
SAND76-823l
UNLIMITED RELEASE

MESH GENERATION FOR Two-DIMENSIONAL REGIONS USING

A DVST (DIRECT VIEW STORAGE TUBE) GRAPHICS TERMINAL

v. K. Gabrielson

When printing a copy of any digitized SAND
Report, you are required to update the

markings to current standards.

•

Issued by Sandia Laboratories, operated for the United States Energy
Research and Development Administration by Sandia Corporation.

NOTICE

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States nor
the United States Energy Research and Development Admini
stration, nor any of their employees, nor any of their contrac
tors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness or usefulness of any information,
apparatus, product or process disclosed, or represents that its use
would not infringe privately owned rights.

·<

,f

SAND76-8231
Unlimited Release
Printed July 1976

MESH GENERATION FOR Two-DIMENSIONAL REGIONS USING A

DVST (DIRECT VIEW· STORAGE TUBE) GRAPHICS TERMINAL

V. K. Gabrielson
Numerical Applications Division 8322

Sandia Laboratories, Livermore

ABSTRACT

This report describes the code DVMESH and the use of the Tektronix
DVST graphics terminal to prepare mesh data for various two-dimensional
axisymmetric finite element stress analysis and heat transfer codes.
The report consists of two parts. The first part is a reproduction of
the paper presented at the Conference on Applications of Computer
Graphics in Engineering at Langley Research Center on October 2, 1975.
The second part is a user's manual for the code's implementation at
Sandia Laboratories, Livermore.

3

4

ACKNOWLEDGEMENT

I wish to acknowledge the efforts of M. Ca11abresi, 8113, for
making DVMESH a usable tool for mesh generation in finite element
code applications. Many of the code's attributes were a result of
his suggestions, specifically the use of APT data sets, Q-8 element
generation, and the structure of the output data sets.

Mesh Generation for Two-Dimensional Regions Using a
DVST (Direct View Storage Tube) Graphics Terminal

Introduction

The use of direct view storage tube (DVST) terminals, such as the
Tektronix 4002A and 4014-1, for various graphics and interactive applications
has expanded greatly during the past few years. This is due to their rela
tively low cost and their adaptability to the terminal networks used on most
computer systems.

At Sandia Laboratories, Livermore (SLL), the DVST terminals have been
distributed throughout the Laboratory. These terminals are interfaced to a
Control Data Corporation 6600 computer and are accessed via CDC's Intercom
software system. The accessibility, ease of use, and adequate display area
of the terminals make this graphic system effective for interactive applica
tions which do not require large data bases or high rates of data transfer.
(This does not imply that such applications cannot be implemented, but they
increase the time between interactive responses. The time the user waits
for a response is a primary consideration in any interactive application
and becomes more sensitive in a system like SLL's since the data and pro
grams are processed and stored on a host computer which is servicing a large
number of users.)

To support this expansion of graphics facilities, a number of programs
have been coded to evaluate applications for which interactive graphics can
be used most effectively. The DVMESH code uses the DVST terminal to prepare
mesh data for various finite element stress analysis and heat transfer codes.
The project was designed to evaluate techniques, attributes, and limitations
of the DVST terminal for this type of application.

5

The need is quite real; designing finite element models is normally one
of the more time-consuming tasks of the structural engineer. The task of
designing the proper mesh for an analysis is quite dependent on having an
adequate pictorial display of the mesh. Thus, design time depends on the
speed with which graphic displays can be created, changed, and verified. For
this reason, a mesh code designed around the capabilities of the terminal for
problems requiring a lot of graphics verification should become a very useful
tool for the structural engineer.

The design parameters and goals of the DVMESH code have been:
(1) Make it applicable to two-dimensional regions.
(2) Allow its input data to come from various sources.
(3) Use available interactive features of the DVST, with special emphasis

on data sets entered at the terminal keyboard.
(4) Design a standard output data set which will allow the mesh to be

designed in modules.
(5) Design for approximately 25,000 words of memory.
(6) Provide necessary intermediate files in order to recover after abnormal

or normal interruptions.

The following sections describe the Tektronix 4014-1 terminal on which
the DVMESH code was implemented, details of DVMESH and its implementation on
a sample problem, and some general comments concerning the DVST terminal for
this type of application.

The Tektronix (DVST) Terminal

_ These terminals use the CDC Intercom software system which resides on
the CDC 6600. Applications programs are written in Fortran, using system
subroutines for displaying text, constructing line vectors, and initiating
the cross-hair cursor. The display screen is a write-only display which can
be refreshed only by erasing the entire screen.

The 4014-1 terminal being used has a display screen of 4096(X) by
3120(Y) viewable points and space for sixty-four lines of alphanumeric text.
The terminal has a standard keyboard and an interactively driven cross-hair
cursor. These features can be seen in Figure 1.

6

. -

(b) 4014-1
Figure 1: Tektronix terminal facilities.

F.eatures of the system which are attributes in graphics applications
are:
(l) An easy-to-use keyboard, vector and character generator plotting, and

a graphics display area applicable for large detailed displays.
(2) Hardcopy prints of any display are easily obtainable.
(3) Using the Intercom system as the interface between the terminal and the

computer allows the user to communicate directly with the SCOPE opera
ting system on the CDC 6600. This provides access to the mass storage
devices on the CDC 6600 and permits the use of the UPDATE and file
processing programs, plus the Intercom text editor program.

7

"-

The DVMESH Code

The DVMESH code applies to two-dimensional regions. These regions may
have irregular boundaries, material interfaces, voids, etc. The ability to
create an adequate mesh over the regions depends on the user's skill in
using the functions available in DVMESH, and the restrictions imposed by the
stress analysis or heat transfer code for which the data is being prepared.
In all of these codes the meshing problem is similar to those described in
the survey paper on mesh generation (Reference 1).

A space is subdivided into quadrilateral elements consistent with the
needs of the problem and the type of analysis. The mesh data required are
the coordinates of the nodes defining the corners of the quadrilateral
element. The DVMESH code is designed to produce mesh data for finite element
codes which require that all the nodes be mapped onto a unit grid, such that
each node can be identified by an integer pair (i,j) denoting specific rows
and columns in the grid. Figures 2 and 3 illustrate this mapping. This
procedure, which is common in many finite element codes and creates diffi
cult problems in meshing irregular regions, defines the connectivity of the
mesh and simplifies the problem of matrix storage and boundary definitions.
For this type of application, in which data preparation and graphics verifi
cation are very time-consuming, the interactive capabilities of the DVMESH
code have been quite useful.

