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1. INTRODUCTION 

THE SANDIA MATHEMATICAL PROGRA~ LIBRARY (SMPL) IS A CO~LECTION OF 
GEN~RAL PURPOSE ROUTINES WHICH AR~ PRIMARILY MATHEMATICAL IN NATURE. 
THESE ROUTINES ARE OF GOOD QUALITY AND EACH ONE IS ~AIhTAINED ON AN 
IN-HOUSE BASIS. CONSULTANTS FOR THESE ROUTINES AT SANDIA LIVERMORE 
INCLUDE 

R. E. HUDDLESTON 

T. H. JEFFERSON 

DIVISION 2642 HAS PRI~E RESPONSIBILITY FOR THE SANDIA MATHEMATICAL FROGRAH 
LI8RARY PROJECT. QUESTIONS REGARDING THE LIBRARY PROJECT SHOULD BE DIRECTED 
TO ONE OF THE FOLLC~ING MEMBERS OF THE SANDIA MAT~EHATICAL fROGkAM LIBRARY 
PROJECT CCMMITTEE I 

M. R. SCOTT 2642 
R. E. JONES 2642 
L. F. SHAMPINE 5122 
D. E. AMOS 5122 
R. Y. LEE 8322 
R. E. HUDDLESTON 8322 

~. OBTAINING THE ROUTINE 

IN SECTIO~ 4, THE ROUTINES ARE GROUPED ACCORDING TO THEIR TASK. HAVIhG 
LOCATED A SUITABLE ~OUTINE, ONE TURNS TO SECTION 5 FOR AN EXPLANATION OF 
THE CALLING SEQUENCE. USING THIS EXPLANATION, HE W~ITES THE CALL I~TO 
HIS FORTRA~ PROGRAM. MOST USERS WILL PROCESS THEIR DECKS WITH A CONTROL 
CARD SEQUENCE SUCH AS 

--FORTQAN EXTENDED CO~PILER-
JOB CARD 
ACCOUNT CARD 
FTN. 
ATTACH(MATHFTN,ID=MATHFTN) 
LDSETCLIB=MATHFTN) 
LGO. 

--RU~ COMPILtR--
JOB CARD 
ACCCUNT CARD 
RUN,S. 
ATTACHCMATHRUN,IO=MATHRUN) 
LDSETCLIB=MATHRUN) 
LGO. 

THE LDSfTCLIB=------) CARD WILL CAUSE l SEARCH THkOUGH YOUR P~OGRAM FOR ANY _ 
CALLS TO SUBROUTINES ON THE HATH LIBRARY AND WILL AUTOMATICALLY LOAD ONLY THOSE 
ROUTINES NEEDEO INTO YOUR PROGRAM. 

3. COMMENTS ON OTHER LIBRARIES 

IN ADDITION TO THE ROUTINES ON THE SA~DIA MATHE~ATICAL FROGRA~ LIBRARY 
WE HAVE AVAILABLE A LARGE COLLECTION OF WORTHWHILE SUBROUTINES WHICH 
ARE NOT SUPPORTED I~ THE SAME ~ANNER AS THOSE OF THE SANCIA LIBRARY. 
INFORMATICN CONCERNING THESE ~GUTINES HAY BE OBTAINED FROM 
R. E. HUDDLESTON • 

I~SL -

THE INTERNATIONAL MATHEMATICAL AND STATISTICAL LIfRARY CIMSL) IS AN 
EXTENSIVE LIqRARY ~HICH WE RENT. IN PARTICULAR IT HAS A NUMBER OF 
STATISTICALLY ORIENTED ROUTINES WHICH ARE NOT AVAILABLE ON THE SANOIA 
LIP-PARY. 

ORNL -

T~E OA~ RIDG~ NATIC~AL LABORATCRY LIBRARY 
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LASL -

THE LOS .LAMOS SCIE~TIFIC LABORATORY LI3RARY 

AUXLIB -

THE SANDIA AUXILLARY LIBRARY 

A~L -

THf APPLIED ~ESEARCH LABORATORY LIBRARY OF LINEAR ALGEBRA RCUTINES. 

HARWELL -

THE LI~RARY Of THE ATOMIC E~ERGY RESEARCH ESTABLISHMENT AT 
HARWELL. ENGLANC. 

4. SUBROUTINES GROUPED ACCORDING TO TASK 

CNPFIT 
CNPVAL 
CNPCOF 

POLINT 
HRMITE 
POLYVL 
POLCOF 

POLFIT 
PVALUE 
PcceF 

PS~THl 

~MOO 

••••••••••••••••••••••••• 
DATA FITTING 

SUBRCUTI~E C~FFIT COMPUTES LEAST - SQUAkE POLYNOMIAL FITS TO CATA SUBJECT 
TO CERTAIN CC~STRAINTS WHICH THE USER HAY WISH TO IMPOSE ON THE VALUE 
OF THE FIT (AND ITS DERIVATIVES' AT CERTAIN PCI~TS. CNPVAL COMPUTES VALUES 
OF THE FIT (ANO ITS DERIVATIVES' PRODUCeD BY GNPFIT. CNPCOF COMPUTES 
THE CO~FFICIE~TS OF THE FIT. 

SUBROUTINE POLINT CALCULATES THE UNIQUE INTERPOLATING POLYNOMIAL DEfINED 
BY A S~T OF DATA. IF THE DATA INCLUDE FUNCTICN VALUES AND DERIVATIVE 
VALUES, THEN SUEROUTINE HRMITE WILL CALCULATE THE INTERPOLATING 
POLYNO"IAL. SUeROUTINE PCLYVL CALCULATES ~HE VALUE OF THE INTERPOLATING 
POLYNOMIAL (AND DERIVATIVES' AS PRODUCED BY fITHER fOlINT OR HRMITE. 
SUBROUTINE PCLceF CALCULATES THE COEFFICIENTS OF THE INTE~POLATING 
POLYNOMIAL PRCDUCED BY EITHER POLINT OR HRMITE. 

SUBROUTINE POLFIT COMPUTES LEAST-SQUARE POLYNOMIAL FITS TO DATA USING 
ORTHOGONAL POLYNOMIALS FOR AN INTERNAL REPRESENTATION. PVALUE EVALUATES 
THE FIT (AND DERIVATIVE~' PRODUCEO BY POLFIT. PCCEF COMPUTES THE 
COEFFICIENTS CF THE FIT FRODUCED dY POLfIT. 

SUBROUTIN£ PSMTHl IS A CCMPUTATIONAL PROCEDURE FOR POLYNOMIAL SMOOTHING 
OF DATA ANO FCR CALCULATING DERIVATIVES FROM A STRING OF OATA. SHORT 
ST~INGS OF OVERLAFPING DATA ARE USED FOR THE POLY~OMIAL FITS TOGETHER 
WITH ROUTIN~S FCR SELECTING THE PROPER DEGREE OF FIT FOR EACH STRING. 

CO~PUTES THE PAQA~ETtRS CF A SMOOTHING SPLI~E FIT Te DATA. ESPECIALLY 
RECCMMENDEO FCR DIFfERENTIATING NOISY DATA. 



SPLIFT 
COMPUTES THE PARAMETERS OF AN EXACT SPLINE FIT TO DATA. 

SPLIQ 
INTEGRATES A CUBIC SPLINE (DEFINED BY SPLIFT. SMOOTH, ETC.) 

SPLINT 
INTERPOLATES VALUES ON A SPLINE USING PARAMETERS FROM EITHER SPLIFT OR 
SMOCTH. 

TJMAR1 

CHAA 

CHAN 

CNU 

CNAN 

RSAA 

RSAN 

RNAA 

RNAN 

FOURT 

FOURTR 

FOURTH 

RFFT 
RFFTI 

TJMAR1 IS A SUBROUTINE DESIGNED FOR NONLINEAR LEAST SQUARES PARAMETER 
ESTIMATION. THE PRI~CIPAL APPLICATIONS OF THE ROUTINE ARt IN DATA FITTING 
AND IN SOLVING SYSTEMS OF SIMULTANEOUS NONLINEA~ ALGEBRAIC EQUATICNS, 
ALTHOUGH ANY PROBLEM WHICH CAN BE CAST AS THE MINIMIZATION OF THE SUM 
OF SQUARES OF ARBITRARY RESIDUAL FUNCTIONS IS APPROPRIATE • 

COHPUTES 

COMPUTES 

••••••••••••••••••••••••• 
EIGENVALUES AND EIGENVECTORS OF MATRICES 

(eChTACT R. E. HUDDLESTON, EXT. 2120, FOR A 
MUCH MORE COMPLETE SET OF ROUTINES IF 

NEEDED) 

AlL EIGENVECTORS AND EIGENVALUES OF A COHPLE)( 

ALL CF THE EIGENVALUES OF A COMPLEX HERHITIA" 

HERHITIA" 

MATRIX. 

MATRIX. 

COMPUTES ALL EIGENVECTORS AND EIGENVALUES OF A COMPLEX NON - "ERMITIA" 
MATRIX. 

COMPUTES All CF THE EIGLNVALUES OF A COMPLEX NON - HERMITIAN ~ATRIX. 

COMPUTES All EIGENVALUES AND All EIGENVECTORS OF. A REAL SYMMETRIC MATRIX. 

COMPUTES ALL OF THE EIGENVALUES OF A REAL SYMMETRIC MATRIX. 

COMPUTES ALL OF THE EIGENVALUES AND EIGENVECTORS CF A REAL MATRIX. 

COMPUTES ALL CF THE EIGE"VAlUES OF A REAL MATRIX • 

••••••••••••••••••••••••• 
FOURIER TRANSFORMS 

FAST FOURIER TRANSFORM ROUTINE FOR N-DIMENSIO"Al COMPLEX DATA WITH AN 
ARBITRARY NUI'!8ER OF VALUES IN EACH DIHENSION. 

PERFORMS A FORWARD FAST FOURIER TRANSFORM ON A ONE-OI~ENSIOhAL SET OF REAL 
DATA. ( SEE OESCRIPTION OF RFFT) 

PERFORMS AN INVERSE FAST FOURIER TRANSFORM TO YIELD A ONE-DIMENSIONAL SET 
OF REAL ~ALUES. ( SEE DESCRIPTION OF RFFTI ) 



CAXPI 

SAxe 

SAXEI 

RDcl 

ON 
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RFFl FC~FDR~S A FORWARD FAST FOURIER TRANSFOR~ ON A OkE-DIMENSICNAL SiT 
OF REAL VALUES. 
RFFTI PERFOR~S AN INV~RSf FAST FOURIER TRANSFOR~ TO YIELD A ONE
DIMENSIONAL SET OF REAL VALUES. 
$ NOTel 
~ THE TASKS PERFORMED EV RFFT AND RFFTI CAN BE PERFCR~ED BY FOURTR 
$ AND FOURTH. HOWEVeR, RFFT AND RFFTI ARE THREE TC FIVE TIMES FASTER 
~ (PA~TLY DUE TO THE FACT THAT RFFT AND RFFTI ARE WRITTEN I~ THE 
$ CDC6600 ASSEMBLY LANGUAGE) 
$$$$$ 

••••••••••••••••••••••••• 
LINEA~ ALGESRAIG EQUATIONS 

SOLVES A SYSTEM OF COMPLEX LINEAR ALGEBRAIC EQUATIONS, AX = S, AND 
OPTIONALLY IMPROVES THE SOLUTION AND COMPUTES AN ERROR BOUND FOR THE 
SOLUTION. 

SOLVES A SYSTEM OF REAL EQUAT]ONS, AX = B, USING GAUSSIAN ELIMlhATION WITH 
IMPLICIT SCALING AND ROW PIVOTING. SAxe REQUIRES LESS TIMt ANC LESS SPACE 
THAN SAxeI BUT FROVIDES LESS ACCU~ACY. 

( SAXB ~EPLACES SUBROUTINE Axe I 

SOLVES A SYSTEM OF REAL EQUATIONS, AX = S, USING GAUSSIAN ELIMINATION WITH 
IMPLICIT SCALING, ROW PIVOTING, AND ITE~ATIVE IMPROVEMENT. SA)BI IS 
RECCMMENDED AS THE BEST CHOICE SINCE IT PROVID~S GREATER ACCURACY THAN 
SAxe AND ALSC PROVIDES AN ERRCR ESTIMAT~. SAXBI DOES REQUIRE ~OR£ TIME AND 
SPACE THAN SAxe • 
( SAXB! REPLACES SUBROUTINE AXBI ) 

EVALUATES THE DETERMINANT OF A ~EAL MAT~IX. NOTE THAT SYSTEMS OF LINEAR 
ALGEBRAIC EQUtTIONS SHOULD ALWAYS BE SOLVED DIR~CTLY USING SAXBI 
OR SAX3 RATHER THAN USING THE SLOWER LESS ACCURATE CRAMERS RULE 
WITH OETFRMINANT EVALUATION • 

••••••••••••••••••••••••• 
SYSTEMS OF NC~LINEAR ALGEBRAIC EQUATIO~S 

SOLV€5 A SYSTEM OF NCNLINEAR ALGEqRAIC lQUATIONS 

••••••••••••••••••••••••• 
LINEAR PROGRA~MING AND GAME THEORY 

LPGAME 

~VI~T 

LPGA~~ IS A ~ULTI-PURPOSE ROUTINE WHICH CAN PoE USED TO SOLVE LINEAR 
~ P~OG~A~~ING PROBLE~S O~ TWO-PERSON GAMES • 

••••••••••••••••••••••••• 
NUMERICAL QUADRATURE (NUMERICAL EVALUATIO~ 

OF DEFINITE INTEGRALSI 
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QNC3 

QNC7 
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INTEGRATION CF TABULATED DATA. A HETHOO OF OVERLAPPING 
PARABOLAS IS USED. 

ADAPTIVE INTEGRATION USING 6 POINT GAUSS-LEGENDRE QUAORAOURE FOR HIGH 
ACCURACY OR FOR SHOOTH FUNCTIONS. 

ADAPTIVE INTEGRATION USING 3 POINT NEWTON COTES ALGORITHM (SIMPSON#S RULE' 
FOR RELATIVELY LOW ACCURACY ON ROUGH FUNCTIONS. 

ADAPTIVE INTEGRATION USING 7 POINT NEWTON COTES ALGORITHM FOR MODERATE 
ACCURACY. QNC7 IS OFTEN THE PREFERABLE CHOICE FOR A WIDE CLASS OF 
FUNCTIONS ANC ACCURACIES ON THE CDC 6600. 

SICONT 

SPLIQ 

SSORT 

GERK 

INTEGRATION OF FUNCTIONS CONTAINING AN EXPLICIT SIN(WT' OR COS(WT, IN THE 
INTEGRAND. 

INTEGRATES A CUBIC SPLINE (DEFINED BY SPLIFT, SMOOTH, ETC.' 

••••••••••••••••••••••••• 
NUMERICAL SORTING 

SORTS AN ARRAY OF REAL VALUES IN EITHER ASCENDI~G OR DESCENDING NUMERICAL 
ORDER AND OPTIC~AlLY CA~RIES ALONG A SECOND ARRAY OF ~EAL VALUES • 

••••••••••••••••••••••••• 
ORDINARY DIFFERENTIAL EQUATIO~S 

GERK IS DESIG~ED TO SOLVE SYSTEMS OF DIFFERENTIAL EQUATIONS WHE~ IT IS 
IMPCRTANT TO HAVE A READILY AVAILABLE GLOBAL ERROR ESTIMATE. 

ODE VARIAfLE STEP-SIZE, VARIABl[ ORDER PREDICTOR CORRECTOR METHOD. THIS THE 
RECOMMENDED ROUTINE. 

OOERT 

RKF 

STEP1 

SUPORT 

INTEGRATES A SYSTEH OF OROI~ARY DIFFERENTIAL EQUATIONS. 
INTEGRATION CONTINUES UNTIL A ZERO OF A USER DEFINEO LINEAR OR 
NONLIN€AR FUNCTION OF THE DEPENDENT VARIABLES IS LOCATED. 

RKF IS A RUNGE-KUTTA-FEHLBERG SCHEME FOR SOLVING NON-STIFF DIFFERENTIAL 
EQUATIONS WHEN DERIVATIVE EVALUATIONS ARE CHEAP. RKF SHOULD GENERALLY 
NOT BE USED WHEN HIGH ACCURACY IS DEMANDED. SUBROUTIN~ 00£ IS PREFERRED 
IN THES£ CASES~ 

SUBROUTINE STEP1 IS hOR~~LLY USEO INDIRECTLY THROUGH SU8ROUTIhE CDE. 
BECAUS~ ODE SUFFICES FOR MOST PRO~LEMS AND IS MUCH EASIER TO USE. USI~G 
OOE SHOULO BE CONSIDERED BEFORE USING STEP1 ALONE. 

SOLVES A LINEAR TWO-POINT BOUNDARY VALUE PROBLEM • 

••••••••••••••••••••••••• 
SPECIAL FUNCTIONS 



BESI 

3ES!01 

BESKOl 

8ESYOl 

"ESJOl 

BESJ 

BESKN 

I3ESYN 

COSH 

E~F 

ERFC 

GAnN 

G~"'I-!A 

G A"H-l AZ 

SINH 

MINA 

SHIN 

lEPOIN 
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IJ=:SI COMPUTES At. ~ MEMBER SEQUENC~ OF I BESSEL FUt-CTIONS 
I/SUeCALPHA+K-l)/CX), K=1,2 ••••• N OR SCALED f!ESSEL FUNCTIONS FOR 
NON-NEGA Tl VE ALPHA AND )(. 

! 8E.SS<:L FU~CTIONS OF ORDER ONE OR TWO fOR REAL ARGUMENTS 

K RESSEL FUNCTICNS OF O~DER ONE OR TWO FD~ REAL ARGUMENTS 

Y BESSEL FUNCTICNS OF ORDER Ot\E O~ TWO FOQ ~EAL ARGUMENTS 

J BE.SSEL FUNCTICNS OF ORDER ONE OR TWO fOR REAL ARGUHENTS 

BESJ COMPUTES AN N MEM~ER SEQUENCE Of J BESSEL FUNCTIONS 
J/SUBC~LPHA+K-11/CXI. K=1.2 •••• ,N fOR NON-NEGATIVE ALPHA AND X. 

BESKN COMPUTES AN N MEMcERSEQUENCE OF INTEGER ORDER K BESSEL FUNCTIOt\S 
K/SUBCNU+I-lI/CX). OR SC~LED EESSEL FUNCTIONS, FOR REAL X .GT. 0 AND A 
NON-NEGATIVE INTEGER NU. 

BESYN COHPUTES AN N HEMPER SEQUENCE OF INTEGER ORDER Y BESSEL fUNCTIONS 
Y/SUBCNU+I-l)/CXI. OR SC_LED eESSEL FUNCTIONS, FOR REAL X .GT. 0 AND A 
NO~-NEGATIVE INTEGER NU. 

HYPERBOLIC CO~I~E FUNCTION. 

THE ER~OR FU~CTIO~ 2/SQRTCP!) .C INTEGRAL FRCM 0 TO X OF 
EXPC-T··ZI OT I 

THE COMPLEME~TA~Y ERRJR FUNCTION 2/SQRTCPI)·( INTEGRAL FRCM X TO 
INFINITY CF EXPC-T.·21 OT I 

ERFC CAN ALSO BE USED TO EVALUATE THE NCR~AL FROB ABILITY INTEGRAL. 

GAMLN CO~PUTES THE NATUR~L LOG OF THE GAMMA FUNCTIOt. FOR REAL POSITIVE 
ARGUMENTS. 

GAMMA FUNCTICN FOJ< A REAL ARGUMENT (ACTUALLY A SUSROUTINE). 

GAMMA FUNCTIC~ FO~ A CO~PLEX AqGUMENT (ACTUALLY A SUB~OUTINEI. 

HYPER~QLIC SIN~ FUNCTION • 

••••••••••••••••••••••••• 
ZERCS OF FUNCTIONS ANO OPTIMIZATICN 

SEARCH~S FOR ~ t'INIMUM OF A REAL VALUED FUNCTIO~ OF SEVERAL VARIABLES IN A 
REGIO". 

MINIMIZES A R~AL FUNCTIO~ OF.TWO OR MORE REAL VARIABLES 

SEARCHES FOR A ZERO OF A REAL VALUED FUNCTION OF CNE VARIABLE IN AN 
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CPOR 

RaNCZ 

RPCR 

ERXSET 

ERQCHK 

€~PGfT 
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INT~RVAL USI~G AN ~FF!CI~NT CC~BINATION Of EISEGTION AND SECANT METHOD. 

ALSO SEE TJMA~l LISTED UNDEF DATA FITTING FOR SOLVING SYSTEMS OF NONLINEAR 
ALGEBRAIC EQUATIC~S AND FOR ~INI~IZING THE SUM OF SQUARES OF RESIDUALS • 

••••••••••••••••••••••••• 
ZEROS OF POLYNOMIALS 

COMPUT~S A POSTERIORI ERROR BOUNDS AND CLUSTER COUNTS FOK APPROXIMATE 
ZERCS OF A FCLY~CMIAL WITH CCMPLEX COEFFICIENTS. IT IS RECCMMENDED THAT 
COND2 qE USED TO DETERMINE TH~ ACCURACY AND PROEA8L£ MULTIPLICITY OF ZE~OS 

COMPUTED BY CPQ~. 

COMPUTES ALL CF THE Z~RCS (BOTH REAL AND COMPLEX) OF A FOLY~OMIAL WITH 
COMPLEX COEFFICIENTS AND OF DEGREE LESS THAN 20. 

CO~PUTES A PCSTERIORI ERROR BOUNDS AND ~LUSTER COUNTS FOR APPROXIMATE 
ZfROS OF A PCLY~CMIAL WITH REAL COEFFICIENTS. IT IS RECOMHENDED THAT 
RBND2 9E USED TO DETERMINE THE ACCURACY AND PROBABLE MULTIPLICITY OF ZEROS 
COMPUTED BY RPQR. 

COMPUTES ALL CF THE ZEROS (BOTH REAL AND COMPLEX' OF A PO~YNOMIAL WITH 
REAL COEFFICIfNTS AND DEGREE LESS THAN 20 • 

••••••••••••••••••••••••• 
LIBRARY ERROR CHECK ~OUTINE AND US~~ OPTIONS 

ERXSET SETS THE STATE OF TWO PA~AMETERS IN THE ~IB~ARY E~~OR CHECK 
ROUTI~E WHICH CC~TROl THE PRI~TING OF DIAGNOSTIC ~ESSAGES AND THE 
Tf~~IN4TION OF EX:CUTION OF THE USERtS PROGRA~. IN PARTICULAR, BY CALLING 
ERXSET THE USER ~AY MAK~ MATHLI8 MESSAGES NONFATAL. (SEE ERRCHK FOR 
USAG~ INFO~MATICN.' 

EORCHK PROCESSES MfSSAG~S FRC~ OTHER ROUTINES I~ THE MATHLI8 FILE. SUCH 
MESSAG~S ARE ~CR~ALLY FATAL ERRORS U~LE5S THE NONFATA~ HODE WAS SE~ECTEO 

P?EVICUSLY BY CALLING ERRSET. USUALLY ERRCHK IS NOT CALLED OIR~OTLY BY 
THE US:R. 

E~RGET RETU~NS THE VA~UES OF TWO PARAMETERS CONTAINED WITHI~ THE LIBRARY 
E~RCQ CHECK ~CUTINE. T~IS, TOGETHf~ WITH ERRSET, PERMITS THE USER TO 
DETE~~INE THE STATE OF THE PARAMETERS. TO CHA~Gc THEM, AND THEN TO RESTORE 
THE~ T~ THEIR ORIGINAL STATE. (SEE ERRCHK FO~ USAGE INFORMATION.) 
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5. CALLING SEQUENCES FOR SUBROUTINES ( ALPHABETICAL ORDER' 

AVINT AVINT AVINT AVINT AVINT AVIH AVINT AVINT 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE AVINT (X.Y,N,XLO,XUP,ANS,IERR' 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

ORIGINAL PROGRAM FROM ·NUMERICAL INTEGRATION· BY OAVIS+RABINOWITZ. 
ADAPTATION AND H(DIFICATIONS FOR SANDIA HATHEHATICAL PkOGRAH 
LIB~ARY BY RONDALL E JONES. 

ABSTRACT 
AVINT INTEGRATES A FUNCTID~ TABULATED AT ARBITRARILY SPACEO 
ABSCISSAS. THE LIMITS OF INTEG~ATIOH NEED NOT COINCIDE 
WITH THE TABULATED ABSCISSAS. 

A METHOD OF CVERLAFPING PARABOLAS FITTED TO THE DATA IS USED 
PROVIDED THAT THERE ARE AT LEAST 3 ABSCISSAS BETWEEN THE 
LIMITS OF INTEGRATION. AVINT ALSO HANDLES TWO SPECIAL CASES. 
IF THE LIMITS OF INTEGRATION ARE EQUAL, AVINT RETURNS A RESULT 
OF ZERO REGARDLESS OF THE NUHBER OF TABULATED VALUES. 
IF THERE ARE ONLY TWC FUNCTION VALUES, AVINT USES THE 
TRAPEZOID RULE. 

DESCRIFTION OF PARAMETERS 
THE USER HUST DIMENSION ALL AR~AYS APPEARING IN THE CALL LIST 

X(NJ,Y(NI 

INPUT--
X - REAL ARRAY OF ABSCISSAS, WHICH MUST BE IN INCREASING 

ORDER. 
Y REAL ARRAY OF FUNCTIONAL VALUES. I.E., Y(IJ=FUNC(X(IJI 
N THE INTEGER NUMBER OF FUNCTION VALUES SUPPLIED. 

N .GE. 2 UNLESS XLO = XUP. 
XlO REAL LOWER LIMIT OF INTEGRATION 
XUP REAL UPPER LIHIT OF INTEGRATION. MUST HAVE XLO.lE.XUP. 

OUTP-UT--
ANS - COMPUTED APPRO XI HATE VALUE OF INTEGRAL 
IERR - A STATUS CODE 

--NCRMAL CODE 
=1 ~EANS THE REQUESTED INTEGRATION WAS PERFCRMED. 

--ABNOR~AL CODES 
=2 ~EANS XUP WAS LESS THAN XLO. 
=3 MEANS THE NUMBER OF XCI' BETWEEN XLO AND XUP 

(INCLUSIVE' WAS LESS THAN 3 AND NEITHER CF THE TWO 
SPECIAL CASES DESCRIBED IN THE ABSTRACT OCCURRED. 
NO INTEGRATION WAS PERFORMED. 

=~ HEANS THE RESTRICTION X(I+1'.GT.X(I' WAS VIOLATED. 
=5 ~EANS THE NUMBER N OF FUNCTION VALUES WAS .LT. 2. 
ANS IS SET TO ZERC IF IERR=2,3,~,O~ 5. 

AVINT IS OOCU~fNrEO COMPLETELY IN SC-M-69-335 
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BfS I BESI BE SI 8t:SI [lESI £ESI 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUdROUTINE BESI(),ALPHA,KODE,N,Y,NZ' 

SANDIA ~ATHEMATICAL FROGRA~ LIBRARY 

CON~ULTANTS AT SLL INCLUDE -
~. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITT~N BY D. E. AMOS ANO S. L. DANIEL, JANUARY,lQ75. 

REFERE~CE SAND-75-0152 

ABSTRACT 

St:SI 8ESI 

BESI COMPUTES AN ~ ME~BER SEQUENCE Of I eESSEL fUNCTIONS 
I/SUB(ALPHA.K-l,/(XJ, K=l, ••• ,N OR SCALED BESSEL FUNCTIONS 
EXP(-XJ·I/SUE(ALPHA.K-1J/(X), K=l, ••• ,N fOR NON-NEGATIVE ALPHA 
ANQ X. A COMEINATICN OF THE POWER SERIES, THE ASYMPTOTIC 
EXPANSION FeR x TO INfINITY, AND THE UNIfORM ASYMPTOTIC 
EXPANSIO~ FOR NU TO INFI~ITY ARE APPLIED OVER SUBDIVISIONS OF 
THE (NU,X) PLANE. FOR VALUES NOT COVERED BY ONE OF THESE 
FOR~ULAE, THE O~DER IS INCREMENTED BY AN INTEGER se THAT ONE 
CF THESE FCRMULA[ APPLY. EACKWARD RECURSIO~ IS USED TO REDUCE 
CRD~RS BY INTEGE~ VALUES. THE ASYMPTOTIC EXPA~SION FeR x TC 
INFINITY IS USEO ONLY WHEN THE ENTIRE SEQUENCE (SPECIFICALLY 
THE LAST "'EMEER) LIES WITHIN THE REGION COVEREO BY Hie. 
EXPANSION. LEADING TERMS CF THESE EXFANSIO~S ARE USED TO TEST 
FOR OVER CR LNDERFLOW WHER~ APPROPRIATE. IF A SEQUENCE IS 
REQUESTED ANO THE ~AST MEMBER WOULD UNDERFLOW, THE RESULT IS 
SET TO ZERC AND TH~ NEXT LOW~R ORDER TRIEe, ETC., UNTIL A 
MEM1ER COMES eN SCALE OR ALL ARE SET TO ZERO. AN OVERFLOW 
CANNOT OCCLR WITH SCALING. ~ESI CALLS FUNCTICN GAMLN. 

DESCRIPTION OF ARGUMENTS 

It-:PUT 
x - X.GE.O 
A~PHA - O~OER OF FIRST ~EM8ER CF THE SEGUE~CE. ALFHA.GE.O 
K0DE - A PARA~ETER TO INDICATE THE SCALI~G OPTION 

OUTPUT 
Y 

N7 

KOOE=1 RETURNS 
Y(K)= I/SU8(AlPHA.K-l)/(X), 

K=l, •••• N 
KOD£=2 I<ETI,;RNS 

Y(K)=EXP(-X)·I/SUB(ALPHA.K-l)/(X), 
K=l •••• ,N 

- NU~8ER OF ~EMBE~S IN THE SEQUENCE, ~.GE.l 

- A VECTOR W~OSE FIRST N COMPONENTS CONTAIN 
VALUES FOw I/SUB(ALPHA.K-l)/(X) OR SCALED 
VALUES FOR EXP(-XJ·I/SU8(ALPHA.K-1J/(X), 
K=l •••• ,N DEPENDING ON KOOE 

- Nu~eER OF COMPONENTS OF Y SET TC ZERO DUE TO 
UNDERFLCW, 
NZ=u ,NGRMAL RETuRN, CCMPUTATICN COMPLHfO 
Nl.NE.O. LAST NZ COMPONENTS OF Y SET TO Z~RO, 

Y(K)=O., K=N-NZ.l, •••• N. 

ERROR CONDITIO~S 

I~FqOFER I~PlT ARGUMc~TS - A FATAL ERROR 
OV~~FLOW WITH 1(00E=1 - A FATAL ERROR 
lNO~RFLOh - A NON-FATAL E~~OR(NZ.NE.a) 
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BESIUI BESIOI BESIDI SESIDI 6ESIOI BESIDI BESI01 

RESJ 

•••••••••••••••••••••••••••••••••••••••• 
•••••••••••••••••••••••••••••• 

•••••••••••••••••••• 
•••••••••• 

FUNCTION BESIrrl(X,NU,KODE) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY D.E. AMOS AND S.L. DANIEL, FEBRUARY,1974. 

REFERE~CE SAND-75-DI49 

ABSTRACT 
BESID1 COMPeTES BESSEL FUNCTIONS I/SUBeNU)/(X), NU=D OR 1 
OR SCALED BESSEL FUNCTIONS EXPf-ABSeX)).I/SUBf~U)/eX), 
NU=O OR 1 FOR REAL X. CHEBYSHEV SUMS, ASYMFTOTICALLY SCALED 
FOR SMALL AND LARGE AESeX), ARE USED ON INTERVALS O.LE.X.LE.4, 
4.LT.X.LE.8, AND X.GT.8. THE SIGN IS FIXED ACCORDING TO THE 
EVENNESS OR ODDNESS OF THE FUNCTION. THE OVERFLOW TEST IS HADE 
ON ABSeX).LE.ELIM WITH ELIH=667. 

DESCRIPTICN OF ARGUMENTS 

INPUT 
X - ABSeX).LE.E67. FOR KODE=I, UNRESTRICTED FOR KOOE=2 
NU 
KODE 

- ORDER DESIRED, NU=D OR 1 
- A PARAMETE~ TC INDICATE THE SCALI~G OPTION 

KODE=1 RETURNS ANS= I/SUBCNU)/(X), NU=O OR 1 
KODE=2 RETURNS ANS=Expe-X).I/SUBfNU'/eX), NU=O OR 1 

OUTPUT 
BESIOI - I BESSEL FUNCTION OF ORDER NU AT X SCALED ACCORDING 

TO KODE 

ERROR CONDITIO~S 
IMPROPER INPUT ARGUMENTS - A FATAL ERROR 
OVERFLOW FeR KODE=1 - A FATAL ERROR 

BESJ BESJ BESJ BESJ BESJ BESJ 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE BESJeX,ALPHA,N,Y,NZ) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLl INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

BESJ BESJ 

WRITTEN BY D.E. AMOS, S.L. DANIEL AND M.K. WESTON, JANUARY, 1915. 

REFERENCE SAND-15-D147 

ABSTRACT 
BESJ COMPUTES AN N MEMBER SEQUENCE OF J BESSEL FUNCTIONS 
J/SUB(ALPHA+K-1)/CX), K=I, ••• ,N FOR NON-NEGATIVE ALPHA AND X. 
A COMBINATION OF THE POWER SERIES, THE ASYMPTOTIC EXPANSIO~ 
fOR X TO I~FINITY AND THE UNIFOR~ ASYMFTOTIC €XPANSICN FOR 
NU TO INFI~ITY ARE APPLIED OVER SUBDIVISIONS OF THE (NU,X) 
PLANE. FOR VALUES OF eNU,X) NOT COVERED BY ONE OF THESE 
FORMULAE, THE ORDER IS INCREMENTED OR DECREMENTED BY INTEGER 
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VALUES INTO A REGION WHERE ONE OF THE FORMULAE APPLY. BACKWARD 
RECURSION IS APPLIED TO REDUCE ORDERS 9Y INTEGER VALUES EXCiPT 
WHERE THE ENTIRE SEQUENCE LIES IN THE OSCILLATORY REGION. IN 
THIS CASE FO~WARD ~ECURSION IS STABLE AND VALUES FROH THE 
ASYMPTOTIC EXPANSION FOR X TO INFINITY START THE RECURSION 
WHEN IT IS EFFICIENT TO 00 SO. LEADING TERMS OF THE SERIES AND 
UNIFORM EXPANSION ARE TESTED FOR UNDERFLOW. IF A SEQUENCE IS 
REQUESTEO AND THE LAST MEHBER WOULD UNDERFLOW, THE RESULT IS 
SET TO ZERO AND THE NEXT LOWER ORDER TRIED, ETC., UNTI~ A 
MEMBER CO~ES eN SCALf OR ALL MEMBERS ARE SET TO ZERO. OVERFLOW 
CANNOT OCCLR. eESJ CALLS SUBROUTINE JAIRY AND FUNCTION GAHLN. 

DESCRIFTION OF ARGLMENTS 

INFUT 
- X.GE.O X 

ALPHA 
N 

- ORDER OF FIRST MEMBER OF THE SE'UENCE, ALPHA.GE.O 

OUTPUT 
Y 

NZ 

- NUHBER OF ~EHBERS IN THE SEQUENCE, N.GE.1 

- A VECTOR WHOSE FIRST N COMPONENTS CONTAIN 
VALUES FOR J/SUBeALPHA+K-1J/eXJ, K=1, ••• ,N 

- NUMBER OF COMPONENTS OF Y SET TO ZERO DUE TO 
UNDERFLCW, 
NZ=O ,NORMAL RETURN, COMPUTATION COMPLETED 
NZ.NE.C, LAST NZ COMPONENTS OF Y SET TO ZERO, 

Y(K'=O., K=N-NZ+1, ••• ,N. 

ERROR CONnITICNS 

BESJ~1 

IMPROPER IMPLT ARGUMENTS - A FATAL ERROR 
lNOERFLOW - A NON-FATAL ERROReNZ.NE.D' 

~E~J01 BESJ01 fESJ01 fESJC1 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
FUNCTION BESJC1(X,NU) 

SANDIA MATHEMATICAL PROGRAM LI~RARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUCOLESTON DIVISION 6322 
T. H. JEFFERSON DIVISION 8322 

EESJC1 

WRITTEN BY D.E. AMOS AND S.L. DANIEL, FE8RUARY,lQ74 

REFEREhCE SAND-15-0148 

AASTRACT 

E£SJ~1 

eESJQ1 COMPUTES BESSEL FUNCTIONS J/SUBCNU)/(X', Nu=a OR 1 
FOR REAL, UNRESTRICTED X. RATIONAL CHEBYSHEV APPROXIMATIONS, 
ASY~PTOTICA~LY SCA~EO FOR SMAkL AMO~ARGE A9~(~~ARE USEe ON 
O.LE.X.LE.6, AND X.GT.S. THE SIGN IS FIXED ACCORDING TO THE 
EVENNESS CR ODDNESS OF THE FUNCTION. 

