a low permeating specie in the tube bore can have on 

the flow of another specie which readily permeates the tube walls. It is 

shown, in the near perfect filter limit, that the mathemat~cal model given 

here properly describes the effects obtained in both the balanced pressure 

and the convection dominated experimental limits. 

The information contained in this document eliminates the need to 

operate such dead-end tubes with selectively permeating walls near the 

perfect mixing limit to avoid unknown effects; this is true because these 

effects are now predictable and well enough understood so that they can 

even be exploited to produce favorable effects in some cases. 
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ImRODUCTION 

Many materials (Jost, 1960) including metals (AI, Cu, Ag, Fe, Mo, Ni, 

Pd, Pt), ionic crystals (the alkali halides, quartz, rock salt, fluorite), 

glasses (SiOZ' Pyrex), organic polymers (rubber, various butadienes, paraffine, 

cellophane, cellulose compounds, neoprene, polystyrene, polyvinyl chloride), 

and zeolites or silicate compounds (analcite, Chabazite, heulandite, 

natrolite, scolecite) are selective in varying degrees to the permeation 

of some of the common gases (Ar, Ne, He, 0Z' NZ' HZ' CO, COZ' NH3, CH4). 

Since most of these materials can be used to construct pipes, tubes and 

capillaries of various kinds which are often used to transport or store 

mixtures of common gases, the interaction between the selective permeation 

of the tube walls and the bore transport processes can be important in some 

cases. 'The author is not aware of any published investigations of this 

type of problem. 

The analogous problem for porous tube flow has been extensively 

studied in some flow regimes, for example see Libby, et al. (1969), or 

Huang and Yu (1973). It must be made clear that such studies are very 

different from the problem briefly described above. Porous walled tubes 

exhibit flow and gas phase diffusion through open pore space. Such processes 

consist of global (viscous or non-viscous convective) flow, which is 

generally non-selective and may include mutual diffusion (intermolecular 

collisions are dominant) and/or Knudsen diffusion (wall collisions are 

dominant), which are only weakly selective in that they depend on the 

11 



square root of the molecular weight ratios of the various gas species. Also 

these processes have weak dependence on temperature. The term "selectively 

permeating walls" is used here to describe diffusion in the solid material 

via gas migration through the atomic lattice structure of the material. A 

much higher degree of selectivity can be observed for that mechanism, and 

also a strong dependence on temperature is usually present. 

Another related problem area which has received considerable attention 

involves the transport of gas mixtures having varying spacial compositions 

in non-permeable pipes. A large body of literature on this subject is 

published under headings like "laminar dispersion in capillaries" and 

similar terminology; same of the key papers on this problem are Taylor 

(1953-4), Aris (1956), Bournia (1961), Evans (1965), Gill, et al. (1965-8), 

Dayan and Levenspiel (1968) and Nunge, et al. (1972). This work is found 

to be very helpful in formulating the analytical model given in this 

document. 

Some previous work on flow in selectively permeating tubes has been 

done here at SLL; the work included both analysis and experimental verifiY 

cation of cases where the net flow was out of the tube's open end; only the 

near perfect filter limit was examined, so that two species were present 

and only one of those readily permeated the tube walls with the other being 

essentially trapped in the vent volume and tube bore. This previous work 

is included in this document as well as an analysis of cases where the net 

flow is into the tube's open end along with real filter cases involving two 

or more permeating species. No additional experimental data beyond the near 

perfect filter limit is given. The limits of validity for the fluid 

mechanical modeling assumptions are established, and the related analysis 

is given in detail in the Appendix. 
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NOMENCLA1URE 

a thermal diffusivity 

A· eq. (89) 
1 

As effective surface area, eq. (A20) 

Av Avogadro's number 0.61 x 1024 

a,b,c eq. (66) 

B. eq. (90) 
1 

coi sound speed, eq. (A23) 

Ci = Pi/P, mole fraction (Pi/P = vi/v) 

Cia = Pia/Po = Ci (X = 0) 

Cil = Ci (X = 1) 

Cioo = Pioo/PO' pseudo-mole fraction 

d coil diameter 

D tube inside diameter 

D. 
1 

Do 

V .. 
1J 

Vr 

Ed 

E s 

f 

F 

h 

1 

wall material diffusion coefficient for gas species i 

pre-exponential parameter for Di 

gas phase mutual diffusion coefficient 

reference Vij at Pr and Tr 

diffusion exponential parameter 

solubility exponential parameter 

eq. (71) 

tube wall thickness 
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I number of gas species 

J eq. (A63) 

k thermal conductivity 
, 

K eq. (76), also eq. (A62) 

K axial dispersion coefficient 

Kn Knudsen number, A/D 

Ki = SiDi' permeability coefficient 

L tube length 

Le entrance length, eq. (A9) 
. 
m mass flow rate 

M Mach number 

M. eq. (14) 
1 

MiO = Mi(x=O) 

N temperature exponent, eq. (4) 

NPe eq. (A27) , Peclet number (diffusion) 

Pi local partial pressure for species i 

PiO receiver partial pressure species i 

p. driver partial pressure species i 
1 00 

P = 

= 

I 
E p., mixture static pressure 
. 1 1 1= 

I 
E P. 0 ' receiver mixture pressure 
. 1 1 1= 

Pr reference pressure, eq. (4) 
. 
q heating rate per unit volume 

r i eq. (1) 

r ie = r i (t + 00), eq. (5) 

R 82.06 cm3 atm/mole oK 

Rc 1.987 cal/mole oK 
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Re 

S 

Sc 

S. 
1 

tv· . 1J 

t­u 

u· 1 

Reynolds number 

wall Reynolds number 

eq. (A36) 

= v/Vij , Schmidt number 

solubility coefficient for gas species i 

pre-expo~ential parameter for Si 

time 

eq. (Al8) 

eq. (A19) 

eq. (A24) 

eq. (A3l) 

eq. (A37) 

eq. (A38) 

eq. (A6l) 

eq. (AZ2) 

eq. (A23) 

eq. (A2l) 

eq. (AZO) 

eq. (A9l) 

eq. (A92) 

temperature (static) 

stagnation temperature 

reference temperature, eq. (4) 

velocity species i 

I 
u =.2: Ci ui ' molar averaged velocity 

1=1 

Vo receiver volume 
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Voo 

VI 

VI 
b 

w· 1 

W 

x 

X 

Xd 

~ 
y 

Y 

Z 

Z 

0'. 

0'. 

0'.1 

s· . 1J 

y 

o 

o .. 
1J 

n 

8 .. 
1J 

A 

'V. 
1 

16 

= 

= 

driver volume 

eq. (A83) 

eq. (A83) 

molecular weight species i 

integration constant, eq. (48) 

axial distance along tube bore 

x/L 

eq. (A9l) 

eq. (A92) 

R,n (1 - Cl ) 

eq. (74) 

eq. (75) 

compressibility factor, eq. (A4) 

eq. (Al8) , 0'.-1 = decay constant 

eq. (77) 

2 aL /2V .. 
1J 

eq. (20) 

ratio of specific heats 

u(t/K) 1/2 , eq. (A49) 

eq. (19) 

eq. (A50) 

eq. (18) 

eq. (A2) , mean free path (molecular) 

viscosity coefficient 

eq. (3), molar density species i 



I 
v = 1: vi' total molar density; also v = ~/p, kinematic viscosity 

i=l 

p mass density 

TD eq. (A26) 

TO eq. (AS7) 

<t> = q, .• (0 .. = 1) 
1J 1J 

q, eq. (AS3) 

q, .• 
1J 

eq. (17) 

wie eq. (6) 

n. 
1 eq. (91) , separation ratio 

neff i eq. (97) , effective separation ratio 
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ANALYSIS 

The analysis below consists of two main areas of investigation; the 

first area is primarily concerned with the physical description of the 

problem and its mathematical formulation. The governing equations are 

derived with a minimum of analysis due to the fact that each of the many 

fluid mechanical assumptions used is examined in great detail in the Appendix, 

although an important wall diffusion assumption is discussed below. The 

second area consists of results in the form of exact limiting solutions as 

well as more general cases obtained from the numerical solution of the 

governing equations. The solutions are increased in complexity via an 

increase in the number of gaseous species involved and special emphasis is 

given to the various modes of operation identified by means of unique 

physical or mathematical characteristics. 

I. Governing Equations 

Physically the problem investigated here consists of two volumes of gas 

which may be different mixtures of two or more chemical species at different 

pressure levels. The gases can pass fram one volume to the other by means 

of a dead-end tube immersed in one volume with the open end connected to the 

other volume. The gases pass through the tube walls by selective permeation 

via diffusion, not by global flow processes through open pores. This 

situation is shown schematically in Figure 1 where one volume Voo is often 
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N 
o 

x=L 

DRIVER VOLUME RECEIVER OR VENT VOLUME 

PERMEABLE lUBE WALL 

x I 
u i (L) = 0 u. , P., P = P , C. = P./P < I C. (0) = CiO 1 101 1 I 1 

I I 
Voo ' Pioo , Poo = E P· oo , c. = P.ooIPo vO' PiO' Po = ~ PiO' CiO = PiO/PO 

.1 1 1 00 1 
1=1 1= 

x-O 

Figure 1. System Schematic Diagram 



referred to as the driver and the other volume Vo is often referred to as 

the receiver or vent volume even though the flow direction is not specified 

or restricted here other than with respect to the different mathematical 

forms of solutions sometimes required. It must be emphasized that the 

volume sizes Vo and Voo are not directly relevant to the problem in the 

sense of transient mass inventory accounting; that is, the volumes do not 

enter into the model explicitly due to the assumptions of quasi-steady bore 

flow and uniform reservoirs. However, the volume symbols Voo and Vo as well 

as their names "driver" and "receiver" or ''vent,'' respectively, are used 

extensively in the discussion as a means of identifying the gas mixture in 

contact with the exterior of the tube as opposed to the region surrounding 

the root or open end of the tube bore. The volume sizes are also required 

in the Appendix in order to establish that the quasi-steady bore flow and 

uniform reservoir assumptions are approximately valid. 

(i) Fluid Mechanical Assumptions 

The fluid mechanical assumptions which have been made in order to 

investigate the problem shown schematically in Figure 1 are listed in 

Table I with the independent dimensionless parameters (a total of eighteen) 

shown immediately after the assumption which first requires them. The 

restrictions (inequalities) found to be necessary via the detailed analysis 

given in the Appendix for each assumption to be valid are also given in 

Table I; first the dimensionless parameter restriction is given, then the 

equivalent restriction on the tube length, diameter, total mass flow rate, 

or other key dimensioned parameter for the problem is given. The parameter 

definitions and the units required in order to properly use the inequalities 
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TABLE I. Fluid Mechanical Assumptions and Related Parameter Restrictions 

Continuum Flow [Kn] 

Kn = A/D < 10-2/3 « 1 (Al) 

D P > 10-5 T (A3) 

Perfect Gases [Z] 

O. 94 < Z < 1. 06 (A5) 

P < 100 atm (A6) 

Fully Developed Laminar Bore Flow [Re, L/D] 

(i) Laminar·F1ow 

Re = pUb/~ = 4 m/TID~ < 2000 (A7) 

. 
m < 500 TID~ (A8) 

(ii) Fully Developed Flow 

L/D > 0.35 Re (AlO) 

m < 0.7 TI~ (L/D) (All) 
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Uniform Bore Temperature and Pressure [M, y] 

(i) Uniform Bore Temperature 

M < 0.3, 1 < y : 5/3 (A12) 

m < 37.5 ~y1/2 D2 P(W/RT)1/2 (A13) 

(ii) Uniform Bore Pressue 

6P/P = (m/W) (128 ~LRT/~D4p2) < 1.28 x 10- 2 « 1 (A15) 

(A16) 

Quasi-Steady, Axially-Diffused Plug Flow [Npe ' hiD, Vo/Voo' V', Di, a', Si] 

(i) Axially Diffused Plug Flow 

(A66) 

m < ~D~/4Sc (A67) 

(ii) Quasi-Steady Bore Flow 

tbore/tsystem < 0.2 (A68) - (A80) 

D < 3 x 104 p-1/ 2 (A8l) 

1/2 D < 0.9 h (0 . . /D.) (A82) 
1J 1 
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L < 2 x 1011 (yT/W) 1/2 

L < 1.5 x 104 p-1/2 p-1/2 

L < 1.8 x 102 h2 (y/TW)1/2 D
O

- l exp (Ed/RT) 

L < (SP)-1/2 h (D . . /D.)1/2 
1J 1 

V' < Vb (CoD/Dij )/40 (L/D) 

v' < vb/4(L/D)2 P 

(i) Concentration 

(ii) Temperature 

L_ /t = 0.12 LV 2/3/V (V') < 10-2 « 1 
-xd FV 00 0 b d 

t /t = 0.32 L/V 1/3(V1) < 10- 2 « 1 
Xv FV 0 b v 

L < 0.083 (V') V /V 2/3 
b d 0 00 

L < 0.031 (V') V 1/3 
b v 0 

tstc/trc = t(sys; temp. change)/t(res. conduction) > 5 

24 

2 t(sys. temp. change) > 5 rres/6a 

flT /T < 10-1 
max 

(A84) 

(A8s) 

(A86) 

(A87) 

(A88) 

(A89) 

(A93) 

(A94) 

(A9s) 

(A96) 

(AlOO) 

(Al01) 

(A103) 

(A104) 



Straight Tube [diD] 

(i) Flow Rate 

(AID?) 

(ii) Dispersion 

(Al08) 

Dead End Permeable Tube 

(A1l2) 

(All3) 

L > 102 D (All 4) 

. -1 m < 10 ]1L (AllS) 

(AllS) replaces (All) 
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to determine if a given problem can be investigated via the model derived 

here are found in the Appendix near the corresponding equation number shown 

to the right of the inequalities in Table I. In general these restrictions 

are independent although (AllS) does replace (All), and when Sc is near 

unity as it usually is for most gaseous flows, then (A67) replaces (AB). 

(ii) Conservation of Mass 

The assumptions listed in Table I and analyzed in the Appendix in detail 

have eliminated the momentum and energy equations; also the time dependence 

is introduced only in a quasi-steady manner via the boundary conditions; 

therefore the problem has been reduced to one of conservation of mass for 

each specie i via the steady, one-dimensional equations 

d(u. C.)/dx = r., i = 1 2 I 1 1 1 " ..• ,. 

The axial diffusion relative to a molar-average plug flow velocity 
I 

u = u = .L: (ui Ci ) is accounted for by means of Fick's law such that 
1=1 

u· C. =- uC· - V.. dC. I dx , i = 1, 2, .•. , I 
1 1 1 1J 1 

where the mole fraction of specie i is 

C. = v.lv = p·/P = P./P 
1 1 110 
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I I I 
so that E C. = 1 using P = P = E P. = I: P. . The coordinate x is 

i=l 1 0 i=l 1 i=l 10 

measured along the bore from the open end or root of the permeable tube. 

The assumptions of continuum, fully developed, laminar bore flow of perfect 

gases through an approximately straight tube with nearly uniform bore 

temperature and pressure have been used. 

(iii) Diffusion Coefficient (Gas Phase) 

The mutual diffusion coefficient Vij depends on the total (as opposed 

to partial not static) pressure P and temperature T and can be written 

V .. = V (T/Tr)N (Pr/P) 
1J r 

(4) 

in terms of reference values, subscript r. The temperature exponent N is 

usually narrowly bounded 1.63 ~ N ~ 1.76 for many cornmon gas combinations 

and for most purposes can be taken to be N ~ 1.7. The reference diffusion 

coefficient Vr = Vr (Pr , Tr) is evaluated at the reference pressure and 

temperature which are conveniently chosen to be 1 atrn and 300 0 K here. From 

Weissman (1971), Weissman and Mason (196Z), and Annis, Humphreys and Mason 

(1969) typical values for Vr in crnZ/sec units are (HZ - Xe) 0.61, (HZ - Ar) 

0.8Z, (HZ - Ne) 1.17, (HZ - He) 1.59, (HZ - HZ) 1.47, (HZ - DZ) 1.Z7, 

(HZ - TZ) 1.18, (HZ - OZ) 0.81, (HZ - NZ) 0.76, (HZ - CO) 0.77, and 

(HZ CH4) 0.74 crnZ/sec which indicates that a value of about 1 cmZ/sec is 

often not a bad approximation. Usually Vij ~ Vji is a good assumption, and 

if more than two species are involved then j is usually taken to be the 
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combination of all species except i as an approximation. Since the bore 

pressure and temperature are approximately unifo~, V .. via (4) is a 
1J 

constant parameter in (2) here. 

(iv) Permeation Rate (Wall Diffusion) 

The term r i on the right of (1) is the local molar source rate for 

specie i due to wall permeation per unit of bore cross sectional area 

TID2/4 per unit of tube length L all divided by the total molar density Vo 

in the vent volume. In general r i is extremely complex and requires 

extensive numerical calculations to properly determine accurate values under 

arbitrary conditions. Even for relatively simple initial and boundary 

conditions for cylindrical, thick-walled tubes the solution (Jost, 1960, 

and Carslaw, 1959) involves zero order Bessel's functions of the first kind. 