DVMESH interactive capability is implemented in three phases: input
boundary definition, mesh development, and output generation. The following
sections give a brief description of each phase. The code uses only the
hardware features of the keyboard and cross-hair cursors. The references to
"functions" in the following descriptions refers to programmed routines in
the DVMESH code which can be used by entering special keywords at the
termi na 1.

9

10

J

2

.4------r+------r.~----~~----~------r.+-----

Figure 2: Illustration of sample mesh having quadrilateral
elements.

, Q

2 a

Q

I

D .
III' -~ ~II·

Figure 3: (i, j) mapping of sample mesh.

'.

Input Boundary Definitions

The input data set consists of coordinates of points, line segments,
and circular arcs which define the basic boundaries of the regions to be
meshed. An illustration of a sample data set is shown with the sample
problem. Four input options have been implemented, providing considerable
flexibility to the user for data preparation. The options include:

(1) Data sets entered at the terminal.
(2) Punched card records stored on disk file.
(3) Data sets generated by digitizers.
(4) Data sets extracted from large data bases generated by the APT (auto

matic programming too") processor used for automatic drafting purposes.

The input data records are identified by line numbers and can be dis
played and edited by entering functions at the terminal with the line identi
fiers. These functions, which are used in an interactive mode, include
inserting, changing, and deleting specified lines in the input data set and
displaying selected data sets.

A graphics display of the boundary data set can be obtained at any time
during input; this provides a,means to verify, correct errors, and make
adjustments to the data at the terminal. ,The user iterates on these opera
tions until the boundary data set is properly defined. Functions used in
the interactive mode include plotting the data within given min-max values
and' "windowing" by contracting or expanding the plot about a point which is
identified with the cross-hair cursors.

, Mesh Development

The meshing algorithm is quite simple. The mesh is designed as a rec
tangular array of quadrilateral elements having (m) rows and (n) columns.
Each node of an element is uniquely identified by an integer pair (i,j)
representing its row-column location in the grid, and the coordinates of the

11

nodes are stored at equivalent locations in their respective arrays. The
user defines the nodes at selected locations (in the display area) or on the
boundary data shown on the display by use of a special (node identification)
function which assigns to each its (i,j) location. The entire mesh can be
defined by the user, but normally only a minimum set of nodes need be identi
fied. All nodes not defined by the user are computed by linear interpolation
along each row or column. This is illustrated in the sample problem.

Interactive Procedure

When the meshing code is initiated, the boundary data set which exists
within the current min-max values is displayed and the maximum size of the
mesh arrays for the given problem is entered at the terminal by the user.
The user proceeds by defining nodes in the display area or on the perimeter
of the boundary data. When a sufficient number have been defined, a mesh is
constructed within the defined nodes. By observing the mesh the user proceeds
by selecting the necessary functions to accomplish various tasks. The result
of each function is displayed and a mesh can be reconstructed at any step in
the process. This interactive procedure is continued until a satisfactory
mesh is developed.

Node Identification Functions

The basic meshing function ts PICK, which is used to define node loca
tions by use of the cross-hair cursor. This function, entered at the key
board by the user, displays the cross-hairs which can be interactively moved
to any location on the display. The cursor is turned off by a keyboard inter
action. When the cursor is turned off, the user records the node's location
in the mesh by entering at the terminal its (i,j.) coordinates. Following
this entry, an X is displayed at the point selected by the program for this
node and the cross-hair is reinitiated for further processing.

Interaction involving the cross-hair cursor requires the use of the
system subroutine LOCo When the cursor is turned off, the function returns

12

-'

the coordinates of the cross-hair intersections and the keyboard entry used
in the interrupt. This provides a valuable programming tool, since each
key can represent a functional response. In this application the keys N, P,
and L provide alternatives in the location of the node at the cross-hair
intersection. The N-option locates the point at the cursor and the X-option
transfers control out of this procedure. The P and L options provide a
means to locate the node on the boundary data set. P implies that the node
is located at the point in the boundary data set nearest the cross-hair, and
L implies locating the node on the nearest line segment.

An alternative to the PICK function is the XYIN function which allows
nodes to be defined by their (x,y) and (i,j) coordinate.

After an initial mesh has been constructed from the nodes defined by
the PICK function, further development of the mesh can be done by use of the
fo110wing functions. These functions are illustrated in the sample problem.

CIRP is a function for locating nodes on a circular arc by identifying
three nodes on the arc which have been previously defined.

LINP is a function for locating nodes on line segment between two
defined points.

BFIT is a function similar to PICK which moves each node along a given
row or column to the nearest point in the boundary data set.

VOID is a function which permits regions in the mesh to be defined as .
voids on subsequent displays.

INIT is a function providing a means to reinitialize the entire grid or
parts of it when errors have to be corrected or adjustments made.

SHFT is a function which allows nodes of a given row or column to be
located as normal translations from a defined row or column. This
is very useful in obtaining accurate definitions in meshing
structures composed of layered materials, interface gaps, etc.

Nodes not defined by the above functions can be generated by one of the
grid functions.
GRDI displays the mesh by interpolating between defined nodes on each

row of the grid, then interpolating between defined nodes on each
column.

13

GRDJ similar to GRDI, except nodes are defined on each column, then on
each row.

GDIJ used for defining nodes within a section of the grid having convex
or concave boundaries which may not mesh properly using GRDI nr
GRDJ. Requires that all nodes on the boundary of the section be
specified prior to use.

ERAS In practice, several iterations will be required to obtain the
desired mesh. This may require many erasures of the display. The
ERAS function provides this capability. The display is erased and
the boundary data set plus the status of the defined nodes are
reset to the definitions prior to the erase. The defined nodes
include all that have been defined by the above functions except
those computed by interpolation in the GRDI and GRDJ functions.

Output Preparation

The output data file prepared by the DVMESH code consists of problem
identifiers and the coordinates of the nodes identified by specific row and
columns. This array, stored on disk file, is the standard output file
which can be implemented by the various analytical codes. It also provides
a restart capability for DVMESH.

Interactive features at this level permit the mesh to be viewed in
detail and allow the identification of a given node by (x,y) and (i,j)
coordinates; this may be useful for boundary and material identifications in
the finite element analysis.

With a memory allocation of 25,000 words, meshes of over 2,000 nodes
can be developed by DVMESH. For the case of large problems, the output
file is designed so that the mesh can be developed in sections.