DESCRIPTION OF ARGUMENTS 

INFUT 
X 
NU 

OUTPUT 

- UNRESTRICTED 
- OROER OESIRED, NU=O OR 1 

BESJ01 - J BESSEL FUNCTION OF ORDER NU AT X 

ERROR CONDITIONS 
IMfROPER INPUT ARGUMeNTS - A FATAL ERROR 
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BESKN eESKN eESKN BESKN BESI(N BESKN 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE BESKN IX,NU,KODE,N.Y,NZ) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY D.E. AMOS AND S.L. DANIEL, FEBRUARY,1974. 

REFERE~CE SAND-75-0151 

ABSTRACT 

9ESKN 

EESKN IMPLEMENTS FORWARD RECURSION ON THE THREE TERM 

BESKN 

RECURSION RELATION FO" A SEQUENCE OF INTEGER ORDER BESSEL 
FUNCTIONS K/SUBINU+I-l)/IX'. O~ SCALED BESSEL FUNCTICNS EXPCX) 
·K/SUBINU+I-l,/eX), I=1 •••• ,N FOR REAL X.GT.O ANO A 
NON-NEGATIVE INTEGER NU. IF NU.LT.NULIH, ORDERS 0 AND 1 ARE 
OBTAINED FRO~ FUNCTION BESK01 TO START THE RECURSION. IF 
NU.GE.NULI~, THE UNIFCRM ASYMPTOTIC EXPANSIO~ IS USED FOR 
ORDERS NU AND NU+1 TO START THE RECURSION. NULI~ IS 35 OR 
70 DEPENDING ON WHETHER N=l OR N.GE.Z. UNDER AND OVERFLOW 
TESTS ARE ~ADE ON THE LEADING TERM Of THE ASYMPTOTIC EXPANSICN 
BEFORE ANY EXTENSIVE COMPUTATION IS DONE. BESKN CALLS FUNCTION 
8ESK01 AND SUBROUTINE ASK8ES. BESKOl CALLS BESI01. 

DESCRIFTION OF ARGUMENTS 

INPUT 
X 
NU 
KODE 

N 

OUTPUT 
Y 

NZ 

- X.GT.O 
- ORDER OF THE INITIAL K FUNCTION. NU=O,l,Z, ••• 
- A PARAMETER TC INDICATE THE SCALING OPTION 

KODE=l RETURNS YIK)= K/SUBINU+I-1J/IXJ, 
I=l, •••• N 

KOOE=2 RETURNS Y(K'=EXPIX'·K/SUB(NU+I-1J/IX), 
I=l ••••• N 

- NUMBER OF MEMBERS IN THE SEQUENCE, N.GE.1 

- A VECTO~ WHOSE FIRST N COMPONENTS CONTAIN VALUES 
FOR THE SEQUENCE 
Y(U= K/SUBINU+I-U/IX). 1=1 ..... '" OR 
Y(IJ=EXPIXJ·K/SUBINU+I-1'/IX'. I=1 •••• ,N 
DEPENDING eN KODE 

- NUMBER OF COMPONENTS OF Y SET TO ZERO DUE TO 
UNOERFLCW WITH KOOE=l, 
NZ=O ,NORMAL RETURN, COMPUTATICN COMPLETED 
NZ.NE.O. FIRST NZ COMPONENTS OF Y SET TO ZERO 

OLE TO UNDERFLOW, YIK'=O •• K=l •••• ,NZ 

ERROR CONDITIO~S 
IMPROFER INPUT ARGUMENTS - A FATAL ERROR 
OVERFLOW - A FATAL ER"OR 
"~-OERFLOW WITH KOOE=l - A NON-FATAl. €RMRCH1 .. Ni.G.J 
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GESK01 BESK01 BESK01 BESK01 6ESK01 EESK01 EESK01 

BESYN 

•••••••••••••••••••••••••••••••••••••••• 
•••••••••••••••••••••••••••••• 

•••••••••••••••••••• 
•••••••••• 

FUNCTICN BESK01CX.NU.KOD£.NZ' 

SANDIA MATHEMATICAL PRCGRAM LIBRARY 

CONSULTANTS AT SlL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN ey D.E. AMOS AND S.L. DANIEL. FEeRUARY.197~. 

REFERENCE SAND-75-0149 

ABSTRACT 
[ESK01 CO~PUTES BESSfl FUNCTIONS K/SU8(NU'/(X'. NU=Q OR 1 
OR SCALED BESSEL FUNCTIONS EXpeX'·K/SUB(NU"eX'. 
NU=O O~ 1 FO~ X.GT.D. CHEBYSHEV EXPANSIONS. PROPER~Y SCALED 
FOR SMALL AND LARGE X. ARE USED ON INTERVALS D.LT.X.Lr.2. 
2.LT.X.LE.S. AND X.GT.S. THE UNDERFLOW TEST IS MADE ON 
X.L£.ELIM WITH ELIM=~67. BESK01 CALLS FUNCTION BESI01. 

DESCRIPTION OF ARGUMENTS 

INFUT 
X 
NU 
~OOE 

- D.LT.X.LE.E67. FOq KODE=1, X.GT.O FOR KODE=2 
- ORDER DESIRED, NU=O OR 1 
- A PARAMET~R TC INDICATE THE SCALI~G OPTION 

KODE=1 RETURNS ANS= K/SUBCNU'/(X'. NU=O OR 1 
KOOE=2 RETURNS ANS=EXP(X,.K/SUB(NU'/(X,. NU=O OR 1 

OUTPUT 
8ESKQ1 - K BESSEL FUNCTION OF ORDER NU AT X SCALED ACCORCING 

TO KODE 
NZ - UNDERFLCW INDICATOR 

NZ=O ,NORMAL ~ETURN, COMPUTATICN COMPLETED 
NZ.NE.a. A~S SET TO ZERO DUE TO UNDERFLOW WITH 

KODE=1 AND X.GT.667 
ER~OR CONDITIC~S 

IMPROPER INPUT ARGUMENTS - A FATAL EKROR 
UNDERFLOW WITH KOOE=l - A NON-FATAL ERRDR(NZ.NE.O) 

eESYN BESYN 8ESYN 9ESYN BESYN 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE BESYN(X.NU.N,Y' 

SANDIA MATHEMATICAl PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
~. E. HUCOLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITT~N BY D.E. AMOS AND S.L. DANIEL, FE8RUARy,197~. 

REFERENCE SAND-7S-0150 

ABSTRACT 

BESYN BESYN 

E~SYN IMPLEMENTS fORw~RD RECURSION ON THE THREE TERM 
RECURSION RELATION FOR A SEQUENCE OF INTEGER ORDER BESSEL 
FUNCTIO~S Y/SU8(NU+K-1t/(X), K=1 ••••• N FOR REAL X.GT.G AND A 
NON-NEGATIVE INTEGE~ NU. IF NU.lT.NULIM. ORDERS a AND 1 ARE 
OBTAINEO F~O~ FUNCTIO~ SlSY01 TO START THE RECURSICN. IF 
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NU.GE.NULI~, THE UNIFORM ASYMPTOTIC EXPANSIO~ IS USEO FOR 
ORDERS NU AND NU+l TO START RECURSION. NULIM=100 RESTRICTS 
FORWARD RECURSION TO RETAIN ACCURACY. AN OVERFLOW TEST IS 
~ADE ON THE LEADING TERH OF THE ASYMPTOTIC EXPANSION BEFORE 
ANY EXTENSIVE COMPUTATION IS DONE. BESYN CALLS FUNCTION BESY01 
AND SUBROUTINE ASYBES. BESYOl CALLS FUNCTICN BESJ01. ASYBES 
CALLS SUBROUTINE YBAIRY. 

DESCRIPTICN OF ARGUHENTS 

INPUT 
X 
NU 
N 

OUTPUT 
Y 

- X.GT.D 
- ORDER OF THE INITIAL Y FUNCTION, NU=O,1,2, ••• 
- NUMBER OF MEHBERS IN THE SEQUENCE, N.GE.l 

- A VECTOR WHOSE FIRST N COHPONENTS CONTAIN VALUES 
FOR Y(K,=Y/SUBINU+K-l'/(XJ, K=l ••••• N 

ERROR CONDITIO~S 

BESYOl 

IHPROPER INP~T ARGUMENTS - A FATAL ERROR 
OVERFLCW - A FATAL ERROR 

BESYOl BESTDl BESY01 BESYOl 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

BESYOl BESYOl 

FUNCTION BESY01(X,NU.ANSJ' 

SANDIA MATHEHATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY D.E. AMOS AND S.L. DANIEL, FE8RUARy,197~ 

REFERENCE SAND-75-D148 

ABSTRACT 
BESYOl COHPUTES BESSEL FUNCTIONS J/SUBfNU'/(X' AND 
Y/SUB(NU)/(X', NU=O OR 1 FOR X.GT.G. RATIO~AL CHEBYSHEV 
APPROXIMATIONS, ASYMPTOTICALLY SCALED FOR SMALL AND LARGE X, 
ARE USED ON INTERVALS D.LE.X.LE.& AND X.GT.&. THE COST IN 
RETURNING J/SUB(NU"(X) IS MINIMAL SINCE THIS FUNCTICN IS 
NEEDED IN THE ASYMPTOTIC FORM FOR O.lT.X.LE.S AND ONLY 
REQUIRES A REARRANGEMENT OF 4 FACTORS NEEDED FOR X.GT.8. 
eESYOl CALLS FUNCTION BESJ01. 

DESC~IPTION OF ARGUMENTS 

I~PUl 

X 
NU 

OUTPUT 

- X.GT.D. 
- ORDER DESIRED, NU=D OR 1 

OESYOl - Y BESSEL FUNCTION OF ORDER NU AT X 
ANSJ - J BESSEL FUNCTION OF CRDER NU AT X 

ERROR CONDITIO~S 
IMFROPER INPlT ARGUH£NTS - A FATAL ERROR 



CAXOI CAXBI CAXBI CAXBI CAXBI CAXBI 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

CAXBI CAXBI 

SUBROUTINE CAXeI(NO.N.M.A.B.X.INIT.I~P.RC.W.IN.KER) 

SANDIA MATHSMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTCN DIVISION 832Z 
T. H. JEFFERSON DIVISION 832Z 

WRITTEN BY CARL B. BAILEY. AUGUST 1q1~. 

ABSTRACT 
CAXqI SOLVES A NONSINGULAR SYSTEM OF COMPLEX LINEAR ALGEBRAIC 
EQUATIONS. AX=B. AND CPTIO~ALLY IMPROVES THE SOLUTION AND 
COMPUTES AN ERROR aOUND FC~ THE SOLUTION. THE COEfFICIENT 
MAT~IX fOR AN EQUIVALENT SYSTEM OF REAL EQUATICNS IS FORMED 
AND STORED IN -W- AND THEN THAT REAL SYSTEM IS SOLVED. 
THE METHOD USED IS lU DECOMPOSITION (GAUSSIAN ELIMINATION) 
WITH IMPLICIT ROW SCALING AND PARTIAl (ROW) PIVOTING FOLLOWED 
BY FORWARD-BACKWARD SUBSTITUTION AND OPTIONALLY BY ITERATIVE 
IMf~OVEMENT. A SEQUENCE OF SYSTEMS OF EQUATIONS ALL HAVING 
THE SAME CCEFFICIE~T MATRIX CAN BE SCLVED VERY EFFICIENTLY 
USING CAXBI. THE LU FACTORS OF -A- ARE COMPUTED AND STORED 
IN -W- OURING THE INITIAL CALL. ON SUBSE~UENT CALLS. THESE 
PREVIOUSLY COMPUTED FACTORS CAN BE USED TO SOLVE A NEW SYSTEM 
BY PERFOR~ING ONLY THE FORWA~O-BACKWA~D SUBSTITUTICN AND 
CPTIONALLY ITERATIVE IMPROVEHENT. 

CAX9I CALLS THE ROUTINE RLUD TO PERFORM LU DECOMPOSITION. RF9S 
TO PERFORM FORWARD-BACKWARD SUBSTITUTION. AND QPTIONALLY CALLS 
CRIMP TO PERFORM ITERATIVE IMPROVEMENT OF THE SOLUTICN. 

REFERE t-CE 
1. G.E.FORSYTHE AND C.S.MOLER, COMPUTER SOLlTIC~ OF LINEAR 

ALGEBoAIC EQUATION~. P~ENTICE-HAlL. 19f1 

DESCRIPTION OF ARGUMENTS 
THE USER MUST DIMENSICN ALL ARRAYS APPEARING IN TH~ CALL LIST 

A(NO,~). S(ND,H). XIND.M), W(2·ND.Z·ND+1I, IN(Z·H) 
IF 11=1 THEN THE DIME~SION OF B AND X MAY BE E(N). XIN'. 
THE ARRAYS -A-. -8-, AND -X- MUST BE OF COMPLEX DATA TYPE. 

--INFUT FOR AN INITIAL CALL--
AN INITIAL CALL IS TH~ CALL FOR THE FIRST SYSTEM OF 
EQUATIONS IN A SEQUENCE OF SYSTEMS ALL OF WHICH HAVE 
THE SAME COEFFICIENT MATRIX. 

ND - THE ACTUAL FIRST DIMENSION OF -A-. 
(I.E. THE MAXIMUM NUM9ER OF EQUATIONS THAT CAN BE 
SOLVED USING -A- TO STORE THE COEFFICIENTS.) 

N - THE NUMBER OF COMPLEX EQUATIONS TC BE SOLVED. 

INIT 

IMF 

(1 .LE. N .lE. fllOI 
- NUMBER OF CCLUHNS OF -B- AND -x-. INCRHALLY M=l) 
- A COMPLEX ARRAY OIMENSIONED WITH EXACTLY -NO- ROWS 

AND AT LEAST -N- COLUMNS. THE I,J-TH ELEMENT OF THE 
COE FF ICIE NT KA TKIX MUST BE STORED I~ A!I .. J) ~ 

- ~ CC~PLEX AR~AY WITH EITHER ONE OR TWO DIMENSIONS. 
IF M=l. -8- MAY BE A ONE-OIHENSIO~AL ARRAY 
DIMENSIONED AT LEAST -N-. THE I-TH €LEMENT OF THE 
CONSTANT VECTOR MUST BE STO~ED IN BCI). 
IF M.GT.l, -S- MUST BE A TWO-DIMENSIO~AL ARRAY WITH 
EXACTLY -ND- ROWS AND AT LEAST -M- COLUMNS. THE 
I.J-TH ELEM€~T OF THE CONSTANT MATRIX MUST BE 
STORED IN B(I.J). 

- IS A FLAG WHICH PROVIDES FOR THE ESPECIALLY EFFICIENT 
SCLUTIO~ CF A SEQUENCE OF SYSTEMS OF EQUATICNS HAVING 
THE SAME -A- BUT DIFFERENT -8- VECTORS. 
CN THE INITI~L CALL FOR A SlQUENCE OF RELATED SYSTEMS 
OF EQUATIONS, -INIT- MUST BE ZERO. 

- SPECIFIES THAT ITERATIVE IMPROVEMENT IS TO BE 
PERFORMED IF -IMP- IS NONZERO. 

~ . 
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--OUTPUT--
X - A COMPLEX APRAY WITH EITHER ONE OR TWO DIMENSIONS. 

IF M=l, -X- MAY BE A ONE-DIMENSIONAL ARRAY 
DIMENSIONED AT LEAST -N-. THE I-TH ELEMENT OF THE 
SOLUTION VECTOR WILL BE STORED IN XCI). 
IF M.GT.l, -x- ~UST BE A TWO-DIMENSIONAL ARRAY WITH 
EXACTLY -ND- ROWS AND AT LEAST -M- COLUMNS. THE 
I,J-TH ELEMENT OF THE SOLUTION MATRIX WILL BE 
STORED IN X(I,J). 

RC - IF ITERATIVE IMPROVEMENT WAS REQUESTED (IMP.NE.O). RC 
WILL eE THE RATIO OF THE MAXIMUM NORM OF THE FIRST 
CORRECTION TO THE MAXIMUM NORM OF THE INITIAL 
APP~OXIMATE SOLUTION. THE CONDITION NUMBER OF -A
AND ERROR BCUNDS FOR THE COMPUTED SOLUTION ARE 
RELATED TO -RC-. A SHALL VALUE FOR -RC- INDICATES 
A WELL-CONDITIONED SYSTEM AND SMALL UNCERTAINTIES 
IN T~E SOLUTION. A LARGE VALUE FOR -RC- INDICATES 
AN ILL-CONDITIONE[ SYSTEM AND LARGE UNCERTAINTIES 
IN THE SOLUTION. 

W - REAL ARRAY WITH -2ND- ROWS AND AT LEAST ZN+1 COLUMNS. 
THE LEADING -IN- BY -2N- SUBARRAY WILL CO~TAIN L-I+U 
WHERE -L- AND -U- ARE TRIANGULAR FACTORS OF -A-. 
-L- IS UNIT LOWER TRIANGULAR, AND -1- IS IDENTITY. 
(ACTUALLY, IT IS NOT L-I+U WHICH IS STORED IN -A- BUT 
LL-I+U WHERE LL IS A REARRANGEMENT OF ELEMENTS OF L.) 
THE IN+1ST COLUMN CONTAINS THE LAST CORRECTION TO THE 
REAL AND IMAGINARY COMPONENTS OF -X-. IF INIT = 0, 
THE LU FACTORS OF THE REAL EQUIVALENT OF -A- WILL BE 
COMPUTED AND STORED IN -w-. 

IN - WILL CONTAI~ THE ~OW INTERCHANGE INDICES THAT WERE 
COMPUTED DUPING LU DECOMPOSITION. 

KER - AN ERROR CODE 
--NORMAL CODES 

o MEANS NO ~RRORS WERE DETECTED 
--ABNCRMAL CODES 

1 MEANS -NO- WAS NOT IN THE RANGE 1 .LT. NO .LE. 130 
2 MEANS -N- WAS NOT IN THE RANGE 1 .LE. N .LE. ND. 
3 MEANS THE TRIANGULAR FACTOR -U- OF -A- IS SINGULAR. 
4 MEANS -A- IS TOO ILL-CONDITIONED FOR ITERATIVE 

I~PROVEMENT TO eE EFFECTIVE. 

--INFUT FOR A SUBSEQUENT CALL--
A SUBSEQUENT CALL MAY BE MAOE ONLY If AN INITlAL CALL 
H~S BEEN MADE PREVIOUSLY FOR THE S4ME COEfFICIENT 
MATRIX. THE VALUES OF -ND-, -N-. -A-, -W-, AND -IN
~UST eE THE SAME AS THEY WERE WHEN TH~T INITIAL CALL 
WAS COMPLETED. 

M - ~UST BE THE NUMBER OF COLUMNS IN THE NEW CONSTANT 
VECTOR OR CONSTANT MATRIX. 

8 - THE NEW CONSTANT VECTOR OR CONSTANT ~ATRIX MUST BE 
STORED IN -B- AS OESC~IBEO fOR AN INITIAL CALL. 

IN IT - ~UST BE NONZERO (ONLY FOR SUCH A SUBSEQUENT CALL) • 
THIS CAUSES THE PREVIOUSLY COMPUTED LU FACTORS OF -A
TO BE USED TO SOLVE THE NEW SYSTE~ VERY EfFICIENTLY. 

IMF MAY BE NONZERO OR ZERO AS ITERATIVE IMPROVEMENT 
IS OR IS NOT DESIRED RESPECTIVELY. 

NOTE --- NO. N, M, A, B, INIT, AND IMP ARE NOT ALTEREO BY CAXBI. 
THE USE-R MUS-T ~PGVl-DE SEPARAT~ SlOSAGE -FQRT-Hi ARRAY-S 
A, B, X, W, AND IN WHENEVER ITEKATIVE IMPROVEMENT IS 
REQUESTED (IMP .NE. OJ. THE HAXI~UH NUMBER Of EQUATIONS 
THAT CAN BE SOLVEO WITH ITERATIVE IMPROVEMENTS IS 130. 
IF ITERATIVE IMPROVEMENT IS NOT REQUESTED (IHF .EQ. OJ, 
THEN THE USER MAY ECONOMIZE ON STORAGE BY EQUIVALENCING 
(A,W) ANO (B,X) IN WHICH CASE A AND B HILL BE ALTERED. 
THE MAXIMUM NUHeER OF EQUATIONS THAT CAN eE SOLVED IN 
THIS LATTER CAS~ IS 160. 
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SUBROUTINE CBN02(N,CR~CI.WR,WItABSERR,RELERR,KLUST,KER' 

SANDIA ~ATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY CARL B. BAILEY AND ~ILLIAM R. GAVIN 

AflSTRACT 

THIS ROUTINE COMPUTES ERROR BOUNDS ANO CLUSTER COUNTS FOR 
APPROXIMATE ZEROS OF A POLYNOMIAL WITH COMPLEX COEFfICIENTS. 
THE l~ROS ~AY HAVE BEEN COMPUTED BY ANY APPROPRIATE ROUTINE. 
(FOR EXAMPLE. BY CPQR' 
THE METHOO USED IS BASED ON THE FACT THAT THE VALUE OF A 
FOLYNOHIAL AT ANY POINT IS EQUAL TO THE LEADING COEFfICIENT 
TIMES THE PReDUCT OF THE DISTANCES fROM THAT POINT TO EACH 
OF THE ZEROES. GIVEN THE VALUE OF THE POLYNOMIAL AT AN 
APPROXIMATE ZERO~ CBND2 COMPUTES FOR EACH APPROXIMATE ZERO 
THE RADIUS OF A CIRCLE ABOUT THAT APPROXIMATE ZERO WHICH 
CONTAINS A TRUE ZERO OF THE POLYNOMIAL. USING THE KNOWN 
DISTRIBUTICN OF APPROXIMATE ZEROES, AN ITERATIVE PROCEDURE 
IS USED TC SHRINK THE RADII OF THE CIRCLES. 

DESCRIPTION OF ARGUMENTS 
THE USER MUST DIMENSICN ALL ARRAYS APPEARI~G IN THl CALL LIST 

CR(N+1', CI(N+1', WR(N', WI(N', ABSERRCN', RELERR(N' 
KLUST (N' 

IN FUT---
N - DEGREE OF T~E POLYNOMIAL (NUMBER OF ZEROS'. 
CR - REAL ARRAY OF N+1 REAL PARTS OF COEFFICIE~TS. 
CI - REAL ARRAY OF N+1 IMAGINARY PARTS OF COEFFICIENTS. 

THE COEFFICIENTS COEF(I' = CR(I'+CICI)·I MUST 8E 
IN THE ORDER OF DESCENDING POWERS OF Z, I.E. 
P(Z' = CCRC1'+I·CIC1".Z··N + ••• + 

(CRCNI+I.CICN)'.Z + (CR(~+1)+I.CI(~+1" 
WR - REAL ARRAY OF N REAL PARTS OF APPROXIMATE ZEROS. 
WI - REAL ARRAY Of N IMAGINARY PARTS OF APPROXIMATE ZEROS. 

OUTPUT--
AaSERR - REAL ARRAY Of AESOLUT£ ERROR BOUNDS. ABS£RR(I' IS 

THE ABSOLUT~ ERROR BOUNO IN THE ZERO (WR(I',WICI)'. 
REL~RR - REAL ARRAY OF RELATIVE ERROR BCUNCS. RELERR(I' IS 

THE RELATIVE ERROR BOUND IN THE ZERO (WRCI',WICI". 
KLUST - INTEGER ARRAY OF CLUSTER COUNTS FOR ZEROS. THE TRUE 

ZERC CORRESPCNDING TO I-TH APPROXIMATE ZERO LIES IN 
A CIRCLE OF RADIUS ABSERRCI'. KLUST(I' IS THE NUMBER 
OF CIRCLES INCLUDING THE I-TH CIRCLE WHICH OV~RLAF 
THE I-TM CIRCLE. THE CLUSTER COUNT OFTEN INDICATES 
THE ~UlTIPLICITY OF A ZERO. 

I(ER - ~NERROR GO-HE 
--NORMAL CODES 

o MEANS THE BOUNDS AND COUNTS WERE COMPUTEO. 
--ABNORMAL CODES 

1 N CDEGREE) MUST BE .GE. 1 
2 LEADING COEffICIENT IS ZERO 

~ . 
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CHAA CH~A CHAA CHAA CHAA CHA~ 

•••••••••••••••••••••••••••••••••••••••• 
•••••••••••••••••••••••••••••• 

•••••••••••••••••••• 
•••••••••• 

sueROUTIN~ CHAA(~DIM,N,AR,AI,EV,VECR,VECI,IERRI 

SANDIA MATHEMATICAl PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. ~UDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

LHAA 

EISPACK IS A CCLLECTIO~ OF CODES FOR SOLVING THE ALGEBRAIC 
EIGENVALUE PROBLEM. THE ORIGINAL ALGCL CODES WERE WRITTEN BY 
J. H. WILKINSON, ET.AL •• AND SUBSEQUENTLY TRANSLATED TO FCRTRAN 
ANO TESTED AT ARGONNE NATIONAL ~ABORATORY. 

THIS INTERFACE TO EISPACK WAS WRITTEN BY M. K. GORDON. 

ABSTRACT 
THIS SUBROUTINE COMPUTES ALL EIGENVALUES AND CORRESPONDING 
EIGENVECTORS OF A CO~PLEX HERHITIA~ MATRIX. TH~ MATRIX IS 
REDUC~D TO SYM~ETRIC TRIDIAGONAL FORM BY UNITARY SIMILARITY 
TRANSFORHATICNS. QL TRANSFO~MATIO~S ARE USED TO FINO THE 
EIGENSYSTEM OF THE T~IOIAGONAL MATRIX. 

CHAA 

TO COMPUTE CNLY THE EIGENVALUES OF A COMPLEX HERMITIAN MATRI), 
SEE SUBROUTINE CHAN. FOR EIGENSYSTEHS OF ARBITRARY COMPLEX 
HATRICES, SEE SUBROUTINES CNAA AND CNAN. FOR EIGENSYSTEMS OF 
REAL MATRICES, SEE SUBROUTINES RSAA,RSAN,RNAA,RNAN. 

DESCRIPTION OF ARGLMENTS 

ON I~PUT 
NDIM MUST 9E THE ROW DIHENSION OF THE ARRAYS AR,AI,VECR, 

AND VECI IN THE CALLING PROGRAM DIMENSION STATEMENT. 

N IS THE ORDER OF THE MATRIX. N MUST NOT EXCEEO NDIM. 
N·NOIM MUST NOT EXCEED 225Cg=150·150=~3i44(OCTALI. 
N MUST NOT c)CEED 150. N MAY BE 1. 

AR,AI ARRAYS WITH EXACTLY NOIM ROWS AND AT LEAST N COLUMNS. 

ON OUTPUT 

THE LEADING N BY N SUqARRAYS MUST CONTAIN THE REAL 
AND IMAGINARY PARTS R€SPECTIVELY OF THE COMPLEX 
HER~ITIAN MATRIX WHOSE EIGENSYSTE~ IS TO BE COMPUTED. 
ONLY THE OIAGONAL AND LOWER TRIANG~E OF Ak,AI NEED 
EE DEFINED. 

EV CCNTAINS THE REAL COHPUTED EIGENVALUES IN 
ASCENDING CRDER. 

VECR,VECI CONTAIN AN ORTHONORMAL SET OF EIGENVECTORS 

IERR 

IN THE COLUMNS OF THE LEADING N BY N SUBARRAYS. 
THE J-TH COLUMNS OF VECR,VECI CONTAIN AN 
EIGENVECTOR OF LENGTH ONE CORR~SPONDING TO THE 
EIGENVALUE IN THE J-TH ELEMENT OF EV. 

IS A STATUS CODE. 
--NCRMAL conE. 

o MEANS THE QL ITERATIONS CONVERG~O. 

--ABNORMAL CODES. 
J MEANS THE J-TH EIGENVALUE HAS NOT BEEN FOUND IN 

30 ITERATIONS. THE FIRST J-1 ELEMENTS 
CONTAIN THE UNORDERED EIGENVALUES ALREADY 
FOUND. THE FIRST J-1 COLUMNS OF VEeR, VECI 
CONTAIN THE CO~RESPONDING COMPUTED EIGENVECTORS. 

-1 MEANS THE INPUT VALUES OF N, NDIM ARE TOO LARGE 
OR INCONSISTENT. 

THE LOWER TRIANGLES OF BOTH MAT~ICES AND THE 
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DIAGONAL OF AI ARE DESTROYED. THE UPPER 
TRIANGLES AND THE DIAGONAL OF AR ARE UNALTERED. 

CHAN CHAN CHAN CHAN CHAN CHAN CHAN 
•••••••••••••••••••••••••••••••••••••••• ......... ~ ................... . 

•••••••••••••••••••• 
•••••••••• 

SUBROUTINE CHANCNDIM.H,AR.AI.EV.IERR) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

CHAN 

EISPACK IS A COLLECTION OF CODES FOR SOLVING THE ALGEBRAIC 
EIGENVALUE PROBLEM. THE ORIGINAL ALGOL CODES WERE WRITTEN BY 
J. H. WILKINSCN. ET.AL., AND SUBSEQUENTLY TRANSLATED TO FORTRAN 
AND TESTED AT ARGONNE NATIONAL LABORATORY. 

THIS INTERFACE TO EISPACK WAS WRITTEN BY M. K. GORDON. 

ABSTRACT 
THIS SUB~OUTINE COMPUTES ALL EIGENVALUES OF A COMPLEX HERMITIAN 
MATRIX. THE ~ATRIX IS REDUCED TO SYMMETRIC TRIDIAGONAL FORM 
BY UNITARY SIMILARITY TRANSFORMATIONS. QL TRANSFORMATIONS 
ARE USED TO FINO THE EIGENVALUES OF THE TRIDIAGONAL MATRIX. 

TO COMPUTE THE EIGENVALUES AND EIGENVECTORS OF A COMPLEX 
HERMITIAN ~ATRIX. S~E SUBROUTINE CHAA. FOR EIGENSYSTEMS 
OF ARBITRARY COMPLEX MATRICES. SEE CNAA AND CHAN. FOR EIGEN
SYSTEMS OF REAL HATRICES. SEE RSAA.RSAN,RNAA,RNAN. 

DESCRIPTION OF ARGUMENTS 
ON INPUT 

NDIM HUST BE THE ROW DIMENSION OF AR AND AI r~ THE 
CALLING PROGRAM DIMENSION STATEHENT. 

N IS THE ORDER OF THE MATRIX. N MUST NOT EXCEED NDIM. 
N.NDIM MUST NOT EXCEED 506Z5=22S·225=142701COCTAL). 
N MUST NOT EXCEED 225. N MAY BE 1. 

ARtAI ARRAYS WITH EXACTLY NDIM ROWS AND AT LEAST N 
COLUMNS. THE LEADING N 8Y N SUaARRAYS MUST 
CONTAIN THE REAL AND IMAGINARY PARTS RESFECTIVELY 
OF THE ARBITRARY COMPLEX MATRIX WHOSE EIGENVALUES 
ARE TO BE COMPUTED. ONLY THE DIAGONALS AND 
LOWER TRIANGLES OF ARtAI NEED SE DEFINED. 

ON OUTPUT 
EV CONTAINS-lm: RU-l C-OMPUTED EIGENVAt_UES It. 

ASCENDING OICDER. 

IERR IS A STATUS CODE. 
--NORMAL CODE. 

D MEANS THE QL ITERATIONS CONVERGED. 
--A8NORMAL CODES. 

J MEANS THf J-TH EIGENVALUf HAS NOT 8EEN FOUND IN 
30 ITERATIONS. THE FIRST J-l ELEMENTS OF EV 
CONTAIN THE UNORDERED EIGENVALUES ALREADY FOUND. 

-1 MEANS THE INPUT VALUES Of N, NDIM ARE TOO LARGE 
OR INCONSISTENT. 

THE LOWER TRIANGLES OF BOTH MATRICES AND THE 
DIAGONAL OF AI ARE DESTROYED. THE UPPER TRIANGLES 
AND THE DIAGONAL OF AR ARE UNALTEREO. 
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CNAA CNAA CNAA CNU CNAA CNAA 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE CNAA(NDIM,N,Ac,AI,EVR,EVI,VECR,VECI,IERR) 

SANDIA ~ATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUCDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8J22 

CNAA 

EISPACK IS A COLLECTIO~ OF CODES FOR SOLVING T~E ALGEB~AIC 
EIGENVALUE PROBLEM. THE ORIGINAL ALGOL CODES WERE WRITTEN BY 
J. H. WIlKINSCN, ET.AL.,AND SUESEQUENTLY TRA~SLATED TO FORTRAN 
AND TESTED AT ARGO~NE NATIONAL LABORATORY. 

THIS I~TERFACE TO EISPACK WAS WRITTEN BY M. K. GORDON. 

ABSTRACT 

CNAA 

THIS SUBROUTINE COMPUTES ALL EIGENVALUtS ANO CORRESPONDING 
EIGENVECTORS OF AN ARBITRARY COHPLEX MATRIX. THE MATRIX IS 
BALANCED BY EXACT NORM REDUCING SIMILARITY TRANSFORMATIONS ANO 
THEN IS REDUCED TO COMPLEX HESSENBERG fORM BY STABILIZED 
ELEMENTARY SIMILARITY T,.ANSFORMATIONS. A MOllIFIED LR ALGORITHM 
IS US~D TO CCMPUTE THE EIGENVALUES OF THE HESSENBERG MATRIX. 

TO COMPUTE CNLY THE EIGENVALlES OF AN ARBITRARY COMPLEX 
MATRIX, SEE SUBROUTINE CNAN. FO~ EIGENSYSTEMS OF COMPLEX 
HERMITIAN MATRICES, SEE SUBROUTI~ES CHAA AND CHAN. FOR 
EIGENSYSTEMS CF REAL MATRICES, SEE SUBROUTINES RSAA,RSAN, 
RNAA,RNAN. 

DESCRIPTION OF ARGUMENTS 

ON INPUT 
NDIM MUST BE TH~ ROW CIMENSION OF THE ARRAYS AR.AI, 

VECR, AND VECI IN THE CALLlNG FROGRA~ DIMENSION 
STATEMENT. 

N IS THE ORDFR OF THE ~ATRIX. N MUST NOT EXCEED NOIM. 
~·~OIM MUST NOT EXCEED 22500=150·150=53744(OCTALI. 
N MUST NOT EXCEED 150. N MAY BE 1. 

AR.AI ARRAYS WITH EXACTLY NOIM ROWS ANC AT LEAST N 
COLU~NS. THE LEADING N BY N SUBARRAYS HUST CONTAIh 
THE REAL ANO IHAGINA~Y PARTS RESPECTIVELY OF THE 
ARBITRARY COMPLEX MATRIX WHOSE EIGENSYSTEM IS TO BE 
COMPUTED. 

ON OUTPUT 
EV~.EVI CCNTAIN THE REAL AND IMAGINARY PARTS RESPECTIVELY 

OF THE COMPUTED EIGENVALUES. THE EIGENVALUES ARE 
NCT ORDERED IN ANY WAY. 

VECR.VECI CONTAIN IN THE LEADING N BY N SUBARRAYS TH~ REAL 
AND IHAGT J;ARY P"IHS RESP£CTlllfU OF TME COKPUTED 
EIGENVECTCRS. THE J-TH COLUMNS OF VEC~ AND VECI 
CONTAIN THE EIGENVECTOR ASSOCIATED WITH EVR(J. 
AND EVI(J.. THE EIGENVECTORS ARE ~OT NORMALIZED 
IN ANY WAY. 

IE~R IS A STATUS CODE. 
--NORMAL ceDE. 

o MEANS THE LR ITERATIONS CONVERGED. 
--ABNORMAL CODES. 

J MEANS THE J-TH EIGENVALUE HAS NOT BEEN FOUND 
IN 30 ITERATIONS. THE FIRST J-1 ELE"ENTS OF 
EVR AND EVI CONTAIN THOSE EIGENVALUES ALREADY 
FOUND. NO EIGENVECTORS ARE COMPUTED. 

-1 MEANS THE INFUT VALUES OF N. NDIM ARE TOO LARGE 
OR INCN'SISTENT. 
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AR,AI ARE DESTRCYED. 