However many problems of interest are operating most of the time in a 

quasi-steady or quasi-equilibrium mode such that r i can be expressed 

approximately by * 

(5) 

where Cioo = Pioo/Po does not represent a mole fraction, but only a pseudo-

mole fraction due to the normalization by the vent volume total pressure, 
I 

.E Cioo =} 1 necessarily. 
1=1 

The parameter w. is related to the wall material 1e 

permeability coefficient K. for specie i by 
1 

Wie = (8 Ki RT/Ay)/D2~n (1+2h/D) (6) 

~This expression requires modification if the total pressure significantly 
exceeds the 100 atmosphere limit imposed here, and also for metal tubes 
permeated by polyatomic gas species. 
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for a tube of inside diameter D and wall thickness h,which reduces to that 

for a slab when hiD «1. The parameters in (6) and their units are defined 

in the Appendix near equations (Al9) and (A20). Actually (5) is a good 

approximation whenever the time measured from an abrupt reservoir concentra­

tion or temperature change exceeds ~ given by (A19) since ~ = h2/2Di 

crudely estimates the time necessary to establish quasi-steady conditions 

following such a change. This can be demonstrated by the simple special 

case where hiD « 1 when the tube bore and wall initially have zero concen-

tration of a specie and that in the bore remains nearly zero for all time, 

while the exterior of the tube is exposed to a concentration of unity at. 

t = 0 and remains nearly unity for all time t. The solution (Jost, 1960) 

for r i can then be expressed 

r./r.· = [1 + 
1 le 

()() 

(7) 2 :E (_l)n exp 
n=l 

which gives the values r./r. = 0.55 at t = 0.3 t , 0.90 at t = 0 6 t and 
1 le w • w' 

0.99 at t = tw = h
2
/ 2Di so that actually anytime t > tw/2 the expression (5) 

is a reasonable approximation for rio This result remains valid for general 

cases where rapid reservoir concentration or temperature changes rather than 

unity step changes are present as well as cases where the thin wall approxi­

mation hid « 1 is not true. Of course gradual changes are no problem since 

(5) remains valid for all time t if the rate change of the wall surface 

concentration is much smaller than the wall concentration differential divided 

by tw' aCi/at «,~ci/twl. If the concentration change is due to a temperature 

change via the solubility coefficient temperature dependence, then the rate 

change of temperature is restricted such that 

aT/at « ,(~c./C.)(T/t )(1 + E /R T)-l, 
1 1 w S C (8) 
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in order that (5) hold for all time, where (8) is expressed in terms of 

quantities defined near (A19) and (A20). Representative values for tw given 

following (A19) for a variety of examples demonstrate that it can easily vary 

in magnitude from a few seconds to many years without being unrealistic due 

to strong dependence on temperature, wall material and gas specie as well as 

wall thickness. Thus the restriction that t > tw for (5) to hold when rapid 

concentration or temperature changes exist mayor may not pe a problem. The 

same thing can be said about (8) if it is necessary that (5) be valid for 

all time when cases involving temperanure variation are being investigated, 

In any event, if either t > tw or (8) is true, then (5) is valid, and it 

represents the final assumption for the work which follows, When (5) is 

valid, it is only necessary to use the correct local value for temperature 

to evaluate Ki = Ki(T) in (6) and the proper local values for Cioo and Ci , In 

regions wher~ (5) is not valid, elaborate numerical calculations are necessary 

to determine ri' 

(v) Boundary Conditions and Combined Auxiliary Equations 

30 

When (1), (2) and (5) are combined using the auxiliary equations 

I 

LC i = 1 

i=l 

I 

and 

I 

du/dx = re = L r ie = L wie (Cioo - Ci ) 
i=l i=l 

(9) 

(10) 



and V .. is considered to be a nearly constant parameter 
IJ 

V .. (d2 C./dx2) - u (dC./dx) - . C + r· = 0 IJ I I re i Ie 

I 
results, which is a coupled set of (I - 1 using ~ Ci = 1) non-linear, 

i=l 
second-order, ordinary differential equations. However due to the split 

boundary conditions, 

and 

C. = C. at x = 0 
1 10 

u = 0, dCi/dx = 0 at x = L, 

the use of (9) - (11) is not as convenient as the set of first-order 

differential equations, (1) and (2) with boundary conditions (12). 

(vi) Non-Dimensional Governing Equations 

(11) 

(12) 

It is best to non-dimensionalize (1) and (2) before examining their mathe­

matical nature; to do this x is normalized by the tube length L 

x = x/L 

and the dependent variable M. IS introduced such that 
1 

M. = u· C./L w. (C. - C. ) 
III Ie 10 1 00 

(13) 

(14) 
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which means physically that ui Ci has been normalized by its corresponding 

value for specie i at X = 0 when perfect mixing (Vij + 00) is approached; 

thus in the perfect mixing limit, as will be shown later, Ci = Cio and 

M. (X = 0) = M. = 1. The resulting governing equations have a deceptively 
1 10 

simple appearance 

where 

dM./dX = (C. - C. )/(C. - C. ) 
1 1 100 100 10 

de. /dX = <P •• C. + 8 .. M., i = 1, 2, . • ., I 
1 lJ 1 lJ 1 

I -II: <P.. = uL/V.. - - 0.. ( 0.. 8.. M.) 
lJ lJ lJ lJ lJ 1 

i=l 

2 8.· = B·· (C. - C. ) 
lJ lJ 1 00 10 

0 .. = V .. /V1. 
lJ lJ J 

j r i 

2 a·· = lJ 
2 (L w. /V l··). le J 

The boundary conditions for (IS) and (16) are 

32 

M. (1) = 0 
1 

at X = 1 

C
l
. (0) = C. at X = 0 

10 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 



where for numerical purposes M. (1) « M. (0) = M. is adequate. The parameter 
1 1 10 

¢ij is the diffusion Peclet number NPe (LID) base~ on tube length which carries 

the same sign as the global or net flow velocity u and whose magnitude 

indicates the relative (axial) diffusive (¢ .. « 1) or convective (¢ .. » 1) 
IJ IJ 

nature of the bore flow; the word convective is used to denote plug flow here 

rather than in the pure sense discussed in the Appendix. That is the velocity 

profile is not really flat, but can be regarded as being such only for the 

purposes of analyzing specie transport in the bore with the assumptions 

listed in Table I. The sign of 0ij indicates the individual specie flow 

direction if perfect mixing (Vij + 00) were present, while the sign of 0ij Mi 

is the same as that of u. for the general problem with arbitrary V .. 
1 IJ 

magnitude. Thus if Mi is positive, the specie velocity in the bore has the 

same direction as would be present in the perfect mixing case, while negative 

Mi indicates that they are opposite. Of course the local sign of (Ci - Cioo) 

gives the direction of flow of specie i through the wall which is not 

necessarily the same as that in the bore. 

II. Results 

The solutions of (15) and (16) are extremely complicated and display widely 

varying physical and mathematical modes for the boundary conditions (21) and 

the defining equations (6), (14) and (17)-(20) even when I = 2 but especially 

when more than two species are present I > 2. The governing equations (15) 

and (16) consist of 21 coupled, first-order, non-linear ordinary differential 

equations which are certainly tractable via numerical methods. In addition 
I 

the aQxiliary algebraic equation ~ C. = 1 can be used to reduce the govern­
i=l 1 

ing differential equations to a set of (21-1) first-order equations. However 
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even if the 0ij are taken to be approximately unity, which may not always be 

a good approximation, then the (31-1) independent dimensionless parameters 
I 

in the form of B~, Cioo and Cio ' using l: Cio = 1, must be specified to 
1=1 

identify a given solution. In order to properly understand the wide variety 

of numerical results produced in this manner, same framework must be established 

whereby classes of solutions with similar characteristics can be identified 

and analyzed separately prior to investigating general cases which may not 

clearly display any particular feature which is physically or mathematically 

unique. This framework is best established by means of a series of limiting 

solutions to (15) and (16) using (21) where the number of species is 

progressively increased and the diffusive nature of both the tube wall and 

the bore flow are taken to extreme limits. 

(i) Limiting Solutions 

The limiting solutions to (15) and (16) using (9) and (21) will be 

increased in complexity by increasing the number of species I present, 

starting with the single specie case. 

I = 1 (SINGLE SPECIE) 

When I = 1 the identity (9) determines Cl 

(22) 
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and (15) gives Ml 

(Z3) 

(Z4) 

which merely shows, as was already known, that the assumptions, analyzed 

in the Appendix, eliminated all resistance to the flow of a single specie 

gas down the bore. 

I = Z (BINARY MIXTURE) 

When two species are~present and the assumption that VIZ = VZl is used, 
Z 

then 0lZ = 0Zl = 1 and ~ = ~lZ = ~Zl = - (8lZ Ml + 8Zl MZ) where 8lZ = SIZ 
Z (Cloo - ClO) and 8Zl = SZl (CZoo - CZO)· If the auxiliary equation 

Cz = 1 - Cl is used to eliminate one differential equation, the three 

governing differential equations 

describe the problem with boundary conditions (Zl). 

(Z5) 

(Z6) 

(27) 
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Perfect Filter 021 = 0 

In the limit where only specie 1 permeates the tube wall, 021 = P and 

(26) is eliminated so that 

(28) 

(29) 

which can be combined to give 

(30) 

Letting ( )' = d ( ) I dX and y = R-n (1 - Cl ), (30) becomes 

(31) 

Equation (31) can be formally integrated to give 

and 

. J I 2 [ ] 1-
1/2 

X = x/L = 2B12 eY + (C1°o - 1) Y + AO dy + BO (33) 
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where AO and BO are integration constants. Unfortunately, due to the nature 

of the boundary conditions, AO and BO cannot be explicitly evaluated except 

in special cases. To obtain general results, one can use a numerical 

procedure to determine AO and BO from (32) and (33) or one can return to 

(28) and (29) and use a standard scheme to integrate a system of first­

order differential equations. Howeve~ a great deal of information can be 

obtained from special, limiting solutions of these equations. 

Diffusion Dominated Limit 

First consider the special case of perfect mixing (V12 + 00) so that 

812 + 0 and dCl/dX = 0 with the result that 

giving 

so that 

(34) 

(35) 

(36) 

(37) 

implying, as it should, that no flow resistance effects are present. 

Actually, if this limit is approached by decreasing the total pressure, 

Knudsen flow will occur before it is reached, however proper behavior is 

displayed in the continuum sense even if it is idealized. 

For finite V12 the problem is diffusion dominated if lui « lUll so 

that ICI ~121 « 1812 MIl; but since ~ = ~12 + - 812 Ml or u = Cl ul 

37 



when 021 = 0, this limit can only be approached if Cl « 1 implying that 

CIO « 1 and also Cloo + (CIO - Cloo)/cosh B12 « 1 via (38) so that only a 

trace of specie 1 is present in the tube compared to the concentration of 

specie 2 which is stagnant in the tube bore in this case, C2 = 1 - Cl . 

Equation (30) then becomes d2Cl /dX2 = Bi2 (Cl - Cloo) the solution (well 

known due to the analogy to the familiar thin, finite-length-fin, heat­

transfer problem) of which is 

so that Cl varies exponentially between the limits of CIO and 

(38) 

Cloo + (CIO - Cloo)/cosh B12 at X = 0 and X = 1, respectively. To complete 

the solution, M1 is obtained from (28) using (38) 

Ml = [sinh B12 (1 - X)]/B12 cosh B12 (39) 

which has the value 

(40) 

at X = O. Note that Ml is always bounded 0 ~ Ml ~ 1 for all X and B12 , 
-1 and in fact 0 ~ Ml < B12 forB12 > 1. From (40) it can be seen that only 

for B12 « 1 giving MIO + 1 is the flow of specie 1 virtually unrestricted. 

In fact the perfect mixing case (34) - (36) is recovered as a special case 

from (38) - (40) when B12 «1. On the other hand, when B12 » 1 (actually 
-1 -1 2 1/2 . B12 > 3) MIO + B12 where B12 = (V12/wle L ) so that the flow of specle 

1 is almost stopped compared to the perfect mixing value. Such a phenomenon 
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occurs in this limit for high pressure and/or long tubes where the 

magnitudes necessary are controlled by the wle value. Thus when 812 » 1, 

increasing L does not increase the flow rate of specie 1 significantly 

since the 8i~ decrease of MIa is cue to the increase in the perfect mixing 

limit which has been used to normalize MIa' Of course these results are 

valid for flow in either direction indicated by the sign of (CIa - Cloo)' 

The value of MIa from (40) is plotted versus 812 in Figure 2, where it is 

the lowest curve among the family of curves shown schematically there. 

Notice that 

is in this case much smaller than unity over most of the tube length even 

for large 812 , This result can be arrived at using the fact that 

Icloo - clol « cosh S12/(cosh 812 - 1) when Cl « 1 so that 

I¢I « 812 [sinh 8l2(1-X)]/[cosh 812 - 1] which yields I¢I « 5 if 812 < 5 

and I¢I « (eX)-l for 812 ~ 5. Thus in this special case, the condition 

necessary for the diffusion dominated solution to hold u « ul ' implies 

that I¢I « 5 for 0.074 < X < 1 which accounts for a majority of the tube 

length. It will become clear later that I¢I = 1¢12 1 « 1 over the majority 

of the tube length L in any case where at least some of the species are in 

the diffusion dominated region. The rather loose bounds established above 

are adequate here but in each specific case they can be significantly 

lowered. 
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Convection Dominated Limit 

The other extreme, where the convection current (actually plug flow 

here due to the complete radial mixing) dominates the axial diffusion 

current and there is no axial mixing in tube bore,is obtained via V12 + 0 

so that ul = u2 = u from (2). From (1) and the boundary condition at 

X = 1, an algebraic equation determines the value of Cl at X = 1, 

Cll = Cl(l), so that 

(42) 

and since in this limit (perfect filter and convection dominated) no 

mechanism exists which can allow a concentration gradient, the two cases 

and 

M = 0 1 
(43) 

(44) 

result from (28) - (30). The trivial solution (43) valid for Cloo ~ 1 results 

for zero Cloo = CIO or initially.positive Cloo < CIO velocity (flow into the 

tube at its open end or root) since specie 2 will just collect until Cl is 

reduced to Cloo and all flow stops, as well as some initially negative velocity 

cases where CIO < Cloo ~ 1. The non-trivial solution (44) valid for Cloo > 1 is 

for negative velocity (flow out at the root) since the non-permeating specie 2 

is completely forced out of the tube bore due to the lack of a mixing mechanism. 

As opposed to the diffusion dominated case, the non-trivial convection dominated 

case (44) depends only on the pressure ratios Cloo and CIO so that additional 

tube length always increases the flow rate via the Uo linear dependence on L 

(45) 
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which is shown schematically in Figure,2 as the family of horizontal lines 

labeled by MIO values less than unity, since (45) is independent of 812 . 

Therefore in this flow regime MIO is independent of all the physical uncer­

tainties in the parameters contained in 812 . Figure 3 shows this perfect 

filter convection nominated case as a plot of MIO versus CIO with Cloo as 

the parameter. Notice that 

(46) 

for this case, so that 8i2 (Cloo - 1) » 1 is generally necessary; this 

results because it will become clear later that I¢I = 1~121 » 1 is required 

over the majority of the tube length L (actually this is expected since 

V12 + 0 but u = 0 in general only at X = 1) in order that the convection 

dominated limit occur. 

Balanced Pressure Limit 

The two very different types of behavior exhibited by the diffusion 

limit OMIO dependent only on 812) and the convection limit OMIO dependent 

only on CIO and Cloo) represent identifying characteristics of two classes 

of solutions Cloo § 1 contained in the general perfect filter equations (28) -

(33) which are separated (see Figure 2 schematic diagram) by a very special 

case, Cloo = 1, which implies Ploo = Po and thus is called the '~alanced 

pressure" case here. In this limit the constants Ao and Bo in (32) and 

(33) can be determined via the boundary conditions (21) so that 

(Cl - l)/(CIO - 1) = [sec2 W(l - X)]/sec2 W 

where W is an integration constant given in transcendental form as 

42 

(47) 



1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

co 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 3. Root Mass Flow Ratio Versus C
IO 

with Clro > 1 Parameter (No Mixing ul 
For Binary Mixture, Perfect Filter, 621 = 0, Example 

1.0 

u) 



(48) 

in terms of the parameters B12 and CIO. The solution for Ml is 

Ml = [tan W(l - X)]/W sec2 W (49) 

which has the value 

MIO = sin 2 W/2 W (50) 

at X = 0 and showing the Bi~ decay as B12 becomes large so that adding 

tube length does not increase the flow rate. This MIO depends on both B12 

and CIO and it is plotted on Figure 4 versus B12 with CIO as the parameter. 

Notice that the family of curves is closely grouped for 0 ~ CIO ~ 0.6 but 

rapidly fan out as CIO approaches unity. Also for the special example, the 

specific values for which are shown on the figure, the square root pressure 

scale for Po in atmospheres is shown above the B12 scale to give an idea of 

the amount of reduction in MIO from unity (perfect mixing) which can occur. 

Note that since Cloo = 1 and 0 ~ CIO ~ 1, then only negative velocity (flow 

out at the root) cases can occur in this limit. Also notice that 

for this case, which has no magnitude limitation since only Cloo = 1 is 

required. 
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Real Filter e2l~ 

When both species permeate the tube walls, (25) - (Z7) with boundary 

conditions (Zl) govern the problem. It is then of interest to re-examine 

the limiting solutions with 8Zl f O. 

Diffusion Dominated Limit 

The perfect mixing case (VIZ + 00) implies that 8lZ = 8Zl + 0 and 

dCl/dX = dC2/dX = 0 so that 

similar to (34) and (35). 

(52) 

(53) 

For finite VIZ the conditions and solutions (38) - (40) are the same 

for specie 1 as in the perfect filter limit, except the magnitude of Cl 

is no longer restricted to be much less than unity; instead 

(54) 

is required in order that lui « lUll be true. For specie Z, if lui « IUzl 

so that ICz ¢zll « 18Zl Mzl, it is required that 

(55) 

with the result that the diffusion dominated limit is approached and 
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The mole fraction of specie 2 is 

(56) 

similar to (38) and M2 is 

M2 = [sinh S2l (1 - X)]/S2l cosh S2l (57) 

similar to (39). Note that (54) reduces to Cl « 1 if 021 = 0 so that the 

limits on ClO' Cloo and S12 given previously are obtained. Similarly (54) 

and (55) used with (38), (39), (56), and (57) determine the limits on ClO' 

C20 , Cloo ' C2oo ' S12 and S2l required if both species are in the diffusion 

dominated regime; it is jmportant to recognize, however, that it is 

possible for only one of the two species (say specie 1) to be in the 

diffusion domillated regime so that (38) and (39) hold, but the solution 

for the other specie (specie 2) must be determined from (26) using 

C2 = 1 - Cl . In such a case it is the M2 from (26) not (57) which is used 

in (54) to determine the parameter limitations and of course (55) is dropped. 

The special case 021 = 0 is an example of such a situation but where the 

solution for M2 is not even needed as it is zero. Another special case 

where both (54) and (55) are satisfied via u + 0, so that there is no 

restriction on Cl and C2 other than Cl + C2 = 1, results when 021 M2 = 

- 012 Ml so that 

(58) 
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gives the parameter limitations. Since (58) can be satisfied for all X only 

if 612 = 6Zl with the result that (Cloo - ClO) = (GZO - CZoo) , the very special 

nature of this case is evident. 

Due to the similarity of (56) and (57) to (38) and (39) no further 

discussion or plots for this case are required. On the other hand, it is 

of interest to briefly examine the magnitude of ~ = uL/VlZ when 0Zl r o. 

When lui «lull, ¢ can be written 

(59) 

and since 

(60) 

one can show that IdCl/dXI < 5 for 0.074 ~ X ~ 1 using 0 ~ Cl ~ 1 and the 

same reasoning given below (41). These loose bounds imply that I~I « 5/Cl 
which is an adequate indication that I~I must be small over most X values 

in this limit except when Cl is very small. Since (59) can be written 

(61) 

then in the limit of small Cl (Cl + 01 ~ approaches dCl/dX which can be 

shown to be small over most X values via the same reasoning following (41). 

Thus if either or both of the species are in the diffusion dominated 

regime, it appears that ~ must be small compared to unity over most of the 

tube length; the fact that ~ is small does not, however, imply that all the 

species are in the diffusion dominated regime. Again notice that the 
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diffusion dominated solution is valid for flaw in either direction depending 

on the signs of (Cloo - ClO) and (CZoo - CZO) for the individual species and 

the sign of u = r Ci ui for the net flow which, of course, has been restricted 

to be much smaller than ul or Uz in this limit. 