14

Sample Problem

The following sequence of figures illustrates how a mesh is developed
using DVMESH at an interactive terminal. The procedure illustrates only one
of many possible procedures to obtain a mesh.

Input data options:
TYPE INPUT FILE AND PROBLEM HEADER
60--TYPED INPUT ~
40--PUNCHED CARD INPUT
20--DIGITIZED DATA FILE
42--APT DATA FILE
13--RESTART DATA FILE

All displays shown in this section were prepared from hard copy prints
of displays on the terminal. For example, input data entries from terminal
proceed as follows:

60 sample problem
TYPE DATA CARD

s; de 1 1 3 0. 0. 2. 4.2 .2
TYPE DATA CARD

side 2 1 3 1. .5 ,2.5 .5 2.5 .7
TYPE DATA CARD

side 2 1 2 1.0 .7 1- .5
TYPE DATA CARD

arc 4 1 2 0. 4. 2.6 270. 340.
TYPE DATA CARD

arcp 6 1 2 1.9 1.6 2.4 2.15 2.8 3.1
TYPE DATA CARD

arcp 7 1 2 1.9 1.6 1.8 1.4 2.2 1.1
TYPE DATA CARD

arcp 7 1 1 2.2 1.1 3.0 1.15 4.2 1.3
TYPE DATA CARD

Procedure is completed when END is typed.

15

Editor Phase options are PLOT-CHG-INS-DEL-LIST

Display of data entered at terminal using LIST function:
1 S I DE 1 1 3 ~L ~. 2. 4.2 2.
2 SIDE 2 1 3 1 .. 5 2.5 .5 2.5 .7
3 SIDE 21 2 l.~ .71 .. 5
4 ARC 4 1 2 ~. 4. 2.6 27~. 340.
5 ARCP 6 1 2 1.9 1.6 2.4 2.15 2.8 3.1
6 ARCP 7 1 2 1.9 1.6 1.8 1.4 2.2 1.1
7 ARCP 7 1 1 2.2 1.1 3.~ 1.15 4.2 1.3
8 END

TYPE-PLOT-CHG-INS-DEL-LIST-
Example of. changing data entry 2:

chg 1
TYPE DATA -- FOR INS OPTION, USE LAST TO END

side 1 1 3 ~. ~. ~. 2. 4.2 .2
TYPE -PLOT-CHG-INS-DEL-LIST-

The entry PLOT displays the data graphically as shown in Figure 4.

Figure 4: Boundary data display.

Plotting phase functions available at this phase of problem:
TYPE - SCAN-ZOOM-QUIT-MESH-PLOT-APT-PKXY

These functions provide a means to examine the display in detail, return
to the editing phase, or transfer to the meshing program.

16

'.

Before meshing proceeds, the user must have some insight into the size
of grid desired and relative locations of the maximum and minimum (i,j) node
identifiers. This can be done by drawing a rough sketch of the desired mesh
as a guide to the interactive development.

The maximum row and column is entered when the MESH function is typed.
All references to node identifiers in the mesh code must be within these
bounds. For this problem the mesh code is initiated by keying the entry which
allots a row space of 21 and column space of 30 in the grid matrices.

The following list illustrates the available functions for mesh develop-
ment:

TYPE--PICK--ERAS--GRDJ-GRDI-PLOT-BFIT-SAVE-INIT-VOID
SHIFT-EXIT-LOCP-PKXY-FITQ-GOQ8-CIRP-GDIJ-XYIN-LINP-

MESH SIZE 21 30

This example illustrates the use of some of these functions for developing
a mesh over the above boundary data set. The first function used is PICK in
which the cross-hair cursor is moved to the lower-left corner of the boundary
data. When P is typed the node is located at the end point of the line seg
ment and identified by entering the (i,j) values of (1,1). When L is typed
the node is located on the nearest line segment and identified by 'entering
the indices (1,7).

The interaction continues by use of the cross-hair and the PICK function
until a set of nodes is defined on the perimeter of the boundary data set.
For this case the PICK entries are defined in a counter-clockwise direction.
Figure 5 displays these nodes.

17

P 1 1

L 1 7

L 1 18

P 1 30

P 10 30

P 10 14

P 16 14

P 16 25

P 16 25

P 21 1

N 7 1

.+-----~----_Tr_-

Figure 5: Display of nodes defined by PICK function.

The nodes defined above are a sufficient set for constructing a mesh
over the region.

Figure 6 displays the results when GRDI is entered.

18

.'

~,

.+-----~----_T~----~----_M~--

Figure 6: Result of initial GRID entry.

At this point the functions BFIT and CIRP are used to locate given rows
and columns on the boundary data set. In this example row 21 is located on
the circular arc passing through nodes (21,1), (21,10), and (21,25). The
node (21,10) is located on the circular arc by entering BFIT 21 10. From
this data the nodes (21,2), ... , (21,24) are defined on the circular arc in
equal angular segments by the function entry:

CIRP 21 1 21 10 21 25 1

In like manner node points between (16,14) - (16,25); (10,14) - (10,30)
and (10,14) - (16,14) are located on their respective circular arcs:

BFIT 16 20
CIRP 16 14 16 20 16 25 1
BFIT 10 20
CIRP 10 14 10 20 10 30
BFIT 12 14
CIRP 10 14 12 14 16 14 -1

The XiS on the boundary sets in Figure 7 illustrate how the functions
are verified on the display.

19

Figure 7: Node selection using BFIT and CIRP.

To redisplay the mesh, the ERAS function is used followed by GRDI,
which interpolates new values for all nodes not defined by the special
functions. Figure 8 displays these results.

3

2

.i-----lr.r-----~----~~----_T+_----~~---

Figure 8: Result of BFIT and CIRP entries.

20

Figure 8 also shows the result of defining four nodes about the
rectangular region using the PICK function.

To remove nodes which lie in regions defined as voids, the following
entries are made:

VOID 11 15 15 25
VOID 5 8 6 17

These nodes are verified on the display then ERAS and GRDI functions
are entered, resulting in the following mesh of Figure 9.

I+------nr-----~----~M_----_rr_--

Figure 9: Result after VOID entries.

To illustrate the use of the SHIFT function, Figure 10 shows where
nodes are located when the following entries are made:

SHFT 21 1 21 25 .04 -1 0
SHFT 4 7 4 18 O. -.3 -3 0

The first relocates row 20 a .04 normal distance from row 21. The
second entry relocates selected columns of row 1 a fixed distance from row 4.