CHAN CNAN CNAN CNAN CNAN CNAN 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE CNAN(hDIM,N,AR,AI,EVR,EVI,IERRI 

SANDIA ~ATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

CNAN 

EISPACK IS A COLLECTIO~ OF CODES FOR SOLVING THE ALGEBRAIC 
EIGENVALUE PROBLEM. THE ORIGINAL ALGOL CODES WERE WRITTEN BY 
J. H. WILKINSON, ET.AL.,AND SUBSEQUENTLY TRA~SLATED TO FORTRAN 
AND TESTED AT ARGONNE NATIONAL LABORATORY. 

THIS INTERFACE TO EISPACK WAS WRITTEN BY M. K. GORDON. 

ABSTRACT 

CNAN 

THIS SUeROUTINE COMPUTES ALL EIGENVALUES Of AN ARBITRARY 
CO~PLEX MATRIX. THE MATRIX IS BALANCED BY EXACT NORM ~EDUCING 
SI~ILARITY TRAhSFORMATIONS AND IS THEN REDUCED TO COMPLEX 
HESS ENBERG FCRM BY STABILIZED ELEMENTARY SI~ILARITY 
TRANSFORMATIONS. A MODIFIED LR ALGORITHM IS USED TO COMPUTE 
THE EIGENVALUES OF THE HESSENBE~G MATRIX. 

TO COMPUTE THE EIGENVALUES AND EIGENVECTORS OF AN ARBITRARY 
COMPLEX MATRIX, SEE SUeROUTINE CNAA. FOR EIGENSYSTEMS OF 
CO~PLEX HERHITIA~ MATRICES, SEE SUBROUTINES CHAN AND CHAA. 
FOR EIGENSYSTEMS OF REAL MATRICES, SEE RSAA,RSAN,RNAA,RNAN. 

DESCRIFTION OF ARGUMENTS 

ON INPUT 
NDIM MUST BE THE ROW DIMENSION OF THE ARRAYS AR AND AI 

IN THE CALLING PROGRAM DIMENSION STATEMfNT. 

N IS THE ORDER OF THE MATRIX. N MUST NOT EXCEED NDIM. 
N·NDIM MUST NOT EXCEEO 50625=22S·22S=142701(OCTALI. 
N MUST NOT E~CEED 225. N MAY BE 1. 

AR,AI ARRAYS WITH EXACTLY NOIM ROWS AND AT LEAST N COLUMNS. 

ON OYTPUl 

THE LEADING N BY N SUBARRAYS MUST CONTAIN THE REAL 
AND IMAGINARY PARTS RESPECTIVELY OF THE ARBITRARY 
COMPLEX MATQIX WHOSE EIGENVALUES ARE TO BE COMPUTED. 

EVR,EVI CONTAIN THE REAL AND IMAGINARY PARTS RESPECTIVEL' 
OF THE COMPUTED EIGENVALUES. THE EIGENVALUES ARE 
NOT ORDERED IN ANY WAY. 

IERR IS A STATUS CODE. 
--NOR~AL CODE. 

D MEANS THE LR ITERATIONS CONVERGED. 
--AB~ORMAL CODES. 

J MEANS THE J-TH EIGENVALUE HAS NOT BEEN FOUND IN 
30 ITERATIONS. THE FIRST J-l ELEMENTS OF EVR, 
EVI CONTAIN THOSE EIGENVALUES ALREADY fOUND. 

-1 MEANS THE INPUT VALUES Of N, NOIM ARE TOO LARGE 
OR INCONSISTENT. 

AR,AI ARE DESTROYED. 
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CNPCOF CNPCOF 

SUBROUTINE CNPCOF(L.W.IORDER,NORO,N,XX,A,C,WORKI 

SANDIA ~ATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON OIVISION 8322 

WRITTEN BY ROBERT E. HUDDLESTON, SANDIA LA60RATORIES. LIVERMORE 

••••• ABSTRACT ••••• 
• 
• SUBROUTINE CNPCOF COMPUTES THE COEFFICIENTS Of THE CONSTRAINEO 
• LEAST SQUARES POLYNOMIAL ,P, PRODUCED BY SUBROUTINE CNPfIT. THE 
• COEFfICIENTS (STORED IN C) OF THE FIT ,P. ARE FOR THE TAYLOR 
• EXPANSION OF P ABOUT W. THAT IS, THE EXPANSION fOR P HAS THE 
• FORMI 
• P(XI = CU} + C(21 4 (X-W) + C(3}.((X-W}··21 + ••• + 
• C(L+1}·«X-W)··LI 
• OPTIONALLY. THE COEFFICIENTS MAY BE OBTAINED IN REVERSE ORDER • 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
••••• INPUT PARAMETERS ••••• 

L - THE ORDER OF THE POLYNOMIAL FOR WHICH THE COEffICIENTS 
ARE DESIRED. l MUST BE GREATER THAN OR EQUAL TO N-1 
AND LESS THAN OR EQUAL TO NORD. THE CONSTRAINTS FORCE 
THE FITTING POLYNOMIAL TO BE OF DEGREE N-1 AT A HINIMUM. 
CHOOSING L = N-1 WILL FRODUCE THE COEFFICIENTS OF THE 
POLYNOHIAl DEFINEO BY THE CONSTRAINTS --- EXCLUSIVE OF 
THE X.Y CHA. 

W - THE POINT ABOUT WHICH THE TAYLOR EXPANSION IS TO BE MADE 

IORDER - IF IORDER : 1, THE COEFFICIENTS OF THE TAYLOR EXPANSION 
ARE STORED IN C IN THE FORH' 
P(X} = C(U + C(2). (X-W) + C(3}·«X-W'··2' + ••• + 

C(L+1)·«X-W}··LI 
IF IORDER =-1. THE COEFfICIENTS OF THE TAYLOR EXPANSION 
ARE STORED IN C IN THE FORM' 
P(X' = C(1}·«X-W)··LI + C(2)·«X-W)··(L-1" + ••• + 

C(L'·(X-N' + C(L+1) 

NORD - ••••• 

N 

XX 

• - . 
• - . 
• 

NORD • N • XX • AND A MUST REMAIN UNCHANGED 

BETWEEN THE CALL TO CNPfIT AND THE CALL TO CNPCOF. 

A - ••••• 

••••• OUTPUT PA~A~ETERS ••••• 

C - COEFFICIENTS OF THE POLYNOMIAL fIT. P(X). OF ORDER L. 
IF IORDER:1. THE COEFFICIENTS ARE THOSE IN THE FORM. 
P(X) = CU, + C(Z'.U-W' + C(3'.((X-W)"Z' + ••• + 

C(L+1'·«X-W)··L' 
IF IOROER=-1, THE COEFFICIENTS ARE IN THE REVERSE OROER. 

••••• STORAGE PARAMETER ••••• 

WORK - THIS IS AN ARRAY TO PROVIDE INTERNAL ~ORKING STORAGE. 
IT MUST BE DIMENSIONED IN THE CALLING PROGRAM BY AT 
LEAST L + 2.N + ~ (THE LARGEST POSSIBLE VALUE 
FOR l IS ~AXDEG. HENCE MAXDEG + 2·N + 4 WILL ALWAYS 
SUFFICE FOR THE DIMENSION OF WORK'. 



30 

C "HIT CNPFIT Ct-PFIT CNPFIT CNPFIT CNPFIT CNPFIT 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE CNPFIT(H,X,Y,WEIGHT,MAXDEG,N,XX,YY,IS,EPS,R,NORD,IER,A' 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. MUDDLES TON DIVISION 832Z 
T. H. JEFFERSON DIVISION 832Z 

WRITTEN BY ROBERT E. HUDDLESTON, SANDIA LABORATORIES, LIVERHORE 

••••• ABSTRACT • •••• 
SUB~OUTINE CHPFIT IS DESIGNED TO COMPUTE A CONSTRAINED 

LEAST-SQUARES POLYNOMIAL FIT. THAT IS, CNPFIT COMPUTES 
A POLYNOMIAL, P(Z" OF DEGREE NORD THAT SATISFIES eOTH OF THE 
FOLLOWING CONDITIONS. 

(1) GIVEN THE DATA eXeI"Y(I'), I=l, ••• ,M , 
P MINIMIZES THE MEAN-WEIGHTED-SQUARE ERROR 

M 
(1/~) • SUM WEIGHT(I)·epeX(I))-Y(I))··Z 

1=1 

WHERE WEIGHT IS A USER SUPPLIED ARRAY OF WEIGHTS. 

(Z, P HAY BE MAOE TO PASS THROUGH GIVEN POINTS AND ITS 
DERIVATIVES HAY BE CONSTRAINED TO TAKE ON USER SUPPLIED 
VALUES. LET eK,peZ) DENOTE THE DERIVATIVE OF ORDER K OF P 
EVALUATED AT Z. THE CONSTRAINTS ARE OF THE FORM 

eISeJ)JPexxeJ)' = yyeJ' • 

THE USER MUST SUPPLY THE CONSTRAINT ARRAYS xxeJ', YY(J" 
AND IS( J), J = 1, ••• ,N DEFINEDBY 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
• J xxeJ) YY (J) IS eJ' • 
• • 
• 1 Z1 P(ZU 0 • 
• 2 Zl (i,peZtt 1 • 
• 3 Z1 (2'P(Z1) 2 • 
• • • 
• • • 
• • 
• N1 Z1 (N1-UP(Zt) N1-1 • 
• N1+1 ZZ P(ZZ) 0 • 
• N1+2 ZZ (t)PCZZ' 1 • 
• Nl+3 ZZ (Z)P (ZZ, Z • 
• • 
• • 
• • 
• Nl~2 l2 CN.2-UPCl2.J ~-1 • 
• • 
• • 
• • 
• N • 
• • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

THE CONSTRAINTS FORCE THE POLYNOMIAL FIT ,P(Z', TO SE OF DEGREE 
N-1 AT LEAST. THE USER MUST SUPPLY THE MAXIMUM DEGREE, MAXDEG, OF 
THE POLYNOMIAL FIT TO BE CONSIDERED. MAXOEG MUST BE GREATER THAN 
OR EQUAL TO N-1. • •• NOTE ••• IF THE DERIVATIVE OF ORDER K AT 
Z IS TO BE SPECIFIED, THfN THE VALUE OF P AND ALL OF THE 
DERIVATIVES OF P THROUGH ORDER K MUST aE SPECIFIED. • •• 

OPTIONALLY, CNPFIT HAY BE USED TO COMPUTE A FIT EVEN WHEN DATA 
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IS GIVEN FOR C~LY CNe OF THE TWO CONDITIONS LISTED ABOVE. 
IF N=O (NC CONSTRAINTS' peLFIT COULD BE USED INSTEAD OF CNPFIT. 
IF M=O CCONSTRAI~TS O~LY) HRMITE COULD BE USED INSTEAD OF CNPFIT. 

AFTER COMPUTING A FIT WITH CNPFIT, THE FITTING POLYNOMIAL AND 
ITS DERIVATIVES ~AY BE EVALUATED AT ANY ABSCISSA USING CNPVAL AND 
THE COEFFICIENTS OF THE POLYNOMIAL MAY Bt COMPUTED USING CNPCOF. 

••••• INPUT PARAMETERS ••••• 

M 
X 
Y 
WEIGHT 

- THE NUMBER OF DATA POINTS GIVEN IN ) AND Y 
THE ARRAY OF ABSCISSAS OF THE DATA POINTS 

- THE ARRAY OF CRDINATES Of THE DATA POINTS 
_ THE ARRAY OF WEIGHTS CORRESPONDING TO THE DATA POINTS. 

IF WC1' IS NEGATIVE. CNPFIT WILL SET ALL OF THE WEIGHTS 
EQUAL TO 1.( • IF THE USER WISHES RELATIVE ERROR. THEN 
THE WEIGHTS S~OULO BE WEIGHTCI)=l./Y(I)··Z ,1=1, ••• ,". 

MAXOEG - THE MAXIMUM DEGREE OF POLYNOMIAL TO BE CONSIDERED FOR 
THE CONSTRAINED FOLYNOMIAL FIT. SINCE THE N CONSTRAINTS 
FORCE THE POLYNOMIAL TO BE OF DEGREE N-1 AT LEAST, THEN 
MAXDEG MUST BE GREATER THAN OR tQUAL TO THE MAXIMUM OF 
N-1 AND ZERO. 

N 
XX 
yy 
IS 

- IF EPS IS GREATER THAN OR EQUAL TO ZERO, THEN MAXDEG 
MUST BE LESS THAN OR EQUAL TO M+N-l. IF MAXDEG = M+N-1 
THEN THE FITTING POLYNOMIAL HAS JUST ENOUG~ DEGREES OF 
FRcEDO~ TO SATISFY THE CONSTRAINTS AND TO INTERPOLATE 
ALL OF THE DATA (THIS CAN BE ACCOMPLISHED WITH EPS = 0 
AND MAXDEG = M+N-l). 

- IF EPS IS LESS THAN ZERO (THE STATISTICAL SELECTIO~ 
CASE) THEN MAXDEG MUST BE LESS THAN H+N-l. 

- THE NUMBER OF CONSTRAINTS 
- THE ARRAY OF ABSCISSAS OF THE CONSTRAINTS 
- THE ARRAY OF VALUES OF tHE CONSTRAINTS 
- THE ARRAY WHICH SPECIFIES THE ORDER OF DERIVATIVES FOR 

EACH CONSTRAINT 
••• NOTE ••• IF THE DERIVATIVE OF ORDER K OF THE 
POLYNOMIAL P IS TO HE SPECIFIED AT AN ABSCISSA Z, 
THEN THE VALUE OF F AT Z AND ALL OF THE DERIVATIVES 
OF P AT Z THROUGH CRDER K MUST BE SPECIFIED. 

EPS - ON INFUT, EPS SPECIFIES THE CRITERION TO BE USED IN 
DETERMI~ING THE CRDER, NORD, OF FIT TC BE COMPUTED' 
(1) IF EPS IS INPUT NEGATIVE, CHPFIT CHOOSES THE ORDER, 

NORC, BASED CN A STATISTICAL F-TEST. IF EfS = -1 , 
THE ROUTINE WILL AUTOMATICALLY CHOOSE A SIG~IFICANCE 
LEVEL BASED ON THE NUMBER OF DATA POINTS AND THE 
MAXI~UM DEGREE OF POlYNOHIA~ TO BE CONSIDERED. IF 
EPS IS INFUT AS -.01, -.05, OR -.10, SIGNIFICANCE 
LEVELS OF 1 FERCENT, 5 PERCENT, OR 10 PERCENT, 
RESPECTIVELY, WILL BE USED • 

••• RECOMMENDATION ••• UNLESS YOU KNOW ENOUGH ABOUT 
YOUR DATA TO MAK~ A GOOD ESTIMATE OF THE RMS (ROCT 
~EAN SQUARE) ERROR 

R~S = SQRT( SUHDIF/H), WHERE 
SU~DIF = SUM(I=l,M)CWEIG~T(I)·(P(X(I"-Y(I"··Z' 

THEN THE BEST, AND EASIEST, WAY TO USE CNPFIT IS TO 
SET EPS = -i.!) 

(2) IF EPS IS SET TO n.o .CNPflT SIIt.fLY COMPUTES TliE 
FOLYNOMIAL OF DEGREE HAXDEG. 

(3' IF EPS IS INFUT PCSITIVE, EPS IS THE RMS ERROR 
TOLERANCE WHICH MUST 8E SATISFIED BY THE FITTED 
PCLYNOMIAL. CNPFIT WILL INCREASE THE ORDER OF THE 
FIT UNTIL THIS OCCURS OR UNTIL THE MAXIMUM ORDER, 
HAXDEG, IS REACHED. 

••••• OUTPUT PA~AHETE~S ••••• 

Y - IF ~ .GT. 0 AND MAXDEG .GT. N-l THEN EACH Y(I' 
IS MODIFIED BY SUBT~ACTING FROM IT THE VALUE AT XII) 
OF THE FOLYNOMIAL THAT SATISFIES JUST THE CONSTRAINTS. 
LATER THAT VALUE IS ADDEO TO THE MODIFIED Y(I) TO RESTORE 
ITS VALUE. NOTE THAT THE RESTORED VALUE OF EACH Y(I) 
IS NOT NECESSARILY IDeNTICAL TO ITS INPUT VALUE, 
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BUT USUALLY WILL BE EaUAL OR NEARLY EaUAL TO THAT VALUE. 
EPS - IF ~ .GT. 0 AND HAXDEG .GT. N-1 THEN THE RMS ERROR 

OF THE fOLYNOMIAL FIT OF DEGREE NORD IS RETUR~ED IN EPS. 
R - AN A~RAY CONTAINING THE VALUES OF THE PCLYNOHIAl FIT OF 

ORDER NORD. R(II, I=1, ••• ,H CONTAINS THE VALUE OF THE 
FIT AT XCI'. 

NORD - THE HIGHEST OROE~ OF POLYNOHIAL WHICH WAS CAlGULATED. 
IER - OUTPUT ERROR FLAG WITH THE FOLLOWING POSSIBLE VALUES' 

= 1 INOICATES NORMAL EXECUTION, I.E. EITHER 
(1' THE INPUT VALUE OF EPS WAS NEGATIVE, AND THE 

COMPUTED PCLYNCMIAL FIT OF ORDER NORO SATISFIES 
THE SPECIFIED F-TEST, OR 

(2' THE INPUT VALUE OF EPS WAS 0, AND THE FITS OF ALL 
ORDERS UP TO MAXDEG ARE COMPLETE, OR 

(3' THE INPUT VALUE OF EPS WA~ POSITIVE, AND THE 
POLYNOMIAL OF ORDE~ NORD SATISFIES THE RMS ERROR 
REaUIRE~ENT. 

= 2 I~DICATES THAT MAXDEG WAS LESS THAN N-1 (FATAL ERROR) 
= 3 INDICATES THAT EPS IS GREATER THAN OR EQUAL TO ZERO 

AND MAXDEG IS GREATER THAN H+N-l. (FATAL E~~OK' 
= 4 INDICATES THAT EPS IS LESS THAN ZERO AND HAXCEG IS 

GREATER THAN OR EaUAL TO M+N-1. (FATAL ERROR' 
= 5 I~DICATES THAT EPS IS LESS THAN -1 AND IS, THEREFORE, 

MEANINGLESS. (FATAL ERROR) 
= 6 INDICATES THAT THE RMS ERROR REQUIREMENT (SET BY 

CHOOSING EPS GREATER THAN ZERO) CANNOT SE SATISFIED 
WITH A POLYNOMIAL OF DEGREE NO GREATER THAN MAXDEG. 
THE FIT OF DEGREE HAXDEG IS RETURNED (NORD = MAXDEG). 

= 7 INDICATES THAT THE STATISTICAL TEST FOR SIGNIFICANCE 
(CHOSEN BY SETTING EPS LESS THAN ZERO) CANNOT BE 
SATISFIED USING THE CURRENT VALUE OF MAXDEG. IN THIS 
CASE NORD WILL HAVE ONE OF T~E FOLLO~ING VALUES I 
MAXOEG. HAXDEG-l. OR MAXDEG-Z. RERUNNING THE PROBLEM 
WITH A LARGER VALUE FOR MAXDEG MAY RESULT IN A 
SETTER FIT. 

••• NOTE. ERRCHK PROCESSES DIAGNOSTICS FOR CODES 2,3,4,5. 
A - WO~K AND OUTPUT ARRAY WHICH HUST BE DIMENSIONED BY AT 

LEAST 2N + 2 + ~AXIMU~ (3M + 3MAXDEG - 3N + 4, 2N + 2). 
VALUES IN A ARE NEEDED IF CNPVAL OR CNPCOF ARE TO 8E 
CALL EO SUBSE~UENTLY • 

••••• DIMENSIC~ING INFOR~ATION ••••• 

THE ARRAYS X, Y. WEIGHT, AND R MUST BE DIMENSIONED BY AT LEAST M 
IN THE CALLING PROGRA~. 
THE ARRAYS XX. YY, AND IS MUST BE DIMENSIONED BY AT LEAST N IN THE 
CALLING PROGRA~. 
THE ARRAY A MUST SE DI~ENSIONED BY AT LEAST 

2N + 2 + MAXIMUM(3M + 3HAXDEG - 3N + 3 , 2N + Zt 
IN THE CALLING PROGRAM. 

CNPVAL CNPVAL CNPVAL CNPVAL GNPVAL 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

CNPVAL 

SUBROUTINE CNPVAL(L,NDER.XFIT,YFIT,YP,NORO,N,XX,A,WORK,IERR} 

SANDIA MATHEMATICAL FROGRAM LIeRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 83Z2 
T. H. JEFFERSON DIVISION 8322 

CNPVAl 

WRITTEN BY ROBERT E. HUODLESTON, SANDIA LABORATORIES. LIVERMORE 

••••• ABSTRACT ••••• 
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SUBROUTINE CNPVAL EVALUATES THE CONSTRAINED LEAST - SQUARES 
POLY~OMIAL FIT PRODUCED BY CNPFIT. 

••••• INPUT PARAMETERS ••••• 

L - THE ORDER OF POLYNOMIAL TO BE EVALUATED. L HUST BE GREATER 
THAN OR EQUAL TO N-1 ANe LESS THAN OR EQUAL TO NORD. THE 
CONSTRAINTS FORCE THE FITTING POLYNOMIAL TO BE OF DEGREE 
N-1 AT A HINIHUH. THE LEAST SQUARES INFLUENCE ON THE FIT 
ACTUALLY TAKES PLACE BETWEEN ORDER N AND NORD. CHOOSING 
L : N-1 WILL RETURN THE VALUE OF THE POLYNOMIAL DEFINED BY 
THE CONSTRAINTS EXCLUSIVE OF THE X,Y DATA. NOTE THAT L 
MUST BE GREATER THAN OR EQUAL TO ZERO eEVEN IF N=O). 

NDER THE NUMBER OF DERIVATIVES TO BE EVALUATED. 

XFIT - THE AESCISSA AT WHICH THE FITTING POLYNOMIAL AND ITS 
DERIVATIVES ARE TO BE EVALUATED. 

NORD - ••••• 

N 
• 
• 
• 

NORD , N , XX • AND A MUST REMAIN UNCHANGED BETWEEN 
THE CALL TO CNPFIT AND THE CALL TO CNPVAL. 

XX • • A····· 
••••• OUTPUT PARAMETERS ••••• 

YFIT - THE VALUE OF THE FITTING POLYNOMIAL AT XFIT 

YP - THE ARRAY OF DERIYATIVES OF THE FITTING PCLYNOMIAL 
EVALUATED AT XFIT. THE DE~IVATIVE OF ORDER J IS STORED 
IN ypeJ' , J=1,NOER. 

IERR - OUTPUT ERROR FLAG WITH THE FOLLOWING POSSIBLE VALUES I 
--NORMAL CODE 
: 1 INDICATES NOR~AL EXECUTION 
--ABNORMAL CODES 
= 2 INDICATES THAT L IS LESS THAN N-1 
= 3 INDICATES THAT L IS GREATER THAN NORD 

••••• STORAGE PARAMETER ••••• 

WORK - THIS IS AN ARRAY TO PROVIDE INTERNAL WORKING STORAGE. IT 
~UST BE DIMENSICNED BY AT LEAST 3·NDER + 2·N 

COSH COSH COSH COSH COSH COSH 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••..•• ~ ••. 4 •• _ ••• _.4 •.• _U 

•••••••••••••••••••• 
•••••••••• 

FUNCTICN COSHeX) 

SANDIA ~ATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SlL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY CARL B. BAILEY, NOVEMBER 1971 

ABSTRACT 

COSH 

COSH EVALUATES THE HYPERBOLIC COSINE FUNCTION. THAT IS, 

COSH 
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COSH(XI = (EXP(XI + EXP(-XII I Z 

ACTUALLY. COSH(ABS(XII IS.COMPUTED TO REDUCE THE ROUND-OFF 
ERROR INCU~RED WHEN X IS NEGATIVE. 

DESCRIPTION OF ARGUMENT 

X - ANY RE~L VALUE FOR WHICH EXP(ABS(X" IS REPRESENTABLE. 

CPQR CPQR CPQR CPOR cpaR CPQR 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE CPCR(NDEG.CRfCI.WR.WI.I~RR) 

SANDIA MATHEMATICAL PROGRA~ LIBRARY 

CONSULTANTS AT SLL INCLUDE -
P. E. HUDCLESTON DIVISION 83ZZ 
T. H. JEFFERSON DIVISION 8322 

CPQR CPOR 

THIS RCUTINE IS AN INTERFACE TO AN EIGENVALUE ROUTINE IN EISPACK. 
THIS INTERFACE WAS WRITT€N BY WILLIAM R. GAVIN. 

ABSTRACT 

THIS ROUTINE COHPUTES ALL ZEROS OF A POLYNCHIAL 
OF OEGREE TWENTY OR LESS WITH COMPLEX COEFFICIENTS 
BY COMPUTI~G THE EIGENVALUES OF THE COMPANION MATRIX. 

DESCRIFTICN OF PARAMETERS 
THE USER MUST DIMENSION ALL ARRAYS APPEARI~G IN THE CALL LIST 

CR(NDEG+1'. CICNDEG+11. WRCNDEG'. WICNDEG' 

--INPUT--
NDEG DEGREE OF POLYNOMIAL 

CR.CI REAL AND IMAGINARY PARTS OF COEFFICIENTS IN 
DESCENDING CRDER. I.E •• 
P(Z' = (CR(l'+I·CI(ll'·CZ··NDEGI + ••• 

+ (CRCNDEG'+I.CIC~DEG".Z + CCRCNDEG+l'+I.CI(NDEG+lIJ 

--OUTPUT--
WR.WI REAL AND IMAGINARY PARTS OF COMPUTED ROCTS 

IERR OUTPUT ERROR ceDE 
- NORMAL CODE 

o MEANS THE ROOTS WERE COMPUTED. 
- ABNORMAL CODES 

1 MORE THAN 30 QR INTERATIONS ON SOME 
EIGENVALUE OF THE COMPANION MATRIX 

2 CR(1'=O.Q AND ClC~'=~.4 
3 NOEG GREATER THAN 20 OR LESS THAN 1 
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~RF fRF ERF ERF ERF ERF ERF 
•••••••••••••••••••••••••••••••••••••••• 

FUNCTION ERFD) 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. ~UODLESTON OIVISION 8JZZ 
T. H. ~EFFERSON OIVISION 8JZZ 

ERF ERF 

WRITTEN BY J.E. VOGEL FRC~ APPROXIMATIONS OERIVED BY W.J. CODY. 

ABSTRACT 

ERFrXI CO~PUTES Z.O/SQRT(PI) TIMES THE INTEGRAL FROM 0 TO X 
OF EXP(-X··ZJ. THIS IS DONE USING RATIONAL APPROXIMATIONS. 
ELEVEN CORRECT SIGNIFICANT FIGURES ARE PROVIDED. 

DESCRIPTION OF PARAMETERS 

X MAY BE ANY REAL VALUE 

ERF IS DOCUMENTED CO~PLETELY IN SC-H-70-Z75 

ERFC ERFC ERFC ERFC ERFC ERFC 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
FUNCTION ERFCrXXI 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 83Z2 
T. H. ~EFFERSCN DIVISION 8JZZ 

ERFC ERFC 

WRITTEN BY J.E. VOGEL FRO~ APPROXIMATIONS DERIVED BY N.J. COOY • 

ABSTRACT 

ERFC(X) CO~PUTES Z.O/SQRT(PI) TIMES THE INTEGRAL FROM X TO 
INFINITY OF EXP(-X •• Z,. THIS IS DONE USING RATIONAL APPROX
IMATIONS. ELEVEN CORRECT SIGNIFICANT FIGURES ARE PROVIDED. 

DESCRIPTION OF PARAMETERS 

X MAY BE ANY ~EAl VALUE 
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ER~CHK ERRCHK ERRCHK £RRCHK 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

ERRCHK ERRCHK 

SUBROUTINE ERRCHK(NCHARS,~ARRAY) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. ~UDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

ORIGINAL 6&00 VERSION WRITTEN BY CARL B. BAILEY IN DECEMBER, 19&8. 
LATEST ~EVISIC~ CF COM~ENTS fY R. E. JONES, NOVEMBER 1975 

ABSTRACT 
THE ROUTINES ERRCHK. ERXSET, AND ERRGET TOGETHER PROVIDE 
A UNIFORM METHOD WITH SEVERAL OPTIONS FOR THE PROCESSING 
OF OIAGNOSTICS AND WARNING MESSAGES WHICH ORIGINATE 
IN THE HAT~EMATICAL PROGRA~ LIBRARY ROUTINES. 

DESCRIPTION OF ARGUME~TS 
(BOTH ARGU~ENTS ARE I~PUT ONLY.) 
NCHARS - NUMBER OF CHARACTERS IN HCLLERITH MESSAGE. 

IF NCHARS IS NEGATED, ERRCHK HILL UNCONDITIONALLY 
PRINT THE MESSAGE AND STOP EXECUTION. OTHERWISE, 
THE BEHAVIOR OF ERRCHK MAY BE CONTROLLED BY 
AN APPROPRIATE CALL TO ERXSET. 

NAR~AY - NAME OF ARRAY OR VARIABLE CONTAINING THE MESSAGE, 
OR ELSE A LITERAL HOLLERITH CONSTANT CONTAINING 
THE MESSAGE. 8Y CONVENTION, ALL MESSAGES SHOULD 
BEGIN WITH ·IN SUBNAM ••••• , WHERE SU8NAM IS THE 
NAME OF THE ROUTINE CALLING ERRCHK. 

EXAMPLES 

ERRGET 

1. TO ALLOW CONTROL BY CALLING ERXSET, USE 
CALL ERRCHK(30,30HIN QUAO, INVALID VALUE OF ERR.) 

2. TO UNCO~DITIONALLY PRINT A MESSAGE AND STOP EXECUTION, USE 
CALL ERRCHKC-30,30HIN QUAD, INVALID VALUE OF ERR.) 

ER~GET ERRGET ERRGET ERRGET .............. _ ......................... . 
•••••••••••••••••••••••••••••• 

•••••••••••••••••••• 
•••••••••• 

ERRGE.T ERRGET 

SUBROUTINE ERRGET(NFATAL,~TRACE) 

SANDIA ~ATHEMATICAL PROGRA~ LIBRARY 

CONSULTANTS AT SLL INCLUOE -
R. E. HUDDLESTON DIVISION 8322 
~. H. J£~FiR~ON OIVISrON ~Jl2 

ORIGINAL 6&00 VERSION WRITTEN BY CARL B. eAILEY IN D~CE~BER, 19&8. 
LATEST REVISIO~ CF COMMENTS PY R. E. JONES, NOVEMBER 1975 

ABSTRACT 
THE ROUTINES ERRCHK, ERXSET, ANO ERRGET TOGETHER PROVIDE 
A UNIFOR" ~ETHOD WITH SEVE~AL OPTIONS FOR THE PROCESSING 
OF DIAGNOSTICS AND WARNING HESSAGES WHICH GRIGINATE 
IN THE MATHEMATICAL PROGRA~ LIBRARY ROUTINES. 

DESCRIPTION OF ARGUMENTS 
BOTH ARGUMENTS ARE OUTPUT ARGU~ENTS OF DATA TYPE INTEGER. 
NFATAL - CUR~ENT VALUE OF FATAL-ERROR I MESSAGE-LIMIT FLAG 

CSEE DESCRIPTION OF ERXSET) 
NTRACE - CURRENT VALUE OF WALKBACK TRACE FLAG. 
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(SEE DESCI<IFTICN CF E~XSET) 

ERXSET ERXSET ERXSET ERXSET 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

ER)(SET ERXSET 

SUBROUTINE ERXSET(NFATAL.~TRAC~) 

SANDIA MATH€MATICAL PROGI<AM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

ORIGINAL 6600 VERSION WRITTEN BY CARL B. BAILEY IN DECEMBER, 1968. 
LATEST REVISIC~ OF COMMENTS BY R. E. JONES, NOVEHBER 1975 

ABSTRACT 
THE ROUTINES ERRCHK, ERXSET, AND ERRGET TOGETHER PKOVIOE 
A UNIFOR~ METHOD WITH SEVERAL OPTIONS FOR THE PROCESSING 
OF DIAGNOSTICS AND WARNING MESSAGES WHICH CRIGINATE 
IN THE MATHEMATICAL PROGRA~ LIBRARY ROUTINES. 

DESCRIFTICN OF ARGUMENTS 
BOTH ARGU~ENTS ARE INPUT ARGUMENTS OF DATA TYPE INTEGER. 
NFATAL - IS A FATAL-ERROR I MESSAGE-LIMIT FLAG. A NEGATIVE 

VALUE DENOTES THAT DETECTED DIFFICULTIES ARE TO BE 
TREATED AS FATAL ERRORS. NONNEGATIVE MEANS NONFATAL. 
A NCNNEGATIVE VALUE IS THE HAXIMU~ ~UHBER OF NONFATAL 
WARNING MESSAGES WHICH WILL BE FRINTEO BY ERRCHK, 
AFTER WHICH ~ONFATAL MESSAGES WILL NCT BE PRINTED. 
(DEFAULT VALUE IS -1.) 

NTRACE - .GE.l WILL CAUSE A TRACE-BACK TO BE GIVEN, • 
• LE.O WILL ~UPPRESS ANY TRACE-BACK, EXCEPT FOR 

CASES WHEN EXECUTION IS TER~INATED. 
(DEFAULT VALUE IS G.) 

·NOTE· -- SOME CALLS TO ERRCHK WILL CAUSE UNCONDITIONAL 
TERMINATICN OF EXECUTION. ERXSET HAS NO EFFECT ON SUCH CALLS. 

EXAMPLES 
1. TO PRINT UP TO 100 MESSAGES AS NONFATAL WARNINGS USE 

CALL E~XSET(100,O) 

2. TO SUPPRESS ALL MATHLIB WARNING MESSAGES USE 
CALL ER)(SETfO,O) 
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FOURT FCURT FOURT FOUIH FOURT 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE FOURT(DATA.NN,NDIH,ISIGN,IFORM,WORK) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY N M BRENNER. MIT LI~COLN LAB 
PREPARED FOR THE MATH LIBRARY BY R E JONES 

ABSTRACT 

FOURT FCURT 

FOURT PERFCRMS AN N-DIMENSIONAL FAST FOURIER TRANSFOR" ON AN 
N-OIHENSIO~AL ARRAY OF COMPLEX DATA. THE TRANSFORM PERFORMED 
HAY BE EXPRESSED AS FOLLOWS --

TRANSFORHlJ1.J2 •••• '=SUHlDATAlIl,IZ, ••• )·Wl··ClIl-l'.CJ1-1») 
·WZ"C n 2-11 ·'.12-1) 
'" ... ) 

WHERE 11 AND Jl RU~ FROM 1 TO NN(l), AND 
IZ AND J2 RUN FROM 1 TO NNlZ). ETC. 

AND 

FOR ONE DIHENSION, THE TRANSFO~M IS P~ECISELY 

FOURT IS FASTEST WHEN THE NUHBER OF DATA VALUES IN EACH 
DIMENSION IS A HIGHLY COMPOSITE CFACTORABLE' NUMBE~. 

FOR FAST FCURIER TRANSFORMS OF DATA WHICH IS REAL CI~ THE 
TIME DOHAIN) SEE SUBROUTINES FOURTR AND FOURTH. 

DESCRIPTION OF PARAHETERS 
DATA COMPLEX ARRAY IN WHICH THE DATA TO BE TRANSFORMED 

IS PLACED. UPON RETURN TO CALLING PROGRAH DATA 
CONTAINS THE TRANSFORH VALUES. 

NN - INTEGER ARRAY GIVI~G THE (POSITIVE) NUMBER OF POINTS, 
OR VALUES. IN EACH DIMENSION, RESPECTIVELY. 

NOIM - NUMBER OF DIMENSIO~S CINTEGER) NOIH.GE.l 
ISIGN - INTEGER GIVING DIRECTION OF TRANSFCRM TO BE DONE. 

= -1 IMPLIES FORWARD = +1 IMPLIES BACKWARD 
IFCRH - INTEGER PARAHETER DESCRIBING THE FOR~ OF THE DATA. 

= 1 IMPLIES THE DATA IS COMPLEX (NON-TRIVIALLY). 
= 0 IMPLIES THE DATA IS ACTUAllY REAL. I.E., THE 

IMAGINARY PART OF EACH COMPLEX ELEMENT OF DATA 
IS ZERO. FOURT IS SIGNIfICANTLY FASTER WHEN 
IFORH=O. 

WO~K - COMPLEX WORK ARRAY. WORK MUST BE DIMENSIO~ED AS 
LARGE AS THE LARGEST DIHENSION OF CATA WHICH IS NOT 
A F~ER OF TW-C~ I~· AU OIM£~IONS OF DATA ARE . 
PC~E~S OF TWO THEN WORK NEED NOT BE DIMENSIONED. 