Convection Dominated Limit 

When 8Zl ~ 0 the convection limit is very complex compared with the 

8Zl = 0 case. In the limit VIZ + 0, ul = Uz = u and 

via (Z) or (Z7), giving the governing differential equations. 

from (Z5) and (Z6). Equations (63) and (64) have solutions of vastly 

different nature depending on the flow direction, which is due in part at 

(6Z) 

(63) 

least to the flow direction dependence of the Cl boundary condition at X = 0 

in this limit. For this reason there is considerable value in applying the 

Cl boundary condition at X = 1 where it can be determined by solving the 

algebraic (quadratic if I = Z) expression obtained from (64) when it is set 

equal to zero. In other words, since MIl = Ml(X = 1) = 0 
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where 

c = C 100 

(65) 

(66) 

which indicate that the value of Cll is independent of CIO in this limit. 

Figure 5 gives the results from (65) via Cll versus Cloo with nZ = wZe/wle 

and CZoo/Cloo as parameters. The diagonal line passing through the origin is 

the no flow Cll = Cloo line and all values above it, selecting the sign in 

(65) giving Cll ~ 1, are for positive velocity while those below Cll = Cloo 

and Cll = 1 are for negative velocity. It is evident that the nature of the 

two regions varies considerably. 

This difference carries forward into the solutions of (63) and (64); 

one class of solutions is obtained when dCl/dX = 0, which contains all 

negative velocity cases (flow out of tube open end) as well as the no flow 

limit, and results when Cloo + CZoo ~ 1 so that 

(67) 

(68) 

where MZ is determined from (6Z) and Cll is obtained from (65) which reduces 

to the perfect filter solution if nz + O. Since Cll ~ 1, then the perfect 

filter Ml from (44) is never greater than the real filter Ml from (68) (see Fig. 6). 

Note that (67) and (68) are just slightly modified from (44) to account via 

so 



0.8 \ \ 

0.6 

0.4 

O.z 

\ \ 

\ \ 

\ \ 

\ \ 
\ \ 

\ \ 
\ , 
-r\--­
, \ , , 

\ \ 

\ \ 

- - -

--- CZdCloo = 0.1 
= 1.0 

0.5 

1.0 
2.Q _ 

= 10.0 

NEGATIVE 
VELOCITY 
Cl = Cll 

---
0.5 -- ------
1.0 

z.O -- -------

- -- -----~------ -----

--- -- --!0.0 - -
lQ.O_ _ _ __ _ 

O.O~---.----~---.----r----r---''---.----.----'----.----.----'----r----r----r-=-~=-=,r--=-~---=--~~~ 
0.0 0.1 O.Z 0.3 0.4 0.5 

Cloo 

0.6 0.7 0.8 

Figure S. Convection Dominated Limit for Binary Mixture and Real Filter 

0.9 1.0 



100.0 rTTT,..---------,,-----,---·---,---,---T-

MlO (r2Z " 0) 

MlO Cr2Z - 0) 

• 

90.0 

80.0 

70.0 

60.0 

SO.O 

40.0 

30.0 

ZO. 

10.0 
9.0 

8.0 

7.0 

6.0 

S.O 

4.0 

3.0 

Z.O 

1.0 

0.1 

·r2z PARAMETER 

SCALE 

Z.O 3.0 4.0 S.O 6.0 7.0 8.09.0 

Cleo 

CZoolCloo PARAMETER 

r2Z = 0.1 
< 

SCALE 

eo = CZeo/Cloo 

~ 
1. 0 +-----=::::::::::::=--r---==;::===::;:===:::::;===r=,==~=1 

10.0 

9.0 

8.0 

7.0 

6.0 

s.o 

4.0 

3.0 

MlOCr2Z " 0) 
MlO Cr2Z = 0) 

Z.O 

1.0 

1.0 Z.O 3.0 4.0 s.o 6.0 7.0 8.09.0 10.0 

Figure 6. Real to Perfect Filter Flow Rate Ratio in Convection Limit 

S2 



Cll f 1 for the proper mixture permeating the tube walls which then flushes 

all except that mixture from the tube due to the lack of a mixing mechanism. 

The solution becomes independent of the boundary condition Cl = CIO at X = 0 

in this limit, which in fact is no longer valid as is shown by (67). Also 

observe that in this limit 

which is slightly modified from (46) to account for Cll f 1 when 0Zl f O. 

Although the appearance of (67) - (69) is very similar to (44) - (46), to 

(69) 

which they reduce when Cll + 1 as 0Zl + 0, this is somewhat deceptive since 

(67) - (69) can display much different physical behavior from that shown by 

(44) - (46). Equations (44) - (46) are valid for Cloo> 1 so that Cloo > CIO 

and Ml is positive and narrowly bounded 0 ~ Ml ~ 1 with siz (Cloo - 1) » 1 

being required to guarantee that the convection dominated limit holds. 

Equations (67) - (69) are valid for Cloo + CZoo ~ 1 where Cll ~Cloobut Cll ; CIO 

and Cloo ; CIO so that - 00 < Ml < 00 with siz (Cloo/Cll - 1) » 1 being required 

to guarantee that the convection dominated limit holds. The physical meaning 

of this greatly expanded Ml range is discussed briefly following the derivation 

of the other class of solutions. 

The other class of solutions contained in (63) and (64) besides (67) 

and (68) is obtained when dCl/dX f 0, which holds for all positive velocity 

cases (flow into open end of tube), and results when Cloo + CZoo < 1. In this 

case the differential equation obtained from (63) and (64) 

(70) 
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must be solved using 

and (71) 

where a, b and c are given by (66). After much manipulation the solution to 

(70) can be expressed 

(72) 

which gives for Ml 

(73) 

where the boundary conditions (21) have been applied and the subscript 0 on 

Z and Y indicates X = 0 values. The functions Y = Y(C1) and Z = Z(C1) 

(not to be confused with the compressibility factor) are defined as 

and the constants K (not to be confused with the permeability coefficient) 

and a are 

2 2 -1 K = (b - 4ac)(0.5 - 2a ) (C10 - C1°o) (76) 
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(77) 

where using (66) 

Although the negative velocity cases given by (67) and (68) using (65) 

and (66) are very simple (aside from the wide Ml range discussed below) due 

to Cl being constant and Ml being linear, the positive velocity cases given 

by (7Z) - (78) are more complex and need further discussion. Figures 7 and 

8 give a specific example where wZe = ZWle or QZ = Z and where Cloo = CZoo = 0.15. 

Figure 7 gives Cl versus X with CIO as the parameter while Figure 8 gives Ml 

versus X with CIO as the parameter. For the set of parameter values selected, 

Figure 5 or (65) and (66) indicate that Cll = Cl (X = 1) = 0.75 in all cases 

no matter what value of CIO is used; also note that Cll depends on only the 

ratio of wZe and wle not their magnitude. Figure 7 shows that Cl may either 

decrease or increase from CIO to that Cll value depending on CIO being greater 

or less than Cll , respectively. Physically the Vo mixture identified by CIO 

is carried into the tube at X = 0 and must adjust to the Cll value at X = 1 

which is compatible with the tube wall characteristics and the Voo mixture but 

independent of CIO . Figure 8 shows that Ml (similar to the negative velocity 

case) has a wide range - 00 < Ml < 00, although the velocity for this example 

is always positive [the Ml sign change is due to the sign change of 

(Cloo - ClO)]. Notice that at X = 0, dMl/dX = - 1 and that MIl = Ml(l).= 0 

for all CIO values; however, MIO = Ml(O) must be adjusted until the latter 

condition is true so that MIO is different for each CIO value. In fact this 

procedure, which is automatically accomplished via (7Z) - (78), not only 
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yields some negative values for Ml which must exhibit a minimum where 

dMl/dX = 0 at some 0 ~ X ~ 1 but also yields values greater than unity. The 

physical meaning of both of these phenomena are discussed at great length 

later as well as possible means of exploiting these effects in applications. 

A brief indication of their physical meaning is given here, however. Negative 

Ml values indicate that the actual flow direction of specie 1 (which in this 

limitV12 ~ 0 is the same for all species) is opposite to that which would 

exist if perfect mixing V12 ~ 00 were present. Values of Ml greater than 

unity at X = 0 [Ml(O) = MIO > 1] indicate that the flow rate of specie 1 is 

greater than the perfect mixing (V12 ~ 00) flow rate. The physical reason 

that these phenomena can occur in the convection dominated limit (or near 

this limit), while Ml is always narrowly bounded 0 ~ Ml ~ 1 in the diffusion 

dominated limit, is that as V12 ~ 0, ul = u2 = u; thus when specie 2 is the 

controlling specie, it determines both the sign and magnitude of velocity for 

specie 1 independent of those for perfect mixing which have been used for 

normalization because that limit is the most cammon assumption. 

I ~ 3 (TERNARY MIXTURE OR GREATER NUMBER OF SPECIES) 

The general governing equations (15) - (21) do not lend themselves to 
I 

extensive simplification when I ~ 3, although the use of ~ C. = 1 does 
. 1 1 1= 

reduce the differential equations to a set of (21 - 1) first-order equations. 

Even if the 0ij are taken to be approximately unity, then (31 - 1) independent 
2 . I 

dimensionless parameters in the form of 8 .. ,C. and C. USIng ~ C. = 1 
IJ 1 00 10 i=l 10 

must be specified to identify a particular solution. Some limiting solutions 

can be obtained, however, and they help a great deal in understanding the 

general results generated numerically later in this report. 
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Diffusion Dominated Limit 

As before, first consider the perfect mixing (D .. + 00) special case 
1J 

which implies that dCi/dX = 0 so that 

C. = C. i = 1, 2, ' , " I 

similar to (52) and (53), 

1 10 

M. = 1 - X 
1 

For finite oij the problem is diffusion dominated for a specie i if 

lui « luil so that ICi~ijl « IGij Mil giving the governing differential 

equation 

d2 C./dX2 = s? (C. - C. ), 
1 1J 1 10 

Equation (81) yields the mole fraction C. for specie i 
1 

(79) 

(80) 

(81) 

(C. - C. )/(C. - C. ) = [cosh S·· (1 - X)]/cosh S· . 
1 1 00 10 1 00 1J 1J 

(82) 

and the M. expression follows from (15) 
1 

M. = [sinh S·· (1 - X)]/S·· cosh S·· 
1 1J 1J 1J 

which are both bounded between zero and unity (0 : Ci ~ 1, 0 ~ Mi ~ 1). 

(83) 

Equations (82) and (83) display the same mathematical characteristics 

which were discussed following (38) and (40), It is possible for some species 

to be in the diffusion dominated region where (82) and (83) hold lui « luil, 

while other species are not in that region so that for those species (15) - (20) 
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must be used. The fact that ¢ = ~ .. = uL/V .. must be small in order for any 
1J 1J 

of the species to be in the diffusion dominated regime can be shown via 

generalizations of (59) and (60) 

(84) 

= (c. - C. ) S·· [sinh S·· (1 - X)]/cosh Sl'J' 
100 10 1J 1J 

(85) 

valid for lui « lu. I, so that following the reasoning below (41) and (60) 
1 

one can show that I¢I « 5/C. over most of the tube length. Similarly the 
1 

generalization of (61) 

¢ = (-dC./dX) [1 + t (C. u./C. u.)] 
J i_Ill J J 

ifj 

(86) 

can be used in the limit of very small Ci to show that I¢I must remain small 

even in that limit. As stated before, small ¢ is a necessary but not 

sufficient condition for a specie to be in the diffusion dominated region. 
I 

For any specie i it is sufficient that I E c. u·1 « lu·1 in order that (82) 
i=l 1 1 1 

and (83) hold; this condition can be expressed analogous to (54) and (55) as 

Ic. ~··I « Ie .. M·I er 
1 1J 1J 1 

(87) 

which determines the limits on Cio ' Cioo ' Sij and 0ij when used with the 

appropriate Ci and Mi values. When (87) holds Mi is mathematically (via 83) 

bounded, 0 < M. < 1. Equation (82) mathematically bounds C. to be between C. 
- 1 - 1 10 

and C. + (C. - C. )/cosh S·· when (87) holds, but by definition C
1
' is bounded 

100 10 100 1J 
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also 0 ~ Ci ~ 1 so that the mathematical bounds from (82) must not violate 

this definition or the physical bound established by (87). 

Convection Dominated Limit 

In the limit V .. + 0, u· = u and (actually it is sufficient if 
1J 1 

lui » Iv .. d R-n C./dxi) 
1J 1 

M. = M. (G.k/G. k) (C./C.) (O'k/Ook) (88) 
1 JJ 1 1J J 1 

so that the governing equations are greatly simplified. Perhaps this is 

most clearly observed from (1) and (2). Equation (2) yields nothing but 

ui = u and (1) can be written (note Mi = Ci u/Lwie(Cio - Cioo) here) 

I 
(u/Lw1e)(dC

1
./dX) = n. (C. - C.) - C. ~ n. (C. - C.) = A. (89) 

1 1 00 1 1 i=l 1 1 00 1 1 

where 

and 

I 
d (u/Lw1e)/dX = 1: n. (C. - C.) = B. 

i=l 1 1
00 

1 1 

n. = w. /w1 . 1 1e e 

(90) 

(91) 

Therefore, as in the binary mixture case, it can be expected that very different 

results will be obtained depending on the sign of u. Notice that by definition 

n1 = 1 in (89) - (91). 

Again, as in the binary case, it is of value to consider the Ci boundary 

condition at X = 1 which is determined in this limit by setting A. fram (89) 
1 

equal to zero. Thus the Ci1 = Ci (X = 1) are obtained by solving the algebraic 

equations 
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I 
C

1
' 1 = Q. (C. - C· 1)/ L Q. (C. - C· I ) 

1 1 00 1 . 1 1 100 1 
1= 

I 
which reduce to a quadratic equation using L: C' l = 1 when I = 2 giving 

. 1 1 1= 
the solution (65). Generally (92) must be solved numerically for the Cil 

(92) 

values as a function of the parameters Q. and C. , but this is a straight-
1 1 00 

forward task which is easily accomplished. The results are very similar to 

the binary case in that the regions of positive velocity and negative velocity 
. I 

are separated by the no flow case ~ C. 00 = 1. 
. 1 1 1= 

In the negative velocity case as well as the no flow limit d C./dX = 0 
I 1 

and ~ C. > 1 with the results that, similar to (67) and (68), 
1 00 -i=l 

C. = C' l = C. (X = 1) 
111 

M. = (1 - X) (C. - C.l)/(C. - c. ) 
1 1 00 1 100 10 

(93) 

(94) 

where the Cil are obtained from (92). Obviously nothing fundamentally new 

is introduced by (91) - (94) over that already given by (65) - (68) for I = 2, 

except additional mathematical complexity which is easily handled via numerical 

calculations. Thus no further analysis is required at this point for the 

negative velocity case. 
I 

In the positive velocity case dC
1
./dX ~ 0 and ~ C. < 1 so that (89) 

i=l 1
00 

and (90) combine to give 

A. (d2C./dX2) - (dA./dX)(dC./dX) + B. (dC
1
·/dX)2 = 0 

1 1 111 
(95) 

which can be rewritten 
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I 
A. (d2C. /dX2) + (n. + 2B. )(dC. /dX) 2 - C. (dC. /dX) E n. (dC

1
" /dX) = 0 (96) 

1 1 1 1 1 1 1 i=l 1 

I 
the solution of which is needed only for i = 1, 2, ... , I-I since E C. = 1. 

i=l 1 

It appears, except for the exact solution (72) - (78) already given for the 

I = 2 case, that (96) must be solved by numerical techniques as will be done 

in the following pages. 

That ¢ .. = uL/V .. from (17) must in general be large in order for the 
lJ lJ 

convection dominated regime to occur can be shown via (2). From (2) it can 

be seen that ui ~ u if lui » IVij d ~n Ci/dxl which can be expressed 

I -1 
¢··I »Ic. dC./dXl· 
lJ 1 1 

Of course the ¢ij are about the same ¢ = ¢ij for all 

species if the Vij are about the same magnitude. The criteria stated above 

must hold for most of the X range 0 < X ~ 1 if a specie is to be considered 

in the convection regime. Thus for I¢I » 1 to be used as a necessary and 

sufficient condition specifying the convection regime, it must be shown that 
-1 Ci dCi/dX is bounded over most X values between zero and unity. The 

examples given in this work adequately demonstrate that Ci -l dCi/dX is 

bounded except near X = 0 for negative u and near X = 1 for positive u values. 

In fact for negative velocity, the Ci become constant (93) over most X so 

that dCi/dX approaches zero in that convection limit. Such is not the case 

for positive velocity, however examples like the one shown on Figure 7 are 
-1 ample proof that Ci dCi/dX is well bounded except near X = 1. Hence 1¢1»1 

can serve as both the necessary and sufficient condition that the convection 

limit is present. 

As a final point, it should be noted that the balanced pressure limiting 

solution given by (47) - (50) for I = 2 and 021 = 0, apparently has no useful 

meaning for more general cases; hence it is not examined as a limiting case 

beyond that special case which was meaningful. 
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(ii) Numerical Results (Arbitrary C. O' C. , B .. , 0 .. ) 
1 100 1J 1J 

The limiting solutions (22)-(96) are valid only for special sets of 

the determining parameters C· O' C. , B .. , 0 .. which yield either 
1 1 00 1J 1J 

u. + u or lu. I » lui, except for the one balanced pressure case where 
1 1 

C100 = 1 when I = 2 and 821 = O. These limiting solutions provide the 

framework needed to understand the results obtained by numerical integration 

of (15) and (16) with boundary conditions (21) for arbitrary C· O' C. , B .. 
1 100 1J 

and 0ij values. The numerical results generated for each set of controlling 

parameters consist of Ci ' Mi and ~ij plotted versus X, although in some 

cases a plot of M
1
· 0 versus a parameter such as B·· for various C. O and C. 

1J 1 1 00 

values is adequate. 