21

3.1.

2.4.

I

'I~--~+----.n-----rl-----~-

Figure 10: Node selection using SHFT entry.

To reset the nodes in the convex region of column 14 the GDIJ function
is used in the region bounded by the nodes (7,7) and (20,14) as shown in
Fi gure 11.

Figure 11: Result of SHFT function and GDiJ entry.

The final mesh displayed in Figure 2 shows the result of GDIJ function
plus the use of the SHFT function for defining the interfaces along sections
of row 7 and column 7. The SHFT function entries were:

SHFT 1 1 1 7 0.0 .48 5 0
SHFT 1 7 4 7 .02 .0 0 1

The data sets are now processed onto an output file which can be used in
various analytical codes. As can be observed, the procedure to obtain a mesh
is not fixed but is dependent on the user, his needs, and his experience. The
goal is to initiate a crude mesh over the region and then refine the mesh by
visual observation and the use of the various special functions.

22

General Observations

The development of DVMESH provided considerable experience for inter
active meshing applications. Using a system with a minimum of interactive
features and relatively slow response time required numerous tradeoffs
between the frequency of refreshing the display and the complexity of the
task for each function.

Implementing DVMESH as an interactive process implies that the user
will develop the grid visually, since it is quite inefficient to consult
notes, procedures, etc. while at the terminal. This requires instructions
and prompts to be displayed, as well as verification of functions implemented
by the user. These procedures are normally used in interactive programs but
are essential in this application, since the response of the system is quite
variable. These additional displays have the effect of filling the screen
quickly, since no selective erase (a feature of larger graphics systems) is
available.

The design of interactive programs for a DVST device requires some
special considerations associated with the erase function. Since an erase
results in a total erasure of the display, special efforts must be imple
mented to reproduce meaningful data with minimum effect on time and prior
efforts. As shown in the sample problem, a number of erasures were required
to complete a problem. To minimize the effect of the erase, a file is
created which contains node definitions generated by the functions PICK-CIRP
BFIT-VOID-INIT-SHFT, etc., prior to the erase. Processing this file after
the erase resets the meshing procedure to a point prior to the last grid
instruction from which processing can continue. This requires that after
each erase the graphics display is rebuilt, which can be time-consuming.
To reduce this time requires special programming efforts such as minimizing
axis annotation, design of mesh, etc.

Another important item of any interactive program is recovery when
erroneous data is entered at the terminal. In DVST applications the

23

programs must be coded to check on data consistency, proper data values,
number of entries, illegal characters, etc. The programming time spent on
this feature is worth the effort, since transmitting erroneous data is
easily done at the terminal. In DVMESH a very useful subroutine called MASK
has been used for this purpose. It provides a way to test for data con
sistency and the proper number of data entries for each type of function.
It allows all data entries to be entered in a free field format, which is
an essential feature for DVST terminal inputs.

An aspect of the DVMESH code which has proven to be quite valuable is
the ease of making modifications to existing meshes. Since most of the
meshes apply to design problems, the need to make parameter studies by
making minor adjustments to an existing mesh occurs quite often. With
DVMESH, the existing data can be retrieved from the computer data files,
adapted to the new design, and verified graphically in much less time than
by previous procedures.

Conclusion

Most of the goals noted in the introduction have been achieved in the
DVMESH code. The code is in operation and is being used as a practical alter
native at this time to conventional batch processing codes for constructing
meshes over two-dimensional regions having irregular boundaries. The code
provides a way for a user to design a mesh from a low-cost terminal by a
visual, interactive procedure. The time spent by the user preparing the mesh
may be similar to conventional batch procedures for a given problem, but the
elapsed time from start to a verified mesh may be much less since the mesh can
be verified graphically at each step of the process.

The code is written in Fortran but requires several system routines
dependent on the graphics hardware used. It is available from the author
on request. We anticipate that the design of the code will not be changed,
but additions will be made with experience and new applications.

24

DVMESH User's Manual

This section describes in detail the procedure for using the DVMESH
code on the Tektronix 4014-1 graphics terminal.

Before accessing the program, the user should have determined the
following factors.
1. Procedure in which input data describing basic boundary features will

be supplied to problem.
2. A sketch describing the mesh goals showing a preliminary estimate of

(i,j) coordinates on the boundary data sets.
3. Be aware of size limitations of the grid and complexity in order to pro

cess a section in a reasonable amount of time.
4. Determine whether the structure should be meshed in sections.
5. Know how to save the data sets prepared and what restart features are

available.

During processing, the user should be aware that an erase may destroy
displays on the screen which one may need at a later time. Take prints of
each new display and be sure and record all files stored for future use.

Files can only be retained on the permanent file disk since ECS and
tapes cannot be used in Intercom processing. (Note procedure for cataloging
files.)

Files can be disposed to the printer or punch by use of the Intercom
BATCH program. The use of the EDITOR program may also be useful for examin
ing BCD files generated by the program.

25

Operating Instructions

Be sure terminal is connected on line with CDC 6600.

After a request for LOGIN. Type

LOGIN, User Name, Password, Classification

(NOTE: The DVMESH code current requires 65000 octal words of central
memory. This may require user to extend the memory assigned to his
password.)

When COMMAND is returned, enter the following instructions

ATTACH,DVLG0,ID=GABE
ETL,300
SAVEFL,0N

If input data set resides on a permanent file, insert the following:

ATTACH,DATA, ,ID= ---
C0PV,DATA,TAPE __
RETURN,DATA

If an output data set'residing on a permanent file is to be used, the given
file is attached and copied to TAPE7.

If a restart data set residing on a permanent file is to be used, the given
file is attached and copied to TAPE12 ..

The program is initiated by entering the load command DVLG0.

Input File Options

The first response requires defining the tape unit where data is to be
obtained and the problem name: Six options are available.

00 and problem name - if no file number is entered, no boundary data input
is used for the problem. For example, all input data
points are entered at terminal. This option requires
min-max values to be entered using PLOT command des
cribed under PLOT functions.

26

60 and problem name - implies data is to be entered at the terminal. Details
on next page.

13 and problem name - data is entered from TAPE13. This tape is prepared
as a recovery file when data is entered from file 60,
file 40, and file 20. TAPE13 can be used after an
abnormal termination occurs or other malfunctions. It
is file used if TAPE13 data has been cataloged on a
previous run.