FOURTH FOURTH FCURTH FOURTH FOURTH 
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FOURTH FOURTH 

SUBROUTINE FOURTH(OATA.NN.ISIG~.WORK) 

SANDIA MATHEMATICAL PROGRAM lIBRARY 

CONSULTANTS AT Sll INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 83Z2 

WRITTEN BY RONDAll E JONES 
REFERENCE-- CCOlEY. lEWIS. AND WELSH. ·THE FAST FOURIER TRANSFORM 
AND ITS APPLICATIONS. (IBM RESEARCH PAPER RC-17~3) SECTION Z.6 

ABSTRACT 

FOURTH PERFORMS ONE DIMENSIONAL INVERSE FAST FCURIER 
TRANSFORMS. GIVEN FOURIER COEFFICIENTS IN THE FORM RETURNEC 
BY FOURTR (O~ BY FCUPT. IF THE FORWARD TRANSFORM WAS DONE 
USING NDIM=1. NN A MULTIPLE OF 4, AND IFORM=O). 
SPECIF,ICAllY. THE INVERSE TRANSFORM DONE AMO~NTS TO THE 
FOllOWING. FOR K=1 TO NN. 
(DATA ON THE RIGHT SIDE OF THE EQUALITY REFERS TO INPUT 
VALUES. D~TA ON lEFT REFERS TO COMPUTED VALUES.) 

DATA(K) = DATA(1) 
+ 2·SUH( DATA(2.I+1).COS(Z.PI.I.(K-1)/N~) 

- ISIGN.Z.SUM( DATA(Z.I+2).SIN(Z·PI·I·(K-1)/NN) 
+ DATA(NN+l)·COS(PI·CK-1)) 

WHERE SUMS ARE FRO~ 1=1 TO NN/2-1. 
THUS. FOR 1=0 TO NN/2, THE INPUT DATACZ.I+l) AND OATA(Z.I+Z' 
MUST BE THE COSINE AND SINE COEFFICIENTS FOR THE FREQUENCY OF 
I·OF, WHERE OF IS THE FREQUENCY SPACING. 
NOTE THAT THE INPUT DATA(2) AND DATACNN+2. ARE ASSUMED TO = O. 

OESCRIFTION OF ARGUMENTS 
THE USER MUST DIHENSICN All ARRAYS APPEARING IN THE CALL lIST 

DATA(NN+Z). (WORK(NN) ONLY IF NN IS NOT A POWER OF TWO. 

IN FUT---
OATA - ARR~Y CONTAINING THE NN+2 FOURIER COEFFICIENTS. 

I~ THE FDR~ RETURNED BY FOURTR. 
NN - THE NUMBER OF FOURIER COEFFICIENTS IS NN+Z. 

NN HUST BE A MULTIPLE OF 4, ANO MUST BE AT LEAST 8. 
ISIGN - NORMALLY SHOULD eE + 1. IN SOME SPECIAL CASES IT 

MAY NEED TO BE -1 (SEE DEFINING EQUATIONS ABOVE). 

OUTI>UT--
DATA - HIll CONTAIN THE NN REAL VALUES OF THE INVERSE 

TRANSFORM. (DATA(NN+l) ANO OATA(NN+Z) WILL BE ZERO.) 
THE TIME SPACING OF THESE VALUES IS DT = 1/(NN·OF). 

HORK----
WORK - IF N~ IS NOT A POWER OF TWO, WORK MUST BE AN ARRAY 

Of' M lEAST .Nli IWRfS. I-f" -NMIS- A POW£ROE 1.140: 
THEN WORK NEED NOT BE DIMENSIONEO. 
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FCURTR FOURTR FOURTR FOURTR. 
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FOURTR FOURTR 

SUBROUTINE FOURTR(OATA,NN,ISIGN,WORK) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLl INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY RO~OALl E JONES 
REFERENCE-- COOLEY, LEWIS, AND WELSH, .THE FAST FOURIER TRANSFORM 
AND ITS APPLICATIONS. (ISM RESEARCH PAPER RC-1743) SECTION 2.6 

ABSTRACT 

FOURTR PERFORMS A ONE-DIMENSIONAL FAST FOURIER TRA~SfORH 
OF AN ARRAY OF NN REAL DATA VALUES, WHERE NN IS A MULTIPLE 
OF 4. FOURTR RETURNS CNLY THE NON-REDUNDANT COEFFICIENTS 
(I.E., THE COEfFIENTS FOR FREQUENCIES 0 TO NN/2 CYCLESI. 
THESE COEFFICIENTS ARE DEFINED AS FOLLOWS (FOR K~O TO NN/2) 
(DATA ON THE RIGHT SIDE OF THE EQUALITY REFERS TO INPUT 
VALUES. DATA ON LEFT REFE~S TO COHPUTED VALUES.) 

DATAC2.K+1' = SUH C OATACI'·COS(2·PI.CI-1)·K/NN' 
DATA(2.K+2) =ISIGN·SUH ( OATA(I'.SIN(2·PI·(I-1'·K/NN' 

WHERE SUMS A~E FRO~ 1=1 TO NN. 
THUS, FOR 1=1 TO NN, THE INPUT DATA(II HUST BE THE TIME DOMAIN 
VALUE FOR THE TIME (I-1).DT, WHERE OJ IS THE TIME SPACING. 
NOTE THAT THE COHPUTEe DATA(2) AND DATA(NN+2) WILL ALWAYS = O. 

(SEE FOURTH FOR CORRESPO~DING INVERSE TRANSfORMS.) 

DESCRIPTION OF ARGUMENTS 
THE USER HUST DIMENSICN ALL ARRAYS APPEARI~G IN THE CALL LIST 

OATA(NN+2), (WORK(NN) ONLY IF NN IS NOT A POWER OF TWO) 

INPUT---
DATA - REAL ARRAY WHICH CONTAINS THE DATA TO BE TRANSFORMED. 

DATA HUST BE DIMENSIONED AT LEAST NN+2, THE FIRST NN 
WORDS CONTAINING THE VALUES TO BE TRANSFORMED. 

NN ~UM8ER OF VALUES IN DATA TO 8E TRA~SFORMEO. 
NN MUST BE A MULTIPLE OF 4, AND MUST BE AT LEAST 8. 

ISIGN - NCRMALLY SHOULD BE -1. IN SOME SPECIAL CASES IT 
MAY NEED TO BE +1 (SEE DEFINING EQUATIONS ABOVE'. 

OUTPUT--
DATA - WILL CONTAIN THE NN+2 REAL COSINE AND SINE 

COFFICIENTS OF THE DISCRETE FOURIER TRANSFORM. 
(OATA(2) AND OATA(NN+2) WILL BE ZERO.) 
THE FREQUENCY SPACING OF THESE VALUES IS DF=1/(NN.DT). 

WORK----
WORK - IF NN IS NOT A POMER OF TWO, WORK MUST Bf AN ARRAY 

(W AT l.EAST N .. WORDS. U />IN IS-~POWER Of' TWO~ 

THEN WORK NEEe NOT BE OIMENSLONED. 
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GA~LN GAMLN GAMLN GAMLN GAMLN GAMLN GAMLN GAMLN 

GAMMA 
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FUNCTION GAMLN(X) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY D.E. AMOS AND S.L. DANIEL, FE8RUARY,1974. 

REFERE~CE SAND-75-0152 

ABSTRACT 
GAMLN COMPUTES THE NATURAL LOG OF THE GAMMA FUNCTICN FOR 
X.GT.D. A RATIONAL CHE£YSHEV APPROXIMATION IS USED ON 
8.LT.X.LT.1000., THE ASYMPTOTIC EXPAHSION FOR X.GE.1000. AND 
BACKWARD RECURSION FOR D.LT.X.LT.8 FOR NON-INTEGRAL X. FOR 
X=1., ••• ,8., GAMLN IS SET TO NATURAL LOGS OF FACTORIALS. 

DESCRIPTION OF ARGUMENTS 

INFUT 
X - X.GT.O 

OUTPUT 
GAMLN - NATURAL LOG OF THE GAMMA FUNCTION AT X 

ERROR CONDITIO~S 
IMPROPER INPUT ARGUMENT - A FATAL ERROR 

GAMMA GAMMA GAMMA GAMMA GAMMA 
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SUBROUTINE GAMMA(XX,GX,IERR) 

SANDIA MATHEMATICAL FROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

GAMMA 

ROUTINE ORIGINALLY CONTAI~ED IN SCIENTIFIC SUBROUTINE PACKAGE. 
PREPARED AND MODIFIED FOR TME SANDIA MATHEMATICAL LIBRARY 
BY RONALD D. HALeGEWACHS, AUGUST 23,1968. 

THIS ROUTINE COMPUTES THE GAMMA FUNCTION FOR REAL ARGUMENTS. 
RECURRENCE FORMULAS ARE USED TO REDUCE THE ARGUMENT TO THE 
RANGE 0 TO 1, WHERE A POLYNOMIAL APPROXIMATION IS USED. 
ACCURACY IS APPROXIMATELY 7 SIGNIFICANT FIGlRES. 
FOR COMPLEX ARGUMENTS SEE SUBROUTINE GAMMAZ. 

DESCRIFTION OF PARAMETERS 

XX = INPUT,REAL ARGUMENT OF THE GAMMA FUNCTION. 
THE ARGUMENT MUST NOT 8E WITHIN 1.0E-C7 OF A 
NEGATIVE INTEGER OR ZERO AND THE BOUNDS ON X ARE 
X .GT. -163.0, X .LE. 171.0. 

GX = OlTPUT,RESULTANT GAMMA FUNCTION VALUE. 
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IERR : OUTPUT.ERRCR FLAG FOR THE CONDITIONS 

NORHAL CODE 
=1. NORHAL - NO ERRORS 
ABNORHAL CODES 
=2, XX IS WITHIN 1.0E-07 OF BEING A NEGATIVE 

INTEGER OR ZERO 

GAMHAZ 

=3, ARGUMENT .LE. -163.0, OUT OF RANGE 
=4, ARGUHENT .GT. 177.0, OUT Of RANGE 

GAHMAZ GAMHAZ GAHMAZ GAMHAZ 
•••••••••••••••••••••••••••••••••••••••• 
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GAHHAl 

•••••••••••••••••••• 
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SUBROUTINE GAMHAZ(ZR,ZI,GR,GI,IERR) 

SANDIA MATHEMATICAL PROGRAH LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

FROH A CO-OP LIBRARY ROUTINE CRIGINALLY WRITTEN BY W.H.K. LEE. 
PREPARED AND MODIFIED (CHECKS FOR POLES, REGIO~ OF APPLICABILITY. 
AND ADDITION OF THE ASYMPTOTIC SECTION) FOR THE SANDIA 
MATHEMATICAL LIBRARY BY RCNALD D. HALBGENACHS, OCTOBER 1~,1968. 

ABSTRACT 

THIS RCUTINE COMPUTES THE GAMMA FUNCTION FOR COMPLEX 
ARGUMENTS. RECURRENCE AND REFLECTION FORMULAS ARE USED 
TO REDUCE THE ARGUMENT TO THE UNIT SQUARE, WHERE A 
PADE APPROXIMATIO~ IS APPLIED. FOR LARGE ARGUMENTS 
STIRLING-S ASYMPTOTIC EXPANSION IS USED. APPROXIMATELY 
EIGHT 'CORRECT SIGNIFICANT FIGURES ARE PROVIDED. 
FOR REAL ARGUMENTS SEE SUBROUTINE GAMMA. 

DESCRIPTION OF PARAMETERS 

ZR = INPUT, REAL PART OF THE COMPLEX ARGUHENT. 
THE BOUNDS ON ZR DEPEND ON THE VALUE OF ZI. 
IF ZI IS ZERO, THE LOWER BOUND ON ZR IS -160.0 
AND THE UPPER BOUND IS 175. AS ZI INCREASES IN 
MAGNITUrE, THE BOUNDS ON ZR INCREASE ALGEBRAICALLY. 
IF THE ARGUMENT IS STRICTLY REAL THEN IR MUST 
NOT BE WITHIN 1.0E-07 OF A NEGATIVE INTEGER 
OR ZERO. 

ZI = INPUT, IMAGINARY PART OF THE COMPLEX ARGUMENT. 
THE COMPLE~ ARGUMENT (ZR,lI' MUST NOT BE WITHIN 
.i-. U-l Of: .\ Nf-GUI-v€~ IN-l-£"R-~OR URG.- -~ ~ 

GR = OUTPUT, REAL PART OF THE RESULTANT GAMMA FUNCTION 
VALUE. 

GI = OUTPUT, IMAGINARY PART OF THE RESULTANT GAMMA 
FUNCTIO,.. VALUE. 

IERR = OUTPUT. ERROR FLAG FOR THE CONDITIONS 

NORMAL CODE 
=1, NORMAL - NO ERRORS 
ABNO"MAL CODES 
=2, (ZR,ZU IS WITHIN 1.0E-7 OF A NEGATIVE 

INTEGER OR ZERO. 
=3, _~GUMENT IS TO THE LEFT OF THE LEFT BOUNDS 
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=4, ARGUMENT IS TO THE RIGHT OF THE RIGHT SOUNDS 
=5. ABS(ZI) .GT. 1800 AND RESULTS MAY BE 

INACCURATE. 

GAUS8 GAUS8 GAUSS GAUSS GAUSS GAUSa GA liS 8 GAUSa 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 
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SUBROUTINE GAUSa (FUN,A,E.ERR,ANS,IERR) 

SANDIA MATHEMATICAL PROGR_M LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8J22 

BY RONDALL E JONES, SANDIA LABORATORIES 
SALIENT FEATURES -- INTERVAL BISECTION, COHBINED RELATIVE/ABSOLUTE 
ERROR CONTROL, ~OHPUTED MAXIMUM REFINEMENT LEVEL WHEN AIS 
CLOSE TO e. 

ABSTRACT 
GAUSS INTEGRATES REAL FUNCTIONS OF ONf VARIABLE OVER FINITE 
INTERVALS, USING AN ADAPTIVE a-POINT LEGENDRE-GAUSS ALGORITHM. 
GAUS8 IS INTENDED PRIMARILY FOR HIGH ACCURACY INTEG~ATION 
OR INTEGRATION OF SMOOTH FUNCTIONS. fOR LOWER ACCURACY 
INTEGRATION OF FUNCTIONS WHICH ARE NOT VERY SMOOTH, 
EITHER QNCJ OR QNC7 MAY BE MORE EFFICIENT. 

OESCRIPTION OF ARGUMENTS 

INPUT--
FUN -

A 
B 
ERR -

NAME OF EXTERNAL FUNCTION TO BE INTEGRATED. THIS NAHE 
MUST AE IN AN EXTERNAl STATEHENT IN THE CALLING PROGRAM. 
FUN HUST BE A FUNCTIO~ OF ONE REAL ARGUMENT. THE VALUE 
OF THE ARGUMENT TO FUN IS THE VARIABLE OF INTEGRATION 
WHICH R_NGES FRO~ A TO B. 
LOWER LIMIT OF INTEGRAL 
UPPER LIMIT OF INTEGRAL (MAY BE LESS THAN A) 
IS A REQUESTED ERROR TOLERANCE. NORMALLY PICK A VALUE OF 
A8S(ERR).LT.l.E-3. ANS WILL NORMALLY HAVE NO MORE ERROR 
THAN ABS(ERR' TIMES THE INTEGRAL OF THE ABSOLUTE VALUE 
OF FUN(~'. USUALLY, SMALLER VALUES FOR ERR YIELD 
HORE ACCURACY AND REQUIRE MORE FUNCTION EVALUATIONS. 
A NEGATIVE VALUE FOR ERR CAUSES AN ESTIMATE OF THE 
ABSOLUTE ERROR IN ANS TO BE RETURNED IN ERR. 

OUTPUT--
ERR - WILL BE AN ESTIMATE OF THE ERROR IN ANS IF THE INPUT 

VALUE OF ERR WAS NEGATIVE. THE ESTIMATED ERRCR IS SOlELY 
FOR INFORMATION TO THE USER AND SHOULD NOT RE USED AS 
A CORRECT ICN TC T~ECl»4PU.TE-O IN~(;RAI.-. 

ANS - COMPUTED VALUE OF INTEGRAL 
IERR- A STATUS CODE 

--NDRI'AL COOES 
1 ANS MOST LIKELY HEETS REQUESTED ERROR TOLERANCE. 

OR A=8. 
-1 A ANt B ARE TOO NEARLY EQUAL TO ALLOW NORMAL 

INTEGRATION. ANS IS SET TO ZERO. 
--ABNCRP'Al CODE 

2 ANS PROBABLY DCES NOT MEET REQUESTED ERROR TOLERANCE. 
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GERK GERK GERK GERK GERK 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

GERK 

SUBROUTINE GE~K(F,NEQN,Y.T,TOUT,RELERR.ABSERR,IFLAGtGERROR, 
1 WORK,IWORKI 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

FEHLBERG FOU~TH(FIFTH' ORDER RUNGE-KUTTA METHOD WITH 
GLOBAL ERROR ASSESSMENT 

WRITTEN BY H.A.WATTS AND L.F.SHAMPINE 
SA~DIA LABO"ATCRIES 

GERK 

GERK IS DESIGNED TO SOLVE SYSTEMS OF DIFFERENTIAL EQUATIONS WHEN 
IT IS I~PORTANT TO HAVE A ~EADILY AVAILABLE GLOBAL ERROR ESTIMATE. 
PARALLEL INTEGRATION IS PERFORMED TO YIELD TWO SOLUTIONS ON 
DIFFERENT MESH SPACINGS AND GLOBAL EXTRAPOLATION IS APPLIED TO 
PROVIDE AN ESTI~ATE OF THO GLOBAL ERROR IN THE MORE ACCURATE 
SOLUTION • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ABSTRACT 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE GE~K INTEGRATES A SYSTEM OF NEQN FIRST ORDER 
ORDINARY DIFFEPENTIAL EQUATIONS OF THE FORM 

OY(I'/OT = F(T,Y(1).Y(2', •••• Y(NEQN" 
WHERE THE Y(I' ARE GIVEN AT T • 

TYPICALLY THE SUBROUTINE IS USED TO INTEGRATE FROM T TO TOUT BUT IT 
CAN 8E USED AS A ONE-STEP INTEGRATOR TO ADVANCE THE SOLUTION A 
SINGLE STEP IN THE OIRECTICN OF TOUT. ON RETURN.AN ESTIMATE OF THE 
GLOBAL ERROR Ih THE SOLUTION AT T IS PROVIDED AND THE PARAMETERS IN 
THE CALL LIST ARE SET FeR CONTINUING THE INTEGRATION. THE USER HAS 
ONLY TO CALL GERK AGAIN (AND PERHAPS DEFINE A NEW VALUE FOR TOUT'. 
ACTUALLY, GERK IS MERELY AN INTERFACING ROUTINE WHICH ALLOCATES 
VIRTUAL STORAGE IN THE ARRAYS WORK,IWORK ANO CALLS SUBRoUTINE GERKS 
FOR THE SOLUTIC~. GERKS IN TURN CALLS SUBROUTINE FEHL WHICH 
COMPUTES AN APPROXIMATE SOLUTIO~ OVER ONE STEP. 

GERK USES THE RUNGE-KUTTA-FEHL6ERG (It,S, • "ETHOD DESCRIBED 
IN THE REFERENCE 
E.FEHLBERG , LC~-ORDER CLASSICAL RUNGE-KUTTA FORMULAS NITH STEPSIZE 

CONTROL • NASA TR R-315 

THE PARAMETERS REPRESENT-
F SUeROUTINE F(T.Y,YP' TO EVALUATE DERIVATIVES YP(I'=OY(I'/DT 
NEQN -- NUMBER OF EQUATICNS TO BE INTEGRATED 
y(., -- SOLUTION VECTOR AT T 
T -- INDEPENDENT VARIABLE 
TOUT -- OUTPUT FOINT AT WHICH SOLUTION IS DESIRED 
Re:URR,.ABSERR -- ~ELAT-lV£ A-NO A8SOI..UTi £RR-OR10-UP.A~£Sf.OR l.OCAL 

ERROR TEST. AT EACH STEP THE CODE REQUIRES THAT 
A6S(LOCAL ERROR) .LE. RELERR·ABSfY' + ABSERR 

FOR EACH COMPONENT OF THE LOCAL ERROR AND SOLUTION VECTORS 
IFLAG -- INDICATOR FOR STATUS OF INTEGRATION 
GERRCR(.' -- VECTOR WHICH ESTIMATES THE GLOBAL ERROR AT T. THAT 

IS. GERROR(I' APPROXIMATES Y(I'-TRUE SOLUTION(I'. 
WORK(·' -- ARRAY TO HOLD INFORMATION INTERNAL TO GERK WHICH IS 

NECESSARY FOR SUBSEQUENT CALLS. MUST BE DIMENSIONED 
AT LEAST 3+8.NEQ 

IWORK(·' -- INTEGER ARRAY USEO TO HOLD INFORHATION INTERNAL TO 
GERK WHICH IS NECZSSARY FOR SUBSEQUENT CALLS. MUST BE 
OI"ENSIONED AT LEAST 5 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
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FIRST CALL TO GERK 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

THE USER MUST PROVIDE STORAGE I~ HIS CALLING PROGRAM FOR THE AR~AYS 
IN THE CALL LIST YCNEQN' , WORKCJ+8·NEQN' ,IWORKC5' , 
DECLARE F IN AN EXTERNAL STATEMENT, SUPPLY SUBROUTINE FCT,Y,YP) AND 
INITIALIZE THE FOLLOWING P.RAMETERS-

NEON -- NUHBER OF EQUATIONS TC BE INTEGRATED. (NEQN .GE. l' 
yt·, -- VECTOR OF INITIAL CONDITIONS 
T -- STARTING POINT OF INTEGRATION. MUST BE A VARIABLE 
TOUT -- OUTPUT POINT AT WHICH SOLUTION IS DESIRED. 

T=TOUT IS ALLOW~O ON THE FI~ST CALL ONLY,IN WHICH CASE GERK 
RETURNS WITH IFLAG=2 IF CONTINUATION IS POSSIELE. 

RElERR,ABSERR -- ~ELATIVE AND ABSOLUTE LOCAL ERROR TOLERANCES 
WHICH MUST BE NON-NEGATIVE BUT HAY BE CONSTANTS. WE CAN 
USUALLY EXPECT THE GLOBAL ERRORS TO BE SOMEWHAT SHALLER 
THAN THE REQUESTED LOCAL ERROR TOLERANCES. TO AVOID 
LIMITING PRECISION DIfFICULTIES THE CODE ALWAYS USES THE 
LARGER OF RELERR A~D AN INTERNAL RELATIVE ERROR PARAMETER 
WHICH IS MACHINE DEPENDENT. 

IFLAG -- +1,-1 INDICATOR TO INITIALIZE THE CODE FOR EACH NEW 
PROBLE~. NORMAL INPUT IS +1. THE USER SHOULD SET IFLAG=-1 
ONLY WHEN ONE-STEP INTEGRATOR CONTROL IS ESSENTIAL. IN THIS 
CASE. GERk ATTE~PTS TO ADVANCE THt SOLUTICN A SINGLE STEP 
IN THE DI~ECTION OF TOUl EACH TIHE IT IS CALLED. SINCE THIS 
MODE OF OPE~ATION RESULTS IN EXTRA COMPUTING OVERHEAD, IT 
SHOULD BE AVOIDED lNLESS NEEDED • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
OUTPUT FRCM GERK 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
YC·) -- SOLUTION AT T 
T -- LAST PCINT REACHED IN INTEGRATION. 
IFLAG = 2 INTEGRATION REACHED TOUT.INDICATES SUCCESSFUL RETURN 

AND IS THE NOR~AL MODE FOR CONTINUING INTEGRATIO~. 
=-2 A SINGLE SUCCESSFUL STEP IN THE CIRECTIOh OF TOUT 

HAS BEEN TAKEN. NORMAL MODE FOR CO~TINUING 
INTEGRATION ONE STEP AT A TIME. 

3 INTEGRATION WAS NOT CO~PLETED BECAUSE MORE THAN 
qOnO DERIVATIVE EVALUATIONS WERE NEEDED. THIS 
IS APPRO)I~ATELY 500 STEPS. 

= 4 -- INTEGRATION WAS NOT COMPLETED BECAUSE SOLUTION 
VANISHED MAKING A PURE RELATIVE ERROR TEST 
IMPOSSIBLE. MUST USE NON-ZERO A8SERR TO CONTINUE. 
USING THE ONE-STEP INTEGRATION MODE FOR tNE STEP 
IS A GOOD W.Y TO PROCEED. 

5 -- INTEGRATION WAS NOT COMPLETED 8ECAUSE REQUESTED 
ACCURACY COULD NOT BE ACHIEVED USING S~ALLEST 
ALLOWABLE STEPSIZE. USER MUST INCREASE THE ERROR 
TOLERANCE BEFORE CONTINUED INTEGRATION CAN BE 
ATTEMPTED. 

= 6 -- GERK IS eEING USED INEFFICIENTLY I~ SOLVING 
THIS PROBLEM. TOO MUCH OUTPUT IS RESTRICTI~G THE 
NATURAL ST£PSIZE CHOICE. USE THE ONE-STEP 
INTEGRATOR HODE. 

7 -- INVAtIQ I~PUT PARA~TE~SC~~TAl iRROR UNLESS 
OVERRIDDEN BY CALL TO ERXSETJ 
THIS INDICATOR OCCURS IF ANY OF THE FOLLONING IS 
SATISFIED - NEQN .LE. a 

T=TOUT AND IFLAG .NE. +1 OR -1 
RELERR OR ABSERR .LT. C. 
IFLAG .EQ. 0 OR .LT. -2 OR .GT. 7 

GERRORC.' -- ESTIMATE OF THE GLOBAL ERROR IN THE SOLUTION AT T 
WORKC·JtIWO~Kf.J -- INFORMATION WHICH IS USUALLY OF NO INTEREST 

TO THE USER BUT NECESSARY fOR SUBSEQUENT CALLS. 
WORKC1't ••• ,NORKfNEON) CONTAIN THE FIRST DERIVATIVES 
OF THE SOLUTION VECTOR Y AT T. NORKCNEQN+11 CONTAINS 
THE STEPSIZE H TO BE ATTEMPTED ON THE NEXT STEP. 
INORK(1) CONTAINS THE DERIVATIVE EVALUATION COUNTER. 
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••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBSEQUENT CALLS TO GERK 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE GERK RETURNS WITH ALL INFORMATION NEEDED TO CONTINUE THE 
INTEGRATION. If THE INTEGRATION REACHED TOUT,THE USER NEED ONLY 
DEFINE A NEW TOUT AND CALL GERK AGAIN. IN THE ONE-STEP INTEGRATOR 
MODE (IFLAG=-Z) THE USER HUST KE£P IN HIND THAT EACH STEP TAKEN IS 
IN THE DIRECTIC~ OF THE CU~RENT TOUT. UPON REACHING TOUT (INDICATED 
BY CHANGING IFLAG TO Z),THE USER HUST THEN DEFINE A NEM TOUT AND 
RESET IFLAG TO -Z TO CONTINUE IN THE ONE-STEP I~TEGRATOR HOOE. 

IF THE INTEGRATION WAS NOT COHPLETEO eUT THE USER STILL WANTS TO 
CONTINUE (IFLAG=3 CASE), HE JUST CALLS GERK AGAIN. THE FUNCTION 
COUNTER IS THEN RESET TO 0 AND ANOTHER qOOD FUNCTION EVALUATIONS 
ARE ALLOWED. 

HOWEVER,IN THE CASE IFLAG=4, THE USER HUST FIRST ALTER THE ERROR 
CRITERION TO USE A POSITIVE VALUE OF ABSERR BEFCRE INTEGRATION CAN 
PROCEED. IF HE DOES NOT ,EXECUTION IS TERMINATED. 

ALSO,IN THE CASE IFLAG=5, IT IS NECESSARY FOR THE USER TO RESET 
IFLAG TO Z (OR -Z WHEN THE ONE-STEP INTEGRATION MODE IS BEING USED) 
AS WELL AS INCREASING EITHER ABSERR,RELERR OR BOTH BEFORE THE 
INTEGRATION CAN BE CONTINUED. IF THIS IS NOT DONE, EXECUTION WILL 
BE TERMINATED. THE OCCU~RENCE OF IFLAG:5 INDICATES A TROUBLE SPOT 
(SOLUTION IS CHANGING RAPIDLY,SINGULARITY MAY BE PRESENT) AND IT 
OFTEN IS INADVISAeLE TO CONTINUE. 

IF IFLAG=6 IS ENCOUNTERED, THE USER SHOULD USE THE ONE-STEP 
INTEGRATION MODE ~ITH THE STEPSIZE DETERMINED BY THE CODE. IF THE 
USER INSISTS UPON CONTINUING THE INTEGRATION WITH GERK IN THE 
INTERVAL HODE, HE HUST RESET IFLAG TO 2 BfFORE CALLING GERK AGAIN. 
OTHERWISE,EXECUTION WILL BE TERMINATED. 

IF IFLAG:7 IS 08TAINED, INTEGRATION CAN NOT BE CONTINUED UNLESS 
THE INVALID INPUT PARAMETERS ARE CORRECTED. 

IT SHOULD BE NOTED THAT THE ARRAYS WORK,IWORK CONTAIN INFORMATION 
REQUIRED FOR SUBSEQUENT INTEGRATION. ACCORDINGLY, NORK AND IWORK 
SHOULD NOT BE ALTERED • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

HRMITE HR~ITE H~MITE HRHITE HRMITE 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE HRMITE (N,X,Y,IS.C,D) 

SANDIA ~ATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INC~UDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON OIVISION 8322 

HRMITE HR~ITE 

WRITTEN 8Y ROBERT E. HUDDLESTON. SANDIA LABORATORIES. LIVERHORE 

••••• 
SUBROUTINE HR~ITE IS DESIGNED TO PRODUCE A POLYNOMIAL FIT WHICH 

PASSES THROUG~ GIVEN POINTS AND TAKES ON PRESCRIBED VALUES OF ITS 
DERIVATIVES. TO BE HORE SPECIFIC LET THE FOLLOWING N PIECES OF 
QATA BE GIVENI 

K X(K) Y(K) IS(K) 
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1 Z1 YUI 0 
2 ZI Y(2) 1 
3 Z1 YfJ) 2 

. • 
Nl ZI Y (Ni) Nl-1 
Nl+! 12 Y(N!+!) 0 
Nl+Z ZZ Y(N1+Z) 1 
Nl+3 ZZ Y(N1+31 2 

N1+NZ Z2 Y(Nl+NZ) HZ-l 
Nl+N2+1 Z3 Y(Nl+N2+11 {) 

N 

LET (K)P(Z) DENOTE THE DERIVATIVE OF ORDER K OF THE FUNCTION P 
EVALUATED AT Z. THEN HRMITE DETERMINES A POLYNCMIAL P SUCH THAT 

(IS(K»P(X(K» = Y(K) ,K=I,Z, •••• N. 
P IS DETERMINED IN THE FORM 

P(ZJ = C(IJ + C(2J.(Z-X(IJ) + C(3J.(Z-X(IJJ.(Z-X(ZJJ + ••• 
+ C(N)·CZ-X(II)·(Z-X(2)J· ••• ·(Z-X(N-IJ) 

SUBROUTINE POLYVL CAN BE USED TO EVALUATE P AND ITS DERIVATIVES. 
SUBROUTINE POLCOF CAN BE USED TO DETERMINE THE COEFFICIENTS OF P 
IN A MORE STANDARD FORM. 

EACH OF THE ARRAYS X, Y, IS, C, AND D MUST BE OIHENSIO~ED AT LEAST 
N. D IS A WORK ARRAY. 

LPGAME LPGA"'E LPGAHE LPG AM: lPGAME 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

LPGAHE LPGAME 

SUeROUTIHE LPGAHE (LTYPE,H,N,A,IDIMA,B,NFSC,NECS,SOLN,OBJ,ROW,COL, 
1 IERROR,NORKJ 

MOOIFIED AND EXTENDED ~Y R. C. BASINGER FROM A SIMPLEX CODf 
DOCUMENTED AS AFNL-TR-65-195 

ABSTRACT 

THIS ROUTINE SOLVES EITHER FOR THE OPTIMAL STRATEGIES AND VALUE OF 
A Twe-PERSON ZERO-SUM GAME OR A LINEAR PROGRAMMING PRoeLEH. IF A 
GAME IS SOLVED, THE GAME MATRIX (PAYOFF TO ROW PLAYER) IS ENTERED 
AS BELOW OR, IF A LINEAR PROGRAMMING PROGRAH IS SOLVED, THE lP 
"ATRIX IS £NTER€U AS 8E~ON. 

GAHE MATRIX 

AU,1I 
A (2,11 

A(N,2J 

. . . . . . 
A (N, HI 

LP MATRIX (PRI"'AL FORMULATION. 

FINO X(II,X(ZI, ••• ,X(MI THAT MAXIMIZE THE SUM 
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SUBJECT TO THE FOLLOWI~G CONSTRAINTS 

.LE. OR .EO. 8(2' 

A(N.l,4X(1' + ••• .LE. OR .EQ. 

AND THE ADDITIONAL CONDITION THAT ALL EXCEPT THE FIRST NFSC 
VARIABLES X(l" ••• ,)(NFSC' ARE NON-NEGATIVE. THE QUANTITY 
NFSC MAY SE ZERO, IN WHICH CASE ALL X(I"I=l,H ARE REOUIRED TO 
BE NON-NEGATIVE. 
THE NUMBER OF EQUALITY CONSTRAINTS (AS OPPOSED TO INEQUALITY 
CONSTRAINTS) IS SPECIFIED BY THE INPUT PARAHETER NEQS, 
DESCRIBED BELOW. 

INPUT PARA~ETERS 

LTYPE USE 0 FOR GAHE, USE 1 FOR PRIMAL LP PROBLEM (ABOVE', 
OR USE 2 FOR THE ASSOCIATED DUAL LP PROBLEM. IT GENERALLY 
IS HORE EFFICIENT TO USE THE FORHULATIO~ CPRIMAL OR DUAL' 
IN WHICH THERE ARE FEWER CONSTRAINTS THAN VARIABLES. 

M NUMBER OF COLUMNS CGAME) OR NUHBER OF VARIAELES ILP'. 
N NUMBER CF ROWS (GA~E) O~ l+NUMBER OF CO~STRAINTS CLP). 

NOTE. IT IS REQUIRED THAT H+N LE 300. 
A THE GA~E (eR LP) MATRIX DESCRIBED ABOVE. 
B THE VECTOR CORRESPONDING TO CONSTANTS IN THE LP CONSTRAINT 

EQUATIC~S. 
NOTICE BC1) IS NOT USED. B IS A WORK ARRAY FOR GAHE 
PROBLEM. 

IDIMA THE ACTUAL FIRST OIME~SION OF HATRIX A IN THE CALLING 
PROGRAM. A SHOULD BE DOUBLY DIHENSIONED WITH 
IDIHA.GE.(M+N+2) AND THE PRODUCT OF THE OI~ENSICNS AT LEAST 
(M+N+2,4(M+N+2). 

NFSC NUMBER OF VARIABLES I~ LP KHICH ARE FREE OF SIGN CONSTRAINT 
IF NFSC.GT.O , THE FIRST NFSC VARIABLES ARE UNCONSTRAINED. 
(NFSC=O FOR THE GAHE PROBLEM) 

NEQS NUHBER OF EQUALITY CONSTRAINTS IN LP PROBLEM. ALL EQUALITY 
CONSTRAINTS PRECEDE INE~UALITY CONSTRAI~TS. 
(NEQS=O FOR THE GAME FROBLEM' 

'OUTPUT PARAMETERS 

SOLN SOLUTIO~ VECTOR FCR LP CODE. 
SOLNll), ••• tSOLNIM' ARE OPTIHUM VALUES FOR X(l', ••• tX(HI 
RESPECTIVELY AND THE REMAINING COMPONENTS ARE ASSOCIATEO 
SLACK VARIABLE VALUES. IF LTYPE=2. THE SOLN VECTOR CONTAINS 
OPTIMAL VALUES ASSOCIATED WITH THE PRIMAL FRCBLEM VIA THE 
DUAL. SOLN IS A WORK ARRAY FOR THE GAHE PROBLEM. 

ORJ THE MAXIMUM VALUE (PRIMAL) OR MINIMUM VALUEIOUAL' OF THE 
OBJECTIVE FUNCTION FOR LP PROBLEM. FOR THE GAHE PROBLEM 
OBJ IS THE VALUE OF THE GAME. 

ROW THE VECTOR OF OPTIMAL RCW PLAYER STRATEGIES. 
(ROW(I) IS THE FREQUENCY OF PLAY FOR THE ITH ROWI 
~OW IS A WORK ARRAY FOR LP PROBLEM. 