Prior to examining specific examples, it is worth briefly reviewing 

the physical information carried by Ci ' Mi' and ~ij. First notice that the 

sign of (C
1
· 0 - C. ) indicates the flow direction (wall and bore) for specie 

1 00 ' 

i in the perfect mixing limit, Vij + 00. The sign of (Ci - Cioo) indicates 

the local wall flow direction for specie i for arbitrary Vij . It is found 

that C
1
· may either increase or decrease from C· O at X = 0 and that (C. - C. ) 

1 1 ~ 

may in fact change sign for some 0 ~,X ~ 1, so that a "wall stagnation point" 

exists locally for specie i when C. = C. . Since M. is u.C. normalized by 
1 1 00 1 1 1 

its corresponding root (X = 0) value when perfect mixing (V .. + (0) is 
1J 

approached, the value of Mi at the root, MiO ' is an important overall 

performance indicator as was shown in Figures 2-6. Thus MiO < 1 or MiO > 1 

indicates dehancement or enhancement, respectively, of the total flow for 

specie i compared to the perfect mixing case. Also MiO < 0 indicates that 

the other species are controlling the problem to the extent that specie i 

is flowing in the opposite direction at the root compared to that indicated 
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by (C,
O 

- c. ) for perfect mixing. Even more physical information is 
1 1 00 

carried by the local value of Mi as was shown in Figure 8. Of course 

dM/dX = 0 indicates that a local "wall stagnation point" exists since 

dM./dX is proportional to (C. - C.). In addition, if MI' = 0 at some 
1 1 1 00 

o ~ X ~ 1, then a local "bore stagnation point" for specie i exists and 

the bore flow direction for that specie is different on opposite sides of 

that point. Of course in this application M. = 0 at X = 1 via the boundary 
1 

conditions (21). The "wall" and "bore" stagnation points are different 

physically and must not be confused. The sign of ~ij gives the net or 

global flow direction, which mayor may not coincide with the flow direction 

of the individual species; whether it does or not depends in part at least 

on the flow regime present over most of the tube length (the relative 

amount of diffusion compared to convection). A necessary and sufficient 

condition for ui + u (convection regime) is I~ijl » 1, so that the magnitude 

of ~ij is a valuable indicator of flow regime. Small ~ij is a necessary 

(but not sufficient) condition for lu. I » lui, (diffusion regime). Of 
1 

course ~ij = 0 indicates a global flow stagnation point, one of which is 

always present at X = 1. Another parameter which is sometimes useful in 

analysis of numerical examples is an "effective separation ratio" defined as 

(97) 

where ni is the wall material separation ratio defined by (91). Equation 

(97) gives the apparent separation ratio which appears to exist for the wall 

material if one is not aware of the effects which the tube geometry and 

associated fluid mechanics can have on the problem when gas mixtures are 

involved. In general it is found that either neff i > ni or neff i < ni is 

possible and in fact neff i < 0 can also occur. 
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The same format followed for the limiting solutions is also useful 

here, starting with the two specie case as the most simple non-trivial 

example. 

I = Z (BINARY MIXTURE) 

In addition, as before, the binary mixture case is divided into the 

perfect filter cases where QZ = 0 and the real filter cases where QZ r o. 

Perfect Filters, QZ = 0 

The schematic diagram on Figure Z, and Figures 3 and 4 describe the 

limiting case behavior of MIO for a perfect filter, QZ = O. Figure 9 gives 

a specific example corresponding to the illustration shown on Figure Z and 

includes not only the limiting cases but also the results between such 

special solutions. Figure 9 is for the case where specie 1 is absent in 

the receiver, CIO = 0, and Cloo is used as the parameter; since Cloo ~ CIO and 

QZ = 0, the entire family of curves shown on Figure 9 is for negative global 

velocity (flow out at the root). Note that 0 ~ MIO < 1 here, and since 

QZ = 0 the value of MZO is irrelevant. However if this case is regarded 

as representative of the limit QZ « 1, then MZO is of interest too and it 

is found to be greater than unity, in some instances at least, since in the 

convection limit MZO = (1 - CZ:)-l. The result is that Qeff Z .~ QZ since in 

the convection limit Qeff Z = QZ (1 - c1:)-1 (1 - CZ:)-l and Cloo + CZoo ~ 1. 

It should be observed from Figure 9 that when Cloo > 1, the convection 

dominated solutions (horizontal lines) apply to an increasingly broad range 

of 6lZ values as Cloo increases. In Figure 9 all of the solutions for 
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o < Cloo < 1 occupy the narrow region between the balanced pressure and the 

diffusion dominated solutions. This region is not so narrow for other values 

of CIO because the balanced pressure curve moves up, shrinking the Cloo > 1 

region to nothing as CIO approaches unity, see Figure 4. Actually Figure 9 

represents the worst perfect filter case (smallest MlO) since for 0 < CIO < 1, 

the entire family of curves is shifted upward toward unity as is shown in 

Figures 10 and 11. Figure 10 gives another perfect filter example, but 

where Cloo is fixed at 0.1 and CIO is the parameter. Here the entire family 

of curves, except the lowest one, is for positive global velocity (flow in 

at the root). The family of horizontal curves seen in Figure 9 for the 

convection limit is not present in Figure 10 because for positive velocity 

and ~Z = 0, the convection limit yields MIO = 0 via (43). Figure 11 gives 

another perfect filter example where CIO = 0.95 and Cloo is the parameter; 

here the lower three curves are for positive global velocity while the rest 

are for negative velocity. Notice that no solutions exist for this case 

which are near the diffusion dominated solution tanh BIZ/BIZ. Figure lZ is 

a plot of Ml versus X for this case. Notice that Ml is linear with X for 

large Cloo but becomes less and less linear as Cloo becomes small. Figure 13 

gives Cl versus X and shows both increasing and decreasing Cl distributions 

with Cz = 1 - Cl being the opposite; at this poin~ little can be gained from 

additional perfect filter examples per se, although many others are required 

in the real filter analysis. 

Real Filters, ~2~ 

The real filter solutions are best discussed by means of comparisons 

with perfect filter solutions. Figures 14-16 give one such example consist­

ing of plots for M., C. and -~ versus X. Curves are given for ~Z = 0,0.1 
1 1 
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and 1.0, all of which yield negative velocity cases since ~ is negative, 

Figure 16. The flat Ci distributions (Figure 15) and large I~I values 

(Figure 16) indicate that this example is convection dominated. The perfect 

filter case here is one of the examples shown on Figure 9 where MIO = 0.5 

and specie 1 is absent in the vent volume. Notice that M2 is also shown 

on Figure 14 and that M20 > 1. Increasing separation ratio Q2 tends to 

force MiO + 1 in this case. It can be observed that the perfect filter 

case Q2 = 0 is certainly representative of all Q2 « 1 cases. The effective 

separation ratio Qeff 2 is greater than Q2' Qeff 2 > Q2 for this case, and 

it may be greater or less than unity depending on the value of Q2. For 

large Q2 the effective separation ratio approaches Q2. 

To show the effects of reduced convection domination, the preceding 

example is repeated in Figures 17-19 but with Bi2 reduced from 64 to 6.4. 

From Figures 18 and 19 one can observe that for each of Q2 = 0, 1 and 10 

negative velocity exists; for Q2 = 0 the problem is not convection dominated 

although for Q2 = 1 it is near the convection regime and for Q2 = 10 it is 

convection dominated. This result is physically caused by the additional 

flow of specie 2 as Q2 increases. The behavior of Mi in Figure 17 is similar 

to that already discussed and shown in Figure 14 for the preceding example. 

As a final negative velocity, two specie example consider the case 

given by Figures 20-22. As can be seen from Figures 21 and 22, the Q2 = 0 

case is not convection dominated while the Q2 = 2.25 case is nearly convec­

tion dominated. Figure 21 shows the interesting result that for Q2 = 0, Cl 

increases with X and C2 decreases while for Q2 = 2.25 the opposite is 

true. Also Figure 20 shows that for Q2 = 0, M20 > 1 and MIO < 1 while for 

Q2 = 2.25 the opposite is true. The power of one specie to control the 

characteristics of the flow of another specie is therefore beginning to 

emerge as a potentially useful method ,of operation. That is, in Figures 
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14-19 the use of another permeating specie n2 > 0 for specie 2 tended to 

eliminate via MIO -+- 1 the initial n2 = 0 dehanced flow of specie 1, MIO < 1, 

but never enhanced it above the normalizing limiting case. However the 

example given by Figures 20-22 in fact shows that the n2 = 0 dehanced flow 

of specie 1 becomes enhanced MIO > 1 when a faster permeating specie 

n2 = 2.25 is used for specie 2. Also notice that while neff 2 > n2 for 

the examples in Figures 14-19, for the example in Figures 20-22 neff 2 < n2; 

this shows that neff 2 too can be altered in a potentially useful way. 

Figures 23-25 give an example where the so calleda"driver volume" is 

evacuated so that the global velocity must be positive, see Figure 25. The 

perfect filter result is not very near to the convection dominated case, 

while the n2 = 2 case is in the near convection regime. Of course since 

the global flow velocity is positive, the convection regime is no longer 

characterized by flat Ci profiles. However, as in the preceding negative 

velocity case, the Ci and Mi curves show a reversal, so that phenomenon is 

not limited by the flow direction. Figures 26-28 are for a similar, but 

somewhat modified, positive velocity case with evacuated driver volume. 

The reduced B12 value shifts both the n2 = 0 and n2 = 2 results away from 

convection domination. Note, on the other hand, that the Ci and Mi curves 

still display the potentially useful reversal of roles, indicating that it 

is not necessary to fully enter the convection regime in order to obtain 

such an effect. 

Figures 29-46 give a series of examples closely related to the 

positive velocity, convection dominated examples given in Figures 7 and 8. 

Among other things, this allows some information to be obtained about the 

parameter values necessary to produce the convection dominated solutions 

for positive velocity cases; the flat C. profiles present for negative 
1 
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velocity convection cases do not occur here and provide such an easily 

identified characteristic. Figures Z9-46 are all for the case Clm = CZm = 0.15, 
Z 8lZ = 10 and nZ = Z and O. The value of CIO = 1 - CZO is varied to illustrate 

a number of new features not present in the other examples. Figures Z9-3l 

are for CIO = 0.Z5. The nZ = 0 case is not near the convection dominated 

limit, however when nZ = Z then ¢O = ¢(X = 0) > 11. That this nZ = Z case 

is somewhat near the convection limit is shown by the fact that from Figures 

7 and 8 MIO = Z.8 and MZO = 0.7 while Cll = 0.75 at that limit. Notice 

that neff Z < nZ for this case. Figures 3Z-34 are for CIO = 0.8 and the 

results for nZ = Z appear to be closer to the convection limit than the 

previous case even though ¢ is a little less than 8 at X = O. In this case 

neff Z > nZ' Figures 35-37 are for CIO = 0.1 and show vastly different 

results from the preceding two examples. First, observe that specie 2 is 

controlling the problem when nZ = Z to the extent that specie 1 has been 

reversed in flow direction from that which would exist for perfect mixing. 

In fact it is flowing at more than twice the rate of, as well as in the 

opposite direction from, that expected for perfect mixing. Furthermore 

specie 1 has a wall stagnation point at about X = 0.Z4 where dMl/dX = 0 so 

that specie 1 flows from the bore for X > 0.Z4 and to the bore for X < 0.Z4. 

In addition, Figure 37 shows that the perfect filter case nZ = 0 has negative 

global velocity while the nZ = Z case has positive global velocity. Of 

course negative MIO causes neff Z to be negative as well. Figures 38-40 

are for CIO = 0.05 and show much the same behavior as seen in Figures 35-37 

with the minimum in Ml when nZ = Z being even more pronouned and moving out 

to about X = 0.41. As before, the nZ = Z case is somewhat near the convec­

tion limit but not'campletely in that regime as is seen by comparison with 

Figures 7 and 8. 
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Figures 41-43 are for CIa = 1.0, so that the vent volume contains 

only specie 1. This is one of the most interesting examples given here. 

First notice that for the perfect filter Q2 = 0, MIa = M20 = 1.0 and 

Cl = CIa = 1.0 so that the tube geometry does not contribute anything. 

However when Q2 = 2, M2 exhibits a sign change at about X = 0.16 as well 

as a min~ at about X = 0.53. Thus both bore and wall stagnation points 

are present. At the root specie 2 flows from the bore, but for X > 0.16 

specie 2 flows away from the root. Also specie 2 flows into the bore via 

the wall for X < 0.53, while it flows from the bore for X > 0.53. The net 

or global velocity is positive for both Q2 = 0 and Q2 = 2. The effective 

separation ratio is greatly reduced from Q2' Qeff 2 < Q2 when Q2 = 2. 

The final example given by Figures 44-46 is for CIO = 0.0; at first 

it appears to be very similar to the preceding case even though in this 

example the vent volume contains none of specie 1 comparea to only specie 1 

there. However in this example the global velocity is negative for Q2 = 0 

and positive for Q2 = 2.- Also in this case it is specie 1, as should be 

expected, which displays the bore and wall stagnation points when Q2 = 2. 

Here the effective separation ratio is greatly increased over Q2' Qeff 2 > Q2. 

The two specie cases have exhibited a wide variety of behavior; this 

behavior can involve flow regime variation between the diffusion and 

convection limits, either positive or negative flow velocity for individual 

species as well as the global flow, and local specie wall and bore stagna­

tion points. This behavior is controlled by the values of CiO ' Cioo ' Bij 

and 0ij which depend on the diffusive and permeating properties of the 

gases and wall materials, respectively, the particular gas mixtures present 

in each reservoir, the total pressure in the vent volume, the system 

temperature, and the tube geometry in the form of length, diameter, and wall 

thickness. 
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I ~ 3 (TERNARY MIXTIJRE OR GREATER NUMBER OF SPECIES) 

Since most of the possible physical behavior can be and has been 

illustrated by means of two specie examples, only a few examples with more 
\ 

species are needed. 

The first example is given by Figures 47-49 and consists of a case 

where equal molar amounts of five different species are placed in each 

reservoir with the driver volume having a total pressure five times that of 

the vent volume. Thus a negative velocity case results. The Cij values 

are all taken to be unity, and the separation ratios 0i for the respective 

species are 1.0, 0.25, 0.0225, 0.0025 and 0.0, with sij = 4.0. Figure 47 

shows that the fast permeating species 1 and 2 have dehanced flow rates 

compared to perfect mixing, MIO < 1 and M20 < 1, while species 3, 4 and 5 

are enhanced MiO > 1. Physically this occurs because species I and 2 build 

up in the tube due to the difficulty that they experience in diffusing 

through the nearly stagnant species 3, 4 and 5. This is shown by Figure 48 

and the magnitude of <p from Figure 49. 

Another type of example is given by Figures 50-52, where the equi-molar 

mixture is maintained for the five species in the vent volume, but the 

driving pressures of the species are different, Cioo = 10, 5, 2, 0.5 and 

0.2001, respectively. Here all species have essentially equal permeating 

properties, O. = 1 and S? = 4. This example is nearly in the convection 
1 IJ 

regime as is shown by the flat Ci profiles and the magnitude of <P in 

Figures 51 and 52, respectively. Notice that species 1 and 2 are dehanced 

in flow rate from the perfect mixing case while species 3, 4 and 5 are 

enhanced. For specie 5 the enhancement is very large, MsO = 1.86 x 103 , 

since in the perfect mixing case it would hardly flow at all due to the 

-4 small value for (Csoo - CSO) = 10 . This results because the fast 
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permeating species displace specie 5 from the tube so that the local 

driving force C500 - C5 is greatly increased over C500 - C50 . 

An example where the mixture is different in each reservoir is given 

by Figures 53-55; the Cia values are 0.0, 0.1, 0.2, 0.3 and 0.4, while the 

C. values are 2, 100, 10-1, 10- 2 and 10-4, respectively. The 0 .. and Q. 
1 00 1J 1 

values are all unity and S~j = 4. Figures 54 and 55 show that the net 

velocity is negative and that the example is not convection dominated. 

Figure 53 shows that all five specie flow rates are dehanced in magnitude 

from their perfect mixing values. Species 1 and 2 dominate the problem 

since they both have negative velocity and Mi is positive for all X. 

Specie 3 also has negative velocity for all X, but this is caused by the 

specie 1 and 2 domination since M3 is negative indicating that it would 

have positive velocity in the perfect mixing limit; specie 3 has a wall 

stagnation point near X = 0.11. Specie 4 has a wall stagnation point near 

X = 0.56 and a bore stagnation point near X = 0.33, so that it has positive 

bore velocity only for X < 0.33. Finally, specie 5 has positive bore 

velocity for all X. Thus the specie 1 and 2 domination is not sufficient 

to change the flow direction of specie 5 although such is the case for 

specie 3. 

As a final five specie example, Figures 56-58 give the case identical 

to that given by Figures 47-49 except that the non-permeating specie 5, 

Q5 = 0, is replaced by a very fast permeating specie, Q5 = 4. From Figures 

57-58 versus 48-49 it is evident that such a change shifts the flow regime 

much nearer to the convection dominated regime. Also it is apparent from 

Figure 56 versus Figure 47 that the flow rates of species 1-4 are increased, 

since the Mia are increased, although the flow of specie 5 itself is greatly 

dehanced from the perfect mixing limit. More will be said about the potential 

for exploitation of some of these phenomena in the following discussion. 
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(iii) Special Modes of Operation 

The preceding examples have brought several interesting operational 

features forward which require same additional discussion. These include 

the possible beneficial effects of immersing the tube in the other reservoir 

(reverse the driver and vent volumes with no other change) so that the 

differences between positive and negative velocity cases can be exploited. 

Also of interest are the effects of adding an additional specie (or species) 

to one or both reservoirs in order to favorably influence the results for 

the original species in cases where such a tactic does not have other 

detrimental physical effects on the related processes; alternately, the 

exchange of a specie of secondary importance already present in one or both 

reservoirs for one which exercises more favorable control over the primary 

species is of interest. 

Reservoir Switch 

Within the assumptions applied to the current model, the results are 

identical in the perfect mixing limit regardless of which reservoir the 

permeable tube is immersed in. For finite Vij the fluid mechanical coupling 

can be greatly different for positive and negative velocity cases so that 

some consideration must be given to which is the best for a particular 

application. Due to the fact that the tube bore is exposed to different 

total pressure and different gas concentrations when the reservoirs are 

switched, some care must be taken when comparisons are made. The controlling 
2 parameters C· O' C. and S·. are different for the two cases; the new ones 

1 100 1J 

(primed) are related to the old ones via 
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Cio = ciooj.t C. 
1=1 100 

C! = c.olt C' oo (98) 100 1 . 1 1 1= 

2' 2 I 
8· . = 8· . 1: c. 
1J 1J i=l 100 

so that usually the Mio and MiO comparisons, or the n~ff i versus neff i 

comparisons via (97) allow one to decide which is the best for the applica-

tion under consideration. 