40 and problem name - data is entered from a permanent file copied to file
TAPE40. Data are card images of data prepared in
HEATMESH format defining SIDE, -, ARCS, etc. Data is
copied to TAPE13 and the EDITOR functions can be used.

20 and problem name - this file defines data which has been processed on a
digitizer. Data is converted to TAPE13 type input
in the code and the EDITOR functions can be used.
Uses format (A4,2X,7A10,A4).

42 and problem name - this file defines data processed from the APT-COMPTOR
postprocessors. When this file is used, TAPE13 is
not created and restarting must use TAPE42.

For TAPE42 inputs -- Transfer is made to PLOT options and an APT entry is
required specifying data sets to be read. Each APT data record is identified
by a part identification. If a selected group is desired, each is entered
with the APT entry.

The last identifier flags the last entry to be read from the data file.
Example

APT 10 12 15 18 999

would read and store data identified by 10, 12, 15, and 18 with no data read
after 999 is encountered. The min-max of each part is displayed on the
screen. The entry APT 999 would read and store the entire APT data set if
999 is the only part identifier.

27

For TAPE60 inputs -- DATA cards can be entered at this point, but fewer
errors are made if they are entered in the EDITOR routine. In this case,
END is entered and the code transfers to the EDITOR subroutine with the
following functions displayed.

- INS - LIST - CHG - DEL - PL0T

Input definitions for boundary data records are entered at the DVST keyboard
as TAPE60 inputs or by using the EDITOR function INS.

INS n

permits data to be inserted after record n. The data would define
boundary data sets. Boundary data sets are defined as straight lines
or arcs of circles by the following definitions.

SIDE i 1 m xlYl --- xm'Ym

where m defines number of points on cards for defining straight line
segments. A maximum of 4(x,y) pairs can be entered on a card.

For each option, the index i defines unique curves and lines. For example,
a continuous plot is made for all like indexes. The index 1 is not used.
All DATA is entered in free field format with space delimiters between each

entry.

is used to define an arc of a circle. xc'Yc define center, ~ defines
radius, ¢l and ¢2 are angles in degrees of arc at the endpoints. m is
the increment in degrees for points computed for circular arc. If (-m)
is used, point set increment is (11m) degrees.

ARCP i 1 m xl'Yl x2'Y2 x3'Y3
is used to define an arc of a circle as specified by the three points
given. The arc is constructed from point (xl'Yl) to point (x3'Y3) in
a clockwise direction, m, is defined as in the ARC definition.

The entries are typed until the entry LAST is entered in which the code will
respond by displaying the EDITOR options for further entries such as listing
data sets, change, delete, etc.

28

'.

EDITOR Opti ons

INS n

LIST n m,k

CHG n

DEL n m

PLOT

PLOT Functions

Defined on previous page

This lists the current data set stored on TAPEl3. The entire
list is shown unless nand m are entered. In this case, only
data n through m are listed. k nonzero, erases display before
listing.

Allows a new record to be typed and inserted in place of
record n.

Allows deleting of data records n through m. For one record,
only n is defined.

Initiates the transfer from the EDITOR program to the plotting
phase. Results in a plot of the current data set which
resides on file TAPE13 which can be used for restarting.

After plotting is completed, the following functions are available. All
entries are entered in a free field format.

PLOT

SCAN n m

ZOOM w

Initiates a transfer to a plotting option where values for
XMIN-XMAX and YMIN can be defined. For tape entry 00 data
is entered, and PLOT must be used in or.der to define the min
max of the region to be meshed.

This function is similar to LIST noted before. The data
records are listed with the plot for better visual interpre
tation of input data. Function transfers to EDITOR function
for further processing. Cannot be used with APT data entries.

Permits a zoom function to a magnification factor w about the
tracking cross location. After data is sent, the tracking
cross appears. User moves cross to desired region and enters
the letter P. The factor w is a scaler with respect to the
current XMIN-XMAX range. If 1.0 is entered, the plot is
reinitialized to min-maxes determined from the boundary data
set.

29

QUIT

MESH m n t

30

Initiates normal exit from program.

Initiates a transfer to the meshing subroutine. m and n
denote the maximum row and column space required for mesh
construction. The (i,j) space 1 ~ i ~ m and 1 ~ j ~ n should
be constructed on the boundary data set in the following
manner for ease of processing .

.
to

x
•

j

Figure 12: Preferred coordinate systems.

The maximum data space defined for m and n is (2xm)·{2xn) ~

4000. If problem exceeds these parameters, it can be con
structed in sections.

t is normally not entered
~ = 7 implies a file TAPE7 generated from a previous job will

be used as the data set in the mesh programs. This file
contains (n,z) coordinates of each node point in the (i,j)
space. When J=7, m and n are entered as 1.

~ = 12 implies a file TAPE12 generated from a previous job
will be used as the data set in the mesh program. This
file contains the node identifications records for recon
structing the display at this time in the meshing procedure.
m and n may be as those used when TAPE12 was· processed or

changed which provides a means to change the dimension
parameters for m and n.

.-

After MESH is entered, the following functions are
displayed for the mesh development.

XYIN
PICK
BFIT
CIRP
LINE Node identification functions
SHFT
VOID
SAVE
INIT

ERAS
PLOT Utility functions
PKXY
LOCP

GRDJ

I GRDI
GDIJ

Gridding options

EXIT
FITQ Output processing functions
GOQ8
SAHA

The meshing procedure will in general proceed as follows.
1. Identify nodes on the boundary data set by use of the

PICK or XYIN function.
2. Construct initial grid with GRDI or GRDJ functions.
3. Adjust grid using various node identification functions.
4. Erase and rebuild mesh.
5. Iterate in this fashion until grid is satisfactory.
6. Prepare node data for proper output mode.

31

Node Identification Function Definitions

All nodes generated by these functions are stored on TAPE12, which
provides a means to regenerate after an erase the node definitions status
just prior to the erase. If TAPE12 is stored, it can be used as a restart
file for later processing. All node identification functions display an x
at location recorded in node matrix on the display if it lies within the
current min-max values.

Definitions:

XYIN i j x y

PICK

32

Provides a means to enter node points at the keyboard by defining
their (x,y) coordinates and (i,j) location.

Initiates the cross hair cursors to be displayed for purposes of
identifying nodes with appropriate row-column (i,j) identification.
The cursor is moved to desired location for which four options are
available by typing
N - records the node where the cursor is located.
P - locates the node on the boundary data point nearest the cursor.
L - locates the node on the boundary line segment nearest the cursor.
X - exits the PICK option.