COL THE VECTOR OF cprIMAL COLUHN PLAYER STRATEGIES. 
teOL(I. IS l~E FRE~ENCY OF PLAY FOR TH£ ITH COLUHN) 
COL IS A WORK ARRAY FOR lP PROBLEM. 

IERRCR = 1 NORMAL TERMINATION OF PROBLEM. 

= 2 ILLEGAL INPUT PARAMETER DETECTED.EXAMINE LTYPE, 
~,~tNFSCtNEQS, AND VERIFY M+N LE 300. 

= 3 ELEMENT OF A HAT~IX EITHER INDEFINITE OR OUT OF 
RANGE. 

= 4 ELEMENT OF B VECTOR EITHER INDEFINITE OR OUT OF 
RANGE. 

= 5 CO~TRADICTORY CONSTRAINT EQUATIONS. 

. . 

.. 
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= 6 NO FEASIBLE SOLUTION EXISTS. 

= 7 NO BOUNDED SO~UTION EXISTS • 

.•.................•.•...........•.•.............................. 
THE CALLING PROGRAM HUST DIMENSION 

AeIDIMA, • l,BeM+N+2',SOLNCM+N-1',ROWCN),COLeH', 
WORKCM+N+2t~+N+2' • •...........................•........................•............ 

HINA MINA HINA M 1M MINA HINA 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE MINAIFN,NV,NDIV,DEL,A,GUESS,X,FOFX,IERR' 

SANDIA MATHEHATICAL PROGRAM LIBRARY 

CONSULTANTS AT SlL INCLUDE -
R. E. HUDDLESTON OIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

'lINA 

ORIGINAL ROUTINE WAS H2 SAND MIN, BY Z. BEl SINGER AND S. BELL 
PRESENT VERSIC~ BY R E JONES 

ABSTRACT 
HINA FINDS AN APPRO)IMATE MINIMU" OF A REAL FUNCTIO~ OF 
NV VARIABLES, GIVEN AN INITIAL ESTIMATE OF THE POSITION OF 
THE '1INIMU~ AND RANGES FOR EACH OF THE VARIABLES. 
MINA USES A SELECTIVE DIRECTED SEARCH OF A SURROUNDING 
NV-OI~ENSIC~AL GRID OF POINTS TO FINO A DIRECTION I~ WHICH 
THE FUNCTIO~ DECREASES. IT THEN PROCEEDS IN THIS DIRECTION 
AS FAR AS THE FUNCTION DECREASES, THEN DETERMINES A NEW 
DIRECTION TO TRAVEL. WHEN NO SUCH DIRECTIO~ IS FOUND THE 
SEARCH INCRE"ENT FACTeR IS OECREASED AND THE PROCESS 
IS REPEATED. 

DESCRIPTION OF ARGU"ENTS 

MINA 

THE USER MUST DIMENSION ALL ARRAYS APPEARING IN THE CALL LIST 
ACNV,2', GUESSCNV', XCNV' 

INPUT--
FN -

-M-V- -
NOIV -

DEL 

A 

GUESS-

NAME OF FUNCTION OF NV-VARIABLES TO BE MINIMIZED. 
CTHIS ~AHE MUST APPEAR IN AN EXTERNAL STATEHENT.' 
FORM OF THE CALLING SEQUENCE MUST BE FUNCTIO~ FNCX', 
WHERE X IS AN ARRAY OF NV VARIABLE VALUES. THE 
ORDERING OF THE VARIABLES IS ARBITRARY, EXCEPT 
THAT IT ~UST AGREE NITH THE ORDERING USED IN 
ARRAYS A AND GUESS. 
NUMBER - OF itA R-l-A IL ES. C~lI .... GE .. -u 
NUMBER OF REFINEMENTS OF THE SEARCH INCREMENTS TO USE. 
AT EACH REFINEMENT, THE INCREHtNT IN EACH DIMENSION 
IS DIVIDED BY 10. (USUALLY NDIV IS ABOUT 3 OR 4.) 
FRACTICN OF VARIAALE RANGE (IN EACH DI~ENSION) TO USE 
AS THE INITIAL INCRE~ENT eIN THAT DIMENSION) 
ARRAY OF SEARCH BOUNDS, DIHENSIONED NV BY 2. 
ACI,i' SHOULD 8E THE LONER BOUND OF THE I-TH VARIABLE. 
A(I,2' SHOULD 8E THE UPPER BOUND OF THE I-TH VARIABLE. 
ARRAY OF NV INITIAL VALUES. GUESSeI' SHOULD BE THE 
INITIAL VALUE TO USE FOR THE I-TH VARIABLE. 

OUTPUT--
X - ARRAY COIMENSIO~ED NV' GIVING THE VALUES OF rHE 

VARIABLES AT THE MINIMUM. XCI) WILL BE THE VALUE 
OF THE I-TH VARIABLE. 
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FOFX - FUNCTION VALUE AT THE MINIMUM 
IERR - A STATUS CODE 

-NORMAL CODE 
=1 MEANS THE SEARCH FOR A MINIHU" PROCEEDED FOR THE 

SPECIFIED NUMBER OF REFINEMENTS. 

ODE 

-ABNORMAL CODES 
=2 MEANS NV IS GREATER THAN 50 
=3 MEANS A RANGE MINIMUM IS GREATER THAN THE 

CORRESPONDING HAXIHUM 

ODE ODE ODE ODE ODE ODE 
•••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••• 

•••••••••••••••••••• 
•••••••••• 

ODE 

SUBROUTINE ODECF,NEQN,y,T,TOUT,RELERR,ABSERR,IFLAG,WORK.IWORK) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY L. F. SHAMPINE AND M. K. GORDON 

ABSTRACT 

SUBROUTINE ODE I~TEGRATES A SYSTEH OF NfON FIRST ORDER 
ORDINARY OIFFERE~TIAL EQUATIONS OF THE FORM 

OYCU/DT = FCT,YCl).YC2) •••• ,YCNEQN)) 
YCI) GIVEN AT T. 

ODE 

THE SUeROUTINE INTEGRATES FROH T TO TOUT. ON RETURN THE 
PARAMETERS IN THE CALL LIST ARE SET FOR CONTINUI~G THE I~TEGRATION. 
THE USER HAS ONLY TO DEFINE A NEW VALUE TOUT AND CALL ODE AGAIN. 

THE DIFFERENTIAL E'UATIO~S ARE ACTUALLY SOLVED BY A SUITE OF CODES 
DE, STEP, AND INTRP. ODE ALLOCATES VIRTUAL STORAGE IN THE 
ARRAYS WORK AND IWORK AND CALLS DE. DE IS A SUPE~VISOR WHICH 
DIRECTS THE SOLUTICN. IT CALLS ON THE ROUTINES STEP AND INTRP 
TO ADVANCE THE INTEGRATION AND TO INTERPOLATE AT OUTPUT POINTS. 
STEP USES A HODIFIED DIVIDED DIFFERENCE FORH OF THE ADAMS PECE 
FORMULAS AND LOCAL EXTRAPOLATION. IT ADJUSTS THE OROER AND STEP 
SIZE TO CONTROL THE LOCAL ERROR PER UNIT STEP IN A GENERALIZED 
SENSE. NOR~ALLY EACH CALL TO STEP ADVANCES THE SOLUTION ONE STEP 
IN THE DIRECTION OF TOUT. FOR REASONS OF EFFICIENCY DE 
INTEGRATES BEYOND TOUT INTER~ALLY, THOUGH NEVER BEYOND 
T+10.CTOUT-T), AND CALLS INTRP TO INTERPOLATE THE SOLUTION AT 
TOUT. AN OPTIC~ IS PROVIDED TO STOP THE INTEGRATION AT TOUT BUT 
IT SHOULD BE USED ONLY IF IT IS IMPOSSIBLE TO CONTINUE THE 
INTEGRATION BEY eND TOUT. 

nns CODi: I-S COMf'l.-fliLY EXPt...l\IN£O-A-HO DOCUMN-fED H~- T-HE TEXT-. 
COMPUTER SOLUTIC~ OF ORDINA~Y DIFFERENTIAL EQUATIONS' THE INITIAL 
VALUE FROBLE" BY L. F. SHA~PINE AND M. K. GORDON. 

THE PARAM~TERS REPRESENT. 
F -- SUBROUTINE FCT.Y,YPl TO EVALUATE DERIVATIVES YP(I)=DY(I'/DT 
NEQN -- NUMBER OF ECUATIONS TO BE INTEGRATED 
yc., -- SOLUTION VECTOR AT T 
T -- INDEPENDENT VARIABLE 
TOUT -- POINT AT WHICH SOLUTICN IS DESIRED 
~[LER~,ABSE~R -- RELATIVE AND ABSOLUTE E~ROR TOLERANCES FOR LOCAL 

ERROR TEST. AT EACH STEP THE CODE REQUIRES 
ABS CLOCAL ERROR) .LE. ABsn, .RELERR + ABSERR 

FOR EACH CC~PONENT OF THE LOCAL ERROR AND SOLUTION VECTORS 
IFLAG -- INDICATES STATUS OF INTEGRATION 
MORKC·) .IMORKC·' -- ARRAYS TO HOLD INFOR"ATIO~ INTERNAL TO CODE 

. . 

. ' 
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WHICH IS NECESSARY FOR SUBSEQUENT CALLS 

FIRST CALL TO ODE --

THE USER MUST FROVIDE STORAGE IN. HIS CALLING PROGRAM FOR THE ARRAYS 
IN THE CALL LIST, 

Y(NEQNI. WORK(100+Zl.NEQNI. IWORK(5), 
DECLARE F IN AN EXTERNAL STATEMENT, SUPPLY THE SUBROUTINE 
F(T,Y,YP) TO EVALUATE 

OYCI'/DT = YPCII = F(T,Y(1',Y(ZI, ••• ,Y(HEQN)' 
AND INITIALIZE THE PARAMET(RSI 

NEQN -- NUMBER OF EOUATICNS TO BE INTEGRATED 
yc·, -- VECTO~ OF INITIAL CONDITIONS 
T -- STA~TING PCINT OF INTEG~ATION 
TOUT -- POINT AT WHICH SOLUTICN IS DESIRED 
RELERR.A8SERR -- RELATIVE AND A8S0LUTE LOCAL ERROR TOLERANCES 
IFLAG -- +1,-1. INDICATOR TO INITIALIZE THE CODE. NORMAL INfUT 

IS +1. THE USER SHOULD SET IFLAG=-1 ONLY IF IT IS 
I~POSSIBLE TO CONTINUE THE INTEGRATION BEYOND TOUT. 

ALL PARA~ETERS EXCEPT F, NEON AND TOUT HAY BE ALTERED BY THE 
CODE ON OUTPUT SO MUST BE VARIABLES IN THE CALLI~G PROGR~". 

OUTPUT FROM ODE 

NEON -- UNCHANGED 
YC.) -- SOLUTION AT T 
T -- LAST PCINT REACHED IN INTEGRATION. NORMAL RETURN HAS 

T = TOUT • 
TOUT -- UNCHANGED 
RELERR,A8SERR -- NORMAL RETURN HAS TOLERANCES UNCHANGED. IFLAG=3 

SIGNALS TOLERANCES INCREASED 
IFLAG Z NORMAL RETURN. INTEGRATION REACHED TOUT 

= 3 INTEGRATION DID NOT REACH TOUT BECAUSE ERROR 
TOLERANCES TOO SMALL. RELERR, ABSERR INCREASED 
APFROPRIATELY FOR CONTINUING 

~ INTEGRATION 010 NOT REACH TOUT BECAUSE HORE THAN 
500 STEPS NEEDEO 

: 5 INTEGRATION ole NOT REACH TOUT BECAUSE EQUATIO~S 
APPEAR TO 8E STIFF 

: 6 INTEGRATION 010 NOT REACH TOUT BECAUSE SOLUTION 
VANISHED MAKING PURE RELATIVE ERROR IHPOSSIBlE. 
~UST USE NOh-ZERO ABSERR TO CONTINUE. 

= 7 INVALID INPUT PARAMETERS (FATAL ERROR) 
THE VALUE OF IFlAG IS R£TURNED NEGATIVE WHEN THE INPUT 
VALUE IS NEGATIVE A~O THE INTEGRATION DOES NOT REACH TOUT, 
I.E., -3, -It, -5, -E. 

WORK(·',IWORKC.' -- INFORMATION GENERALLY OF NO I~TERESr TO THE 
USER BUT NECESSARY FOR SUA SEQUENT CALLS. 

SUBSEQUENT CALLS TO ODE 

SUBROUTI~E ODE R£TURNS WITH ALL INFORHATION NEEDED TO CONTINUE 
THE INTEGRATION. IF THE INTEGRATION REACHED TOUT, THE USER NEED 
ONLY DEFINE A NEW TOUT AND CALL AGAIN. IF THE INTEGRATICN DID NOT 
REACH TOUT AND THE USER WANTS TO CONTINUE, HE JUST CALLS AGAIN. 
IN THE CASE IFLAG=6, THE USER ~UST ALSO ALTER THE ERROR CRITERION. 
THE OUTPUT VALUE OF IFLAG IS THE APPROPRIATE INPUT VALUE FOR 
SUBSEQUENT CALLS. THE ONLY SITUATION IN WHICH IT SHOULD BE ALTERED 
IS TO STOP THE I-NTEG,qATIC~ HiTERNAL-1. Y AT TM-€ -NEWl~)LIT -. I ___ E.-~ 
CHANGE OUTPUT IFLAG=Z TO INPUT IFLAG=-Z. ERROR TOLERANCES HAY 
R£ CHANGED AY THE USER BEFORE CONTINUING. ALL OTHER PARAHETERS MUST 
RE~AIN UNCHANGED. 
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eOERT OOERT QOERT OOERT 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

QOERT QDERT 

SUBROUTINE ODERTCF.NEQN.Y,T,TQUT,RELERR,ABSERR,IFLAG,MORK,IWORK, 
1 G,REROOT.AEROOTI 

WRITTEN BY M. K. GCRDON, 5122 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ABSTRACT 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTI~E OOERT INTEGRATES A SYSTEM OF NEQN FIRST ORDER 
ORDINARY ~IFFERE~TIAL EQUATIONS OF THE FORM 

DYCIliOT = FCT.YC1J ••••• YCNEQNJI 
HIt GIVEN AT T. 

THE SUSRDUTINE INTEGRATES FROM T IN THE DIRECTION OF TOUT UNTIL 
IT LOCATES THE FIRST ROOT CF THE NONLINEAR EQUATION 

GCT.YC1, ••••• YCNEQN'.YPC1J ••••• YPCNEQNJI = O. 
UPON FINDING THE ROOT, THE CODE RETURNS WITH ALL PARAMETERS IN THE 
CALL LIST SET FCR CONTINUING THE INTEGRATION TO THE NEXT ReOT OR 
THE FIRST ROOT OF A NEW FUNCTION G IF NC ~OCT IS FOUNO, THE 
INTEGRATION PROCEEDS TO TOUT. AGAIN ALL PARAMETERS ARE SET TO 
CONTINUE. 

THE DIFFERENTIAL EOUATIONS ARe ACTUALLY SOLVED BY A SUITE CF CODES. 
DERT. STEP. AND INTRP. ODEQT ALLOCATES VIRTUAL STORAGE IN 
THE WORK ARRAYS WORK AND IWORK AND CALLS -OERT. OERT IS A 
SUPERVISOR WHICH DIRECTS THE INTEGRATION. IT CALLS ON STEP TO 
ADVANCE THE SOLUTION ANO INTRP TO INTERPOLATE THE SOLUTION AND 
ITS DERIVATIVE. STEP USES A MODIFIED DIVIDED DIFFERENCE FORH OF 
THE ADAMS PECE FCRMULAS AND LOCAL EXTRAPOLATIO~. IT ADJUSTS THE 
ORDER AND STEP SIZE TO CONTROL THE LOCAL ERROR PER UNIT STEP IN A 
GENERALIZED SENSE. NORMALLY EACH CALL TO STEP AOVANCES THE 
SOLUTION ONE STEP IN THE OIRECTICN OF TOUT. FOR REASONS OF 
EFFICIENCY ODERT INTEGRATES BEYOND TOUT INTERNALLY. THOUGH 
NEVER BEYONO T+10·CTOUT-T', AND CALLS INTRP TO INTERPOLATE THE 
SOLUTION AND DERIVATIVE AT TOUT. AN OPTION IS PROVIOED TO STOP 
THE INTEGRATION AT TOUT BUT IT SHOULD qE USED ONLY IF IT IS 
IHPOSSIALE TO CONTINUE THE INTEGRATION BEYOND TOUT. 

AFTER EACH INTERNAL STEP, OERT EVALUATES THE FUNCTION G AND 
CHECKS FC~ A CHANGE IN SIGN IN THE FUNCTION VALUE FROM THE 
PRECEDING STEP. SUCH A CHANGE INOICATES A ROOT LIES IN THE 
INTERVAL OF THE STEP JUST COMPLETED. DERT THEN CALLS SUBROUTINl 
ROOT TO ~EDUCE THE BRACKETING INTERVAL UNTIL THE ROOT IS 
DETERMINED TO THE DESIREO ACCU~ACY. SUBROUTINE ROOT USES A 
COMBINATION OF THE SECANT RULE AND BISECTION TO [0 THIS. THE 
SOLUTION ANO DERIVATIVE VALUES REQUIRED ARE OBTAINEO BY 
INTfRPCLATION WITH INTRP. THE COOE LOCATES ONLY THOSE ROOTS 
FOR WHIC~ G CHANGES SIGN IN CT,TOUT' ANO FOR WHICH A 
RRACKETING INTERVAL EXISTS. IN PARTICULAR, IT WILL NOT DETECT A 
ROOT AT THE INITIAL POINT T. 

THE CODES STEP • IhTRP ,ROCT ,AND THAT PORTION OF OERT 
WHICH DIRECTS THE INTEGRATION ARE EX~LAINED ANO DOCUMENTED IN THE 
TEXT, COMPUTER SOLUTION CF ORDINARY DIFFERENTIAL EQUATIONS. THE 
INITIAL VAt-UE PROBlEK. BY L. F. SHAKflI-NE A-ND M. l<.GORI}Q-N. 

DETAILS OF THE USE OF QDERT A~E GIVEN IN SAND-75-Q211 • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
THE PARAMETERS FCR ODERT ARE 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
F -- SUBROUTINE FCT.Y,YP' TO EVALUATE DERIVATIVES YP(I'=OYCI'/DT 
NEQN -- NUMBER OF EQUATICNS TO 9E INTEGRATEO 
YC·' -- SOLUTION VECTOR AT T 
T -- INDEPENDENT VARIABLE 
TOUT -- ARBITRARY POI~T BEYONO THE ROOT DESIRED 
RELERR,A9SERR -- RELATIVE AND ABSOLUTE ERROR TOLERANCES FOR LOCAL 

ERROR TEST. AT EACH STEP THE CODE REOUIRES 
ABS CLeCAl ERROR' .LE. ABS(YJ .REURR + ABSERR 

FOR EACH COMPONENT OF THE LOCAL ERROR AND SOLUTION VECTORS 
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IFLAG -- INOICATES STATUS OF INTEGRATION 
WORK.IWORK -- ARRAYS TO HOLD INFO~MATION INTERNAL TO THE CODE 

WHICH IS NECESSARY FOR S~6SEQUENT CALLS 
G - FUNCTION OF T. YC·,. YP(., WHOSE ROOT IS DESIREO. 
REROOT. AEROOT -- RELATIVE AND ABSOLUTE ERROR TOLERANCES FOR 

ACCEPTING THE ROCT. THE INTERVAL CONTAINING THE ROOT IS 
REDUCED UNTIL IT SATISFIES 

o .5.ABS (LENGTH OF INTERVALJ .LE. REROOT·ABS (ROOn +AEROOT 
WHERE ROOT IS THAT ENOFOINT YIELDING THE SMALLER VALUE OF 
G IN MAGNITUDE. FURE RELATIVE ERROR IS NOT RECOMMENDED 
IF THE ROOT HIGHT BE ZERO • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
FIRST CALL TO OOERT--

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
THE USER HUST FROVIOE STORAGE IN HIS CALLING PROGRAM FOR THE 
ARRAYS IN THE CALL LIST. 

Y(NEONI. WORK(1CO+Z1.NEQN). IWORK(5' 
AND DECLARE F • G IN AN EXTERNAL STATEMENT. HE MUST SUPPLY THE 
SUBROUTINE F(T,Y.YPI TO EVALUATE 

OY(I'/OT = YP(I' = F(T.Y(1), •••• Y(NEON') 
AND THE FUNCTION G(T.Y,lP' TO EVALUATE 

G = GCT,Y(1, ••••• Y(NEQNJ.YP(1' ••••• YP(NEQNJI. 
NOTE THAT THE ARRAY YP IS AN INPUT ARGUMENT AND SHOULD NOT BE 
COMPUTED IN THE FUNCTION SUBPROGRAM. FINALLY THE USER HUST 
INITIALIZE THE PARAMETERS 

NEQN -- NUMBER OF EQUATIONS TO BE INTEGRATED 
Y(·' -- VECTOR OF INITIAL CONCITIONS 
T -- STARTING POINT OF INTEGRATION 
TOUT -- ARBITRARY POINT SEYON[ THE ROOT DESIRED 
RELERR,ABSERR -- RELATIVE AND ABSOLUTE LOCAL ERROR TOLERANCES 

FOR INTEGRATING THE EQUATIONS 
IFLAG -- +1.-1. INDICATOR TO INITIALIZE THE COOE. NORMAL INFUT 

IS +1. THE USER SHOULD SET IFlAG=-1 ONLY IF IT IS 
IMPOSSIBLE TO CONTINUE THE INTEGRATION BEYOND TOUT. 

REROOT.AEROOT -- RELATIVE AND ABSOLUTE ERROR TOLERANCES FOR 
COMPUTING THE ROOT OF G 

ALL PARA~ETERS EXCEPT F. G. NEON. TOUT. REROOT AND AEROOT MAY BE 
ALTERED BY THE CODE ON OUTPUT SO HUST BE VARIABLES IN THE CALLING 
PROGRAI' • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
OUTPUT FROM OOERT--

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
NEQN -- UNCHANGED 
YC·) -- SOLUTION AT T 
T -- LAST PCI~T REACHED IN INTEGRATICN. NORMAL RETURN HAS 

T = TOUT OR T = ~OOT 
TOUT -- UNCHANGED 
RflERR.ABSERR -- NORMAL RETURN HAS TOLERANCES UNCHANGED. IFLAG=3 

SIGNALS TOLERANCES INCREASED 
IFLAG = 2 NORMAL RETURN. INTEGRATION REACHED TOUT 

= 3 -- INTEGRATION DID NOT REACH TOUT BECAUSE ERROR 
TOLERANCES TOO SMALL. RELfRR. AESERR INCREASED 
APPROPRIATELY FOR CONTINUING 

= 4 -- INTEGRATION 010 NOT REACH TOUT BECAUSE HORE THAN 
500 STEPS NEEDED 

= 5 INTEGRATION 010 NOT REACH TOUT BECAUSE EQUATIO~S 
APPEAR TO BE STIFF 

= 6- INTE(;RATION--{)-ID NOT-RE-ACH TGUT B£~-AUs-£ S-OLUUO~ 
VA~ISHED MAKING PURE RELATIVE ERROR IMPOSSIBLE. 
MUST USE NON-ZERO AqSERR TO CONTINUE 

= 7 INVALID INPUT PARAMETERS (FATAL ERROR' 
= 8 NORMAL RETURN. A ROOT WAS FOUND WHICH SATISFIED 

THE ERROR CRITERION OR HAD A ZERO RESIDUAL 
= 9 ABNORMAL RETURN. AN 000 ORDER peLE OF G WAS 

FOUND. 
=10 AB~OR"AL RETURN. TOO HANY EVALUATIONS OF G WERE 

REQUIRED (AS PROGRAMMED SOU ARE ALLCWEO.I 
THE VALUE OF IFLAG IS RETURNED NEGATIVE WHEN THE INPUT 
VALUE IS NEGATIVE ANO THE INTEGRATION DOES NOT REACH 
TOUT, I.E •• -3, •••• -6.-8.-9.-10. 

WORK(·' .IWORK(., -- INFORMATION GENERALLY OF NO INTEREST TO THi 
USER aUT NECESSARY FOR SUBSEQUENT CALLS 

REROOT.AEROOT -- UNC~ANGEO 



••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBSEQUENT CALLS TO OOERT--

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTIN~ OOERT RETURNS WITH ALL INFORHATION NEEDED TO CONTINUE 
THE INTEGRATION. IF THE INTEGRATION DID NOT REACH TOUT AND THE 
USER WANTS TO CONTINUE, HE JUST CALLS AGAIN. IF THE INTEGRATION 
REACHED TOUT, THE USER N~ED CNLY DeFINE A NEW TOUT AND CALL 
AGAIN. THE OUTPUT VALUE OF IFLAG IS THE APPROPRIATE INPUT VALUE 
FOR SUBSE~UENT CALLS. THE ONLY SITUATION IN WHICH IT SHOULD BE 
ALTERED IS TO STOP THE INTEGRATION INTERNALLY AT THE NEW TOUT, 
I.E., CHANGE OUTPUT IFLAG=2 TO INPUT IFLAG=-2. ONLY THE ERROR 
TOLERANCES ANO THE FUNCTION G MAY BE CHANGED BY THE USER BEFORE 
CONTINUING. ALL OTHER PARAHETERS MUST REMAIN UNCHANGED. A NEW 
FUNCTION G IS DETECTED AUTOHATICALLY BY COMPARING ITS VALUE AT A 
SPECIFIED INTERNAL POINT HITH A STORED VALUE FOR THE PRECEDING 
FUNCTION EVALUATED AT THE SAME POINT. 

PCOEF FCOEF PCOEF PCOEF PCOEF PCOEF PCOEF PCOEF 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE PCOEF (l,C,TC,A, 

SANDIA ~ATHEHATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSCN DIVISION 8322 

WRITTEN BY L. F. SHA~PINE ANO S. M. DAVENPORT. 

ABSTRACT 

POLFIT COMPUTES THE lEAST SQUARES POLYNOMIAL FIT OF ORDER L AS 
A SUM CF CRTHOGOhAL POLYNCMIALS. PCOEF CHANGES THIS FIT TO ITS 
TAYLOR EXPANSION ABOUT ANY PCINT C, I.E. WRITES THE POLYNOMIAL 
AS A SUM OF POWERS OF (X-C,. TAKING C=O. GIVES THE POLYNOMIAL 
IN POWEqS OF X, BUT A SUITABLE NON-ZERO C OFTEN lEADS TO 
POLYNOMIALS WHICH ARE BETTER SCALED AND HORE ACCURATEL~ EVALUATED. 

THE PARAHETERS FCR PCOEF ARE 

INPUT I 
L -

c -

A -

OUTPUTI 
TC -

INDICATES THE ORDER OF POLYNOMIAL TO BE CHANGED TO 
ITS TAYLOR EXPANSION. TO OBTAIN THE TAYLOR 
COEFFICIE~TS IN REVERSE ORDER, INFUT l AS THE 
hEGATIVE CF THE ORDER OESIREO. THE ABSOLUTE VALUE OF 
L ~UST BE LESS THAN OR EaUAL TO NORD, THE HIGHEST 
ORDER POLYNOMIAL FITT~O BY POlFIT. 
THE POINT A80UT WHICH THE TAYLOR EXPANSIO~ IS TO BE 
I'ADE. 
WORK ANO OUTPUT ARRAY CONTAINING V~ES fRO~ LAST 
CALL TO POlFIT. 

VECTOR CONTAINING THE FIRST Ll+1 TA~lOR COEFFICIE~TS 
WHERE LL=IABSCL'. IF l.GT.O, THE COEFFICIENTS ARE 
IN THE USUAL TAYLOR SERIES ORDER, I.E. 

P(X) = TCCt) + TC(2'.CX-C) + ••• + TC(N+1'.(X-C' •• N 
IF L .LT. 0. THE COEFFICIENTS ARE I~ REVERSE ORDER, 
I.E. 

P(X' = TCCt'·CX-C'.·N + ••• + TC(N)·CX-C' + TCCN+1' 
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POLCOF POLCOF FOLCOF POLCOF 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE POLCOF (XX.N,X.C,D,WORK' 

SANDIA MATHEHATICAL PROGRAH LIBRARY 

CONSULTANTS AT SLL INCLUDE ~ 
R. E. HUDDLESTON CIVISION 8J22 
T. H. JEFFERSON DIVISION 8JZ2 

POLCCF POLCOF 

WRITTEN BY ROBERT E. HUDDLESTON, SANDIA LABORATORIES. LIVERMORE 

ABSTRACT 
SUBROUTINE POLCOF COHPUTES THE COEFFICIENTS OF THE POLYNOHIAL 

FIT (INCLUDING HERMITE POLYNOMIAL FITS' PRODUCED BY A PREVIOUS 
CALL TO HRHITE OR POLINT. THE COEFFICIENTS OF THE POLYNOMIAL. 
EXPANDED ABOUT XX. ARE STORED IN THE ARRAY O. THE EXFANSION IS OF 
THE FORM 
P(Z' = 0(1' + O(Z)·(Z-XX) +D(J).C(Z-XX).·2) + ••• + 

D(N)·CCZ-XXJ··CN-IJ). 
8ETWEEN THE CALL TO POLINT CDR TO HRHITEJ AND THE CALL TO POLCOF 
THE VARIABLE N AND THE ARRAYS X AND C HUST NOT BE ALTERED. 

••••• INPUT PARA~ETERS 

XX - THE PCINT ABOUT WHICH THE TAYLOR EXPANSION IS TO BE MADE. 

N - •••• 

• 
X -. 

• 
C - •••• 

N, X. AND C ~UST REMAIN UNCHANGED BETWEEN THE 
CALL TO POLINT OR THE CALL TO HRHITE AND THE 
CALL TO POLceF • 

••••• OUTPUT PARAHETER 

o - THE ARRAY OF COEFFICIENTS FOR THE TAYLOR EXPANSION AS 
EXPLAINED IN THE ABSTRACT 

••••• STORAGE PARAHETER 

WORK - THIS IS AN ARRAY TO PROVIDE INTERNAL WORKING STORAGE. IT 
MUST BE DIMENSIONED BY AT LEAST Z·N IN THE CALLING PROGRAM • 

•••• NOTE - THERE ARE TWO METHODS FOR EVALUATING THE FIT PRODUCED 
BY POLINT OR HRMITE. YOU MAY CALL POLYVL TO PERFORM THE TASK, OR 
YOU HAY CALL POLCOF TO OBTAIN THE COEFFICIENTS OF THE TAYLOR 
EXPANSION AND THEN WRITE YOUP OWN EVALUATION SCHEME. DUE TO THE 
INHERENT ERRORS IN THE COMPUTATIONS OF THE TAYLOR EXPANSION FReM 
THE NEWTON COEFFICIENTS PRODUCED BY POLINT OR HRHITE~ MUCH MORE 
ACCURACY HAY BE EXPECTED BY CALLING POLYVL AS OPPOSED TO WRITING 
YOUR OWN SCHEME • 
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POlFIT POlFIT PCLFIT POlFIT POL FIT POLFIT POlFIT 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE POlFIT CN,X,Y,~,MAXORD.NORD,EPS,R,IERR,A' 

SANDIA ~ATHEMATICAl PROGRAM LIfRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8~22 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY l. F. SHAMPINE AND S. M. DAVENPORT. THE STATISTICAL 
OPTIONS PROVIDED WERE WRITTEN BY R. E. HUDDLESTON. 

ABSTRACT 

GIVEN A COLLECTICN OF FOINTS XCI) AND A SET OF VALUES YCI) WHICH 
CORRESPOND TO SOME FUNCTION OR MEASUREMENT AT EACH OF THE XCI', 
SUBROUTINE FCLFIT COMPUTES THE WEIGHTED LEAST-SQUARES POLYNOMIAL 
FITS OF ALL ORDERS UP TO SOME ORDER EITHER SPECIFIED BY THE USER 
OR DETERMINED EY THE ROUTINE. THE FITS THUS OBTAINED ARE IN 
ORTHOGONAL POLYNOMIAL FORM. SUBROUTINE PVALUE MAY THEN 8E 
CALLED TO EVALUATE THE FITTED POLYNOHIALS AND ANY OF THEIR 
DERIVATIVES AT ANY POINT. THE SUBROUTINE PCOEF MAY BE USED TO 
EXPRESS THE POLYNOMIAL FITS AS POWERS OF (X-C. FOR ANY SPECIFIED 
POINT C. 

THE PARAMETERS FCR POlFIT ARE 

INPUTt 
N -

X -

Y -
W -

MAXO~D -

C:PS -

OUTPUTI 
NORrl -
EPS -
R -

THE NUMBER OF DATA POINTS. THE ARRAYS X, y, W, R 
MUST BE DIMENSIONED AT L£AST N eN .GE. 1 •• 
ARRAY OF VALUES OF THE INDEPENDENT VARIABLE. THESE 
VALUES MAY APPEAR IN ANY ORDER AND NEED NOT ALL BE 
OISTINCT. 
ARRAY OF CORRESPONDING FUNCTION VALUES. 
ARRAY OF FOSITIVE VALUES TO BE USED AS WEIGHTS. IF 
W(11 IS NEGATIVE, POLFIT WILL SET ALL THE WEIGHTS 
TO 1.0, WHICH MEANS AqSOLUTt ERROR WILL BE MINI~IZED. 
TO MINIMIZE RELATIVE ERROR, THE USER SHOULD SET 
WEIGHTS TOI W(II = 1.0/Y(I)··2. I = 1,.~.,N • 
MAXIMUM ORDER TO BE ALLOWED FOR POLYNOHIAL FIT. 
HAXORD HAY BE ANY NON-NEGATIVE INTEGER LESS THAN N. 
NeTE -- MAX ORO CANNOT BE EQUAL TO N-l WHEN A 
STATISTICAL TEST IS TO BE USED FOR ORDER SELECTIO~. 
I.E., WHEN INPUT VALUE OF EPS IS NEGATIVE. 
SPECIFIES THE CRITERION TO BE USED IN DETERMINING 
THE ORDER OF FIT TO BE CDHPUTED' 
Cl' IF EPS IS INPUT NEGATIVE, PClFIT CHOOSES THE 

ORDER BASED ON A STATISTICAL F TEST OF 
SIGNIFICANCE. ONE OF TH~EE POSSIBLE 
SIGNIFICANCE LEVELS WILL BE USEOI .01 •• 05 CR 
.10. IF EPS=-1.0 , THE ~OUTINE MILL 
AUTO~ATICALLY SELECT ONE OF tHESE LEVELS BASED 
ON THE NUMBER OF DATA POINTS AND THE MAXIMUM 
ORDER TO BE CONSIDERED.· IF EPS IS INPUT AS 
-.01, -.U5~ OR - .. 10,. ~ SI{;NIFICANCE ~£'!!EL OF 
.01, .~5. OR .10, RESP~CTIVElY, WILL BE USED. 

(21 IF £PS IS SET TO 0., POlFIT COHPUTES THE 
POLYNOMIALS OF ORDERS 0 THROUGH HAXORD. 

(31 IF EPS IS INPUT POSITIVE, EPS IS THE RMS 
ERROR TOLERANCE WHICH MUST AE SATISFIED BY THe 
FITTED POLYNOMIAL. POlFIT WILL INCREASE THE 
ORDER OF FIT UNTIL THIS CRITERIO~ IS MET OR 
UNTIL THE MAXIHUM ORDER IS REACHED. 

ORDER OF THE HIGHEST ORDER FIT COMPUTED. 
R~S ERROR OF THE POLYNOHIAl OF ORDER NORD. 
VECTOR CONTAINING VALUES OF THE FIT OF ORDER NOR[ 
AT EACH OF THE X(II. EXCEPT WHEN THE STATISTICAL 
TEST IS USED, THESE VALUES ARE HORE ACCURATE THAN 
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RESULTS FRO~ SUBROUTINE PVALUE NORMALLY ARE. 
IERR - ERROR FLAG WITH THE FOLLONING POS~I8LE VALUESI 

1 -- INDICATES NORMAL EXECUTION, I.E. EITHER 
(1) THE INPUT VALUE OF EPS NAS NEGATIVE, AND THE 

COMPUTED POLYNOHIAL FIT OF ORDER NORD 
SATISFIES THE SPECIFIED F TEST, OR 

(21 THE INPUT VALUE OF EPS WAS 0., AND THE FITS OF 
ALL ORDERS UP TO MAXORD ARE COMPLETE, OR 

(31 THE INPUT VALUE OF EPS WAS POSITIVE, AND THE 
POLYNOMIAL OF ORDER NORD SATISFIES THE RHS 
ERROR REQUIREMENT. 