All of the examples given cannot be evaluated here via (98), but it 

is possible to give an example to illustrate what has been said. Consider 

the perfect filter limit n2 « 1 for the example given by Figures 41-43 

2 where CIO = 1. 0, C20 = 0.0, Cloo = C2°o = 0.15 and 812 = 10 so the gas in the 

vent volume is nearly all specie 1. The result is that positive global 
2 

veloci ty is present and there is no effect, MIO = 1. O. Now since 1: C. 00 = 0.3, 
.1 1 1= 

then Cio = CzO = 0.5 and Cioo = 3.333, CZoo = 0, 8i; = 3.0. The result is 

that Mio = 0.854 so that almost 15 percent dehancement of the total flow 

rate for specie 1 is obtained if the negative velocity flow direction is 

selected for the permeable tube. This result can be easily predicted for 

this special case on simple physical grounds but such is not always the case, 

and it is often worth comparing the positive and negative velocity modes of 

operation. Of course there are many cases where negative velocity flow is 

better than the positive velocity direction. 
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Addition of Control Species 

If additional species are introduced for the purposes of improving 

the flow of same or all of the original species, the original (unprimed) 

governing parameters are changed so that 

I / l' cio = c. o E P' O E PiO 1 . 1 1 . 1 1= 1= 

C! = C. 
100 1 00 

21 2 I / l' s· . = s· . E P. L PiO 1J 1J . 1 10 . 1 1= 1= 

(99) 

where II = I + N and N is the number of control species added. Again 

through comparisons of the Mio and MiO values or the Q~ff i and Qeff i values 

one can decide if an improvement has been obtained. Since all pure gas 

flows, I = 1, give MIO = 1 here, then all of the I : 2 cases (actually 

II : 2 where N : 1) can be regarded as special examples of this procedure; 

thus whenever Mio > 1 is obtained, the flow rate of specie 1 has been 

increased due to the presence of the other specie (or species). Of course 

many cases occur where Mio < 1 so that care must be taken to alter the 

flow regime in a manner where favorable effects are in fact obtained. 

Substitution for Secondary Species 

If a specie having different permeation characteristics is 

substituted for a secondary specie already present in the same amount 
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C! = C. 
1 00 1 00 

2' f3.. = 
lJ 

2 B·· (Q!/Q.)(o .. /o!.) 
lJ 1 1 lJ lJ 

(100) 

where Qi is defined by (91). 

different Q2 values when I = 

All of the examples displaying the effects of 

2 (Figures 14-46) as well as the I = 5 cases 

shown in Figures 47~49 and 56-58 where Q5 was changed from a to 4? assuming 

0 .. ~ o!., illustrate the effects of substituting another specie for one 
lJ lJ 

already present but having different permeation properties. These examples 

are ample evidence that large effects can be obtained by such a tactic, 

often as a result of changing the flow regime indicated by the change in 

magnitude of <p. 
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III. Experimental Data 

R. J. Page (8157) conducted some experiments a number of years ago 

in order to determine the possible extent of the physical effects as well 

as the validity of some of the modeling assumptions used here. The 

experiments involved two dead-ended Si02 tubes, each with nominal ID of 

1.8 x 10- 2 em and nominal OD of 3 x 10-2 em; one tube was approximately 

2 x 103 em in length, while the other tube was about a factor of ten shorter. 

The tubes were immersed in helium filled driver volumes large enough such 

that no significant pressure changes resulted from permeation effects; the 

vent or receiver volumes initially contained only nitrogen at pressures 

equal to or less than those of the helium driver volume. 

(i) Perfect Filter Limit 

Since helium permeates Si02 several orders of magnitude faster than 

nitrogen, (see Barrer, R. M., Diffusion in and through Solids, Cambridge, 

1941, pp 133-141) only negative velocity cases resulted from such 

experiments, and essentially the perfect filter limit was being tested. 

The receiving volumes were small enough so that significant changes in total 

pressure occurred due to helium permeation; the resulting pressure (differen-

tial) histories for various initial nitrogen pressures allow the relative 

permeation rates to be estimated and show to what extent the presence of 

nitrogen affected the flow rate of helium. Figure 59 gives a schematic 

diagram of the experimental setup. 

Figure 60 shows pressure versus time curves for the 2 x 103 em tube 

when the helium driver pressure is about 69 atmospheres, while the initial 

receiver nitrogen pressure is 1, 18, 35 and 69 atm, respectively. After 
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the initial transient, the nearly linear pressure-time slopes indicate the 

relative flow rates when the four cases are compared. One can immediately 

observe that large effects are obtained over this pressure range. Figure 61 

shows three cases where the helium driver pressure and the initial nitrogen 

receiver pressure are equal at 69.0, 55.4 and 14.6 atm, respectively. 

These cases were run to test the balanced pressure limiting solution. 

Figure 62 shows results for the 2 x 102 em tube with helium driver pressure 

of 69 atm and initial nitrogen pressures of 1, 18 and 35 atmospheres, 

respectively. 

Figure 62 shows effects similar to those shown on Figure 60; in fact, 

since the ordinate scale is exactly a factor of ten smaller on Figure 62 

than on Figure 60, the nearly identical results for initial N2 pressures of 

1, 18 and 35 atm, except for the scale factor equal to the tube length ratio, 

are indicative of other physical significance. From the preceding analysis 

it is known that such a phenomenon can exist only near the convection 

dominated limit. When the MIO for cases with initial N2 pressures of 1, 18 and 

35 atm are first calculated via the general perfect filter equations (28) 

and (29), and then are calculated via the convection dominated solution, 

equation (45), the results agree to within 3%. This verifies that these 

cases are convection dominated and therefore are nearly independent of B12 . 

The results of these calculations compared to the measured MIO obtained 

directly from the linear pressure-time slope ratios are given in Table II. 

Considering the difficulty in obtaining accurate slopes from the data, the 

agreement must be concluded to be good. Also shown in Table II are balanced 

pressure calculations (here strong dependence on B12 is present while Cloo 
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INITIAL AFTER 
He N2 STEADY-STATE Eqs (28) - (29) FLOW 

L(an) P1eo (atm) P20(atm) Po (atm) Cleo C10 S12 M10(meas) M10 (ca1c) REGIME 

2 x 103 69.0 1.0 3.7 18.5 0.73 23.2 0.98 0.985 conv. 

2 x 103 69.0 18.0 20.7 3.33 0.13 54.7 0.74 0.728 conv. 

2 x 103 69.0 35.0 38.1 1.81 0.08 74.1 0.44 0.468 conv. 

2 x 103 69.0 69.0 69.8 0.99 0.01 100.2 0.017 0.0140 ba1. press. 

2 x 103 55.4 55.4 56.0 0.99 0.01 89.8 0.015 0.0156 bal. press. 

2 x 103 14.6 14.6 15.5 0.95 0.055 47.2 0.026 0.0285 ba1. press. 

2 x 103 55.4 1.0 3.1 18.1 0.67 21.0 0.98 0.981 conv. 

2 x 102 69.0 1.0 1.3 53.4 0.21 1.36 0.99 0.985 conv. 

2 x 102 69.0 18.0 18.3 3.77 0.015 5.13 0.77 0.742 conv. 

2 x 102 69.0 35.0 35.3 1.95 0.0087 7.13 0.55 0.502 conv. 

2 x 102 55.4 1.0 1.2 45.3 0.17 1.33 0.98 0.981 conv. 

TABLE II 

DATN ANALYSIS CCMPARISONS 



is near unity) which also agree with the limiting solution given by 

equations (48)-(50) within 3%. The pressure-time slopes are even more 

difficult to extract from data here, but reasonable agreement is still 

present. 

The calculated and experimental MIO values are plotted versus CIO with 

either Cloo or BIZ as the parameter, respectively, in Figure 63 to show the 

relatively wide range of parameters covered by the experiments as well as 

the magnitude of the effects observed. It can be concluded that the 

presence of NZ in the receiver for these nearly perfect filter cases induced 

very significant effects on the He permeation rate. Also the analytical 

model formulated here seems to adequately describe these effects. 
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CONCLUSIONS 

The transport of gaseous species in dead-end tubes having selectively 

permeating walls has been investigated. The assumptions of continuum, 

quasi-steady, fully developed, laminar bore flow of perfect gases which 

behave like an axially diffused plug flow through an approximately straight 

tube with nearly uniform bore temperature and pressure were used; the supply 

and receiving reservoirs were assumed to be well mixed so that uniform 

reservoir temperature and concentrations existed. The limits of validity 

for these assumptions were established and were given in terms of a series 

of inequalities involving the key parameters. 

Detailed results were generated via exact physically limiting solutions 

as well as numerical integration of the governing equations for cases 

involving up to five species. Both positive and negative global velocity 

cases were examined and were used to show that better results can sometimes 

be obtained if the tube is immersed in the opposite reservoir. Tube 

materials having specie separation ratios varying from unity (non-selective) 

to very large or very small values (near perfect filters) were included in 

the study. It was shown that the flow of a given specie can be either 

enhanced or dehanced,and even reversed in direction, relative to the corres­

ponding perfect mixing value due to the presence of other species. This 

led to the definition of an effective separation ratio for specie flow from 

the tube which may be greater or less than that of the tube material in slab 

form which is approached in the perfect mixing limit. It was also shown 
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that in certain cases an individual specie can exhibit wall and bore 

stagnation points at different locations where the flow direction changes 

for that specie. From the consideration of such phenomena it was 

demonstrated, as a possible mode of operation, that secondary control 

species having very large or very small permeation rates can be used to 

favorably alter the flow characteristics of primary species. 

Finally, some experimental data was given to verify the large effect 

which the presence of a low permeating specie. in the tube bore can have on 

the flow of another specie which readily permeates the tube walls. It was 

shown in the near perfect filter limit, that the mathematical model given 

here properly describes the effects obtained in both the balanced pressure 

and the convection dominated experimental limits. 

The information contained in this document eliminates the need to 

operate such dead-end tubes with selectively permeating walls near the 

perfect mixing limit to avoid unknown effects; this is true because these 

effects are now predictable and well enough understood so that they can 

even be exploited to produce favorable effects in some cases. 

138 



O. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

REFERENCES 

Anni~, B. K. ~ Htm1~hreys, A. E. and Mason, E. A., "Nonisothermal, Non­
StatlOnary DlffuslOn," Phys. Fluids (1969) Vol. 12, No.1, pp. 78-83. 

Aris, R., "On the Dispersion of a Solute in a Fluid Flowing Through a 
Tube," Proc. Roy. Soc., Vol. A235, 1956, p. 67. 

Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, 
Wiley & Sons, New.York, 1960, p. 47, 126-130. 

Bournia, A., et al., "Dispersion of Gases in Laminar Flow Through a 
Circular Tube," Proc. Roy. Soc., Vol. A26l, 1961, p. 227. 

Carslaw, H. S., and Jaeger, J. C., Conduction of Heat in Solids, Oxford 
at the Clarendon Press, Second Edition, 1959, pp. 96, 388, 391. 

Chenoweth, D. R., "Isothermal Viscous/Knudsen Blowdown of a Container 
with Nearly Constant Outgassing and Back-Pressure," Sandia Laboratories 
Report, SCL-RR-72-0350, December 1972. Also see Analysis in SCL-RR-7l0022, 
March 1971. 

Cramer, J. D., "The Compressibility of Gaseous Mixtures of Helium­
Nitrogen and Helium-Deuterium at High Pressures," Los Alamos Scientific 
Laboratory Report (LA-3250-MS), March 1965. 

Dayan, J. and Levenspie1, 0., "Longitudinal Dispersion in Packed Beds 
of Porous Adsorbing Solids," Chemical Engineering Science, 1968, Vol. 
23, pp. 1327-1334. 

Dushman, S., Scientific Foundations of Vacuum Techni ue, ed. by J. M. 
Lafferty, Wiley Sons, New Yor , 1962. 

Evans, E. V., et aI., "Gaseous Dispersion in Laminar Flow Through a 
Circular Tube," Proc. Roy. Soc., Vol. A284, 1965, p. 540. 

Gill, W. N., et aI., A.I.Ch.E.J., "Laminar Dispersion in Capillaries:" 
I, Vol. 11, ''Mathematical Analysis," 1965, p. 1063; 
II, Vol. 12, "Effect of Inlet Boundary Conditions," 1966, p. 906; 
III, Vol. 12, "Experiments in Horizontal Tubes," 1966, p. 916; 
IV, Vol. 13, "The Slug Stimulus," 1967, p. 801; 
V, Vol. 14, "Dispersion in Developing Velocity Fields," 1968, p. 939. 

Ginzburg, I. P., AP¥lied Fluid Dynamics, Leningrad State University, 
1958. (Translated rom Russian, 1963, published for the National Science 
Foundation by the Israel Program for Scientific Translation.) 

Hirschfe1der, J. 0., et al., Molecular Theory of Gases and Liquids, 
Wiley & Sons, New York, 1954. 

139 



13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

140 

Huang, J. C. P., and Yu, H. S., "Pressure Distributions in Porous Ducts 
of Arbitrary Cross Section," Transactions of the ASME, J. Fluids Eng. 
1973, Sept., p. 342. 

Jordan, K. C., Blanke, B. C., and Dudley, W. A., "Half-Life of Tritirnn," 
J. inorg. nucl. Chern., 1967, Vol. 29, pp. 2129 to 2131. 

Jost, W., "Diffusion in Solids, Liquids, Gases," Academic Press, Inc., 
Pub 1. , N.Y. (1960). 

Kreith, E. F., "Principles of Heat Transfer," International Textbook Co., 
Scranton, 1958. 

Libby, P. A., Liu, T. M., and Williams, F. A., "Flow Development in a 
Tube with Injection of a Light or Heavy Gas," J. Heat Mass Transfer, 
1969, Vol. 12, p. 1267. 

Michels, A., et al., "Compressibility Isotherms," (He) Vol. 8, 1941, 
pp. 923-32; (Ar) Vol. 15, 1949, pp. 627-633; (N2) Vol. 17, 1951, pp. 
801-816; (H2) Vol. 25, 1959, pp. 25-42; (Ne) Vol 26, 1960, pp. 539-543. 

Nunge, R. J., Lin, T. S., and Gill, W. N., "Laminar Dispersion in Curved 
Tubes and Channels," J. Fluid Mech. (1972), Vol. 51, Part 2, pp. 363-383. 

Schlichting, H., Boundary Layer Theory, translated by J. Kestin, McGraw­
Hill, New York, 1955. 

Shapiro, A. H., Compressible Fluid Flow, Vol. I, Ronald Press, New York, 
1953, pp. 982-6. 

Shelby, J. E., "A Comprehensive Review of Gas Permeation, Diffusion and 
Solubility in Inorganic Glasses," Sandia Laboratories Report, SLL-73-0259, 
Aug. 1973. 

Taylor, G. I., "Dispersion of Soluble Matter in Solvent Flowing Slowly 
Through a Tube," Proc. Roy. Soc., Vol. A2l9, 1953, p. 186. 

Taylor, G. I., "Diffusion and Mass Transport in Tubes," Proc. Phys. Soc. 
London, Vol. 67, 1954, p. 857. 

Truesdell, L. C., Jr., and Adler, R. J., "Numerical Treatment of Fully 
Developed Laminar Flow in Helically Coiled Tubes," AIChE Journal, 
Vol. 16, No.6, Nov. 1970, pp. 1011. 

Weissman, S., and Mason, E. A., "Determination of Gaseous-Diffusion 
Coefficients from Viscosity Measurements," J. Chern. Phys. (1962), Vol. 37, 
No.6, pp. 1289-1300. 

Weissman, S., ''Mutual Diffusion Coefficients for the He-H2 System," J. 
Chern. Phys. (1971) Vol. 55, No. 12, pp. 5839-5840. 



APPENDIX 

A description of each major assumption and its physical relation to the 

particular problem of interest here are given below. Same of the assumptions 

listed do not directly enter the resulting analytical model, but instead 

they enter indirectly via the physical justification of other assumptions 

which do have explicit influence on the final governing equations. 

Continuum Flow [Kn] 

Continuum flows are usually distinguished from free molecular flows 

(Dushman, 1962; Chenoweth, 1972) by considering the magnitude of the dimen­

sionless parameter called the Knudsen number. This basic parameter Kn is 

defined as the ratio of the molecular mean free path A to a characteristic 

flow length, in this case the bore diameter D. In continuum fluid mechanics 

AID « 1 (AI) 

so that the density is high enough for intermolecular collisions to dominate 

over collisions with the boundaries. For most cammon gases the mean free 

path A in centimeters (Hirschfelder, et al., 1954; Chenoweth, 1972) is of 

the order of 

(A2) 

in terms of the gas temperature T in degrees Kelvin and the pressure P in 

atmospheres. Therefore in order for continuum flow to be assured for this 
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application it is sufficient for the inequality 

D(em) P(atm) > 10-5 T(OK) (A3) 

to be satisfied. For a gas or a mixture of gases at ten atmospheres and 

300 0 K the bore diameter must exceed 3 x 10-4 em as an example. 

Perfect Gases [Z] 

Each gas specie is assumed to behave as a thermally-perfect gas so that 

Pi = vi RT, where the molar gas constant R = 82.06 em3 atm/mole oK; similarly 

P = ~ p. ='RT ~ v· = vRT for the mixture, where C. = v./v = P./P defines the 
i1 i1 11 1 

mole fraction of species i in the mixture. If the compressibility factor 

P/vRT = Z = Z(P,T,Ci ) (A4) 

is near unity 

o . 94 < Z < 1. 06 (AS) 

then generally the perfect gas assumption is adequate; if this is not true 

due to one or more species with non-negligible mole fractions exhibiting 

compressibility effects, then these results may require alteration. For most 

purposes OMichels, et al., 1941-1960) mixtures of cammon gases can be treated 

as thermally-perfect gases at 300 0 K if the total pressure remains less than 

about 100 atm. 

P < 100 atm (A6) 
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For example, at 300 0 K and 100 atm the pure gases He, Ar, NZ' HZ and Ne have 

compressibility factors Z (He) = 1.047, Z (Ar) = 0.953, Z (NZ) = 1.005, 

Z (HZ) = 1.060 and Z (Ne) = 1.049. Note, however, that the method of partial 

volwnes, Amagat's law Z = f Ci Zi' is not always adequate (Cramer, 1965) to 

determine mixture compressibility factors. 

Fully Developed Laminar Bore Flow [Re, L/D] 

First consider the case where the flow is through a pipe with non­

permeable walls, rather than the more complex case where virtually all of 

the flow enters via the pipe walls. The conditions required for these 

asswnptions to hold involve the magnitude of the familiar dimensionless 

parameter (Bird, et al., 1960; Ginzburg, 1958; Schlichting, 1955) Re called 

the Reynolds nwnber, a measure of the ratio of inertia forces to viscous 

forces. When the velocity profile is fully developed in a spacial sense 

(the temporal development of the velocity profile is considered later) a 

Reynolds number based on pipe diameter is more meaningful than one based on 

axial distance since the boundary layer has spread to the center line of the 

pipe and no longer continues to increase in thickness. 

(i) Laminar Flow 

Since transition to turbulent flow can sometimes occur if the Reynolds 

number based on diameter (Bird, 1960) exceeds about ZOOO, it is sufficient 

to require 

Re = prrD/~ = 4 m/TID~ < ZOOO (A7) 

143 



in order to ensure laminar flow, where the mass flow rate ~ = rrD2pu/4 has 

been introduced. Thus, the mass flow rate mUst remain less than 500 TID~ 

m < 500 rrD~ (A8) 

to ensure laminar flow. For example, if the bore diameter D ~ 2 x 10- 2 cm 

and the viscosity coefficient ~ ~ 1.5 x 10-4 g/cm sec, then m < (3rr/2) x 10-3 

glsec is required. 