The letter option selected is displayed on left margin. Requires
entering two integers (i,j) which identify the nodes row-column location
in the (i,j) "grid.

After the integer entries, an x is displayed at node location and the
cursor is reinitiated for further processing.

NOTES: If an error condition is encountered, the PICK function has to
be reinitialized.

The L option is normally only used with line segments defined by the
SIDE definitions since only the endpoints are contained in the boundary
data set. ARC and ARCP definitions result ina dense data set. No
guarantee can be made that the correct line will be located since the
search is made on all possible line segments in the data set. In such
cases, moving the cursor slightly or using another option may be required.

'.

Node identification errors -- A given (i,j) coordinate can be defined
any number of times, but only the last (x,y) defined will be retained
in the coordinate matrix. For example, a node was erroneously defined
as (4,5) but is later defined as (4,7); the (x,y) would be located in
both locations in the (i,j) grid. In this case, (4,5) will normally
need to be reinitialized.

BFIT m n j k
This function is a procedure to attach nodes defined by interpolation
to data points located in the boundary data set.

The function applies to all nodes from node (m,n) to node (j,k). The
function requires nodes to lie along a given row or column in the grid.

For the case of a single node, j and k are not defined. For all cases,
m 5 j and n ~ k.

CIRP ml nl m2 n2 m3 n3 j

LINP

This function defines nodes along a circular arc. The nodes are
equally spaced between the endpoints (ml,n l) and (m3,n3). The number
defined is (m3~ml~1) or (n3~nl~1). The node (m2,n2) must lie on the
arc and be located between the endpoints.
j = 1 implies nodes are defined clockwise about the arc;
j = -1 implies node are defined counter-clockwise.

The nodes (ml,n l), (m2,n2), (m3,n3) must be defined prior to use and
ml $ m2 $ m3 on nl $ n2 $ n3. The function requires nodes to lie
along a given row or column in the grid.

ml nl m2 n2

This function provides a means to define nodes along a line defined
by the endpoints (m"nl) to (m2,n2). The endpoints must be defined
prior to use and ml $ m2 and nl $ n2. The function requires nodes to
lie along a given row or column in the grid.

33

SHFT m n j k dx dy in ic

m n j k dn in ie

x or y translation

normal translation

This function provides a means to define nodes as offsets from a given
row or column. It can be used to define layered materials, gaps, etc.
in mesh structures.

(m,n) - defines row-column of first point
(j ,k) - defines row-column of second point

d -x displacement increment in x

d -y displacement increment in y

i -n defines increment to be added to row m for new node identification

i -c defines increment to be added to column n

The indexes in and ic can be positive or negative. For cases where a
given row or column needs to be shifted, in = ic = 0 provides a quick
procedure for this task.

dn - if only one real argument is entered, dn defines the shift normal
to the designated data points. This option is used for shifts
along circular arcs.

For example, SHFT 3, 1,3,6,0.0,0.001,1,0 would define row 4 from
column 1 to 6 with a 0.001 offset of the y-values of row 3.

VOID m n j k
This function provides a means to insert void regions in the mesh. All
nodes in the region defined by (m,n) and (j,k) will be set to a void
flag and will not be displayed on subsequent grids.

For example, VOID 3,3,4,5 would set nodes (3,3), (3,4), (3,5), (4,3,),
(4,4), (4,5) to the void flag.

IN IT m n j k

34

This function provides a means to initialize nodes by resetting the
nodes to the initialization flag. It is used primarily to reset the
node matrix after errors have been made. All nodes in the space defined
by (m,n) and (j,k) will be set to the initialization flag. For example,
INIT 6,2,8,2 would erase all node identifications for (6,2), (7,2),
(8,2).

SAVE m n j k
This function allows interpolated nodes to be defined as node identifi
cation nodes for grids which are being developed in subsets. Where a
grid is satisfactory in a certain region, the grid can be fixed by using
the SAVE function and processing can continue on the other regions
without affecting this region.

All nodes defined in the space will be stored as node identification
nodes.

Gridding options GRDI-GRDJ are used to develop the grid between defined
nodes along each given row or column. The meshing procedure of defining a
subset of nodes by the node definition functions and then evaluating internal
node points by linear interpolation requires two options in the gridding pro
cedure.

GRDI - This function processes all possible interpolations along the i-rows
first, then processes the j-columns to complete the mesh.

GRDJ - This function processes all possible interpolations along the j
columns first, then processes the i-rows to complete the mesh.

The options may produce different mesh results as shown in Figures 13 and 14.
Interpolations can only be computed on rows or columns with two or more
defined nodes.

GDIJ IN(l), IN(2), IN(3), IN(4), (RL(N), N=1,4)
This function provides an option to define nodes within a region where
all boundary nodes have been defined. The function defines nodes
within the region by an equal potential method. It does not have the
limitation of GRDI or GRDJ around convex or concave boundaries. Weights
can be applied which are a function of a given row or column which pro
vides a means to distribute the nodes in a preferential direction.
Figure 16 illustrates the use of GDIJ.

IN(l) - IN(2) - define the smallest row and column of the region to be
meshed.

IN(3) - IN(4) define the largest row and column of the region to be
meshed.

35

8~.------~~----~~------~------~----

Figure 13: Mesh resulting from GRDi.

2

D4-------~~--------~--------~r_------_.~-----

Figure 14: Mesh resulting from GRDJ.

36

RL(N), N=1,4 are not required unless unequal weights are defined. All
weights are initialized to 1.0. When specified, RL(l) refers to
smallest I-line, RL(2) to smallest J-column, RL(3) is largest J-line,
RL(4) is largest J-column.

The following utility functions are used to enhance interactive pro
cessing at the terminal.

The ERAS function erases the screen and the node matrices. These
matrices are reinitialized by processing the file TAPE12, which contains all
the node identification definitions entered prior to the erase.

PLOT RL(l) - RL(2) - RL(3)
This function provides a means to reinitialize the min-max values of
the (x,y) coordinates. When initiated, an erase is executed and the
axis and boundary data set are plotted within the min-max defined by
the user.

Requires three arguments -
RL(l) is minimum x (XMIN)
RL(2) is maximum x (XMAX)
RL(3) is minimum y (YMIN)

A square plot is always processed in this code and YMAX = YMIN +
(XMAX-XMIN).