2 -- INVALID I~PUT PARAMETER. AT LEAST ONE OF THE INPUT 
PARAMETERS HAS AN ILLEGAL VALUE AND MUST BE CORRECTED 
BEFCRE POLFIT CAN PROCEED. VALID INPUT RESULTS 
WHEN THE FOLLOWING RESTRICTIONS ARE oeSERVED. 

N • GE. 1 
a .LE. MAXORO .LE. N-1 FOR EPS .GE. O. 
D .LE. HAXORC .LE. N-2 FOR EPS .LT. O. 
W(1)=-1.0 OR N(I) .Gr. 0., I=1, ••• ,N • 

3 CANNOT SATISFY THE RMS ERROR REQUIREMENT ~ITH A 
POLYNOMIAL OF ORDER NO GREATER THAN MAXORD. BEST 
FIT FOUND IS OF ORDER MAXORD. 

4 -- CANNOT SATISFY THE TEST FOR SIG~IFICANCE USING 
CURRENT VALUE OF MAXORD. STATISTICALLY, THE 
BEST FIT FOUND IS OF ORDER NO~D. (IN THIS CASE, 
NORD WILL HAVE ONE OF THE VALUES_ HAXORD-2, 
MAXORD-1, OR MAXORD). USING A HIGHER VALUE OF 
HAXORD HAY RESULT IN PASSING THE TEST. 

A - WORK AND OUTPUT ARRAY HAVING AT ~EAST 3N+3HAXORD+3 
LOCATIONS 

NOTEI POLFIT CALCULATES ALL FITS OF ORDERS UF TO AND INCLUDING 
NORD. ANY OR ALL OF THESE FITS CAN 6E EVALUATED OR 
EXPRESSED AS POWERS OF (X-C) USING PVALUE AND PCOEF 
AFTER JUST ONE CALL TO POLFIT. 

POLINT POLINr PCLINT FOLIH POLINT 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE P'OLINT (N,X,Y,C) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

POLaT POLINT 

WRITTEN BY ROBERT E. HUDDLESTON, SANDIA LABORATORIES, LIVERMORE 

ABSTRACT 
SU8ROUTINE P~INT IS OESI{;NW TO PRODUCE -TW£ .P-OL·Y.NOMUt.wtUCW 

INTERPeLATES THE DATA (X(I),Y(I", I=1, ••• ,N. POLINT SETS UP 
INFORMATION IN THE ARRAY C WHICH CAN BE USED BY SUBROUTINE POLYVL 
TO EVALUATE THE fOLY~OHIAL AND ITS DERIVATIVES AND BY SUBROUTINE 
POLCOF TO PRODUCE THE COEFFICIENTS. 

FORHAL PARAMETERS 
N - THE NUMBER OF DATA POINTS (N .GE. 11 
X - THE ARRAY OF ABSCISSAS (ALL OF WHICH HUST BE DISTINCT) 
Y - THE ARRAY OF ORDINATES 
C - AN ARRAY OF INFORMATION USED BY SUBROUTINES 
••••••• OIHENSICNING INFCRHATION ••••••• 
ARRAYS X,Y, AND C MUST BE DIMENSIONED AT LEAST N IN THE CALLING 
PROGRA 1'. 
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POL YVL POLYVL POLYVL POL YVL 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

POLYVI. 

SUBROUTINE POLYVL (NDER,XX,YFIT,YP,N,X,C,WORK,IERR) 

SANDIA MATHEMATICAL PRCGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION &3ZZ 
T. H. JEFFERSON DIVISION 8JZZ 

POLYVL 

WRITTEN BY ROEFRT E. HUDDLESTON, SANDIA I.ABORATORIES, LIVE~"ORE 

ABSTRACT -
SUBROUTINE FOLYVL CALCULATES THE VALUE OF THE POLYNOMIAL AND 

ITS FIRST NDER DERIVATIVES WHERE THE POLYNOMIAL WAS FRODUCED BY 
A PREVIOUS CALL TO HRMITE OR POLINT. 

THE VARIABLE N AND THE ARRAYS X AND C MUST NOT BE ALTERED 
BETWEEN THE CALL TO HRMITE OR POLINT AND THE CALL TO POLYVL. 

•••••• DIMENSIONING INFORMATION ••••••• 

YP MUST RE DIMENSIONED BY AT LEAST NOEioI 
X MUST BE DIMENSIONED BY AT LEAST N (SEE THE ABSTRACT 
C MUST BE DIMENSIONED BY AT LEAST N (SEE THE AB'SHACT 
WORK MUST BE DIMENSIONED BY AT LEAST 2·N If NDER IS .GT. O. 

••• NOTE ••• 
IF NDER = 0 NEITHER YP NOR WORK NEED TO BE DIMENSIONED VARIABLES 
IF NDER = 1 YP DOES NOT NEED TO BE A DIMENSIONEO VARIABLE 

••••• INPUT PARAMETERS 

NOER - THE NUMBER OF DERIVATIVES TO BE EVALUATED 

xx - THE ARGUMENT AT WHICH THE POLYNOMIAL ANC ITS DERIVATIVES 
ARE TO BE EVALUATED. 

N - ••••• 

• 
x - . 

• 
C - ••••• 

N, X. AND C MUST NOT 8E ALTERED 8ETWEEN THE CALL 
TO HERMITE (OR THE CALL TO POLINT) AND THE CALL 
TC POLlVL • 

••••• OUTPUT PA"A~ETERS 

YfIT - THE VALUE OF THE POLYNCMIAL AT XX 

YP - THE DERIVATIVES Of THE POLYNOMIAL AT XX. THE DE~IVATIVE OF 
ORDER J AT XX IS STORED IN lP(J) • J = 1 ••••• NDER. 

IERR - OUTPUT ERROR fLAG WITH THE fOLLOWING POSSIBLE VALUES. 
= 1 INDICATES NORMAL EXECUTION 

...... STORAGE P~A!!EJ£R$. 

WORK = THIS IS AN ARRAY TC PROVIDE INTERNAL WeRKING STORAGE FOR 
POLYVl. IT HUST BE DIMENSIONED BY AT LEAST 2.M IF NDER IS 
.GT. O. IF NDERzO. WORK DOES NOT NEED TO BE A DIMENSIONED 
VARIABLE. 

. . 
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PSMTH1 PSMTH1 PSMTH1 PSM TH1 PSMTH1 PSMTH1 PSMTH1 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE PS~TH1(X.Y.NTOTAL.NDERIV.WEIGHT.LPARA",WORK.YP' 

SANDIA ~ATHEMATICAL PROGRAM LIeRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8J22 
T. H. JEFFERSON DIVISION 8J22 

WRITTEN BY ROBERT E. HUDDLESTON, SANDIA LABORATORIES, LIVERMORE 

••••• ABSTRACT ••••• 

GIVEN DATA (X(I).YCI", I=1 ••••• NTOTAL WHICH IS GENERALLY 
ASSUMED TO BE NOISY (BOT NOT SO NECESSARILY', SUBROUTINE PSHTHl IS 
DESIGNED TO CALCULATE SHOOTHED Y(I) VALUES (AND DERIVATIVES AT 
THE XCI) IF NDERIV IS GREATER THAN ZERO). THE SI~PLEST WAY TO 
USE THIS ROUTINE IS TO CHOOSE THE DEFAULT VALUES FOR lPARAM (SEE 
THE EXPLANATIC~ OF LPARAH BELOWI. IF YOU WISH TO CHANGE THE 
DEFAULT VALUES. THEN YOU SHOULD READ THE REST OF THIS ABSTRACT 
AND THE EXPLANATIO~ OF LPARAM. IN ADDITION THERE IS A REFERENCE 
DOCUMENT, SAND74-8200. AVAILABLE FROM ROBERT E. HUDDLESTON 
DIVISION 8322 • EXT. 2120. 

THE SUBROUTINE FITS ONLY IPTS POINTS (DEFAULT VALUE IS 91 
AT A TIHE. THESE POINTS ARE FIT WITH LEAST SQUARE 
POLYNOMIALS OF DEGREE D,1.2, •••• NDEG (DEFAULT VALUE = 3' 
AND A STATISTICAL DECISION SUBROUTINE IS THEN CALLED TO 
SELECT THE MOST REPRESENTATIVE DEGREE lESS THAN OR EQUAL 
TO NDEG eASED ON AN F DISTRIBUTION TEST. USING THIS DEGREE 
OF POLYNOMIAL A ~OUTIN£ IS THEN CALLED W~ICH EVALUATES 
NDERIV OERIVATIVES OF THE POLYNOMIAL. THESE DERIVATIVES 
ARE EVALUTED AT NEVAL FOINTS (DEFAULT VALUE = J) CENTERED 
ABOUT THE MIDOLE OF THE IPTS USED IN THE PCLYNOMIAL FITS. 
(NOTE THAT NEVAL AND IPTS ARE BOTH ODD.) THE FITTING 
POINTS A~E THEN SHIFTED BY NEVAL POINTS AND THE PROCESS 
CARRIED OUT REPEATEDLY UNTIL NTOTAL POINTS HAVE BEEN 
PROCESSED. THE NON-SYMMETRIES AT THE LEFT END AND RIGHT 
END OF THE DATA STRING ARE TAKEN CARE OF AUTOMATICALLY 
UNLESS IFlAG IS CHANGED FROM ITS DEFAULT VALUE OF ~. 

•••• INPUT PARA~ETERS •••••• 

x - SI~GLY DI~ENSIONED INPUT ARRAY OF ABSCISSAS. THE XCI) ARE 
ASSUMED TO BE MONOTONICALLY NO~-DECREASING. IF THEY ARE NOT, 
YOU SHOULD MAKE A CALL TO A SORTING ROUTINE SUCH AS SSDRT 
(AVAILABLE ON THE SANDIA MATHEMATICAL PROGRA~ LIBRARY'. X MUST 
BE DIMENSIONED BY AT LEAST NTOTAL. 

Y - SINGLY DIMENSIONED INPUT ARRAY OF ORDINATES CORRESPONDING TO 
THE X ARRAY. Y MUST BE DIMENSIONED BY AT LEAST NTOTAL. 

NTOTAL - THE NUMBER OF INPUT POINTS IN EACH OF X AND Y. 
NDERIV - THE NUMBER OF DERIVATIVES ONE WISHES TO COHPUTE. 
WEIGHT - WEIGHTING FOR ABSOLUTE OR RELATIVE ERROR IN THE 

POLYNOMIAL FITSI 
SET WEIGH-T = ~l· • .o FOR A8S0UlTE i..RRI)R 
SET WEIGHT = 1.0 FOR RELATIVE ERROR 

LPARAM - AN INTEGER ARRAY CONTAINING CERTAIN PARA"ETfRS WHICH 'RE 
DESCRIBED IN THE ABSTRACT BELOW. LPARAM MUST BE 
DIMENSIONED BY AT LEAST ~ IN THE CALLING PROGRAM • 
••••• IF THE USER SETS LPARA"CI) = 0 , I =1, •••• ~ IN 
••••• THE CALLING PROGRAM, SUBROUTINE FSMTHl WILL USE 
••••• DEFAULT VALUES FOR THE PARAMETERS. 
THE ELEMENTS OF THE ARRAY LPARAH CORRESFOND TO • 

lFARAM(l' = IPTS (IPTS MUST BE DOC. THE DEFAULT VALUE 
OF IPTS IS 9 , 

LPARAH(2) = NEVAL (NEVAL HUST BE 000. THE OEFAULT 
VALUE OF NEVAL IS 3 , 

LFARA~(3) = NDEG (NDEG MUST BE LESS THAN OR EQUAL 
TO IPTS-1. IT MUST BE LESS THAN 
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IPTS-1 If ANY SHOOTHING IS TO EE 
ACHIEVED. THE DEfAULT VALUE FOR 
NDEG IS 3 , 

LPARAMC4' = IFLAG CTHE DEFAULT VALUE Of IFLAG IS 4 • 
THIS SHOULD NOT BE ALTERED UNLESS 
YOU HAVE READ SAND74-8200 , 

•••• OUTPUT PARAMETERS •••••• 

Y - CONTAINS THE SMOOTHED VALUES OF THE ORDINATES CI.f. YCI' 
CONTAINS THE VALUE Of THE LEAST SQUARE POLYNOMIAL FIT 
EVALUATED AT XCI"~. 

YP - SINGLY DIME~SIONED OUTPUT ARRAY OF DERIVATIVES. THE J TH 
DERIVATIVE EVALUATED AT THE ABSCISSA XCI' IS LOCATED IN 
YPCI + (J-1'.NTOTAL'. YP MUST BE DI"ENSIO~ED BY AT LEAST 
NTOTAL·DERIV. AN AlTERNATIVE IS FOR YP TO BE A TWO 
DIMENSIONAL ARRAY DIMENSIONED YPCNTOTAL,NDERIVI. THEN 
YPCI,J' IS THE J TH DERIVATIVE AT XCI'. 

•••• STORAGE PARAMETER •••• 

WORK - SINGLY OIMENSIONED WORK ARRAY TO PROVIDE THE NECESSARY 
INTERNAL STORAGE FOR THE SUBROUTINE. IT MUST BE 
DIMENSIONED BY AT LEAST S.IPTS + 3·NDEG + 3. 
If ONE USES THE DEFAULT VALUES FOR IPTS AND NDEG, THEN 
WORK MUST BE DIMENSIONED BY AT LEAST 57. 

•••• NOTE. INVALID INPUT IS DIAGNOSED AND THE DIAGNOSTICS ARE 
PROCESSED BY ERRCHK. 

PVALUE PVALUE PVALUE PVALUE PVALUE PVALUE PVALUE 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE PVALUE CL,NDER,X,YfIT,YP,A' 

SANDIA ~ATHEMATICAl PROGRAM LIBRARY 

CONSULTANTS AT SLl INCLUDE -
R. E. HUDDLESTON CIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN 8Y L. F. SHAMPINE AND S. M. DAVENPORT. 

A9STRACT 

THE SUBROUTINE PVAlUE USES THE COEfFICIENTS GENERATED BY POLFIT 
TO EVALUATE THE FOLY~OMIAL FIT OF ORDER l, ALONG WITH THE FIRST 
NDER OF ITS DERIVATIVES, AT A SPECIFIED POINT. COMPUTATIONALLY 
STABLE RECURRE~CE RELATIC~S ARE USED TO PERFORM THIS TASK. 

THE PARAMETERS FOR PVAlUE ARE 

INPUT. 
l -

NDER -

x -

A -

THE ORDER OF POLYNOMIAL TO ~E EVALUATED. l MAY BE 
ANY NON-NEGATIVE INTEGER WHICH IS lESS THAN O~ EQUAL 
TO NORD, THE HIGHEST ORDER POLYNOMIAL PROVIDED 
ey POlFIT. 
THE NUMBER OF DERIVATIVES TO BE EVALUATED. NDER 
MAY BE 0 OR ANY POSITIVE VALUE. IF NDER IS LESS 
THAN O. IT WILL BE TREATED AS O. 
THE ARGUMENT AT WHICH THE POLYNO"IAL AND ITS 
DERIVATIVES ARE TO BE EVALUATED. 
WORK AND OUTPUT ARRAY CONTAINING VALUES FRO~ LAST 
C~lL TO POlFIT. 

. . 
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OUTPUTI 
YFIT -
YP -

aN ON 
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VALUE Of THE fITTING 
ARRAY CONTAINING THE 
Cf THE POLYNOMIAL Of 
DIMENSION~D AT LEAST 

POLYNOMIAL OF ORDER L AT X 
fIRST THROUG~ NDER DERIVATIVES 
ORDER L. YP MUST BE 

NDER IN THE CALLING PROGRA~. 

QN QN QN QN ON QN 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

QN QN QN 

SUBROUTINE aNCFOFX.NECN.X,MBANO,DISMAX,RELERR,ABSERR,IfLAG,RES, 
1 WORK,IWORK) 

WRITTEN BY L. f. SHAMPINE AND M. K. GORDON, 5122 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ABSTRACT 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE aN SOLVES A SYSTEM Of NEQN SIHULTANEOUS, NOhLINEAR 
EQUATIONS IN NEaN UNKNOWNS. THAT IS. IT SOLVES THE PROBLEM F(X' = 0 
WHERE X IS A VECTOR WITH COMPONENTS X(1', •••• XeNEQN' AND f IS A 
VECTOR OF NONLINEAR FUNCTIONS F(1) , •••• f(NEQN' EACH Of THE FORM 

F (It (X (1) •••• ,X ( NE aN)' = o. a 

THE SOLUTION VECTOR X IS LOCATED BY A QUASI-NEWTON ITERATICN 
SCHEME IN WHICH THE EQUATIONS ARE REPEATEDLY LINEARIZED AND SOLVED 
UNTIL SUCCESSIVE ITERATES CONVERGE. THE USER SUPPLIES AN INITIAL 
GUESS FOR THE SOLUTION AND A REGION ABOUT THAT GUESS KNOWN TO 
CONTAIN THE SOLUTICN. 

DETAILS CF THE USE OF THE CODE AND OF THE ALGORITHM ARE FOUND IN 
SAND 75-0450 • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
DECLARAT IONS 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
IN THE CALLING FROGRAH THE USER HUST DECLARE fOfX IN AN 
EXTERNAL STATEMENT AND DIMENSION THE ARRAYS X AND DISMAX 
AT LEAST NECN. THE ARRAY WORK AT LEAST 2.NEQN··Z+8.NEQN+4 
AND IWORK AT LEAST NEaN+7 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ON INPUT THE PARAMETERS IN THE CALL LIST ARE 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
FOFX - EXTERNAL SUBROUTINE OF THE FORM FOFX(X,f) TO 

EVALUATE THE EQUATIONS 
FCI"X(1).XC2), •••• XCNEaN»=0.I=1 •••• ,NEQ~ 

'lEaN - NU~BER OF EQUATIONS TO BE SOLVED. CDIMENSION Of 
X AND F IN FOFX) 

xc·, - VECTOR CONTAINING AN INITIAL GUESS FOR THE SOLUTION 
MBAND - THE SYSTEHOF -£QUAH<»IS IS SAIO - T-O-- HAVE HALF SAND 

WIDTH MBAND IF FOR EACH It EQUATION I INVOLVES ONLY 
THE VARIABLES xeJ' WITH A9S(I-J) .LE. "BAND. If THERE 
IS NO BAND STPUCTURE OR THE STRUCTURE IS NOT KNOWN. 
SET "BAND .GE. NEQN/2 

~ISHAXC.' - VECTOR SPECIFYING SIZE OF REGION IN WHICH 
SOLUTION IS SOUGHT. THE I-TH COMPONENT OF THE SOLUTION 
MUST BE BETWEEN XCI'-DISHAXCI) AND XCI)+DISHAXCI). 
ALL CCHPONENTS Of DIS MAX MUST BE POSITIVE NUMBERS 

RELERRtABSERR - RELATIVE AND ABSOLUTE ERROR TOLERANCES 
RESPEtTIVELY IN THE CONVERGENCE TEST. THE ITERATES ARE 
SAID TO HAVE CONVERGED WHEN THE CODE BELIEVES THAT 
ABS(ERRORCI') .LE. RELERR.ABSCX(l) + ABSERR 

fOR I=1,Z ••••• NEON 
NOTE THE DANGER OF TAKING ABSERR=O.O IF ANY SOLUTION 
COMPONENT IS ZERO 
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IFLAG - I~OICATCR FOR STATUS OF COMPUTATICN. ON FIRST CALL 
SET IT TO 1 

WORK(·' - REAL ARRAY USED FOR INTERNAL STORAGE 
IWORK(·' - INTEGE~ A~RAY FOR INTERNAL STORAGE 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ON OUTPUT THE ALTERED PARAMETERS ARE 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
XC·) - THE CURRENT APFROXIMATE SOLUTION CITERATE' 
IFLAG - I~DICATOR OF STATUS OF COMPUTATION 

= 2 THE ITERATES CONVERGED 
= 3 THE RESIDUAL OF THE CURRENT ITERATE IS TEN 

ORDERS CF ~AGNITUDE SMALLER THAN THAT OF 
INITIAL GUESS 

= 4 TOO MUCH WORK. THE ITERATES APPEAR TO BE 
CONVERGING SLOWLY 

= 5 TOO HUCH WORK. THE ITERATES 00 NOT APPEAR TO BE 
CONVERGING. SEE IFLAG=& FOR POSSIBLE REMEDIES 

= 6 THE ITERATES ARE NOT CONVERGING. POSSIBLE 
REASCN~ ARE 

1. A POOR INITIAL GUESS. CHOOSE 
ANOTHER INITIAL GueSS 

2. A POORLY SCALED PROBLEM. RESCALE 
THE INDEPENDENT VARIABLES ~ AND/OR THE 
DEPENDENT VARIABLES F 

3. THE ACCURACY REQUESTED IS NOT POSSIBLE 
DUE TO ERROR IN THE FUNCTION 
EVALUATIONS. INCREASE ERRCR 
TOLERANCES OR EVALUATE FUNCTIONS 
~ORE ACCURATELY. 

= 7 THE JACOBIAN MATRIX FORMED ay DIfFERENCING 
APPEARS SINGULAR. CHOSE ANOTHER INITIAL GUESS. 
RESCALE. INCREASE DISMAX. O~ REORDER THE 
EQUATIC~S AND TRY AGAIN 

= 8 SUCCESSIVE ITERATES LIE OUTSIDE THE ~EGION 
SPECIFIED BY DISHAX. CHOOSE ANOTHER INITIAL 
GUESS OR INCREASE DISMAX AND TRY AGAIN 

= q INVALID INPUT. VALID INPUT IS 
NEQN .GE. 1 
"BAND .GE. 1 
DISMAX(I' .GT. C. I=1 ••••• NEQN 
RELERR .G£. D. ABSERR .GE. C, AND 
A~AX1CRELERR.ABSERRJ .GT. C 
1 .LE. If LAG .LE. 8 

~ES - THE SIZE OF THE RESIDUAL F. (THE LENGTH Of 
THE VECTOR' 

WORKC.' - COMPONENTS 2.3 ••••• NEQN+1 CONTAIN THE ITERATE 
ASSOCIATED WITH THE SMALLEST RESIDUAL SEEN IN THE 
COMPUTATION AND WORKC1' CONTAINS THE SIZE OF 
THAT RESIDUAL. USUALLY. BUT NOT ALWAYS. THESE ARE THE 
SAME VALUES AS STORED IN X AND RES, RESPECTIVELY. 

THE USER MAY CONTINUE THE ITERATION PROCESS BY CALLING QN AGAIN WITH 
THE OUTPUT VALUES OF X AND IF LAG. THIS IS REASONABLE IN THE CASE 
IFLAG=3 WHEN THE SOLUTION RETURNED IS NOT SUFFICIENTLY ACCURATE; IT 
~AY BE REASONABLE WHEN IFLAG=4. WITH ALL KEMAINING FLAGS FOk 
NON-CONVERGENCE. THE USER S~OULD TAKE THf SUGGESTED ACTION AND 
CALL QN AGAIN WITH IFLAG = 1 (RESTART'. 

THE USER HAS THE OPTION OF EXA~INING THE SOLUTIO~ VECTOR AND 
RESIDUAL AFTER EACH ITERATION. TO DO SO, HE MUST SUPPLY A 
SUBROUTI~E NAMED QNCHK OF THE FORM SUBROUTINE QNCHKCX.RES' WHICH 
PRINTS OUT OR OTHERWISE USES THE INFORMATION. FOR EXAMPLE, 

SUBROUTINE QNCHKCX,RES' 
DIMENSION XC1' 
PRINT 1.X.RES 

1 FORMATC ••• ' 
RfTUR~ 
END 

, ' 
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QNC3 QNC3 QNC3 QNC3 QNC3 QNC3 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE QNC3 CFUN.A,B,ERR.ANS,IERRJ 

SANDIA ~ATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. 4EFFERSON DIVISION 8322 

ORIGINAL TECHNIQUE WAS ALGORITHM 162 CACM 6 (lq63) 315 
PRESENT VERSIC~ BY R E JONES, SANDIA LABORATORIES 

QNC3 QNC3 

SALIENT FEATURES -- INTERVAL BISECTION, COMBINED RELATIVE/ABSOLUTE 
ERROR CONTROL, ESTIMATION OF TOTAL QUADRATURE ERROR, CCHPUTED 
HAXI~UM REFI~E~ENT LEVEL WHEN A IS CLOSE TO B. 

ABSTRACT 
QNC3 INTEGRATES REAL FU~CTIONS OF ONE VARIAeLE OVER FINITE 
INTERVALS, USING AN ADAPTIVE SIMPSONS-RULE C3-POINT NEWTON
COTES) ALGORITHM. FOR VALUES OF ERR SMALLE~ THAN ABOUT 1.0E-6 
QNC3 BECOMES RELATIVELY INEFFICIENT AND QNC7 OR GAUSS SHOULD 
BE US EO INSTEAD. 

DESCRIPTION OF ARGUMENTS 

INPUT--
FUN -

A 
B 
ERR -

NAME OF EXTERNAL FUNCTION TO BE INTEGRATED. THIS NAME 
MUST BE IN AN EXTERNAL STATEMENT IN THE CALLI~G PROGRAM. 
FUN MUST BE A FUNCTIO~ OF ONE REAL ARGUMENT. THE VALUE 
OF THE ARGUMENT TO FUN IS THE VARIABLE OF INTEGRATION 
WHICH RANGES FROM A TO B. 
LOWER LIMIT OF INTEGRAL 
UPPER LI~IT OF INTEGRAL CMAY 6E LESS THAN A) 
IS A REQUESTED ERROR TOLERANCE. NORMALLY PICK A VALUE OF 
ABSCERRJ.LT.l.E-3. ANS WILL NORMALLY HAVE NO MORE ERROR 
THAN ABSCERRJ TIMES THE INTEGRA~ OF THE ABSOLUTE VALUE 
OF FU~(XJ. USUALLY, SMALLER VALUES FOR ERR YIELO 
MORE ACCURACY AND REQUIRE MORE FUNCTION EVALUATIONS. 
A NEGATIVE VALUE FOR ERR CAUSES AN ESTIMATE OF THE 
ABSOLUTE ERROR IN ANS TO BE RETURNED IN ERR. 

OUTPUT--
ERR - WILL eE AN ESTIMATE OF THE ERROR IN ANS IF THE INPUT 

VALUE OF ERR WAS NEGATIVE. THE ESTIMATED ERROR IS SOLELY 
FOR INFOR~ATION TO THE USER AND SHOULC NOT BE USED AS 
A CORRECTION TO THE COMPUTED INTEGRAL. 

ANS - COMPUTED VALUE OF INTEGRAL 
IE~R- A STATUS CODE 

--NORMAL CODES 
1 ANS MOST LIKELY MEETS REQUESTED ERROR TOLERANC[, 

OR A=B. 
-1 A AND B ARE TOO NEARLY EQUAL TO ALLOW NORMAL 

INTEGRATIO~. ANS IS SET TO ZERO. 
--ABNORMAL CODE 

2 ANS FROBABLY COES NOT MEET REQUESTED ERROR TOLERANCE. 
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ONC7 QNC7 QNC7 ONC7 QNe7 ONel 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE ONC7 (FUN,A,B,ERR,A~S,IERR) 

SANDIA MATHEMATICA~ PROG~AM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. ~UODLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

ORIGINAL ROUTI~E BY DAVID L. KAHANER, LASL 
PRESENT VERSIO~ BY R E JONES, SANDIA LABORATORIES 

ONe7 ONC7 

SALIENT FEATURES -- INTEPVAL BISECTION, COHBINED RELATIVE/ABSOLUTE 
ERROR CONTROL, ESTIMATION OF TOTAL QUADRATURE ERROR, COMPUTED 
HAXI~UH REFI~EHENT LEVEL WHEN A IS CLOSE TO B. 

ABSTRACT 
ONC7 INTEGRATES REAL FUNCTIONS OF ONE VARIABLE OVEK FINITE 
INTERVALS, USING AN APAPTIVE 7-POINT NEWTON-COTES ALGORITHM. 
QNC7 IS EfFICIE~T O~ER A WIDE RANGE OF ACCURACIES, BUT QNC3 
MAY BE MORE EFFICIENT eN DIFFICULT LON ACCURACY PROBLEMS, 
AND GAUS8 MAY BE MORE EFFICIENT ON HIGH ACCURACY PROBLEMS 
(ERR LESS THAN 1.GE-8, SAY) OR ON PROBLEMS INVOLVING VERY 
SHOOTH FUNCTICNS. 

DESCRIPTION OF ARGuMENTS 

INPuT--
FUN -

A 
B 
ERR -

NAME OF EXTERNAL FUNCTION TO BE INTEGRATED. THIS NAME 
~UST eE IN AN EXTERNAL STATEMENT IN THE CALLING PROGRAM. 
FUN MUST BE A FU~CTIO~ OF ONE REA~ ARGUMENT. THE VA~UE 
OF THE ARGUMENT TO FUN IS THE VARIABLE CF INTEGRATION 
WHICH RANGES FROM A TO B. 
LOWER LIMIT OF I~TEGRAL 
UPPER LIMIT OF INTEGRAL (HAY BE LESS THAN A) 
IS A REGUESTED E~ROR TOLERANCE. NORMALLY PICK A VALUE OF 
ABS(ERR).LT.1.E-3. ANS WILL NORMALLY HAVE NO HORE ERROR 
THAN ABS(ERR) TIMES THE INTEGRAL OF THE ABSOLUTE VALUE 
OF FU~(X', USUALLY, SMALLER VALUES FCR ERR YIELD 
MORE ACCURACY ANO REQUIRE MORE FUNCTION EVALUATIONS. 
A NEGATIVE VALUE FOR ERR CAUSES AN ESTIMATE OF THE 
ABSOLUTE ERROR IN ANS TO BE RETURNED IN ERR. 

OUTPUT--
ERR - WILL BE AN ESTIMATE OF THE ERROR IN ANS IF THE INPUT 

VALUE OF ERR WAS NEGATIVE. 
ANS - COMPUTED VALUE OF INTEGRAL 
IERR- A STATUS CODE 

--NOR~AL COOES 
1 ANS ~OST LIKELY MEETS REQUESTED ERROR TOLERANCE, 

OR A=B. 
-1 A AND BARE TCO NEARLY EQUAL TO ALLOW NORMAL 

INTEGRATIO~. ANS IS SET TO ZERO. 
--ABNCR~AL CODE 

2 ANS PROBABLY DOES NOT HEET REQUESTED ERRCR TOLERANCE. 
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RBND2 RBt-i02 RBN02 RBN02 RBND2 RBND2 RBND2 RBN02 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE RBND2CN.COEF,WR,WI,A8SERR,RELERR,KLUST,KER) 

SANDIA ~ATHEMATICAL FROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUOE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY CARL B. BAILEY AND MODIFIED BY WILLIAM R. GAVIN 

ABSTRACT 

THIS ROUTINE COMPUTES ERROR BOUNDS AND CLUSTER COUNTS 
FOR APPROXIMATE ZEROS OF A POLYNOMIAL WITH REAL COEFFICIENTS. 
THE ZEROS MAY HAVE BEEN COMPUTED BY ANY APFROPRIATE ROUTINE. 
(FOR EXA~PLE, BY RPQR) 
THE METHOD USED IS BASED ON THE FACT THAT THE VALUE OF A 
POLYNOMIAL AT ANY POINT IS EaUAL TO THE LEAOING COEFFICIENT 
TIMES THE PReOUCT OF THE DISTANCES FROM THAT POINT TO EACH 
OF THE ZEROES. GIVEN THE VALUE OF THE POLYNOMIAL AT AN 
APPROXIMATE ZERO, RBND2 COMPUTES FOR EACH APPROXIMATE ZERO 
THE RADIUS OF A CI~CLE AeOUT THAT APPROXIMATE ZERO WHICH 
CONTAINS A TRUE ZERO OF THE POLYNOMIAL. USING THE KNOWN 
OISTRIBUTICN CF APFRCXIHAT~ ZEROES, AN ITERATIVE PROCEDURE 
IS USED TO SHRINK THE RADII OF THE CIRCLES. 

DESCRIPTION OF ARGUMENTS 
THE USER MUST DIMENSION ALL ARRAYS APPEARING IN THE CALL LIST 

COEFCt.+U, WRCN), WI(t.), ABSERRCNJ, RELfRRCN), KLUSTCN) 

INFUT---
N - DEGREE OF THE POLYNOMIAL CNUMBER CF ZEROS). 
COEF - REAL ARRAY Of N+l COEFFICIENTS IN ORDER OF DESCENDING 

POWERS OF Z, I.E. 
FCZ) = COEF(1).(Z··N) + ••• + COEFCN).Z + COEFeN+1) 

WR - REAL ARRAY OF N R~AL PARTS OF APPROXIMATE ZEROS. 
WI - REAL ARRAY OF N I~AGINARY PARTS OF APPROXIMATE ZEROS. 

OUTPUT--
ABS~RR - REAL ARRAY CF ABSOLUTE ERROR BOUNDS. ABSERR(I) IS 

THE ABSOLUTE ERROR BOUND IN THE ZERC (WRCI),WI(I). 
RELERR - REAL ARRAY OF RELATIVE ERROR BOUNDS. RELfRReI) IS 

THE RELATIVE ERROR BOUND IN THE ZERO CNRCI),WI(I). 
KLUST - INTEGER ARRAY OF CLUSTER COUNTS FOR ZEROS. THE TRUE 

ZERO CORRESPONDING TO I-TH APPROXIMATE ZERO LIES IN 
A CIRCLE OF RADIUS ABSERR(I). KLUST(I) IS THE NUMBER 
OF CIRCLES INCLUDING THE I-TH CIRCLE WHICH OVERLAF 
THE I-TH CIRCLE. THE CLUSTER COUNT OFTEN INDICATES 
THE MULTIPLICITY OF A ZERO. 

KER - AN ERROR FLAG 
-NORMAL CODE 

o MEANS THE BOUNDS AND COUNTS WERE COMPUTED. 
-ABNCRMAL COOES 

1 N -(DEGREE.) I4US-l S& .GE. 1 
2 LEADING COEFFICIENT IS ZERO 
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ROET RDET RDET RDET RDfT RDET 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE RDET(ND,N,A,DET,KER) 

SANDIA MATHEHATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. ~UDDLESTON DIVISION 8322 
T. H. JEffERSON DIVISION 8322 

WRITTEN BY CARL B. BAILEY, HAY 1972. 

ABSTRACT 

RDET 

ROET EVALUATES THE DETERMINANT Of A REAL MATRIX -A-. 

RDET 

THE MATRIX -A- IS OECCMPOSEO BY GAUSSIAN ELIMI~ATICN INTO THE 
FROOUCT Of TRIANGULAR fACTORS -l- ANO -U-. THE DETERMINANT Of 
-A- IS COMPUTED THEN AS THE DETERMINANT Of -L- TIMES THE 
DETERMINANT OF -u-. 

ROET SHOULD NOT BE USED TO SOLVE SYSTEMS Of lI~AR ALGEBRAIC 
EQUATIONS, SAY BY CRAMER-S RULE. SYSTEMS OF LINEAR ALGEBRAIC 
EQUATIONS SHCULO BE SCLVED DIRECTLY USING SAXB O~ SAXBl. 
RDET CALLS THE ROUTINE RlUD TO PERfORM LU DECOMPOSITION. 

REfERE~CE 
1. G.E.fORSYTHE AND C.S.MOLER, COMPUTER SOLUTIO~ Of LINEAR 

ALGEBRAIC EQUATIONS, PRENTICE-HALL, 1967 

DESCRIPTION Of ARGUMENTS 
THE USER HUSl DIMENSICN ALL ARRAYS APPEARING I~ THE CALL LIST 

ACND,N) 

--INPUT---
NO - THE ACTUAL FIRST DIMENSION OF THE ARRAY -A-. 
N - NUMBER OF ROWS IN MATRIX -A- (1 .LE. N .LE. NO) 
A - AN ARRAY DIMENSIONED WITH EXACTLY -ND- ROWS AND 

--OUTPUT--

AT LEAST -N- COLUMNS. THE -N- BY -N- LEADING 
SUBARRAY HUST CONTAIN THE COEFFICIENT MATRIX -A-. 

A - WILL BE DESTROYED DURING EVALUATION OF A DETERMINANT. 
DET - WILL BE THE DETERMINANT OF -A- UNLESS KER .NE. O. 
KER - AN ERROR CODE 

--NORHAL CODES 
Q MEANS NO ERRORS WERE DETECTED 

--AANCRHAL COrES 
1 MEANS -ND- WAS NOT IN THE RANGE 1 .lE. NO .LE. 325 
2 MEANS -N- WAS NOT IN THE ~ANGE 1 .lE. N .LE. NO. 