(ii) Fully Developed Flow 

The entrance length required to establish laminar fully developed 

(paraboloidal) velocity profiles spacially is (Bird, et al., 1960) 

Le ~ 0.035 DRe (A9) 

and no corrections are required to account for such a region if the pipe 

length greatly exceeds this length, L » Le , for example L > 10 Le. Thus 

the length to diameter ratio is restricted 

LID> 0.35 Re (AlO) 

so that the bulk of the pipe flow is fully developed. Since Re < 2000 has 

already been imposed via (A7) then (AlO) is always satisfied if LID> 700. 

In dimensional form a further restriction on the mass flow rate has therefore 

been established. 

. 
m < 0.7 rrD~ (LID) (All) 
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For the same values used above and LID = 104, then m < 2.1 IT 10- 2 glsec is 

required. The application of these results in an approximate local sense to 

tubes with permeable walls is discussed later. 

Uniform Bore Temperature and Pressure [M, y] 

The physical mechanisms by which non-uniform temperature and pressure 

distributions can be created are considered in order to bound the uniform 

distribution assumption. 

(i) Uniform Bore Temperature 

Both gas reservoirs, including the one in which the permeable tube is 

immersed, are assumed to be at nearly the same temperature which must 

therefore be restricted to change slow enough with time so that the system 

is maintained at nearly uniform temperature. The criteria for the existence 

of uniform reservoirs are derived later. 

Under these conditions the gas flow in the bore can only attain a non-

uniform radial and axial distribution of temperature via conversion of thermal 

energy to kinetic energy (neglecting for the moment frictional effects which 

are considered in the following section). The worst situation then occurs 

under near adiabatic flow conditions where TITo = [1 + YzlM2]-1 is the ratio 

of static to stagnation temperature (Shapiro, 1953) expressed in terms of y, 

the ratio of specific heats and M, the local Mach number (the ratio of local 

velocity to local sound speed). Since Y is physically bounded, if the local 

Mach number (which is maximum at the axis of the pipe near the pipe exit into 

the vent reservoir) is less than 0.3 
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M < 0.3 

1 < y < 5/3 

then 0.97 ~ T/To ~ 1.0 even for y = 5/3. Since ~ = 2M = 2ul 
[1.0133 x 106 yRT/W]1/ 2 then M < 0.3 implies that 

(A12) 

m(g/ sec) < 37. 5 TrYl/2 D2 (an2) P (atm) Wl/ 2 (g-nfoleY/2 [T (OK) R(~!oi~K) r 1/2 

(A13) 

glvlng another restriction on maximum flow rate allowed. For example using 

the gas molecular weight W = 2 gig-mole, y = 7/5, P = 10 atm, D = 2 x 10-2 em, 
cm3 atm . -3 

T = 300 0 K and R = 82.06 g-moleOK gives m < 1.60 TI 10 glsec as the upper 

limit on total mass flow rate. Of course this assumption essentially 

eliminates the conservation of energy equation from further consideration 

since viscous effects are considered in the following analysis of the 

uniform pressure assumption. 

(ii) Uniform Bore Pressure 

Again, first consider the case where the flow is through a pipe with 

non-permeable walls rather than the more complex case where virtually all of 

the flow enters via the pipe walls. The effect of permeable walls on flow 

in a dead-end tube is examined later. 

Since the strongest ~ressure-temperature coupling occurs for isentropic 

flow wherePIPo = (T/To)y-l the previous Mach number restriction OM < 0.3) 

also implies that dynamic pressure effects (differences between static and 

stagnation pressures) are negligibly small (0.93 ~ PIPo ~ 1.0) even for 

y = 5/3. Therefore the bore pressure will be nearly uniform and equal to 
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the receiving volume pressure unless significant pressure losses occur due 

to viscous (frictional) effects. The Poiseuille flow formula (Schlichting, 

1955; Ginzburg, 1963) can be used to estimate (actually overestimate) this 

effect if one assumes that all of the flow (which is flowing at the open end) 

enters a capillary with non-permeable walls at the closed end rather than 

being added through the walls along its entire length; since fully developed 

laminar incompressible flow is present due to previous restrictions the 

pressure loss due to friction 

~P/P = 32 (L/D)(yM2/Re) « 1 (A14) 

is sufficient to assure uniform pressure. Equation (A14) can be rewritten 

(A15) 

which yields the dimensional inequality 

(A16) 

restricting mass flow rate. As an example when ~ = 1.5 x 10-10 atm-sec, 

P = 10 atm, T = 300 oK, D = 2 x 10- 2 em, L/D= 104, W = 2 gig-mole and 

R = 82.06 cm3 atm/mole oK then m < 4.3 TI 10-6 g/sec is required by (A16). 

The modified form of (A14) resulting when permeable walls exist is given 

later. Of course this assumption essentially eliminates the momentum 

equation from further consideration in this work except where it is needed 

to examine other assumptions. 
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Quasi-Steady, Axially-Diffused Plug Flow 

These assumptions are the most important of the many assumptions made 

to derive the approximate governing equations for this problem. At the same 

time, extremely involved physical reasoning and very detailed analysis must 

be applied in order to establish the many new independent dimensionless 

parameters and the restrictions required on their magnitudes. First, a 

description is given of the nature of the results desired; then these results 

are derived with heavy reliance on the large body of related literature 

available; finally, the results are summarized, with special emphasis placed 

on establishing the dimensionless and dimensioned inequalities required by 

these assumptions, similar to the resulting restrictions derived for the 

other assumptions. 

The flow in the capillary bore is assumed to be quasi-steady with 

respect to the rest of the problem which is inherently transient. This 

means that steady flow results are used for the bore flow at any instant of 

time; only the transient boundary conditions determined from the related 

parts of the problem are allowed to control the time-dependent behavior of 

the flow in the capillary bore which is assumed to respond instantaneously 

to the boundary condition changes. In order for this to be a valid approach 

it must be shown that the characteristic times describing the other transient 

aspects of the problem are much larger than those describing the time to 

establish both radial and axial profiles for velocity and concentration in 

the capillary bore. 

(A17) 
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First, consider the characteristic times controlling the transient 

behavior of the rest of the problem. We are concerned here only with the 

case where specie concentration differences are the driving forces for gas 

transfer between reservoirs via diffusion or permeation through the wall 

material (many materials, Jost, 1960, exhibit such characteristics). If 

instead it was the total pressure differential, then the following analysis 

would require same modification to allow for global flow through porous 

wall material for instance. The permeation of gases through the capillary 

walls is altered then by changes in reservoir concentrations or by changes 

in the capillary wall diffusion coefficients controlling the transfer. It 

is assumed that the reservoirs comprise a closed system in that no gas is 

added or removed from the constant volume system during operation. The gas 

composition can thus be changed in a reservoir only by transfer between 

reservoirs or by chemical and physical changes in the gas within a reservoir. 

It is assumed that chemical reactions between gas species are not present; 

this is primarily because an analysis of various chemically reacting 

situations is beyond the scope of this work due to their possible complex 

and widely varying nature. On the other hand radioactive decay is a physical 

change which can be used to illustrate the nature of such effects in a 

simple way. 

(i) Decay 

Therefore if a gas specie is a radioactive isotope undergoing decay (for 

example, beta decay) such that vi/vi(O) = exp (-at) then the decay constant 

a-I (which is indicative of the time for 63% decay) can be regarded as the 

characteristic time for that physical phenomenon. For example, the decay 

3 222 8S 36 82 . . 
constants for lH '86Rn '36Kr '17C£ and 3SBr wlth half llves of 
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12.35 yr (Jordan, 1967), 3.82 da, 10.8 yr, 3.1 x 105 yr and 35.5 hr, 

respectively, (CRC Handbook of Chemistry and Physics, 50th Edition, Table 

of Isotopes) are 

-1 
a = td = - tl/2/~n (1/2) = 17.8 yr, 5.51 da, 

(Al8) 

15.6 yr, 4.5 x 105 yr and 51.2 hr, respectively. 

(ii) Wall Diffusion 

The characteristic times (Jost, 1960) which measure the times to 

re-establish steady-state diffusion rates (like 98.6% of steady state) after 

a change in temperature or concentration for a slab of thickness hare 

where Di is the wall material diffusion coefficient to gas specie i and 

depends strongly on temperature (many materials, Jost, 1960, allow such 

(A19) 

selective permeation to various gas species). Often (Shelby, 1973) Di is 

expressed in terms of temperature T as Di = DoT exp (-Ed/Rc T), Rc = 1.987 

cal/mole oK where at 300oK, Si02-He has t SiO -He = 13.4 min using 
. 2 

-7 2 -8 Do = 3.3 x 10 em /secoK, Ed = 4945 cal/mole, DHe (300 0 K) = 2.5 x 10 

cm2/sec and h = 6.4 x 10-3 cm. Similarly for Si02-D2, using Do = 1.5 x 10-7 

em2/sec oK and Ed = 8540 cal/mole, DD (300 0 K) = 2.7 x 10-11 em2/sec, one 
2 

obtains t SiO -D = 1.23 wk with the same h value. Analogous calculations 
2 2 -12 2 

for Si02-Ne, DNe (300 0 K) = 3.5 x 10 em /sec gives t SiO -Ne = 2.2 mo 
2 
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while for Si02-Ar, DAr (300 0 K) = 4.9 x 10-
25 

em
2
/sec resulting in tSi02-Ar ~ 

12 1.3 x 10 yr. This characteristic time is strongly dependent on temperature, 

wall material and gas specie as well as wall thickness. For example, if 

h 10-3 th t - 20 sec while h = 10-1 cm gives 55 hr showing 
,= em, en Si02-He-

the influence of the h2 wall thickness dependence. Comparative values for 

the wall diffusion coefficient can be obtained from Jost; for example, with 

vulcanized Neoprene DN (27.l 0 C):: 1.9 x 10-
7 

crn
2
/sec, DH (17.0°C):: 

2 2 
1.03 x 10-6 cm2/sec and DAr (36.l 0 C) :: 3.3 x 10-7 em

2
/sec while for Palladium 

DH (272°C) ~ 2 x 10-5 crn2/sec. 
2 

(iii) Finite Volumes 

For diffusion controlled transfer between two finite volumes (Chenoweth, 

1971) the characteristic time for substantial change (63% vented if V + 00) o 

in gas composition due to gas transfer between reservoirs is 

tFV = (h/ A ) (A /D. S. RT) V V / 0J +V ) s -V 1 1 0 00 0 00 
(A20) 

where Av = 0.6 x 1024 molecules/mole and As is the effective surface area 

roughly approximated by TIL(h+D). The vent volume is Vo and the driver 

volume is Voo and Si = So exp (-Es/RcT) is the solubility coefficient such 

that K. = S.D. is the permeability coefficient for gas specie i at temperature 
111 

T (Shelby, 1973). Therefore if A ~ 17 em2 and V = 102 cm3 while V= 103 em3, s 00 0 

the finite voltnne characteristic times for the Si02 - gas combinations given 

above can be easily calculated. For Si02-He, So = 2 x 1017 molecules/em3 atrn 

and Es = -625 cal/mole so that at 300 o K, tFV = 1.8 yr while for Si02-D2, 
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So = 1.4 x 1017 molecules/cm3 atm and Es = -1160 cal/mole so that 

tFV = 0.96 x 103 yr. Similarly for Si02-Ne, tFV = 8.9 x 103 yr and for 

Si02-Ar, tFV = 1.7 x' 1015 yr using data from Shelby, 1973. Again strong 

dependence on temperature, wall material and gas specie is evident. 

In summary (A18)-(A20) give the characteristic times for the phenomena 

which control the transient nature of the system. In order for the bore 

flow to be quasi-steady the times given by (A18)-(A20) must be much larger 

tsystem/tbore » 1 than those describing the time to establish both radial 

and axial profiles for velocity and concentration in the capillary bore 

during normal system operation or following external control changes in 

system temperature or reservoir concentrations. 

(iv) Radial Profiles 

First consider the startup problem (a comparable adjustment must be 

made after any change in boundary conditions) for laminar flow in a circular 

tube (Bird, et al., 1960) with non-permeable walls. Note that since the 

flow has already been taken to be fully developed in the spacial sense, then 

sufficient length of tube is available so that the flow can also become 

fully developed in a temporal sense. Physically the steady-state radial 

dependence of the velocity is established (95% of steady-state paraboloid) 

as soon as wall effects have had time to diffuse sufficiently to the tube 

axis, so that roughly 

(A2l) 
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where v = ~/p is the kinematic viscosity; eq (A2l) is exactly analogous to 

(A19) if h is replaced by the pipe radius D/2 and D. is replaced by v. 
1 

Similarly the radial dependence of the concentration profiles approaches 

steady-state in times of the order 

2 
tCR = D /8Vij (A22) 

where Vij is the mutual diffusion coefficient. Note that tCR = tvR Sc 

where Sc = v/V .. = Np /Re is the Schmidt number. The Schmidt number for gas 
1J e 

flows is usually of the order of unity, especially if the specie molecular 

weights are not vastly different, and Vij has inverse pressure dependence 

with the one atmosphere, room temperature value near 1 cm2/sec. Thus as rul 

example, at 10 atmospheres and 300o K, tvR ~ tCR ~ 5 x 10-4 sec if D is taken 

as before to be 2 x 10-2 cm. 

(v) Axial Profiles 

Due to the interactions between axial and radial diffusion and axial 

convection, the characteristic times associated with the approach to steady­

state flow in the axial direction is more difficult to estimate than the 

simple diffusion estimates for radial profiles. 
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Velocity Profiles 

However, the axial velocity profile develops in a convection dominated 

flow in roughly five traversals of sound waves at the initial sound speed 

(Shapiro, 1953) 

tvA = 5L/coi (A23) 

where the initial sound speed is c . (em/sec) = 103 (yRT/W.)1/2 using the 
01 1, 

same definitions and units used previously for y, R, Wi and T. Thus for 

y = 7/5, Wi = 2 g/g-mo1e, T = 300 0 K, R = 82.06 em3 atm/mo1eoK, L/D = 104 

-2 -2 and D = 2 x 10 em one obtains tvA = 0.76 x 10 sec. Obviously the 

development of the radial and axial velocity profiles take place simu1tan-

eous1y and in some cases where nearly pure convection is not present 

considerable interaction takes place. However the sum (sequential deve10p-

ment) of the orders of magnitudes established by (A21) and (A23), and the 

larger of the two (assuming the fastest one is instantaneous) should always 

bound the combined velocity field development tbnes 

(greater of tvR and tvA) < tcombined : (tvR + tvA) 

even when the wave effects and frictional effects are interacting. 
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Concentration Profile via Convection 

As before, first consider the case of flow through a straight tube with 

non-permeable walls. In the absence of all molecular diffusion effects, the 

paraboloidal velocity profile (laminar, fully developed both spacially and 

temporally) will stretch a radially uniform front marking an axial step 

change in gas composition into a paraboloid; this distributes the concentra-

tion behind the front linearly with axial distance, where the vertex of the 

paraboloid moves at the velocity 2u (e.g., xvertex = x2u = 2ut) and u denotes 

the average axial velocity over the pipe cross-section (Taylor, 1953-4). 

Thus a section of pipe of length L is 95% flushed by such a convective 

process in approximately 

t 2u = 5L/u (A24) 

which crudely represents a measure of the time to establish a new quasi­

steady axial concentration profile by convection alone, while effects are 

first felt (break-through) at x = L when 

t = L/2u (A25) 

The conditions under which nearly pure convection can exist are derived 

in the following discussions of axial and radial diffusion effects; they are 

found to be controlled by the diffusion Peclet number NPe based on D and a 

reduced time variable TD measuring time from the instant that a step concen­

tration profile existed such that the inequalities 

2 TD = 40 .. tiD < 0.05 1J 
(A26) 
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Np = Ub/V .. > 50/TD
I/ Z 

e 1J (AZ7) 

limit the magnitudes of the dimensionless parameters TD and Npe . Hence a 

region of nearly pure convection exists under laminar and fully developed 

conditions only if (50/Npe)Z ~ (TD) _ ~ 0.05 so that NPe ~ ZZ4 is required. 
Zu 

This is shown on Figure Al which is a plot of NPe versus TD. In order to 

establish a quasi-steady concentration profile by means of convection, the 

convection region must exist at least as long as t Zu = 5L/u so that 

(~TD) > t z- (4V . . /DZ) or 0.05 - (50/Np )Z > (4V . . /DZ) (5L/U) = ZO(L/D)/Np Zu - u 1J e - 1J e 

with the result that the tube length to diameter ratio must be restricted 

to be 

(AZ8) 

which is shown on Figure AZ, a plot of L/D versus Npe . Notice that (AlO) 

can be written 

LID> 0.35 Re = 0.35 Np /Sc - e 

which completely excludes (AZ8) since Sc ~ 1. Therefore the previous 

assumption that the velocity entrance region effects be negligible which 

resulted in (AIO) prevents the quasi-steady axial concentration profile from 

being established by nearly pure convection mechanisms in laminar fully 

developed flow as the present model assumes. 
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Concentration Profile via Axial Diffusion 

Within the restrictions already imposed, the gas behind the front can 

exceed the vertex of the paraboloid created by convection only by axial 

molecular diffusion. This phenomenon in fact always occurs at early times 

since the root-mean-square displacement due to planar molecular diffusion 

is proportional to the square root of time (Jost, 1960) xrms = 12Vij t 

(/4V . . t and 16V . . t for radial cylindrical and spherical diffusion, respec-1J 1J 
tively, although such geometric differences will be ignored here for order 

of magnitude estimates) compared with the linear dependence of convection, 

where Vij is the mutual diffusion coefficient at the prevailing local 

pressure and temperature. A length more indicative of the distance over 

which most of the concentration change is occurring via diffusion is 

X!:::'c 120V . . t 
1J 

(A29) 

Thus the first significant effects (time of break-through) are felt at a 

distance x!:::'c = L from an initial step change in concentration in times of 

the order of 

2 
t = L /20V .. 1J (A30) 

while a new quasi-steady axial concentration profile is established via 

diffusion over that tube length in times of the order of 

t V .. 
1J 

2 = L /2V .. 1J 
(A3l) 
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estimated by taking xrms = L. By comparing pure axial diffusion concentra­

tion changes with those for pure convection, the ratio of lengths 

(A32) 

indicates that nearly pure axial diffusion can be expected to exist if 

NPe LDI/2 = ¢ LLI/2 « I and can be expected to remain dominant if 

(A33) 

a result derived by Gill (1965), see Figure AI; the parameters LD and LL 
2 are related by LD = LL (L/D) and ¢ = NPe (L/D) relates the length and 

diameter based diffusion Pec1et numbers. Note that ¢ is a measure of the 

ratio of axial convective mass transport to that for axial diffusion (the 

maximum possible); also since tv .. /t2u = ¢/10 one can see that the magnitude 
1J 

of ¢ gives a measure of the relative amounts of time required to obtain 

either break-through or quasi-steady concentration profiles for these two 

pure physical mechanisms which of course occur simultaneously for real 

physical conditions with considerable modifying interaction that is later 

investigated. 