PKXY IN(l) - IN(2)

LOCP

This function provides a means to extract (x,y) coordinates from the
display. If IN(l) and IN(2) are entered as a (i,j) coordinate of a
node, the (x,y) values of this node will be displayed.

If no integers are entered, the cross-hair cursor is displayed which
is moved to desired grid location. When P is typed, the (x,y)
coordinates of the cross-hair will be displayed.

This function provides a means to identify the (i,j) coordinates of a
node in the grid. When the function is initiated, the cross-hair
cursor is displayed which can be moved to desired node. When P is
typed, the (i,j) coordinates of the node nearest the cross-hair will
be displayed.

37

The following functions provide options for processing the output data
file when the mesh is completed. The functions FITQ and GOQ8 refer to
defining Q8 elements which can be used in the GNATS stress analysis code. (2)

GOQ8
This function defines eight nodes per element for the entire grid. The
gridding functions define four nodes per element. The GOQ8 function
defines the four new nodes at the midpoint of each side by linear
interpolation.

When GOQ8 is used, the display is erased and the Q8 node network is
plotted on the display.

The PLOT function can be used to window into a given region of the Q8
mesh. The ERAS function will initialize all the Q8 nodes and the
meshing can proceed from status prior to the GOQ8 entry.

FITQ (IN(N), N=1,6)

38

This function defines Q8 nodes along curved surfaces. Each Q8 node on
the specified row or column will be defined at the midpoint of a
circular arc defined from adjacent nodes

(IN(l), IN(2)) = (i,j) coordinate of first node of a given row or
column

(IN(3), IN(4)) = (i,j) coordinate of last node of a given row or
column

This function requires only four arguments if three or more nodes are
defined by the coordinates.

The function requires that IN(3) ~ IN(l) and IN(4) ~ IN(2). IN(5) and
IN(6) can be used for the case where the third point required for the
circular definition does not satisfy the above inequality. For
example,

FITQ 3 5 3 6 2 6

may define three nodes or a circular arc. This entry would place a Q8
node between nodes (3,5) and (3,6).

EXIT IN(l)
IN(l) - an integer identifying this data file.
This function initiates an exit from the meshing subroutine -- before
exiting, the file TAPE7 is created which contains the following records.

WRITE (7,27) (lABEl(N), N=1,3), XXD, XXT
WRITE (7,28) MROW, MeOl, MAX, JST, NI, (IN(N), N=l,NI)
WRITE (7,29) (X(N), Y(N), N=l,MAX)

27 FORMAT (8A10)
28 FORMAT (1515)
29 FORMAT (6E13.6)

lABEl(N) = name entered with boundary data set.
XXD - XXT = day and time data was processed.
MROW - MeOl = maximum row and maximum column space defined for this grid.
MAX = the number of node points in data ~et

MAX = (2 x MROW - 1) x (2 x MeOl - 1).
(X(N), Y(N)) = (x,y) coordinates of node point n.

NOTE: Node points not defined in the grid but existing in the (i,j)
space are stored as X(N) = Y(N) = 100000.
This is also true for Q8 nodes when only Q4 nodes were defined
by the grid. For the case of nodes defined by voids, they will
be noted as X(N) = Y(N) = -100000. in the data set.

JST = 2 - data set contains a Q4 grid.
= 1 - data set contains a Q8 grid.

NI = number of integers in IN array.
(IN(N), N=l,NI) - integer flags that may be stored on data set -
only IN(l) is required.

SAHA (IN(N), N=1,7)
This function is a special feature to provide data which can be used
with the HEATMESH-SAHARA code for heat transfer analysis. (3)(4) It pro
duces a data set on file TAPE3 which is in a format compatible with the
HEATMESH code. The function can be initiated after the GOQ8 and EXIT
functions have been processed.

The HEATMESH data set requires regions of the structure having like
material properties to be processed as sections (PARTS) which will be

39

divided in (m x n) zones where m is the number of subdivisions along
the column space and n the number of subdivisions along the row space.

Required inputs for SAHA are

IN(l) - integer number identifying section (PART).
IN(2) - IN(3) - (i,j) coordinates of smallest row and column of section

in the DVMESH grid.
IN(4) - IN(5) - (i,j) coordinates of largest row and column of section

in the DVMESH grid.
IN(6) - IN(7) - optional input - provides the means to change the num

ber of subdivisions aJong the column (m)
and row (n) space.
IN(6) => m IN(7) => n

EXIT Procedures

The proper exit procedure from DVMESH is after meshing is completed and
the data stored on file TAPE7 by using the EXIT function. The program con
trol returns to the input phase where the QUIT function is used to exit the
code.

Proper disposition of data files must be used at this time for saving
pertinent data. Files which may be retained use

TAPE7 - output data file.
TAPE12 - intermediate data file.
TAPE3 - SAHARA punched card file.
TAPE13 - boundary data set file.

To retain a file for later processing, the file must be transferred to
permanent file status. To catalog a permanent file, enter the commands

40

REWIND, TAPE7
C0PY(TAPE7,ST0RE)
CATALOG (STORE , __ , I D= __ , PW= __

To process a punched file from the terminal enter
REWIND,TAPE3
BATCH,TAPE3,PUNCH,IDENT

or a print file, enter
BATCH,OUTPUT,PRINT,IDENT

A print should be made of any file disposition for the user's records.

To exit the DVST terminal, enter LOGOUT and detach the terminal from
the CDC 6600.

41

References

1. Buell, W. and Bush, B., IIMesh Generation - A Survey. II Transactions
of the ACME, Journal of Engineering for Industry, February 1973.

2. Ca11abresi, M. L. and Young, R. C., GNATS - a Finite Element Computer
Program for the General Nonlinear Analysis of Two-Dimensional Structures,
SLL-74-0023, October 1974.

3. Gabrielson, V. K., A Computer Code for Generating Geometrical Data
Required for Studies of Heat Transfer in Axisymetric Structures,
SCL-DR-67-30, September 1972.

4. Gabrielson, V. K., SAHARA: A Multidimensional Heat-Transfer Computer
Code, SCL-DR-720024, September 1972.

5. Ca11abresi, M. L. and Heidelberg, S. T., SASL - A Finite Element Code
for the Static Analysis ofAxisymetric and Plane Solids Subjected to
Axisymetric and Plane Loadings, SCL-DR-72006l, December 1972 .

•

42

Appendix A

The following figures\il1~strate some examples where DVMESH has been
used in various types of applications showing some of the versatility of its
use.