.. 
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IOENT RFFT 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

SUBROUTINE RFFTCDATA.NI 

ABSTRACT 

RFFT 

RFFT COMPUTES THE ONE-DIMENSIONAL FAST FOURIER TRANSFORM OF 
REAL DATA OF LENGTH N, WHERE N IS A POWER OF TWO. 

RFFT 

IF N IS A peWER OF TWO, THE COMPUTATION PERFORMED BY THE CALL, 
CALL RFFT(DATA.N) 

IS EQUIVALENT TO THAT PERFORMED BY THE CALL, 
CALL FCURTR(DATA,N,-1.0' 

EXCEPT THAT RFFT IS THREE TO FIVE TIMES FASTER THAN FOURTR. 
EXECUTION TIME FOR qFFT IS ABOUT 2.8E-6·~LOG2(NI SECONDS 
ON THE CDC6600. FOR N=1024, THIS IS ABOUT 28 MILLISECONDS. 

RFFT IS WRITTEN IN THE CDC6600 ASSEMBLY LANGUAGE, COMPASS. 
THUS, IT IS NOT CONVERTIBLE TO OTHER COMPUTER SYSTEMS. 
USERS NEEDING MACHINE INDEPENDENCE SHOULD USE THE 
FOURTR/FOURTH/FOURT PACKAGE (OR OTHER COHPARABLE ROUTINES 
AVAILABLE FROM THE MATH LIBRARY PROJECT' INSTEAD OF RFFT/RFFTI. 

RFFT COMPUTES ONLY THE NO~-REDUNDANT COEFFICIENTS OF THE 
DISCRETE FCURIER TRANSFCR~. THAT IS, IT CC~PU1ES THE 
FOURIER COSINE AND SINE CCEFFICIENTS FOR 0 TO N/2 CYCLES 
OVER THE GIVEN TIME COR SPACE) INTERVAL. THESE TWO 
COEFFICIENTS. FOR THE FREQUENCY OF K CYCLES OVER THE GIVEN 
INTE~VAL, ARE DEFINED AS FOLLOWS--

N 
COS COEF(K' = SUH 
SIN COEFCK) = -SUM 

1=1 

DATACI'·CCS(Z·PI·CI-1'·K/N, 
DATA(I)·SINtZ·PI·CI-1'·K/N' 

THESE TWO COEFFICIENTS ARE RETURNED IN DATA(Z·K+1' AND 
DATA(Z·K+Z), RESPECTIVELY, FOR K=O TO N/Z. 
THUS, THE ARRAY, OATA, MUST BE DIMENSIONED AT LEAST 
Z·CNIZ+1) = N+2. COEFFICIE~TS FOR FR£QUENCIES 
FRO~ N/Z+1 TO N-1, IF DESIRED, MAY BE COMPUTED BY THE SIHPLE 
RELATlCNS, 

COS COEF(N-K' = COS COEFCK) 
SIN COEF(N-K) = - SIN CO~FCK' 

NOTE THAT THE INPUT VALUES HUST CORRESPOND TO EQUALLY 
SPACED TIME (OR SPACE) VALUES. NOTE ALSO THAT SIN COEF(O) 
AND SIN COEF(N/2) WILL ALWAYS BE ZERO. 

SE~ SUPROUTINE RFFTI FOR TH~ CORRESPONDING INVERSE TRANSFORM. 

DESCRIPTICN OF ARGUMENTS 
THE US~R ~UST DIMENSION THE ARRAY, DATACN+ZJ 

INPUT---
OATA -

N 

REAL ARRAY WHICH CONTAINS THE DATA TO BE T~ANSFORMEO. 
DATA ~UST BE OI~ENSIONEO AT LEAST N+Z, THE FIRST N 
WORDS CON-fA I t-lI)jG T~E II A-\.-UgS TO 8E TRAN-SFORH£-O~

NUHfER OF VALUES TO BE TRANSFORMED. N MUST BE A 
POWER OF TWO, AND IT MUST BE IN THE RANGE OF 4 TO 
65536=2··16. IF N IS Nor A POWER OF TWO OR IS OUT 
OF THE STATED RANGE. A FATAL PROGRAM ERROR WILL RESULT. 

OUTPUT---
DATA - HILL CONTAIN THE COSINE AND SINE COEFFICIENTS FOR 

FREQUE~CIES 0 TC N/2, AS DESCRlBED IN THE ABSTRACT. 

REFERE ~CES 
11' R C SINGLETON, .ON CO~PUTI~G THE FAST FOURIER TRANSFORM., 

COMM. ACM, VOL 10, 1 Q 67, PP 647-654. 
(Z. LASL LIBRARY ROUTI~E LA-F5~1A, BY B R HUNT. 

AUTHOR 
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THE ORIGI~AL COMPASS VERSION OF THIS CODE WAS WRITTEN 
BY B R HUNT OF LASL. THIS VERSION WAS PREPARED FOR THE 
SANDIA MATH LIBRARY BY R E JONES. DIV Z6~Z, APRIL 1975 

RFFTI RFFTI RFFTI RFFTI RFFTI RFFTI 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
IOENT RFFTI 

SUBROUTINE RFFTICO~TA.N' 

ABSTRACT 

RFFTI 

RFFTI COMPUTES THE CNE·DIHENSIDNAL INVERSE FAST FOURIER 
TRANSFORM, GIVEN N/l+1 COSINE AND N/Z+1 SINE COEFFICIENTS 
IN THE FORM RETURNED BY RFFT CO~ BY FOURTR. OR BY FOURT, IF 
IFORM=O WAS USED'. WHERE ~ IS A POWER OF TWO. 
IF N IS A POWER OF TWO, THE COMPUTATION PEPFORMED BY THE CALL, 

CALL RFFTICDATA,N' 
IS EQUIVALENT TO THAT PERFORMED BY THE CALL. 

CALL FCURTHCDATA,N,+1,O) 
EXCEPT THAT RFFTI IS THREE TO fIVE TIMES FASTER THAN FOURTH. 
EXECUTION TIME FOR RfFTI IS ABOUT Z.9E·6.N·LOGZ(N) SECONDS 
ON THE COC6600. FOR N=10Z4. THIS IS ABOUT 29 MILLISECONDS. 

RFFTI IS WRITTEN IN THE CDC6600 ASSEMBLY LANGUAGE, COMPASS. 
THUS, IT IS NOT READILY CONVERTIBLE TO OT~ER CO~PUT£R SYSTEMS. 
USERS NEEOING MACHINE INDEPENCE SHOULD USE THE 
fOURTR/FOURTH/FOURT PACKAGE (OR OTHER COMPARABLE ROUTINES 
AVAILABLE FROM THE LIBRARY PROJECT) INSTEAD OF RFFT/RFfTI. 

THE CALCULATION PERFORMED BY RFFTI IS EQUIVALENT 
TO THE FOLLCWING, WHERE THE SUMS ARE fROM 1=1 TO I=~/2·1, 
AND 1(= 1 T C N. 

R~SULTCK) = DATA(1) 
+ 2·SUHC DATACZ·I+1'.COSC2·PI·I·CK-1)/N) 
• Z.SUMC DATACZ·I+Z).SINC2.PI·I4CK·1)/N' 
+ DATACN+1)·COSCPI·CK-1)' 

THUS, FOR 1=0 TO NIl. THE INPUT OATACZ·I+1) AND OATAC2·I+Z) 
MUST BE THE COSINE AND SINE COEFFICIENTS FOR THE FREQUENCY OF 
I.OF, WHERE OF IS THE FREQUENCY SPACING. 
CNOT~ THAT THE INPUT DATA(Z) AND DATA(N+2) ARE ASSU~ED TO = 0.) 
RESULT(1) TO R[SULTCN) WILL BE RETURNfD IN OATA(1) TO DATAC~), 
AND OATACN+1J AND OATACN+2) WILL BE SET TO ZERC. 
~ESULTCI) WILL CORRESPOND TO A TIME VALUE OF CI-1)/CN·OF), 
FOR 1=1 Te N. 

NOTE-- A CALL TO RFFT FOLLOWED BY A CALL TO RFFTI CWITH NO 
NO OHlER CALCYL--ATlClNS OO~ I-N -8£+WU-N"-IU~," ~SUk T -IN
MULTIPLICATION Of THE ORIGINAL DATA BY THE VALUE OF N. 
THIS F~CTOR OF N MUST EE ACCOUNTED FOR AS APPROPRIATE 
IN THE GIVEN ~PPLICATICN. 

SEE SUBROUTINE RFFT FCR THE COR~ESPONOING FORWARD TRANSfORM. 

DESCRIFTION OF ARGUMENTS 
THE USER MUST OIMENSIO~ THE ARRAY, OATACN+2) 

INPUT- --
O_TA - REAL OR COMFLEX ARRAY CONTAINING THE N/2+1 PAIRS OF 

COEFFICIENTS, IN THE FORM DISCUSSED ABOVE. CI.E •• IN 
THE FORM RETURNED BY RFFT.) 

N - THE NUMBER OF REAL VALUES THAT ARE TC RESULT FROH 
THE INVERSE TRA~SFORM. N MUST BE A POW~R OF TwO 
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AND IT ~UST BE IN THE RANGE OF 4 TO 65536=2.·16. 
IF N IS NOT A POWER OF TWO OR IT IS OUT OF THE STATED 
RANGE. A FATAL PROGRAM ERROR WILL RESULT. 

OUTPUT---
DATA - WILL CCNTAIN THE REQUESTED INVERSE TRANSFORM IN 

DATA(1) TO DATACN). OATA(N+l) ANO DATACN+2) WILL = O. 

REFERE r-CES 
(1) R C SINGLETCN •• ON CCMPUTING THE FAST FOURIER TRANSFORM·, 

COMM. ACM. VOL 10, 1967, PP 647-654. 
(2) LASL LIBRARY ROUTINE LA-F502A. BY B R HUNT. 

AUTHOR 
THE ORIGI~AL CCMPASS VERSIO~ OF THIS CODE WAS WRITTEN 
BY B R HUNT OF LASL. THIS VERSION WAS PREPARED FOR THE 
SANDIA HATH LIBRARY BY R E JONES. DIV 2642. APRIL 1975 

RKF RKF RKF RKF RKF RKF RKF 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

RKF 

SUBROUTINE RKF(F.NEO,Y.X,XOP,RELERR,ABSERR.IFLAG,WORK,IWORK) 

SANDIA ~ATHEHATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

FEHLBERG FOURTH-FIFTH ORDER RU~GE-KUTTA METHOD 

WRITTEN BY H.A.WATTS AND L.F.SHAMPINE 

RKF IS P~IMARILY DESIGNED TO SOLVE NON-STlFF AND MILDLY STIFF 
DIFFERE~TIAL EQUATIONS WHEN DERIVATIVE EVALUATIONS ARE CHEAP. 
RKF SHOULD GENERALLY NOT BE USED WHEN THE USER IS DEMANDING 
HIGH ACCURACY. INSTEAD, USE SUBROUTINE ODE. AND FOR STIFF 
PROBLEMS USE SUBRCUTINE STIFF (AVAILABLE IN MATH2 LIBRARY). 

RKF 

THE CODE ATTEMPTS TO JUDGE WHETHER OR NOT THE GIVEN PROELEM CAN BE 
EFFICIENTLY SOLVED BY RKF. THIS DECISION IS BASED UPON THE 
REQUESTEO ACCURACY, THE NUMBER OF OIFFERENTIAL EQUATIONS, AND THE 
REAL TIME COST INCURRED IN SOLVING THE PROBLEM. THE COST 
EFFECTIVENESS OF RKF IS ROUGHLY COMPARED TO THE USE OF CDE • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ASST RACT 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUDROUlInf RKf' -IKTE~Al£S- A ·S'tSTEJ1-OF·~ -F--IRST OR.QE~ -
ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM 

DY(I)/DX = F(X.Y(1).Y(Z), •••• Y(NEQ)) 
WHERE T~E Y(I) ARE GIVEN AT X • 

TYPICALLY THE SU8~OUTINE IS USED TO INTEGRATE FROM ~ TO XOP BUT IT 
CAN BE USED AS A ONE-STEP INTEGRATOR TO ADVANCE THE SOLUTION A 
SINGLE STEP IN THE DIRECTION OF XOP. ON RETURN THE PARAMETERS IN 
THE CALL LIST ARE SET FOR CONTINUING THE INTEGRATION. THE USER HAS 
ONLY TO CALL RKF AGAIN (AND PERHAPS DEFINE A NE~ VALUE FOR XOP). 
ACTUALLY, RKF IS AN INTERFACING ROUTINE WHICH CALLS SUBROUTINE RKFS 
FOR THE SOLUTIC~. RKFS IN TURN CAlLS'SUBROUTINE FEHL WHICH 
COMPUTES AN APFROXIMATE SOLUTION OVER ONE STEP. 

qKF USES THE RUNGE-KUTTA-FEHLBERG (4,5) HETHOD DESC~IBED 
IN THE REFERENCE 
E.FEHL8EQG , LeW-ORDER CLASSICAL RUNGE-KUTTA FORMULAS WITH STEPSIZE 
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CCNTROl , NASA T~ R-315 

THE PARAMETERS REPRESENT-
F -- SUBROUTI~E F(X,Y,YP' TO EVALUATE DERIVATIVES YP(I'=DY(I)/DX 
NEQ -- NUMBER OF EQUATIONS TO BE INTEGRATED 
Y(·) -- SOLUTION VECTOR AT X 
X -- INDEPENOENT VARIABLE 
XOP -- OUTPUT POINT AT WHICH SOLUTION IS DESIRED 
RELERR,ABSER~ -- RELATIVE AND ABSOLUTE ERROR TOlERA~CES FOR LOCAL 

ERROR TEST. AT EACH STEP THE CODE REQUIRES THAT 
AES(LCCAL ERROR) .LE. RELERR.A8S(Y) + ABSERR 

FOR EACH CO~PONENT OF THE LOCAL ERROR AND SOLUTION VECTORS 
IFLAG -- INDICATOq FOR STATUS OF INTEGRATION 
WORK(·) -- ARRAY TO HOLD INFORMATION INTERNAL TO RKF WHICH IS 

NECESSARY FOR SUBSEQUENT CALLS. MUST eE DIMENSIONED 
AT lEAST 3+6·NEQ 

IWORK(·' -- INTEGER ARRAY USED TO HOLD INFORMATION INTERNAL TO 
RKF WHICH IS NECESSARY FOR SUBSEQUENT CALLS. ~UST BE 
OI~ENSICNED AT LEAST 6 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
FIRST CALL TO RKF 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
THE USER MUST PROVIDE STORAGE I~ HIS CALLING FROGRA~ FOR THE ARRAYS 
IN THE CALL LIST Y(NEQ) , WGRK(3+o·NEC) • IWORK(6) • 
DECLARE F IN A~ EXTERNAL STATEMENT, SUPPLY SUERCUTINE F(X,Y,YP) AND 
INIT1ALIZE THE FCLLOWING PARA~ETERS-

NEQ -- NUMBER OF EQUATIO~S TO BE INTEGRATED. (N~Q .GE. 1) 
Y(.) -- VECTOR OF INITIAL CCNCITIONS 
X -- STARTING PCINT OF INTEGR~TION • MUST BE A VARIABLE 
XOP -- OUTPUT PCINT AT WHICH SOLUTION IS DESIRED. 

X=XOP IS ALLOWED ON THE FIRST CALL ONLY. IN WHICH CASE RKF 
~ETURNS WITH IFLAG=2 IF CONTINUATION IS POSSIeLE. 

RELERP,A8SERR -- RELATIVE AND ABSOLUTE LOCAL ~RROR TOLE~ANC£S 
WHICH MUST 9E NON-NEGATIVE BUT MAY BE CONSTANTS. THE CODE 
SHOULD NORMALLY NOT BE USED WITH kELATIVE ERROR TOLERANCES 
SMALLER THAN ABOUT 1.E-6. TO AVOID LIMITIhG PRECISION 
OIFFICULTIES TH~ ceDE ALWAYS USES THE LARGER CF RELERR 
AND REMIN FOR THE INTERNAL ~ELATIVE ERROR PARAHETER. 
~E~IN IS A MACHINE DEFENOENT CONSTANT WHICH IS SET IN A 
DATA STATEMENT. (REMIN = 1.E-12 fOR CDC6EOO) 

IFLAG -- +1,-1 INDICATOR TO INITIALIZE THE ceDE FOR EACH NEW 
PROBLE~. ~ORHAL INPUT IS +1. THE USER SHOULD SET IFLAG=-l 
ONLY hHEN ONE-STEP INTEGRATOR CONTROL IS ESSENTIAL. IN THIS 
CASE. RKF ATTEMPTS TO AOVANCE THE SOLUTION A SINGLE STEP 
IN THE DIRECTIO~ OF XO? EACH TIHE IT IS CALLED. SINCE THIS 
MODE OF OFERATION RESULTS IN EXTRA COMPUTING OVERHEAD, IT 
SHOULD BE AVOIDEO UNLESS NEEDED • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
OUTPUT FRCM RKF 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
H-.' .- S(\!.UTI ON A T X 
X -- lAST PCINT REACHED IN INTEGRATION. 
IFLAG = 2 INTEGRATION REACHED XOP. INDICATES SUCCESSFUL RETURN 

AND IS THE NORMAL MODE FOR CONTINUING INTEGRATIO~. 
=-2 A SINGLE SUCCESSFUL STEP IN THE CIRECTIO~ OF XOP HAS 

BEEN TAKEN. NOR~AL HODE FOR CONTINUING INTEGRATICN 
ONE STEP AT A TIME •. 

= 3 -- INTEGRATION WAS NOT COMPLETED B~CAUSE MORE THAN 
6000 DERIVATIVE EVALUATIONS WERE NEEDED. THIS 
IS APPROXI~ATELY 1000 STEPS. 

= 4 -- INTEGRATION WAS NOT COMPLETED BECAUSE SOLUTION 
VANISHED MAKING A PURE RELATIVE ERROR TEST 
IMPOSSIBLE. MUST USE NON-ZERO ABSERR TO CONTINUE. 
USING THE OhE-STEP INTEGRATION MODE FOR CN~ STEP 
IS A GOOD WAY TO PROCEED. 

= S -- INTEGRATION WAS NOT CO~PLETED BECAUSE RECUESTED 
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ACCURACY COULD NOT BE ACHI~VED USING SMALLEST 
ALLOWABLE STEPSIZE. USER MUST INCREASE THE ERROR 
TOLERANCE BEFORE CONTINUED INTEGRATION CAN BE 
A TTE MPTE D. 

= 6 -- IT IS LIKELY THAT RKF IS INEFFICIENT FOR SOLVING 
THIS PROBLEM. USE SUBROUTINE ODE FOR NON-STIFF 
EQUATIONS AND SUBROUTINE STIFF FOR STIFF 
DIFFERENTIAL EQUATIONS. 

= 7 -- INVALID INPUT PARAMETERS (FATAL ERROR UNLESS 
OVERRIDDEN BY CALL TO ERXSfT) 
THIS INDICATOR OCCURS IF ANY OF THE FOLLOWING IS 
SATISFIED - NEa .LE. 0 

X=XOP AND IFLAG .NE. +1 OR -1 
RELERR OR ABSERR .LT. O. 
IFLAG .EQ. 0 OR .LT. -2 OR .GT. 7 

WORK(·',IWORKC·) -- INFORMATION WHICH IS USUALLY OF NO INTEREST 
TO THE USER BUT NECESSARY FOR SUBSEQUENT CALLS. 
WORK(1' •••• ,WORKCNEQ) CONTAIN THE FIRST DERIVATIVES 
OF THE SOLUTION VECTOR Y AT X. WORK(NEQ+1) CONTAINS 
THE STEPSIZE H TO BE ATTEMPTED ON THE NEXT STEP. 
IWORK(1) CONTAINS THE DERIVATIVE EVALUATION COUNTER • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBSEQUENT CALLS TO RKF 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
SUBROUTINE RKF RETURNS WITH ALL INFORMATION NEEDED TO CONTINUE THE 
INTEGRATION. IF THE INTEGRATION REACHED XOP,THE USER NEED ONLY 
DEFINE A NEW XOP AND CALL RKF AGAIN. IN THE ONE-STEP INTEGRATOR 
MOOf (IFLAG=-Z) THE USER MUST KEEP IN MIND THAT EACH STEP TAKEN IS 
IN THE DIRECTIO~ OF THE CURRENT XOP. UPON REACHING XOP (INDICATED 
BY CHANGING IF LAG TO 2),THE USER MUST THEN DEFINE A NEW XOP AND 
RESET IFLAG TO -Z TO CONTINUE IN THE ONE-STEP INTEGRATOR "ODE. 

IF THE INTEGRATIO~ WAS NOT CO~PLETED BUT THE USER STILL WANTS TO 
'CONTINUE (IFLAG=3 C4SE', HE JUST CALLS RKF AGAIN. THE FUNCTION 
CqUNTER IS THEN RESET TO Q AND ANOTHER 6000 FUNCTIC~ EVALUATIONS 
ARE ALLOWED. 

HOWEVER,IN THE CASE IFLAG=4, THE US£R MUST FIRST ALTER THE ERROR 
CRITERION TO USE A POSITIVE VALUE OF ABSERR BEFORE INTEGRATION CAN 
PROCEED. IF HE DOES NOT,EXECUTION IS TERMINATED. 

ALSO,IN THE CASE IFLAG=5, IT IS NECESSARY FOR THE USER TO RESET 
IFLAG TO 2 (OR -2 WHEN THE ONE-STEP INTEGRATION MODE IS BEING USED' 
AS WELL AS INCREASING EITHER ABSERR.RELERR OR BOTH BEFORE THE 
INTEGRATION CAN BE CONTINUED. IF THIS IS NOT DONE. EXECUTION WILL 
BE TERMINATED. THE OCCURRENCE Of IFLAG=5 INDICATES A TROUBLE SPOT 
(SOLUTION IS CHANGING RAPIDLY,SINGULARITY MAY BE PRESENT' AND IT 
OFTEN IS INADVISABLE TO CONTINUE. 

IF IFLAG=6 IS ENCCUNTERED, THE USER SHOULD CONSIDER SWITCHING TO 
THE ADAMS CODES ODE/STEP,INTRP. IF THE USER INSISTS UPON CONTINUING 
THE INTEGRATION WITH RKF,HE MUST RESET IFLAG TO Z (OR -Z WHEN THE 
ONE-STEP INTEGRATION MODE IS BEING USED' BEFORE CALLING RKF AGAIN. 
OTHERWISE,EXECUTION WILL eE TERMINATED. 

IF IFLAC=? IS08UUlEO, -1-N-lE(;RAf-IaN CAN NOf I3i CON-TI~Ui:() um..£ss 
THE INVALID INPUT PARAMETERS ARE CORRECTED. 

IT SHOULD BE NOTED THAT THE ARRAYS WORK,IWORK CONTAIN INFORMATION 
REQUIRED FOR SUBSEQUENT INTEGRATION. ACCORDINGLY, WORK AND INORK 
SHOULD NOT BE ALTERED • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
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RNAA RNIIA RNAA RNAA RNAA RNAA RNAA RNAA 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• •••••••••••••••••••• 
•••••••••• 

SUBROUTINE RNIIA (NOIM,N,A,EVR,EVI,VEC,IERR' 

SANDIA ~ATHEMATICAL PRCGRAM LIB~ARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

EISPACK IS AN EXTENSIVE COLLECTION OF ROUTINES FOR SOLVING 
THE ALGEBRAIC EIGENVALUE PROELEM. THE ORIGI~AL ALGOL ~OUTINES 
WERE WRITTEN SY J. H. WILKINSON, ET.AL •• AND SUBSEQUENTLY WERE 
TRANSLATED TO FORTRAN AND TESTED AT ARGONNE NATIONAL LABORATORY. 
THIS INTERFACE TO EISPACK WAS WRITTEN SY W. R. GAVIN. 

ABSTRACT 
THIS SUBROUTINE COMPUTES ALL EIGENVALUES AND CORRESPONDING 
EIGENVECTORS OF AN ARBITRARY REAL MATRIX. 
THE MATRIX IS BALANCED BY EXACT NORM REDUCING SIMILARITY 
TRANSFCRMATICNS AND THFN IS REDUCED TO HESSENBERG FORM BY 
ELEMENTARY SIMILARITY T~ANSFCRMATIONS. THE QR ALGORITHM 
IS USED TO COMPUTE THE EIGENSYSTEM OF THE HESSENBERG FORM. 

TO COMPUTE ONLY THE EIGENVALUES OF AN ARBITRARY REAL MATRIX 
SEE SUBROUTINE RNAN. FOR EIGENSYSTEMS OF REAL SYMMETRIC 
MATRICES SEE SUBROUTINES RSAA ANO RSAN. FOR EIGENSYSTEMS OF 
CO~PLEX MATRICES SEE CHAA, CHAN, CNAA, AND CNAN. 

DESCRIPTION OF ARGUMENTS 
ON INFUT 

NDIM MUST SE THE ROW DIMENSION OF THE ARRAYS A ANO VeC 
IN THE CALLING PROGRAM DIHENSION STATE~ENT. 

N IS THE ORDER OF THE MATRIX. N MUST NOT EXClEO NOIM. 
N.NDIH ~UST NOT EXCEED 50625 = 225.225 = 1427G1(OCTAL'. 
N MUST NOT EXCEED ?25. N MAY BE 1. 

A AN ARRAY WITH EXACTLY NDIM ROWS AND AT LEAST N COLUMNS. 

ON OUTPUT 

THE LEADING N SY N SUBARRAY MUST CCNTAIN THE ARBITRARY 
REAL ~ATRIX WHOSE EIGENSYSTEM IS TO BE COMPUTED. 

EVR CO~TAINS THE REAL PARTS OF THE COMPUTED EIGENVALUES. 

EVI CONTAINS THE I~AGINA~Y PARTS OF THE COMPUTED 
EIGENVALUES. THE EIGENVALUES ARE NCT ORDERED 
IN ANY HAY. HOWEVER CONJUGATE PAIRS OCCUR 
IN ~OJACENT PL.CES WITH THE EIGENVALUE OF 
POSITIVE IMAGI~ARY PART FIRST. 

VEC CONTAINS TH~ COMPUTED EIGENVECTORS OF A 
IN THE COLUMN~OF THE N BY N LEADING SU8ARRAY OF VEC. 
IF TME J-TH EIGENVAL-UE IS-REA'-. CCL.UMN J OF VEC 
CONTAINS AN EIGENVECTOR CORRESPONDING TO IT. 
IF THE J-TH EIGENVALUE IS COMPLEX WITH POSITIVE 
IMAGINARY PART, THEN COLUHNS J AND J+1 OF VEC 
CONTAIN THE RE~L AND IMAGINARY PARTS RESPECTIVELY 
OF A COMPLEX EIGENVECTOR CORRESPONDING TO IT. 
IN THIS CASE, OF COURSE, COLUMN J AND THE N~GATIVE 
OF COLUMN J+l OF VEC FORM AN EIGENVECTOR 
CORRESPONDING TO THE J+1-ST EIGENVALUE. 
THE EIGENVECTORS ARE NOT NORMALIZED IN ANY WAY. 

IERR IS A STATUS CCCE. 
--NORr-.AL CODE 

o MEANS THE QR ITERATIONS CONVERGED. 
--ABNCRI'AL CODES 

J MEANS THE J-TH EIGENVALUE HAS NOT BEEN FOUND IN 



RNAN 

100 ITERATIO~S. THE LAST N-J ELEMENTS OF EVR AND EVI 
CONTAIN THOSE EIGENVALUES ALREADY FOUND. 
NO EIGENVECTORS ARE COMPUTED. 

-1 MEANS N, NOIM, OR N.NDIM IS OUT OF RANGE. 

NOTE-- THE ARRAYS A AND VEC MUST BE DISTINCT. A IS DESTROYED. 

RNAN RNAN RNAN RNAN RNAN RNAN RNAN 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SURROUTINE RNAN INDIH,N,A,EVR.EVItIERR) 

SANDIA MATHEMATICAL PROGPAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8J22 

EISPACK IS AN EXTENSIVE CCLLECTION OF ROUTINES FOR SOLVING 
THE ALG£BRAIC EIGENVALUE PROeLEH. THE ORIGINAL ALGOL ROUTINES 
WERE WRITTEN 8Y J. H. WILKINSON, ET.AL., AND SUBSEQUENTLY WERE 
TRANSLATED TO FCRTRAN AND TESTED AT ARGONNE NATIONAL LABORATORY. 
THIS INTERFACE TO EISPACK WAS WRITTEN BY W. R. GAVIN. 

ABSTRACT 
RNAN COMPUTES ALL THE EIGENVALUES OF AN ARBITRARY REAL MATRIX. 
THE HATRIX IS BALANCED BY EXACT NORM REDUCING SIMILARITY 
TRANSFORMATIONS AND THEN IS REDUCED TO HESSENBERG FORM BY 
ELEMENTARY SIMILARITY TRANSFORMATIONS. THE QR ALGORITHM 
IS USED TO COMPUTE THE EIGENSYSTEM OF THE HESSENBERG FORM. 

TO CO~PUTE ALL EIGENVALUES AND EIGENVECTORS OF AN ARBITRARY REAL 
MATRIX SEE SUBROUTINE RNAA. FOR EIGENSYSTEMS OF REAL SYMMETRIC 
MATRICES SEE SUBROUTINES RSAA AND RSAN. FOR EIGENSYSTEMS OF 
CO~PLEX MATRICES SEE CHAA, CHAN, CNAA, AND CNAN. 

DESCRIPTION OF ARGUMENTS 
ON INFUT 

NOIM HUST BE THE ROW DIMENSION OF THE AR~AY A IN THE 
CAlLI~G PROGRA~ DIMENSION STATEMENT. 

N IS THE ORDER OF THE MATRIX. N MUST NOT EXCEED NDIM. 
N·hDIM ~UST NOT EXCEED 102400 = 320.320 =310000(OCTALI. 
N MUST NOT EXCEED 320. N MAY BE 1. 

A AN ARRAY WITH EXACTLY NDIM ROWS AND AT LEAST N COLUMNS. 

ON OUTPUT 

THE LEAOING N BY N SUBARRAY MUST CONTAIN THE ARBITRARY 
REAL MATRIX WHOSE EIGENVALUES ARE TO BE COHPUTED. 

E-VQ C~NTAINS THE RUL -PARTS ~F HI£-- C-Wlf'-UTED £t'UI·V~! YES. 

EVI CONTAINS THE IMAGINARY PARTS OF THE CCMPUTEC 
EIGENVALUES. THE EIGENVALUES ARE NCT ORDERED 
IN ANY WAY. HOWEVE~ CONJUGATE PAIRS OCCUR 
IN ADJACENT PLACES WITH THE EIGENVALUE OF 
POSITIVE IMAGINARY PART FIRST. 

IERR IS A STATUS CODE. 
--NCRMAl CODE 

o ~EANS THE QR ITERATIONS CONVERGED. 
--ABNORMAL CODES 

J ~EANS THE J-TH EIGENVALUE HAS NOT BEEN FOUND IN 
100 ITERATIONS. THE LAST N-J ELEHENTS OF EVR AND EVI 
CCNTAIN THOSE EIGENVALUES ALREADY FCUND. 

-1 MEANS N. NDIM, OR N.NOIM IS OUT OF RANGE. 
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A IS DESTROYED. 

RPOR ~PCR RPQR RPQR RPQR RPQR 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE RPQRCNDEG.COEF,WR,WI,IERR) 

SANDIA MATHEMATIC_L PROGRA" LI9RARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

I'(PQR RPQR 

THIS ROUTINE IS AN INTE~FACE TO AN EIGENVALUE ROUTINE IN EISPACK. 
THIS INTERFACE WAS WRITTEN BY WILLIAM R. GAVIN. 

ABSTRACT 

THIS ROUTINE COMPUTES ALL ~OOTS OF A POLYNOMIAL 
OF DEGREE TWENTY OR LESS WITH REAL COEFFICIENTS 
BY COMPUTING THE EIGENVALUES OF THE COHPANIO~ HATRIX. 

DESCRIPTION OF PARAHETERS 
THE USER MUST OIMENSION All ARRAYS APPEARING IN TH~ CAll LIST 

COEFCNDEG+1', WRCNDEGJ, WICNDEGI 

INPUT -
NDEG DEG~EE CF POLYNCMIAL 

(OEF ARRAY OF COEFFICIENTS IN 0RnER OF DESCENDING POWERS OF 1. 
I.E. COEFC11·CZ··NOEG) + ••• + COEFCNDEG)·Z+COEFCNOEG+11 

OU TPUT-
WR,WI REAL AN[ IHAGIN~RY PARTS OF COHPUTED ROOTS 

IERR OUTPUT ERROK CODE 
- NORMAL CODE 

o HEANS THE ROOTS WERE COMPUTED. 
- ABNCRMAl CODES 

1 HORE THAN 4D QR ITERATIONS ON SOME EIGENVALUE 
OF THE COHFANION MATRIX 

2 COEFUI = 0.'1 
3 NOEG GREATER THAN 20 OR LESS THAN 1 
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RSAA RSAA RSAA RSAA RSAA RSAA 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE RS~A(~OIH.N.A,EV.VECtIERR) 

SANDIA HATHEM~TICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. ~UOOLESTON OIVISION 8JZZ 
T. H. JEFFERSON DIVISION 8JZZ 

RSAA 

EISPACK IS AN EXTENSIVE COLLECTION OF ROUTINES FOR SOLVING 

RSAA 

THE ALGEBRAIC EIGENVALUE PROBLEM. THE ORIGINAL ALGOL ROUTINES 
WERE WRITTEN EY J. H. WILKINSON. ET.AL •• ANO SU8SEQUENTLY WERE 
TRANSLATEO TO FORTRAN ANt TESTED AT ARGONNE NATIONAL LABORATORY. 
THIS INTERFACE TO EISPACK WAS WRITTEN BY W. R. GAVIN. 

ABSTRACT 
THIS SUBROUTINE COMPUTES ALL THE EIGENVALUES AND AN 
ORTHONORMAL SET OF EIG~NVECTORS OF A REAL SYMMETRIC MATRIX. 
THE SYMMETRIC MATRIX IS REOUCED TO TRIOIAGONAL FORM 
BY ORTHOGONAL SIMILARITY TRANSFORHATIONS. QL TRANSFOR~ATIONS 
ARE USEO TO FI~O THE EIGENSYSTEM OF THE TRIOIAGONAL MATRIX. 

TO COMPUTE ONLY THE EIGENVALUES OF A REAL SYMMETRIC 
MATRIX SEE SlBROUTINE RSAN. FOR EIGENSYSTEMS OF NON-SYMMETRIC 
MATRICES SEE SU8ROUTINfS RNAA AND RNAN. FOR EIGENSYSTEMS OF 
CO~PLEX MATRICES SEE CHAA, CHAN. CNAA. ANO CNAN. 

DESCRIPTION OF ARGUHENTS 
ON IN FUT 

NDI~ MUST BE THE ROW DIMENSION OF THE ARRAYS A AND VEC 
IN THE CALLING PROGRAM OIMENSION STATEMENT. 

N IS THE ORDER OF THE MATRIX. ~ MUST NOT EXCEED NOIH. 
N.NDIM ~UST NOT EXCEED 506Z5 = ZZ5·ZZ5 = 14Z101(OCTAL). 
N ~UST NOT EXCEED Z25. N HAY BE 1. 

A AN ~RRAY WITH EXACTLY NOIM ROWS ANO AT LEAST N COLUMNS. 

ON OUTPUT 

THE LEAOING N BY N SUBARRAY HUST CONTAIN THE REAL 
SY~METRIC MATRIX WHOSE EIGENSYSTEM IS TO BE COMPUTEt. 
ONLY THE DIAGONAL AND LOWER TRIANGLE NEED BE DEFINEC. 

EV CONTAINS THE EIGENVALUES OF A IN ASCENDING ORDER. 

VEC CONTAINS AN ORTHONORMAL SET OF EIGENVECTORS OF A 
IN THE COLUMNS OF THE N BY N LEADING SUBARRAY OF VEC. 
THE J-TH COLUMN OF VEC CONTAINS AN EIGENVECTOR OF 
LENGTH ONE CORRESPONDING TO THE EIGENVALUE IN 
THE J-TH ELEMENT OF EV. 

IERR IS A 5TATUS ceOE. 
--NCRMAL CODE 

o MEANS THE Ql- IT-ERATIQ-KS GQ-NVE~-tl .. --
--ABNORMAL COOES 

J MfANS THE J-TH EIGENVALUE HAS NOT BEEN FOUND IN 
30 ITERATIONS. THE FIRST J-1 ELEMENTS OF EV CONTAIN 
UNORDERED EIGENVALUES. THE FIRST J-1 COLUMNS OF VEC 
CONTAIN THE CORRESPONDING EIGENVECTORS. 