First the conditions under which nearly pure axial diffusion can be 

expected to establish a quasi-steady axial concentration profile are 

determined. Since the diffusion dominated region must exist for at least 

as long as it takes to establish the quasi-steady concentration profile, 

then using (A31) and (A33) 

t o .. 
1J 
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2 = L /20 .. 
1J 

-2 2 
< (2Np) (D /40 .. ) e 1J 



which yields the inequality 

L/D < 0.354/Npe 

which is shown on Figure A2. Notice that in this case the limit on L/D 

caused by the neglect of velocity entrance region effects excludes only 

part of the diffusion dominated region as opposed to all of the convection 

dominated region. That is the model being formulated here can actually 

operate (is valid) in a diffusion dominated region provided NPe is less 

than unity (NPe: 1). 

Radial Diffusion Effects 

After the time of axial diffusion domination has been exceeded, 

1/2 NPe LD > 0.5, the effects of convection begin to disperse the gas 

initially behind the front toward a paraboloidal shape (except for the 

distortions caused by the early axial diffusion) resulting as was noted 

earlier in a nearly linear axial distribution of concentration when convec-

tion is dominant. From (A32) it appears that, if the tube is long enough, 

eventually convection always dominates axial diffusion effects when 

N 1/2 » 1 
Pe LD 

and usually (A34) 

is an adequate indication of convection domination. Long before this point 

is reached strong radial concentration gradients have often been created by 

the convective effects. These gradients drive radial diffusion which can 

only be ignored prior to diffusive break-through to the tube center-line, 
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s6 that only for Tn « 1 or from (A30) 

(A35) 

does nearly pure convection exist. Thus the pair of inequalities (A26) and 

(A27), which were previously used in the convection discussion, have been 

1/2 established and they require that NPe ~ 224. When Tn > 0.05 and NPe Tn > 0.5 

the effects of radial diffusion on axial dispersion must be included. 

The effect of radial molecular diffusion is the opposite of axial 

diffusion in that it allows gas from the high velocity region of the para­

boloid to diffuse into the low velocity region nearer the walls; hence radial 

diffusion tends to create a concentration front which is more uniform or 

flat than the paraboloid and moving at the velocity u if radial diffusion 

is effective even though the velocity remains paraboloidally distributed 

with a maximum velocity of 2u at the tube axis of syrrunetry. From (A22) it 

is obvious that radial diffusion can be expected to be effective in 

establishing a quasi-steady radial concentration profile if Tn ~ 0.5. [Gill 

(1965) numerically arrives at Tn ~ 0.6.] Thus radial diffusion inhibits axial 

dispersion due to convection and axial diffusion so that eventually Tn ~ 0.5 

a quasi-steady' state is approached where most of the radial concentration 

gradients are eliminated and axial mass transport behaves as if there is a 

plug flow at the average velocity u but dispersing relative to u [called 

"axially dispersed plug flow"] with some axial dispersion coefficient K 

(effective axial diffusivity) which is greater than the molecular value 

Vij , K ~ Vij , even though the velocity profile remains essentially para­

boloidal. Gill (1965) has numerically determined that the (U, K) model holds 

approximately for all Tn if NPe ~ 25, while for NPe > 25 it holds only if 
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TD ~ 0.6. The amount by which K exceeds Vij indicates the effects which the 

paraboloidal velocity profile has had on axial dispersion via interaction 

with radial diffusion. A large body of literature exists (Taylor, 1953-4; 

Gill, 1965-8; Aris, 1956; Bournia, 1961; Evans, 1965) which is concerned 

with the determination, both analytically and experimentally, of K under a 

wide variety of initial and boundary conditions. Typically the form which 

K usually takes can be expressed 

(A36) 

For example, if an initial step profile in concentration at the inlet to a 

straight tube from a well mixed reservoir is set into motion with a uniform 

axial velocity at t = 0, then for NPe < 25 it is found that (Gill, 1965) 

S is bounded such that 0 < Set) ~ 1/192; in fact S ~ 1/192 for all NPe values 

after about TD ~ 0.6 where radial concentration profiles are fully developed. 
~ 

Obviously for large NPe values, NPe > 25, considerable enhancement of the 

effective axial diffusion coefficient K is obtained due to the interaction 

of convection and radial diffusion. On the other hand if NPe < 1 no 

significant enhancement is obtained for this case. The upper limit on S 

depends considerably on the boundary conditions but appears to remain small 

compared to unity. For example it increases to 11/192 in capillary systems 

with high adsorption on the walls or in the limit of infinite ratio of 

stagnant pore volume to capillary flow volume for porous wall cases with a 

straight tube (Dayan and Levenspiel, 1968). Also for straight channels with 

non-permeable and non-adsorbing walls the upper limit on S appears to be 

8/945. In any event these cases seem to show that any time NPe < 1 the 

enhancement of K above V .. can be neglected. 
1J 
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In the "axially dispersed plug flow region" where li and K can be used 

to describe the concentration profile, expressions analogous to (A24) - (A32) 

can be written 

x- = lit t- = L/li u ' u (A37) 

_r:;;;: 2/ -xrms =12Kt , tK = L 2K (A38) 

(A39) 

so that 

x-Ix = N L 1/2 (V . . /K) 1/2/2120 
u ~c Pe D 1J (A40) 

and 

(A41) 

Thus the criterion for the neglect of dispersion relative to the plug motion 

at u is somewhat different than that for neglect of molecular diffusion 

relative to pure convection on the tube axis of symmetry at 2u; this is 

primarily due to the presence of (Vij/K). Care must be exercised in the 

use of (A37) - (A41) since they are valid only in the "axially dispersed 

plug flow" region and under no circumstances should they be used for LD '5 0.5 

even at high NPe values (NPe »1). Only if NPe < 1 is K ~ Vij so that the 

criterion NPe LD1/2 > 50 stated before (A34) as the criterion for convection 

domination becomes approximately valid here. More generally the near plug 

flow region can be specified by 

N 1/2 
Pe LD 
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> 50 (K/V .. )1/2 
1J 

(A42) 



so that if (A36) with S = 1/192 is used as an example then 

specifies that region in which (A37) or 

t- = L/U u 

(A43) 

(A44) 

approximately estimates the time to establish a new axial concentration 

profile since in that time the tube is essentially flushed or swept clean 

by the plug motion. Since (A43) can be written 

and the flush or quasi-steady profile can occur only if 

then 

t > t- = L/u u 

(A45) 

(A46) 

(A47) 

for tu = L/u to be a valid estimate of flushing time. This region is shown 

on both Figure Al and Figure A2 where it is obvious that there is a large 

region between the regions where tu and tV .. are valid as well as between 
1J 

tu and the limit L/D > 0.35 NPe set by neglect of the velocity entrance 

region effects. 

This gap can be partially bridged by deriving the analogous expression to 

tuwhich is valid for much smaller TD and L/D values. Mathematically this 
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can be done by recognizing that after 0 = U (t/K)1/2 exceeds about 10 

(actually 6 is probably adequate) then a similar solution (a function of n 

only) well known to hold for the infinite capillary case for the concentration 

C = 0.5 erfc n = 0.5 (1 - erf n) (A48) 

becomes approximately valid for the semi-infinite capillary (Gill, 1965) 

more precisely described by 

C = } {erfc n + exp [0 (2n + 0)] erfc (n + o)}; (A49) 

this is because the boundary condition C(x=O,t) = 1 at the tube inlet no 

longer has a significant effect on the concentration profile since it is so 

far downstream of the inlet following the initial conditions C(x<O,t=O) = 1 

and C(x>O,t=O) = O. This region, which is within the axially dispersed 

plug flow region where a K/V . . model holds, is often called the Taylor-Aris 
1J 

region. Gill (1965) numerically detennined that TD ~ 0.8 + 30 Npe-1.4 (which 

is a crude fit of table values given by Gill) approximately bounds the Taylor­

Aris region for the special case alluded to earlier where K/Vij = 1 + N~e/192. 
The upstream boundary condition must be accounted for via (A49) or some other 

appropriate expression if another boundary condition is present, for smaller 

o values and S in the K/Vij model must then be recognized to be possibly 

less than 1/192, 0 ~ S ~ 1/192. Of course for finite length capillaries the 

downstream boundary condition may also be important and require a finite 

capillary solution which is discussed later. At this point only the Taylor­

Aris region (infinite capillary solution) is investigated via C = i erfc n. 

Thus the value of n = ± IS can be used to identify the head and tail of the 

concentration front respectively, via the + and - sign. Also since 
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(ASO) 

then 

x = x- + x u - I1c (ASl) 

immediately indicates the physical interpretation regarding the head and 

tail of the profile relative to the plug motion. Hence for x = L the ± signs 

indicate break-through and flushing, respectively. The solution of (ASO) 

for t with x = L therefore gives an estimate of the times at which these 

events occur. This solution is 

t - - (L/ll) {I - 2 ¢-l [- 1 ± 11 + ¢)} u-K - (AS2) 

where the ± signs still are related to the n = ± 15 relation rather than 

the two roots of the quadratic, one of which has been eliminated on physical 

grounds. The parameter ¢ can be written 

(AS3) 

which becomes 

(AS4) 

if (A36) and S = 1/192 are used as an example. Since K + Vij if NPe : 1 then 

¢ + <PIS and 

t- = (L/ll) {I - 10 <p- l [- 1 ± 11 + <PIS J} u-V .. 
1J 

(ASS) 
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where the - sign gives the time to a new steady-state concentration profile 

while the + sign is related to the break-through time. The solution t- K' u-

(AS2), extends to lower L/D than (A47) for tu. This approximate limit is 

controlled by the choice of the lower limit on ° = u(t/K)1/2 given before to 

be 6 to 10 depending on how close the similar solution is approached before 

it is said to be valid. Since 

U(t/K)1/2 = N T 1/2 (V . . /K)1/2/2 
Pe D 1J (AS6) 

then a lower limit 00 on u(t/K)1/2 simply places a lower limit on TD of 

(AS7) 

which is a little different than the expression fit to Gill's tabled data, 

although not greatly different when 00 = 6, since 00 = 10 is entirely within 

Gill's Taylor-Aris region. In any event using t- K (- sign) with the u-

requirement that it should be greater than the time to obtained from (AS7), 

TO = 4 to Vij /D2, t u-K ~ to' gives the result 

(AS8) 

in order for t--K to be a valid estimate of time for quasi-steady concentra­u-

tion profile. If 00 = 10 

(AS9) 

while 00 = 6 gives 
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(A60) 

2 which are both shown on Figure A2 using K/Vij = 1 + Npe/192 as an example. 

Several important results can be observed from Figure A2. One is that for 

large NPe values (greater than 5 to 25), the assumption of negligible 

velocity entrance region effects excludes all L/D values below the limits 

given above for 00 = 6 and 10 so that tu_Kvia (A52) using - sign is the 

only expression required here to estimate characteristic times to establish 

concentration profiles. For NPe below these values K rapidly approaches 

Vij so that an additional expression is needed to bridge the gap between 

tV.. = L 2 
/2V ij' valid for ¢ < 0.354, and t~_ V. . given by (ASS) which is 

1J 1J 
approximately valid for ¢ > 55 but good for crude estimates if ¢ > 10. The 

region 0.354 ~ ¢ ~ 55.2 must therefore be examined. To properly cover this 

region neither the infinite nor the semi-infinite capillary solutions known 

for certain special cases are adequate; that is a solution for finite length 

capillary is required. The case'where a capillary of length L joins two 

reservoirs (well mixed) located at x = 0 and x = L with the initial conditions 

C (x < 0, 0) = 1 and C (x > 0, 0) = 0 has a well known (Carslaw and Jaeger, 1959) 

solution for C(x,t) with boundary conditions C(O,t) = 1 and C(L,t) = 0 when 

IT and V .. are constants. The best measure of the establishment of the quasi-1J 
steady concentration profile is when the transport rate past x = L of the 

specie behind the initial front approaches the well known steady-state value. 

This occurs when t/tV .. = tCA/tV .. satisfies 
1J 1J 

= £: « 1 . (A6l) 
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and it is found that the series converges rapidly for ~ < 102 since t/tv .. 
-2 1J 

is not too small, t/tv .. > 2 x 10 . For small t/tV .. the series has poor 
1J 1J 

convergence characteristics but since the equation for t- K holds in that u-

region it is of no concern here. If the small quantity E is chosen to be 

E = 0.01438, which implies that the transport rate at X = L is 98.562% of 

steady-state, then the results for t/tV .. with ~ values as large as ISO are 
1J 

shown on Figure A3 along with those calculated from (ASS) til-V .. normalized 
1J 

by tv ... The results from the two different expressions are nearly asympototic 
1J 

around ~ = ISO. The quantity t/tV .. simply represents the fraction of the 
. 1J . 

time tV .. = L2/2Vij for pure diffusion to reach 98.562% of the steady-state 
1J 

rate which is required to establish the concentration profile when convection 

il f 0 is present. Notice that the transition from tv = L2/2V .. to 
ij 1J 

t- = L/U starts to be significant when ~ reaches about 2 and is essentially 
u 

complete when ~ reaches about 2 x 103 as t/tV .. approaches the limit 2~-1 
1J 

indicating L/u is being approached. The results below ~ = ISO obtained from 

(A6l) can be represented by the fit 

and since for large ~ from (ASS) 

J = It/tv .. ) = 2 ~-l {I + 10 ~-l [1 + 11 + ~7s J} (A63) 
\ 1J ~»l 

-
then it is possible to represent the entire ~ region by 
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F = t. /t~ = J + (K - J) CA -v .. 
1J 

(A64) 



t /t­CA Vij 

NPe < 1 

Npe = liD/Vij = Diffusion Peclet Number 
2 tv = L /20 .. 

ij 1J 
V.. = Diffusion Coefficient 

1J 

1 
2 -1. 15 [ 3 ] I 10- 2 K = exp (-0.03¢ ) + 5.27¢ 1 - exp (-0.002¢) I ¢ < 150 

-5 2 tCA/tV .. = J + (K-J) exp (-10 ¢), ALL ¢ 
1J 

-3 
10 i~oo~---'r---r-'--r'-""'10r.l~---'---'--'--''-''''10~2~---'---'--'-'-'-rT'10~ 

¢ = Npe (L/D) 

Figure A3. Time to Establish Axial Concentration Profiles, t CA , in a Tube of 

Length L and Diameter D with Average Velocity u,versus ¢. 
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so that the desired results for small NPe values have been obtained. If J is 

replaced by a generalized expression obtained from (AS2), valid for large 

then (A64) is approximately valid over the entire region not already 

excluded by previous restrictions such as negligible velocity entrance ' 

region effects; note for large NPe values that both ~ and NPe or NPe and L/D 

are required to calculate the fraction of tv = L2/2V .. which is required 
ij 1J 

to reach a new quasi-steady concentration profile while for small NPe 

values only ~ is required. Of course for other initial conditions and other 

boundary conditions the results would be somewhat different than those on 

Figure A3, however since only an estimate of the characteristic time is 

needed here the result just derived should be more than adequate. 
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SUMMARY - Quasi-Steady, Axially-Diffused Plug Flow 

The results of this section on the regions of validity of the quasi-

steady and axially diffused plug flow 01, Vij ) assumptions need to be 

summarized due to their complicated nature. The previous six assumptions 

resulted in restrictions on the magnitudes of six independent non-dimensional 

parameters (Kn, Z, Re, LID, M, y) which were translated into six dimensional 

inequalities involving pressure, temperature, tube length and diameter, 

viscosity, and total mass flow rate. In this section it has been shown that 

seven more independent non-dimensional parameters (Npe ' hiD, VoIVoo' V', Di, 

a', S!) are required, each of which is also restricted in magnitude via a 
1 

complex set of twelve ratios of characteristic times, only seven of which 

are independent. Since all thirteen dimensioned parameters are involved 

in these ratios, the resulting dimensional inequalities number thirteen 

including an additional restriction resulting from the axially diffused plug 

flow assumption. 

Axially Diffused Plug Flow 

To be specific, Gill (1965) has shown that for NPe ~ 25 the axially 

dispersed plug flow 01, K) model is approximately valid for all TD values. 

However for NPe > 25 (really 25 < NPe < 2000 when Sc ~ I due to the previous 

Re < 2000 restriction) Gill concluded that the U, K model was valid 

approximately only if TD > 0.6 which is about the same as the TD > 0.5 
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restriction arrived at here. This implies that t > 0.5 D2/4Vij is necessary 

but since the profile does not remain in the tube unless t < L/u then 

2 0.5 D 14 V .. < t < L/U 
1J 

so that in order that such a region exist at all 

LID> 0.125 NPe 

and in order that it exist over most of the tube length 

LID> 1.25 NPe = 1.25 Re Sc 

or thereabouts. Notice that this result is comparable to the previous 

result 
LID> 0.35 Re 

required for the neglect of velocity entrance region effects, considering 

Sc ~ 1, so that no new restriction has really been derived. In any event, 

the NPe > 25 results are not of interest here since 

(A66) 

in order for (li, K) ~ (IT, V .. ) so that the axially diffused plug flow model 
1J 

is valid; then one finds that 

. 
m < TID~/4Sc (A67) 
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which of course is much more restrictive than the previous inequality 

ill < 500 TID~ derived from the Re < 2000 restriction and therefore should be 

used in its place. For the previous example with Sc = 0.75 one obtains 

ill < TI x 10-6 g/sec. 

Quasi-Steady Bore Flow 

The characteristic time ratios required to be small 

t /t « 1 bore . system (A68) 

will be evaluated in detail using tbore/tsystem < 0.2 as the requirement 

for approximate validity of the quasi-steady assumption. The new dimension-

2 2 less parameters Npe ' hiD, Vo/Voo' V' = TID L/4V , a' = aL /2V . . , D! = D./V .. o 1J 1 1 1J 

and Si = SiRT/Av are introduced. The constant Av is Avogadro's number 

0.6023 x 1024 and since V is the vent or receiving volume V' is the ratio o 

of tube volume to the connected vent volume. Also from (A64) 

is used to simplify terminology. The resulting twelve time ratios (seven 

of which are independent) are 

(A69) 

(A70) 
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tCR/td = 
2 [a'/4(L/D)2] (A71) (aD 18V .. ) = 

1J 

tCA/td = (aL2/2Vij) F (LID, Npe) = a'F (An) 

tw/tw = (D.D2/4vh2) = 
1 

[Di/4 (hiD) 2] (Re/Npe) (A73) 

~ It = (10 DiL/coh2) = [10 Dil (hID) 2] (LID) (M/Npe) (A74) A w 

tCR/tw = 
2 2 [D il 4 (hID) 2] (A7S) (D.D 14V . . h ) = 

1 1J 

tCA/tw = (D.L2IV . . h2) F = D!F(L/D)2/ (h/D)2 
1 1J 1 

(A76) 

(A77) 

(A78) 

(A79) 

(A80) 

where (A69), (A70) , (A77) , (A78) and (A80) are written in terms of (A7l) -

(A76) and (A79) to emphasize the independence of only seven of these ratios. 