Figure 15.displays a mesh created for the GNATS code in which the
boundary data set was inputted as a set line and arc cards at the terminal.

Figure 16 illustrates a mesh created for the GNATS finite element code.
The input data set consisted of point sets defining surface boundaries at
various times in the analysis due to an ablation environment.

Figure 17 displays a mesh created for the SAHARA heat transfer code.
The mesh was created in sections representing various parts in structure.
The input data for this problem was generated by a digitizer creating a data
set compatible with DVMESH inputs.

Figure 18 illustrates a mesh created for the SASL finite element code.
The mesh displays the effective use of the SHFT functions for representing
interfaces, gaps, etc.

43

44

•

Figure 15: Mesh designed for the GNATS stress analysis
code requiring Q-8 elements.

Figure 16: Mesh designed for the GNATS stress analysis code
input data sets describe ablation surfaces.

..

".

The following figures illustrate some examples where DVMESH has been used
in various types of applications .

I
f-I-- ir \ \t '----

:--c-
!f-

-~~ -- ~
__ B jj ._.-

LU L LJ

Figure 17: Mesh designed for SAHARA heat transfer code
GRID designed in sections, input data prepared
by digitizer.

,I 1

.. . .
,

/ ;;
I / ~~
/ / ~t%~ / / d~t%t:: -l

.\ . I

//d~~~V il

~~~~~ 
~~~~V 
~~Vv
~~VVV
VJ_,....v~v
vv~
~~~~ 

-I. 

I..! 

Figure 18: Mesh designed for the SASL stress analysis code. 
Mesh emphasis, interfaces, gaps, etc. 

45 



UNLIMITED RELEASE 
INITIAL DISTRIBUTION 
Walter Rettig 
Aerojet Nuclear Company 
Idaho Falls ID 83401 
Robert K. Clark 
Argonne National Laboratory 
Applied Mathematics Division 
9700 South Cass Avenue 
Argonne IL 60439 
Larry Addison 
Battelle Pacific Northwest Laboratory 
P. O. Box 999 
Richland WA 99352 
David F. Theilen 
Bendix Corporation 
P.O. Box 1159 
Kansas City MO 64141 
Orvi 11 e Marlowe 
Westinghouse Electric Corporation 
Bettis Atomic Power Laboratory 
P. O. Box 79 
West Mifflin PA 15122 
Arthur Harris 
Brookhaven National Laboratory 
Upton NY 11973 
William Payne 
E G & G 
P. O. Box 1912 (C-41) 
Las Vegas NV 98101 
Jack Whichard 
Analytic Computing Branch 
Division of Communications and 
Computer Operations 

U.S. ERDA Headquarters 
Washington, DC 20545 
Daniel B. Curtis 
Fermi National Accelerator Laboratory 
CL-8E 
P. O. Box 500 
Batavia IL 60510 
James A. Brooking 
Digital Analysis and Computations 
Room Gl-106 
Knolls Atomic Power Laboratory 
Schenectady NY 12301 

46 



• 

UNLIMITED RELEASE 
Harvard Holmes 
Lawrence Berkeley Laboratory 
Bldg. 50B Room 2239 
Berkeley CA 94720 
Raymond L. Elliott 
Los Alamos Scientific Laboratory 
Group C-6, MS 272 
P.O. Box 1663 
Los Alamos NM 87545 
Lynn D. Maas 
Los Alamos Scientific Laboratory 
Group C-6, MS 272 
P. O. Box 1663 
Los Alamos NM 87545 
Mary Anne Fisherkeller 
Stanford Linear Accelerator Center 
P. O. Box 4349 
Stanford CA 94306 
R. D. McCullogh 
Computing Applications Department 
Computer Science Division 
Union Carbide Corporation 
Nuclear Division 
P. O. Box X 
Oak Ridge TN 37830 
Prof. R. M. Richard 
University of Arizona 
Department of Civil Engineering 
Tucson AZ 
Prof. H. Kamel 
University of Arizona 
Department of Mechanical Engineering 
Tucson AZ 
Prof. R. L. Johnson 
University of New Mexico 
Civil Engineering Department 
Albuquerque NM 87115 
G. L. Goudreau, LLL, L-605 
A. Harral, LLL, L-125 
R. M. Lee, LLL, L-61 
D. M. Norris, LLL, L-504 
D. A. Schauer, LLL, L-122 
D. L. Vickers, LLL, L-73 
M. L. Wilkins, LLL, L-504 

47 



UNLIMITED RELEASE 
T. B. Lane, 1280 
S. W. Key, 1281 
J. H. B iff 1 e, 1281 
H. C. Hardee, 1283, Attn: C. E. Sisson 
R. T. Othmer, 1284 
W. A. Von Riesemann, 1284 
E. K. Montoya, 2630 
J. L. Tischhauser, 2640 
M. R. Scott, 2642, Attn: R. E. Jones 
A. R. Iacoletti, 2644 
W. Herrmann, 5160 
T. B. Cook, Jr., 8000; Attn: L. Gutierrez, 8100; C. H. DeSelm, 8200; 

B. F. Murphey, 8300; W. C. Scrivner, 8400 
A. N. Blackwell, 8110 
A. F. Baker, 8111 
R. M. Green, 8111 
D. L. Siebers, 8111 
D. L. Hartley, 8115 
C. W. Robinson, 8116 
R. J. Kee, 811 6 
A. T. Jones, ~121 
M. L. Callabresi, 8121 (5) 
L. E. Voelker, 8121 
C. S. Hoyle, 8122 
J. Grant, 8122 
Y. R. Kan, 8122 
J. C. Keilman, 8122 
W. D. Zinke, 8123 
R. D. Cozine, 8160 
E. T. Cull, 8165 
T. S. Gold, 8320 
R. L. Rinne, 8321 
R. Y. Lee, 8322 
B. E. Barker, 8322 
A. G. Schuknecht, 8323 
J. F. Lathrop, 8323 
G. S. Brown, 8324 
R. E. Huddleston, 8325 
V. K. Gabrielson, 8325 (40) 
G. W. Anderson, 8330 
J. L. Wirth, 8340 
J. F. Barham, 8360 
Technical Publications and Art Division, 8265, for TIC (2) 
F. J. Cupps, 8265/Classification and Technical Library Processing Division, 

3141 
Classification and Technical Library Processing Division, 3141 (4) 
Library and Security Classification Division, 8266-2 (5) 

VKGabrielson:8322:k 

48 

• 