In order that the quasi-steady assumption be approximately valid without 

any additional qualifying restrictions, each of (A69) - (A80) must at least 

be less than liS, an arbitrary small number stated earlier which may be 
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decreased if even stricter validity is required. Using the fact that 

Sc = Npe/Re ~ 1 certain pairs of (A69) - (ABO) become nearly identical; 

thus if (A69) and (A7l) are less than 115 the inequality 

D(em) < 3 x 104 
[P(atm)r l/Z ~ (ABl) 

-1 3 results, as an example, when a = l7.B yr, the decay constant for lH and 

v . . (cmZ/sec) ~ [P(atm)]-l, which is not very restrictive generally 
1J 

considering P < 10Z atm here. Similarly (A73) and (A7S) are less than 1/5 if 

l/Z D(cm) < 0.9 h(em) (V. ·ID.) 
1J 1 

Z -1 where V. ·ID. = [D (cm /secOK) P(atm) T(OK)] exp (Ed/RcT) which as an 
1J 1 a 

example for SiOZ - He at 3000 K and 10 atm has the value 

V .. ID. ~ 4 x 106 giving D(cm) < 1.B x 103 h(cm) 
1J 1 

(ABZ) 

which also is not very restrictive for most applications. In the same manner 

(A77) and (A79) yield 

(AB3) 

which, as an example, when Vo/Voo ~ 10, D/h ~ 3.Z, T = 300 0 K and P = 10 atm, 

then V' < 1.5 x 106, for SiOZ - He which is certainly not restrictive since 

V' « 1 for most applications. The inequalities (ABl) - (AB3) are for 

quasi-steady radial profiles in the bore of the tube. 

177 



The inequalities resulting for quasi-steady axial profiles in the bore 

of the tube are now examined. If (A70) is less than 1/5 then 

11 ( )1/2 L(em) < 2 x 10 yT(OK)/W(g/g-mole) (A84) 

usinga- l =17.8 yr which is certainly not very restrictive for y = 5/3 and 

W = 4 at 3000 K or any other reasonable values for y, W and T. Similarly 

(A72) yields 

L(cm) < 1.5 x 104 F- l / 2 [P(atm)]-1/2 (A8s) 

which under the worst conditions, F =1 and P = 102 atm, results in 

L < 1.5 x 103 em; generally of course L can be much larger than this since 

F < 1 and P < 102 atm, however this is probably the most restrictive 

inequality derived up to this point. From (A74) one finds 

2 2 2 ( ) 1/2 exp (Ed/RT) 
L(cm) < 1.8 x 10 h (cm) y/T(OK) W(g/g-mole) -----..,2=----

Do(em /secOK) 
(A86) 

which becomes L(cm) < 0.76 x 1011 h2(em2) for the conditions used in earlier 

examples and indicates little problem. The analogous result from (A76) is 

L(cm) < (sF)-1/2 h(cm) (V . . /D.)1/2 
1J 1 

(A87) 

which becomes L(cm) < 2 x 103 (sF)-1/2 h(cm) for the conditions used earlier. 

To show that (A87) can be very restrictive, assume that L/D = 104 and 
-2 -2 -3 NPe = 10 so that F = 2.4 x 10 and let h = 6.4 x 10 em with the result 

that L < 37 cm. This inequality will be discussed further later. In terms 

of Vb' given by (A83), (A78) yields 
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V' < Vb' (c DID. ·)/40 (LID) o 1J (A88) 

or 

which becomes V' < 7.5 x 104 for the conditions used earlier. 

Finally from (A80) one obtains 

(A89) 

which as an example becomes 

V' < 0.16 

using the conditions stated previously. This final inequality could be 

restrictive in some applications. 

As stated earlier, if all of the inequalities (A8l) - (A89) are 

satisfied, then the solutions derived in this report can be used under the 

prevailing local conditions in a quasi-steady fashion. If one (or more) 

of the inequalities is not satisfied then the converse is true unless the 

driving force for the particular physical phenomenon referred to in the 

inequality is not present in a significant amount. For instance, if the 

decaying specie is not present in significant amounts in the system, then 

the inequalities derived from (A69) - (A72) can be ignored. Also if the 

most rapidly permeating specie (largest D.S.) is not present in significantly 
1 1 

different concentrations in one reservoir compared to the other volume, then 

its inequalities derived from (A77) - (A80) can be ignored in favor of those 

for a specie which is permeating in significant amounts. Similarly the 

179 



initial startup transients which occur following the filling of the reservoirs 

with the gas mixtures may occupy such an insignificant fraction of the total 

period of operation that they can be ignored; also the fact that some of 

the related inequalities are not satisfied becomes irrelevant unless there 

are other perturbing factors such as system temperature changes during the 

period of operation which are of interest. Thus if an inequality such as 

(A87) is not satisfied, and there are large and rapid system temperature 

changes, then the model being derived here cannot apply. If, however, the 

magnitude of the temperature changes or the rate of change of system temper­

ature is controlled or restricted properly, then the model can still be 

applied with confidence. Specifically, this is true if the temperature 

change takes place over a period of time which is 5 or more times 

t(Temp. Change) > 5~ (AgO) 

larger than tCA or ~T is less than the amount which would cause ~i/Di to 

exceed 0.05 for example. 

Since a physical mechanism is not present which can maintain a signifi­

cant gradient in total pressure in either reservoir, the uniformity of 

concentration and temperature are of primary concern. 

Concentration 

Each reservoir is assumed to be spherical in shape, so that in the vent 

volume (see Figure 1) the gas must mix well for a distance of the order of 
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the volume diameter X = (6V /rr)1/3, while in the driver volume mixing for v 0 

a distance of the order of the volume radius Xd = (3V
00

/4rr)1/3 is necessary. 

Due to the line source and point source nature of the problem, the time 

required to mix gases over these distances via molecular diffusion alone can 

be expressed [note that (D .. ) f (D .. ) necessarily due primarily to different 
lJ d lJ V 

total pressure]. 

tx ::: Xd2 
/ 4 (D . . ) 

d lJ d 
(A9l) 

(A92) 

Equations (A9l) and (A92) must be much smaller than the time required to 

transfer significant quantities of gas from one volume to the other volume 

tFV estimated from (A20) for the dominant specie 

tx /tFV = 0.12 LV 2/3/V (V') «1 
d 00 0 b d 

(A93) 

t /t = 0 32 L/V 1/3(V') «1 
X FV' 0 b v v 

(A94) 

where Vb' is dimensionless and is given by (A83) and the fact that (D .. ) f 
lJ d 

(Vij)v must be properly accounted for when it is evaluated. If these ratios 

are taken to be less than 10- 2 the resulting length restrictions are 

L < 0.083 (V') V IV 2/3 
b d 0 00 

L < 0.031 (Vi) vol/3 
v 

which gives as an example, respectively, 

(A95) 

(A96) 
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L < 0.29 x 105 em (A97) 

L < 0.24 x 105 em (A98) 

if the maximum driver pressure is 103 atm and the maximum vent pressure is 

102 atm and V Z 103 cm3, V Z 102 cm3 using the other values given previously o 00 

as examples for Si02-He. Of course the smaller the time ratio the more 

uniform the reservoirs are, so that if 10-4 is used in place of 10- 2 above 

the length restrictions are reduced by a factor of 102 and the reservoirs 

are even more uniform. 

Temperature 

Two phenomena may cause reservoir thermal gradients; one is due to 

internal heat sources in the reservoir gas and the other is related to 

thermal lag in the reservoir gas if it cannot keep up with rapid temperature 

changes external to the system. The thermal lag can be analyzed using an 

expression analogous to (A92) for a spherical volume of radius 

r = (3V /4TI)1/3 if the diffusion coefficient is replaced by the gas res res 

thermal diffusivity a = k/pCp so that 

t(spherical res. conduction) z r;es/6a (A99) 

where it is assumed that the reservoir wall material has much greater thermal 

response rate than that of the gas and all convection mechanisms are neglected 

here. The reservoir gas will stay relatively uniform temperature wise if 

the temperature of the system is changed over a period greater than about five 

times that given by (A99) 
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t It = t (sys. temp. change) It (res. conduction) > 5 stc rc 

so that 

Z t(sys. temp. change) > 5 r 16a res 

results. The thermal diffusivity (Kreith, 1958) is generally between 

(AlOO) 

(AlOl) 

-3 Z -z Z 4 x 10 em Isec for gases like NZ and 0z and 6 x 10 em Isec or less for 

gases like He and HZ at 300 0 K and 1 atm and exhibits inverse pressure 

dependence. As an example, for a 1 liter reservoir volume and 10 atm of 

NZ at 300 oK, the time of temperature change should exceed Zl hr for conduction 

only; convection of course would lower this time by about an order of magni-

tude to around an hour at least. 

The heat buildup due to internal heat sources uniformly distributed in 

a gas reservoir can also be analyzed using heat conduction only (no 

convection) and a constant heating rate per unit volume q so that (Kreith, 

1958) 

. Z 
6T IT = q r 16kT max res (AlOZ) 

is the maximum difference in temperature resulting at steady state between 

the center and surface of a spherical volume of gas. Since 6Tmax/T must be 

small 

for example 

6T IT < 10-1 
max 

r;es < 0.6 kT/q . 

(Al03) 

(Al04) 
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As an example, the heating rate per unit volume for molecular lH3 is 

(Jordan, private communication, 0.3Z4 watts/gm) 

so that at 300 0 K 

. 
q ~ (300 0 K) 

1 

-5 3 = 1.9 x 10 P 3(atm) g-cal/sec/em 
lH 

(AlOS) 

in terms of the partial pressure of molecular lH3 The conductivity times 

the temperature at 300 0 K is around 1.Z x 10-Z g-cal/sec/em for gases like 

Oz and NZ while for gases like He and HZ it is about 1.3 x 10-1 g-cal/em/sec 

or less at 300 o K. The worst case (most restrictive) is for lH3 to exist as 

a component in a mixture of low conductivity gases like 0z and NZ so that 

rZ (emZ) < 379/P 3 (atm) 
res H 

1 

(Al06) 

which as an example yields rres < 10 cm for 3.79 atm lH3 and rres < 1 em for 

379 atm lH3 Reliable values comparable to (AlOS) - (Al06) are not available 

for all of the isotopes listed in the decay section, however, a heating rate 

of 0.53 watts/gm for 36Kr85 (Chart of Nuclides as Modified by Battelle 

Northwest, May 1969, 1970, Gov. printing off. #1970-0-389-841) can be used. 

The results are 

-4 = 4.4 x 10 PKr(atm) 
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85 the last of which yields rres < 10 em for 0.163 atm 36Kr and rres < 1 em 
85 for 16.3 atm 36Kr . These results are significantly different than those 

for lH3 Of course convection would increase greatly the limits on the 

reservoir radius, possibly as much as a factor of 3 to 5. 

Straight Tube [diD] 

Many of the previous results are for straight tubes which may be 

nnpractical due to the lengths involved. It is therefore of interest to 

examine the effects of coiling the tube (small coiling pitch) with same coil 

diameter d. It is desired to determine what the minnnum value of d is in 

order that no significant effects result fram the coiling procedure. 

Flow Rate 

One possible effect results due to the altered velocity profile in the 

tube which increases the resistance to the flow such that a reduced flux or 

flow rate is obtained. This has been studied by Truesdell and Adler (1970) 

where fully developed laminar flow in helically coiled tubes (small coiling 

pitch) is investigated. The result is that for circular tubes, there is 

less than 1% effect on the volumetric flux if the ratio of the helical coil 

-2 2 diameter to the tube inside diameter is greater than 10 Re 
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(Al07) 

where Re is the Reynolds number. It is obvious that this usually can be an 

important restriction only for large Re, Re » 1 which is not the case here. 

Dispersion 

Another possible effect is the alteration of dispersion mechanisms along 

the tube bore. ~vo competing processes interact to determine this effect. 

Curvature increases the variation in residence time across the flow which 

in turn tends to increase the dispersion coefficient while the secondary flow 

which occurs in curved tubes creates a transverse mixing that tends to 

decrease the axial dispersion coefficient. Results are given for such an 

investigation by Nunge, et al. (1972) which indicate that the dispersion 

coefficient first increases and then decreases as the Reynolds number 

increases. For Schmidt numbers of the order of unity (actually Sc ~ 0.75) 

those results indicate that there will be less than 5% effect on the axial 

dispersion coefficient if 

(Al08) 

which is usually not a significant restriction unless Re »1. Since 

Re < 1 is the region of general interest here, neither (Al07) or (Al08) 

usually need be considered a serious limit although in that region (Al08) 

is always the most restrictive while for large Re, Re » 1, (Al07) is most 

restrictive. 
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Dead End Permeable Tube 

Several of the previous assumptions were evaluated via results for flow 

through open ended tubes with impermeable walls .. These include the 

assumptions of fully developed laminar flow, uniform bore pressure, quasi­

steady radial and axial profiles, and straight tubes. Obviously when the 

tube is dead ended with all the flow entering through permeable walls, the 

results can be vastly different. However there are conditions where the 

axial flow at a given location along the tube interacts very little with the 

mass addition at that location, but is primarily determined by the combined 

or integrated effects of everything both upstream and downstream of that 

location so that those boundary conditions are properly satisfied. This is 

not likely to be true, of course, near the closed end of the tube; but if 

it is true locally over most of the tube, then the assumption evaluations 

previously based on open ended tubes with impermeable walls can be expected 

to hold in local spacial application when properly interpreted. 

One measure of the difference between the two cases (impermeable 

and permeable walls) is the pressure drop along the tube; the conditions 

under which the pressure drop can be ignored were determined previously using 

the viscous flow (Poiseuille flow formula) equation for impermeable walls 

because it was expected to be more severe than the permeable wall case. 

The nature of the relationship between the two cases is clearly determined 

by Huang and Yu (1973). That study is for steady, incompressible, laminar 

flow in a porous duct with uniform fluid addition or extraction along the 
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walls. The results adequately illustrate the physical fundamentals which 

are also involved for a nonuniform wall velocity Vw expected in this work. 

Using the nomenclature of Huang and Yu, the average velocity along the tube 

at any x coordinate location for uniform Vw is then 

(Al09) 

with x measured from the open end where u = Uo and u = 0 at the closed end, 

x = L (or at least symmetry causes zero velocity there). For a circular 

tube the resulting approximate axial pressure change is then 

[
P(O) - P(X)] = (64 x) (1 _ 2 Rew~) (1 -R /3) 1 -2 R.el) Re D ew 

"2 pUo 

(AllO) 

in terms of the wall Reynolds number Rew = Vw D/v; Huang and Yu showed that 

(AllO) is an adequate approximation provided Rew/Re « 1 and I Rew I : 1 

where Re = Uo D/v is the open end Reynolds number. Negative Re refers to w 

blowing or fluid addition while positive Rew refers to suction or fluid 

extraction. Since Rew = 0 and x/L « 1 gives the case of an impermeable wall, 

the first factor on the right of (AllO) is the familiar Poiseuille fonnula 

used earlier (A14) so that it introduces a linear axial dependence. The 

next factor on the right of (AllO) accounts for the distributed mass addition 

or extraction and thus alters the axial dependence to quadratic as a first 

approximation. Since for a dead end permeable tube Re/Rew = uo/vw = 4 L/D, 

the second factor becomes 1/2 at x = L due to the average axial velocity 

being 1/2 of that at the open end; this substantiates the earlier statement 

about impermeable tube results being more severe than permeable results 
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since the pressure change along a dead end porous tube is 1/2 that which 

would occur if .the open end flow passed through the entire length L of the 

impermeable tube (perhaps this is easier to observe if (AlIa) is rewritten) 

[P(X~2- peL)] = (64 L/ReD) (1/2) (1 - x/L)2 (1 - Rew/3) 
pUo/2 

(All 1) 

provided the effects of the last factor are negligible. The last factor 

weighs or measures viscous forces versus inertial forces normal to the wall 

as they interact via blowing or suction such that if they balance when 

Rew = Rewc = 3 (actually more exact results show Rewc ~ 2.6) via suction, 

then no net pressure gradient results when the suction velocity is uniform. 

This factor becomes unity for all practical purposes when Rew is small, say 

for example IRewl : 0.03. Although Huang and Yu only examined the single 

specie case, Libby, Liu and Williams (1969) confirm the wall Reynolds number 

criterion in the 2 specie case where the greatest effect on pressure gradient 

occurs for light gas injected into a heavy one. It would therefore appear 

that a local application of the Poiseuille flow formula is justified if 

which can be satisfied if 

Re /Re « 1 w 

IRe I « 1 w 

(A1l2) 

(All 3) 

(A1l4) 
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m < 10-1 ~L (AIlS) 

the last of which is of a similar form as (All) but more restrictive. For 

the same example given previously (Al14) and (AIlS) require that L > 2 em 

and m < 3 x 10-3 g/sec. The conditions stated above essentially allow the 

velocity profile to be approximated over most of the tube length,not too 

near the closed end,by a paraboloid whose peak value at the center line is 

determined by the local flow rate such that it is equal to 8 m(x)/npD2. 

When interpreted in this manner, the previous evaluations of the assumptions 

of fully developed laminar flow, uniform bore pressure and straight tubes 

should certainly be adequate. The results of Libby, et al. (1969) confirm 

this via an investigation of the flow development region in the case of two 

species of considerably different molecular weights when either the heavy 

or the light one is injected uniformly. Also Gill, et al. (1968) note that 

the extent of dispersion is less in developing velocity fields than in those 

which are fully developed (the bulk of the tube here) because dispersion 

is enhanced by velocity differences (these are maximum when fully developed) 

normal to the main flow direction. Even in the fully developed region the 

velocity profile is closely coupled to concentration profiles so that one 

expects no great alteration of the concentration profiles via the small 

departures from the paraboloidal velocity profiles allowed under the restric­

tions imposed here. However the physical difference in boundary conditions 

in that a rich or lean mixture of gases is being added or removed radially 

at the tube walls rather than axially at the tube ends can be a significant 

effect on axial dispersion. Diffusion and convection tend to create radial 

uniformity very fast relative to the axial distribution because large LID 

tubes are in general necessary in order to satisfy other assumptions. The 
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axial concentration profile, however, can be altered significantly by wall 

effects. This is, as was previously discussed, best treated via an axial 

dispersion coefficient (which includes radial effects). For example 

(Dayan and Levenspiel, 1968) an enhancement of the dispersion coefficient 

of over an order of magnitude has been reported for capillary systems with 

high adsorption on the walls or in the limit of infinite ratio of stagnant 

pore volume to capillary flow volume for porous wall cases. The existence 

of this effect, however, was previously taken into account when the bounds 

were established on several parameters in the radial diffusion effects 

treatment. Thus no further adjustments of the limiting inequalities are 

necessary here. 
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