-1 MEANS N. NDIM. OR N.NOIM IS OUT OF RA~E. 
NOTE -- THE ARRAYS A AND VEC MAY COINCIDE. IF A AND VEC 

ARE DISTINCT A IS UNALTERED. 
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RSAN RSA~ RSAN RSAN RSAN RSAN 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE RSAN(~DIH,N,AtEVtIERR) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

RSAN 

EISPACK IS AN EXTENSIVE COLLECTION OF ROUTINES FOR SOLVING 

RSAN 

THE ALGEBRAIC EIGENVALUE PR08LEM. THE ORIGINAL ALGOL ROUTINES 
WERE WRITTEN BY J. H. WILKINSON, ET.AL., AND SUBSEQUENTLY WERE 
TRANSLATED TO FORtRAN AND TESTED AT ARGONNE NATIONAL LABORATORY. 
THIS INTERFACE TO EISPACK WAS WRITTEN BY W. R.- GAVIN. 

ABSTRACT 
RSAN COMPU1ES ALL THE EIGENVALUES OF A REAL SYMMETRIC MATRIX. 
THE SYMMETRIC MATRIX IS REDUCED TO T~IDIAGONAL FORM 
BY ORTHOGONAL SIMILARITY TRA~SFORMATIONS. QL TRANSFORMATIONS 
ARE USED TO FIND THE EIGENVALUES OF THE TRIDIAGONAL MATRIX. 

TO COMPUTE ALL EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC 
MATRIX SEE SUBROUTINE RSAA. FOR EIGENSYSTEMS OF NON-SYMMETRIC 
MATRICES SEE SUBROUTINES RNAA AND RNAN. FOR EIGENSYST~MS OF 
CO~PLEX MATRICES SEE CHAAt CHANt CNAA, AND CNAN. 

DESCRIPTION OF ARGUMENTS 
ON INPUT 

NDIM MUST BE THE ROW DIMENSION OF THE ARRAY A IN THE 
CALLING PROGRA~ DIMENSION STAT~MENT. 

N IS THE ORDER CF THE MATRIX. N MUST NOT EXCEED NDIM. 
N·NOI~ MUST NOT EXC~ED 102400 = 320·320 =310000(OCTALI. 
N MUST NOT EXCEED 320. N MAY BE 1. 

A AN ARRAY WITH EXACTLY NDIM ROWS AND AT LEAST N COLUMNS. 

ON OU TPUT 

THE LEADING N BY N SU8ARRAY MUST CONTAIN THE REAL 
SY~METRIC HAT~IX WHOSE EIGENVALUES ARE TO BE COMPUTED. 
ONLY TH~ DI~GC~AL AND LOWER TRIANGL~ NEED BE DEFINED. 

EV CONTAINS THE EIGENVALUES OF A IN ASCENDING ORDER. 

IERR IS A STATUS CCDE. 
--NCRHAL CODE 

o MEANS THE Ql ITERATIONS CONVERGED. 
--AaNOR~AL CODES 

J MEANS THE J-TH EIGENVALUE HAS NOT BEEN FOUND IN 
30 ITERATIONS. THE FIRST J-l ELE~ENTS OF EV CONTAIN 
UNORDERED EIGENVALUES. 

-1 ~EANS Nt NOI", OR N.NDIH I~ OUT OF RANGE. 

A IS UNALTERED IN ITS 9I-AGONAl ANI} -UPPER -lRIA-M;U. 
ITS LCWER TRIANGLE IS DESTROYED. 
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SAXB SAxe SAxe SAXe SAXB SAXB SAXB SAXB 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE SAXBfND,N,H,A,e,INIT,IN,KER) 

SANDIA MATHEMATICAL PROGRAH LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY CARL B. BAILEY, NOVEM8ER 1973. 

ABSTRACT 
SAXB SOLVES A NONSINGULAR SYSTEM OF REAL LINEAR ALGEBRAIC 
EQUATIONS, AX=B. 
THE HETHOD USED IS GAUSSIA~ ELIMINATION fLU OECOMPCSITION 
FOLLOWED BY FORWARD-BACKWARD SUBSTITuTION) WITH IHPLICIT RCW 
SCALING AND PARTIAL IROW' PIVOTING. SAXB IS ESPECIALLY 
EFFICIENT FOR SOLVING A SEQUENCE OF SYSTEMS OF EQUATIONS ALL 
HAVING THE SAME COEFFICIENT MATRIX -A-. IN SUCH A CASE, THE 
LU DECOMPOSITION IS PERFORMED ONLY ON THE FIRST CALL AND THE 
LU FACTORS A~E STORED IN -A-. ON SUBSEQUENT CALLS, FORWARD
BACKWARD SUBSTITUTION IS PERFORMED IMMEDIATELY ON -B- USING 
THE PREVIOUSLY COMFUTED LU FACTORS. 

SAXB CALLS THE ROUTINE RLUO TO PERFORM LU DECOMPOSITION AND 
RFBS TO PERFORM FORWARD-BACKWARD SUBSTITUTION. 
FOR GREATER ACCURACY AND AN ERROR ESTIMATE USE SAXBI. 

REFERE ~CE 
1. G.E.FORSYTHE AND C.B.MOLER, COMPUTER SOLUTION OF LINEAR 

ALGEBRAIC EQUATIONS, ·PRE~TICE-HALL, 1967 

DESCRIPTION OF ARGUMENTS 
THE USER ~UST OIHENSIO~ ALL ARRAYS APPEARING IN THE CALL LIST 

AIND,N), BINO,H), INIH) 
IF M=1 THEN THE DI~E~SION OF B MAY BE BfN' 

-- INPUT---
ND - THE ACTUAL FIRST DIMENSION OF ARRAYS -A- AND -B-. 

II.E. THE MAXIMUM NUMBER OF EQUATIONS THAT CAN BE 
SCLVEO USING -A- TO STORE THE COEFFICIENTS., 

N - THE NUMBER OF EQUATIONS TO BE SOLVED IN THIS CALL. 
(1 .LE. N .lE. NO) 

M - NUMeER Of COLUMNS OF -8-. (NORMALLY H=1' 
A - THE lEADING -N- ey -N- SUBARRAY OF -A- MUST CONTAIN 

THE COEFFICIENT MATRIX ON THE INITIAL CALL FOR EACH 
SEQUENCE OF RELATED SYSTEMS OF EQUATIONS. (INIT=O' 
CN ~NY SUBSEQUENT CALL FOR A SYSTEM WITH THE SAME 
COEFFICIE~T MATRIX BUT DIFFfRENT VALUES OF -8-, -A
MUST CONTAIN THE LU FACTORS THAT WERE RETURNED IN -A
CN THE FIRST CALL. fINITIO. 

B - THE LEADING -N- BY -"- SUBARRAY OF -8- MUST CONTAIN 
THE MATRIX lOR VECTOR) OF CONSTANTS. 

INIT - IS A FLAG WHICH PROVIDES FOR THE ESPECIALLY EFFICIENT 
SOWTIO~ Gf A S£-QUENGE gF-S'S~SOF E.QUATIOHS IoIAVING 
THE SAME -A- BUT DIFFERENT -B- VECTORS. 
ON THE INITIAL CALL FOR A SE~UENCE OF RELATED SYSTEMS 
OF EQUATIONS. INIT MUST BE ZERO AND THE ARRAY -A
MUST CONTAIN THE COEFFICIENT MATRIX -A-. 
IN ORDER TO SOLVE ANY RELATED SYSTEM EFFICIENTLY 
CN ANY SUBSEQUENT CAll FOR A SYSTEM WITH THE SAHE 
COEFFICIENT MATRIX BUT DIFFERENT VALUES FOR -B-, 
I~IT MUST 8E NONZERO AND -A- MUST CONTAIN THE LU 
FACTORS THAT WERE RETURNED IN -A- ON THE FIRST CALL. 

IN - PROVIDES STORAGE FOR THE ROW INTERCHANGE INDICES. 
ON THE INITIAL CALL FOR A SEQUENCE OF RELATED SYSTEMS 
OF EQUATIONS, -IN- IS JUST A WORK ARRAY. ON ANY 
SUBSEQUENT CALL FOR A RELATED SYSTEM CF EQUATIONS, 
-IN- ~UST CONTAIN THE INDICES THAT WERE RETURNED IN 
-IN- ON THE FIRST CALL. 
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--OUTPUT--
A - THE LEADING -N- BY -N- SUBARRAY WILL CONTAIN L-I+L 

WHERE -L- AND -U- ARE TRIANGULAR FACTORS OF -A-, 
-L- IS UNIT LOWER TRIANGULAR, -1- IS THE IDENTITY. 
(ACTUALLY, IT IS NOT L-I.U WHICH IS STORED IN -A- BUT 
LL-I.U WHERE LL IS A REARRANGEMENT OF ELE~ENTS OF L.l 

q - THE LEADING -N- BY -H- SUBARRAY OF -B- WILL CONTAIN 
THE SOLUTION -X-. 

IN - WILL CONTAIN THE ROW INTERCHANGE INDICES COMPUTED 
DURING LU DECOMPOSITION. IN(N) WILL CONTAI~ 
.1 IF AN EVEN ~UMBER OF INTERCHANGES WERE PERFORMED, 
-1 IF AN 000 NUMBER OF INTERCHANGES WERE PERFORMED, 

o IF THE ~ATRIX -A- AND THE FACTOR U A~E SINGULAR. 
KER - AN ERROR CODE 

--t;CR~AL CODES 
o MEANS NO ERRORS HERE DETECTED 

--A8NCRMAL conES 
1 MEANS -ND- WAS NOT IN THE RANGE 1 .IT. NO .lE. 325 
2 MEANS -N- HAS NOT IN THE RANGE 1 .LE. N .lE. NO. 
3 MEANS THE TRIANGULAR FACTOR -U- OF -A- IS SINGULAR. 

NorE --- AFTER SOLVING A SYSTEM OF EQUATIONS USING SAxe 
ONE CAN EASILY CCMPUTE THE DETERMINANT OF -A-, 
AT lEAST IN PRINCIPAL. FOR EXAMPLE, 

OET :: ININ) 
00 1 I =1,N 

1 OET :: OET.A(I,I' 
HOWEVER. THAT COMPUTATION MAY OFTEN RESULT IN EXPONENTIAL 
OVERFLOW OR UNO=RFLOW, ESPECIALLY IF THE COEFFICIENTS 
IN -A- WERE VERY LARGE OR VERY SHALL. 

SAX8I SAXBI SAXEI SAXBI SAxeI SAXBI SAXBI 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE SAXBIIND,~,M,A,B,X,INIT,RC,W,IN,KERI 

SANDIA MATHEMATICAL PROGQAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. ~UDOLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY CARL E. BAILEY, NOVEMBER 1973. 

A8STRACT 
SAXBI SOLVES A NONSINGULAR SYSTEH OF REAL LINEAR ALGEBRAIC 
EQUATIONS, AX=B, AND COMPUTES AN ERROR BOUND FOR THE SOLUTION. 
THE METHOD USED IS GAUSSIA~ ELIMINATION (LU DECOMPOSITION 
FOLLOWED BY FORWARD-EACKWARD SUBSTITUTION' WITH IMPLICIT RCW 
SCALIN~ PARTUL (>lOW) PIVCTIMU. AmlIlERATIVE CO'IRECTIONS. 
SAX9I IS ESPECIALLY EFFICIENT FOR SOLVING A SECUENCE OF 
SYSTEMS OF EQUATIONS HAVING THE SAME COEFFICIENT MATRIX -A-. 
IN SUCH A CASE, THE LU DECOMPOSITION IS PERFOR~ED ONLY ON THE 
FIRST CALL AND THE LU FACTCRS ARE STOREO IN -w-. ON SUBSEQUENT 
CALLS, FORWARD-BACKWARD SUBSTITUTION IS PERFOR~EO IMMEDIATELY 
ON -8- USING THE PREVIOUSLY COMPUTED LU FACTORS. 

SA~3I CALLS THE ROUTINE RLUD TO PERFOR~ LU DECCMPOSITION, RFBS 
JO PERFORM FORWARD-BACKWARD SUBSTITUTION, AND RIMP TO PERFCRM 
THf ITERATIVE CORRECTIONS. 
FOR FASTER EXECUTION HITHOUT AN ERROR ESTIMATE USE SAX8. 

REFERE t<CE 
1. G.E.FORSYTHE AND C.B.HOLER, COHPUT~R SOL~TIO~ OF LINEAR 

ALGEBRAIC EQUATIONS, PRE~TICE-HALL, 19~7 
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DESCRIFTION OF ARGUMENTS 
THE USER ~UST DIMENSICN ALL ARRAYS APPEARI~G IN THE CALL LIST 

A(ND,N), B(ND,H), X(ND,H), W(ND,N+1)' II>(N' 
IF H=1 THEN THE DIMENSION OF B AND X MAY BE B(N', X(N'. 

--INPUT---
NO - THE ACTUAL FIRST DIHENSION OF -A-, -8-, -X-, AND -w-. 

(I.E. THE MAXIMUM NUMBER OF EQUATIONS THAT CAN BE 
SOL~ED USING -A- TO STORE THE COEFFICIENTS.) 

N - THE NUMBER OF EQUATIONS TO BE SOLVED IN THIS CALL. 
(1 .LE. N .LE. NO' 

M - NUMBER OF COLUMNS OF -8- AND -X-. (NCRMALLY M=1) 
A - THE LEADING -N- BY -N- SUBARRAY OF -A- HUST CONTAIN 

THE COEFFICIENT MATRIX -A-. (FOR ANY VALUE OF INIT) 
B - THE LEADING -N- BY -M- SUBARRAY OF -B- MUST CONTAIN 

THE MATRIX (OR VECTOR) OF CONSTANTS. 
INIT - IS A FLAG WHICH PROVIDES FOR THE ESPECIAL~Y EFFICIENT 

SOLUTION OF A SEQUENCE OF SYSTEMS OF EQUATIONS HAVING 
THE SAME -A- EUT DIFFERENT -B- VECTORS. 
ON THE INITIAL CALL FOR A SEQUENCE OF RELATED SYSTEMS 
OF EQUATIONS, INIT HUST BE ZERO. 
IN ORDER TO SOLVE ANY RELATED SYSTEM EFFICIENTLY 
CN ANY SUBSEQUENT CALL FOR A SYSTEM WITH THE SAME 
COEFFICIENT MATRIX BUT DIFFERENT VALUES FOR -B-, 
INIT MUST BE NONZERO AND -W- MUST CONTAIN THE LU 
FACTORS THAT WERE RETURNED IN -W- ON THE FIRST CALL 
AND -IN- MUST CONTAIN THE ROW INTERCHANGE INDICES 
THAT WERE RETURNED IN -IN- ON THE FIRST CALL. 

W - PROVIDES STORAGE FOR THE LU FACTORS OF -A-. 
IF IN IT IS ZERO, -W- IS JUST A WORK ARRAY. IF INIT 
IS NONZERO, -W- MUST CONTAIN THE LU FACTORS THAT WERE 
COMPUTED IN THE INITIAL CALL FOR THE MATRIX -A-. 

IN - PROVIDES STORAGE FOR THE ROW INTERCHANGE INDICES. 

--OUTPUT--

eN THE INITIAL CALL FOR A SfQUENCE OF RELATED SYSTEMS 
OF EQUATIONS, -IN- IS JUST A WORK ARRAY. ON ANY 
SUBSEQUENT CALL FOR A RELATED SYSTEH OF EQUATIONS, 
-IN- HUST CONTAIN THE INDICES THAT WERE RETURNED IN 
-IN- ON THE FIRST CALL. 

X - THE LEADING -N- BY -H- SUBARRAY OF -X- WILL CONTAIN 
THE SOLUTION. 

RC - WILL BE THE RATIO OF THE MAXIMUM NORH OF THE FIRST 
CORRECTION TO THE MAXIMUM NORM OF THE INITIAL 
APPROXIMATE SOLUTION. THE CONDITION NUMBER OF -A
AND ERROR BOUNDS FOR THE COMPUTED SOLUTIOt. ARE 
RELATED TO -RC-. A SHALL VALUE FOR -RC- INDICATES 
fa WElL-CCNOInONEC SYSTEI1 AND SMALL UNCERTAINTIES 
IN THE SOLUTION. A LARGE VALUE FOR -RC- INDICATES 
AN ILL-CONDITIONED SYSTEM AND LARGE UNCERTAINTIES 
IN THE SOLUTION. 

W - THE LEADING -N- BY -N- SUBARRAY WILL CONTAIN L-I+C 
WHERE -L- AND -U- ARE TRIANGULAR FACTORS OF -A-, 
-L- IS UNIT LOWER TRIANGULAR, AND -1- IS IDENTITY. 
(ACTUALLY, IT IS NOT L-I+U WHICH IS STORED IN -A- BUT 
LL-I+U WHERE LL IS A REARRANGEMENT OF ELEMENTS OF L.) 
THE N+1ST COLUMN CONTAINS THE LAST CORRECTION TO -X-. 
IF- INH-.E-Q..-D.--LU- FACT-ORS-- OF -A-Wl-l.L-B£· C.OMP-UHO 
AND STORED IN -~-. 

KER - AN ERROR CODE 
--NORMAL CODES 

o MEANS NO ERRORS WERE DETECTED 
--ABNORMAL CODES 

1 MEANS -NO- WAS NOT IN THE RANGE 1 .LT. NO .LE. 225 
2 MEANS -N- WAS NOT IN THE RANGE 1 .LE. N .LE. NO. 
3 MEANS THE TRIANGULAR FACTOR -U- OF -A- IS SINGULAR. 
~ MEANS -A- IS TOO IL~-CONDITIONED FOR ITtRATIVE 

I~PROVEMENT TO BE EFFECTI~E. 

NOTE --- AFTER SOLVING A SYSTEM OF EQUATIONS USING SAXBI 
ONE CAN EASILY COMPUTE THE OETERI1INANT OF -A-, 
AT LEAST IN PRINCIPAL. FOR EXAI1PLE, 

DET = IN(N) 
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00 1 I =l,N 
1 OET = OET·W(I,I) 

HOWEVER, THAT COMPUTATION MAY OFT~N RESULT IN EXPONENTIAL 
OVERfLOW OR UNOERfLOW, ESPECIALLY IF THE COEFFICIENTS 
IN -A- WERE VERY LARGE OR VERY SMALL. 

SIceNT SICONT SICONT SICONT SICONT SICONT SICONT 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE SICCNT (l,U,NN,W,Fl.F1CO,F1SI,FUNCT,IERR) 

SANOIA MATHEMATICAL PROGR~M LIBRARY 

CONSULTANTS AT SLL INCLUOE -
R. E. HUDDLESTON DIVISION 8J22 
T. H. JEfFERSON DIVISION 8322 

SICONT WAS O"IGI~ALLY P~OGRAMMEO BY A R IACOlETTI IN MARCH, lQE6. 
R E JONES MODIFIEO SICONT SOMEWHAT AND PREPAREC IT FOR INCLUSICN 
IN THE ~ATHEHATICAL LI~RARY IN MAY lQ68. 

ABSTRACT 
SICONT CALCULATES THE INTEGRAL OVER (L,U) OF F(X).COS(W.X) AND 
F(X).SIN(W·X' USING TABULATED DATA OR A FU~CTION SUBPROGRA~ 
fOR EVALUATICN OF THE FUNCTION F. 
(L IS FLCATI~G POINT.) 

DISCUSSION ON,CALLING SEQUENCE 
SICONT HAS TWO MODES OF OFERATION, AS FOLLOWS ---

IF NN IS A POSITIVE, EVEN INTEGER, THEN SICONT EXPECTS Fl TO BE AN 
ARRAY OF NN+l EQUALLY SPACED VALUES OF THE FUNCTIO~ Fl. THAT IS, 
Fl MUST CONTAIN Fl(X) FOR X = L, L+(U-L'/NN, L.2·(U-L'/NN, ••• 
L+CNN-l)·CU-L'/NN, U. SICONT USES THESE VALUES TO APP~OXIHATE 
THE INTEGRALS OF Fl(X'·COS(W.X) ANO Fl(X'.SINCW.X) OVEk THE INTER
VAL (L,U). THE ANSWERS APFEAR IN F1CO AND F1SI RESPECTIVELY. 
FUNCT IS A DU~HY PARAMETER IN THIS CASE. 

IF NN IS A NEGATIVE, EVEN INTEGE~, THEN FUNCT MUST BE THE NAHE OF 
AN E~TERNAL FUNCTION SUBPROGRA~. (THIS NAME MUST APPEAR IN AN 
EXTERNAL STATE~ENT IN THE CALLING PROGRAM'. SICONT APPROXIMATES 
THE INTEGRALS OF FUNCTCX)·COSCW.X, AND FUNCTCX'·SINCW.X' OVER THE 
INTERVAL (L,U' BY EVALUATING FUNCT AT THE POINTS LISTED IN THE 
ABOVE PARAGRAPH, STORI~G THESE VALUES IN THE ARRAY Fl, AND POR
CEEDING AS IN THE PREVIOUS CASE. NOTE THAT Fl MUST 6E DIMENSIONED 
AT LEAST NN+l IN THIS CASE ALSO. 

IERR WILL NOR~ALLY 6E RETURNED EQUAL TO 1. 
IF NN IS NOT EVEN, IERR WILL BE SET EaUAL TO 2. 

HETHOO USED IN THE IUTE~AJION --~ 
THE FUNCTIONAL VALUES IN Fl ARE FITTED 
BY SUCCESSIVE HOVING ARC PARABOLAS, AND THE RESULTING 
POLY~OMIAL·SINUSCIDAL ~XPRESSICNS ARE EVALUATED IN CLOSE FORM. 
BY COMPUTING PASIe COEFFICIENTS DURING THE INITIAL PHASE THESE 
CALCULATIONS REDUCE TO SUMMATIONS WITH CONCURRENT EVALUATION 
OF TRIGONOMETRIC FACTORS BY RECURRENCE R~LATIO~S. 
DOUBLE PRECISICN ARITHMETIC IS USEO FOR CERTAI~ 
CALCULATIONS TO PREVENT LCSS OF SIGNIFICANCE. 
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S I"!N SI"'IN S!MH S!MIN SIIUN SIMIN SHUN SIMIN 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE SI .. IN (F.K,EPS,ANS,S,NEV,ICONT,Y) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLl INCLUDE -
R. E. ~UDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

ORIGINAL ROUTINE BY L F SHAMPINE. AS DESCRIBED IN REF.1 BELOW. 
PREPARATION FOR MATH LIBRARY BY R E JONES. 

ABSTRACT 
SIMIN FINDS AN APPROXIMATE MINIMUM OF A REAL FUNCTION OF K 
VARIABLES. GIVEN AN INITIAL ESTIMATE OF THE POSITIO~ OF THE 
MINIMUM. T~E SIMPLEX METHOD IS USED. SEE REFERENCE 1 BELOW 
FOR A FULL EXPLANATION OF THIS METHOD. BRIEFLY, A SET OF 
K+l POINTS IN K-DIHENSIONAL SPACE IS CALLED A SIMPLEX. 
THE MINIMIZATION PROCESS ITERATES BY REPLACING THE POINT 
WITH THE LARGEST FUNCTION VALUE BY A NEW POINT WITH A 
S .. ALLER FUNCTION VALUE. ITERATION CONTINUES UNTIL ALL THE 
PCI~TS CLUSTER SUFFICIENTLY CLOSE TO A MINIMUM. 

REFERE ~CES 
1. L F SHAMFINE, A ROUTINE FOR UNCONSTRAINED OPTIMIZATION, 

SC-TM-72130 OR SC-RR-720E57 
2. J A NELDER AND R MEAD, A SIMPLEX METHOD FOR FUNCTION 

MINIMIZATION, COMPUTER JOURNAL, 7(19&5' 308-313 

OESCRIPTION Of PARAMETERS 
--INPUT--

F - NAME OF FUNCTION OF K VARIABLES TO BE MINIMIZED. 
(THIS ~AHE MUST AFPEAR IN AN EXTERNAL STATEMENT.) 
FORM OF THE CALLING SECUENCE MUST BE FUNCTION F(X), 
WHERE X IS AN ARRAY OF K VARIABLES. 

K - THE NUMBER OF VARIABLES. K MUST BE AT LEAST 2. 
NORMALLY K SHOULD BE LESS THAN ABOUT 10. AS SIMIN 
BECOMES LESS EFFECTIVE FOR LARGER VALUES OF K. 

EPS- THE CCNVERGENCE CRITERION. LET YAVG BE THE AVERAGE 
VALUE OF THE FUNCTION F AT THE K+l POINTS Of THE 
SIMPLEX, AND LET R BE THEIR STANDARD ERROR. (THAT IS, 
THE RoeT-MEAN-SQUARE OF THE SET OF VALUES (Y(I)-YAVG), 
WHERE Y(I' IS THE FUNCTION VALUE AT THE I-TH POINT OF 
THE SIMPLEX.) THEN--
IF EPS.GT.O, CONVERGENCE IS OBTAINED IF R.LE.EPS. 
IF EPS.LT.O, CONVERGENCE IS IF R.LE.ABS(EPS·YAVG). 
IF EPS:O, THE PROCESS WILL NOT CONVERGE fUT INSTEAD WILL 
QUIT W~EN NEV FUNCTION EVALUATIONS HAVE BEEN USED. 

ANS- AN ARRAY OF LENGTH K CONTAINING A GUESS fOR THE LOCATION 
OF A MINI~UM OF F. 

S - A SCALE PARAMETER, WHICH MAY BE A SIMPLE VARIABLE OR AN 
ARRAY OF LENGTH K. USE OF AN ARRAY IS SIGNALLED BY 
SETTING S(1) NEGATIVE. 
-SIMPLE VARIABLE CASE. HERE S IS THE LENGTH OF EACH 
SlD£ ~--:rHE HH-T-lA1. S-IMPLg. -T-H~,--fKEnlln:\.!. SE~CH 

RANGE IS THE SAME FOR ALL THE VARIABLES. 
-ARRAY CASE. HERE THE LENGTH OF SIDE I OF THE INITIAL 
SIMPLEX IS ASS(S(I». THUS, THE INITIAL SEARCH RANGE 
MAY BE DIFFERE~T FOR DIFFERENT VARIABLES. 
NOTE-- THE VALUE(S) USED FOR S ARE NOT VERY CRITICAL. 
ANY REASCNABLE GUESS SHOULD 00 O.K. 

NEV- THE MAXIHU~ NUHRE~ OF FUNCTION EVALUATIONS TO BE USED. 
(THE ACTUAL NUMBER USED MAY EXCEED THIS SLIGHTLY SO THE 
LAST SEA~CH ITERATION MAY BE COMPLETED.) 

ICONT - IceNT SHOULD BE ZERO ON ANY CALL TO SIMIN WHICH 
IS NOT A CONTINUATION OF A PREVIOUS CALL. 
IF ICONT=l THE PROBLE~ WILL BE CONTINUED. IN THIS 
CASE THE WORK ARRAY Y MUST BE THE SAME ARRAY THAT WAS 
USED I~ T~E CALL THAT IS BEING CONTINUED (AND THE VALUES 
IN IT .. UST BE UNC~ANGED). THE REASON FOR THIS IS THAT 
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IF ICC~T=1 THEN THE ARGUMENT S IS IGNORED AND THE SIMPLEX 
AND RELATED FUNCTION VALUES THAT WERE STORED I~ ARRAY Y 
DURING A PREVIOUS EXECUTION ARE USED TO CONTINUE THAT 
PREVIO~S PROBLEM. 

Y - A WORK ARRAY CONTAINING AT LEAST K.K + S.K + 1 WORDS. 
IF ICO~T=1 THIS MUST BE THE SAME ARRAY USED IN THE CALL 
THAT IS BEING CONTINUED. 

--OUTPUT--
ANS- ANS WILL CONTAIN THE LOCATION OF THE POINT WITH THE 

SMALLEST VALUE OF THE FUNCTION THAT WAS FOUND. 
S - IN THE SIMPLE VARIABLE CASE S WILL BE RETURNED AS THE 

AVERAGE OISTANCE FROM THE VERTICES TO THE CENTROID OF 
THE SI..,PLEX. 
IN THE ARRAY CASe SCI' WILL BE RETURNED AS THE AVE~AGE 
DISTANCE IN THE I-TH DIMENSION Of VERTICES FRO~ 
THE CENTROID. CSC1' WILL BE NEGATED.' 
NOTE-- THE VALUECS" RETURNED IN S ARE USEFUL FCR 
ASSESSING THE FLATNESS OF THE FUNCTION NEAR THE 
MINIMUM. THE LARGER THE VALUE Of S (FOR A GIVEN 
VALUE OF EPS). THE FLATTER THE FUNCTIO~. 

NEV- NEV WILL BE THE (OUNT OF THE ACTUAL NUMBER OF FUNCTION 
EVALUATIONS USED. 

Y - WILL CONTAIN ALL DATA NEEDED TO CONTINUE THE MINIMIZATION 
SEARCH EFFICIENTLY IN A SUBSEQUENT CALL. 
NOTE -- THE FIRST K+1 ELEMENTS Of Y WILL CONTAIN THE 
FUNCTION VALUES ~T THE K+1 P,OINTS OF THE LATEST SIMPLEX. 
THE NEXT K·CK+1) ELEMENTS OF Y WILL BE THE K+1 POINTS 
OF THE SIHPLEX eIN EXACT CORRESPONOENSE TO THE ARRAY 
P DISCUSSED IN REFERENCE 1 ABOVE'. THE RE~AINING 3·K 
WORDS ARE TEMPORARY WORKING STORAGE CNLY. 

SINH SINH SINH SINH SINH SINH 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
FUNCTION SINH ex, 

SANOIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8JZZ 
T. H. JEFFERSON DIVISION 8JZZ 

WRITTEN BY CARL 9. BAILEY, NOVEMBE~ 1971 

ABSTRACT 

SINH 

SINH EVALUATES THE HYPERBOLIC SINE FUNCTION. THAT IS, 
SINHCX) = eEXpeX' - EXpe-X)' I Z 

SINH 

FOR A8SCX' .LE. 0.5 AN ECONOMIZED POLYNCI'IIAL IS USED WHICH 
YIELDS AN ERROR OF Ne MORE THAN ONE ilT IN 08SERV~ TESTS. 
FOR A8SeX) .GT. o.~ THE DEFINITION Ih TERMS OF E)PCNENTIALS 
IS USED WHICH YIELDS AN ACCURACY COMPARABLE TO THE ACCURACY 
OF THE EXPONENTIAL ROUTINE. 

DESCRIPTION OF A~GUMENT 

x - ANY REAL VALUE FOR WHICH EXpeABS(X)) IS REPRESENTABLE. 

.. 
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SMGC SHOO SMOO SHea SHOO 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

SHOO 

SUBROUTINE SMOO(N,X,y,DY,S,A,B,C,D,R,Rl,RZ,T,Tl,U,V,IEkK) 

SANDIA MATHEMATICAL PROGRA~ LIERARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 632Z 
T. H. JEFFERSON DIVISION 632Z 

CONVERSION FRO~ THE ALGOL BY ReNDALL E JONES 

SHOO 

REFERE~CE -- ~UMERISHE HATHEMATIK 10,177-163 (1967) C H REINSCH 

ABSTRACT 
SMOO FITS A SHeOTH SPLINE THROUGH A GIVEN SET OF DATA POINTS 
8Y MINIMIZING THE INTEGRAL OF THE SECOND DERIVATIVE SQUARED, 
SUBJECT TO THE CONSTRAINT THAT 

N 
SUM ( CRUJ-Y(!)1I0YH) )"Z .LE. S 
1=1 

(WHE~E R(I) IS THE ORDINATE OF THE SHOOTH SPLINE AT X(I).) 
SMOO RETURNS THE VALUES OF THE SPLINE FUNCTION, R, 
ITS FIRST DERIVATIVE, Rl, AND ITS SECOND DERIVATIVE, RZ, 
EVALUATED AT THE ABSCISSAS OF THE GIVEN DATA POINTS. 
THE ~ESULTI~G SPLINE, DEFINED BY THE ARRAYS X. R, AND RZ, 
MAY THEN BE INTERPOLATED (IF DESIRED' USING SPLINT. 
FOR AN EXACT SPLINE FIT SEE SUBROUTINE SPLIFT. 

DESCRIPTION OF A~GUHENTS 
INPUT ARGU~ENTS --
N - NUMBER OF DATA VALUES (AT LEAST 3) 
X - ABSCISSA ARRAY (INCREASING ORDER' 
Y - ORDINATE ARRAY 
DY - ARRAY CF ERROR ESTIMATES. DY(I' SHOULD BE AN ESTIHATE 

OF THE ERROR (ACTUALLY, THE STANDARD DEVIATION) IN Y(I'~ 
THUS, THE UNITS OF DY ARE THE SAME AS THE UNITS OF Y. 
LARGE~ VALUES OF DYCI' ALLOW A LOOSER, SMOOTHER FIT. 
SMALLER VALUES OF DYCI) CAUSE A TIGHTER FIT. SETTING 
DY(I'=O AT ALL POINTS RESULTS IN AN EXACT FIT.(SEE SPLIFT' 
BY APPROFRIATELY ADJUSTING DY(I' AT EACH POINT, THE SPLINE 
CAN BE HADE TIGHT AT CRITICAL POINTS AND LOOSE AT OTHERS. 

S - SHOULD NCRHALLY = N. CNOTE-- S IS FLOATING POINT - DONT 
USE N DIRECTLY FOR S.' IF YOU WISH TO TIGHTEN OR LOOSEN 
THE SPLINE FIT BY MULTIPLYING EACH ELEMENT OF DY BY 
SOME FACTOR F, YOU HAY ALTERNATIVELY SIMPLY MULTIPLY 
S BY F··Z. 

OUTPUT ARGUMENTS --
AtB,C,D - CUBIC BETWEEN XCI) AND XCI+l) IS 

ACI) + 8(I).H + CCI)·H··Z + OCI)·H··J 
WHERE H IS DESIRED AESCISSA MINUS XCII. 

R - ARRAY OF SMOOTH SPLINE VALUES 
Rl - ARRAY OF SMOOTH SPLINE DERIVATIVES 
RZ - ARRAY OF SHOOTH SPLINE SECOND DERIVATIVES 
T,Tl,U,V - WORK ARRAYS 
IERR- A STATUS CODE 

--NOR~M. GGO£ 
=1 ~EANS THE REQUESTED SPLINE WAS COMPUTED. 

--A8NORMAL CODE 
=Z MEANS EITHEq N IS LESS THAN 3, OR S IS NEGATIVE, 

OR THE X-AXIS VALUES ARE HISORDERED. 

X,Y,OY,A,B,C,D MUST BE DIMENSIONED AT LEAST N 
R,Rl,R2,T,Tl.U,V MUST BE DIMENSION AT LEAST N+Z 

THE ORIGINAL Nl WAS FIXED AT 1 TO AVOID WASTED WORK ARRAY SPACE 
THE ORIGINAL HZ IS CALLED N HERE 
ALL WORK APRAY I~OICES ARE 1 LARGER THAN IN THE ALGOL, 
TO AVOID A ZERO SUBSCRIPT. 
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SPLIFT SFLIFT SPLIFT SPLIFT 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

SPLlfT SPLlfT 

SU9~OUTI~E SPLIFT lX.Y.YF.YPF,N,W,IERR,ISX,Al,Bl,AN,BN) 

SANDIA ~ATHEHATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUODLESTON OIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY RONDALL E. JONES 

ABSTRACT 
SPLIFT FITS AN INTERPOLATING CUBIC SPLINE TO THE N DATA POINTS 
GIVEN IN X A~D Y AND RETURNS THE FIRST AND SECOND DERIVATIVES 
IN YP AND YPP. THE RESULTING SPLINE (DEFINED BY X, Y, AND 
YPP) AND ITS FIRST AND SECOND DERIVATIVES HAY THEN BE 
EVALUATED USING SPLINT. THE SPLINE HAY 8E INTEGRATED USING 
SPLIQ. FOR A SHOOTHING SPLINE FIT SEE SUBROUTINE SHDOTH. 

DESCRIPTION OF ARGUMENTS 
THE USER ~UST DIMENSICN ALL ARRAYS APPEARING IN THE CALL LIST. 
E.G. X(N), YeN). YP(N). YPFlN), W(3N) 

--INPUT--

x - ARRAY OF ABSCISSAS CF DATA lIN INCREASING ORDER' 
Y - ARRAY OF ORDINATES OF DATA 
N - THE NUMBER OF DATA POINTS. THE ARRAYS X. Y, YP, AND 

YPP MUST SE DI~ENSICNED AT LEAST N. (N .GE. 41 
ISX - MUST EE ZERO ON THE INITIAL CALL TO SPLIFT. 

IF A SPLINE IS TO BE FITTED TO A SECOND SET OF OATA 
THAT HAS THE SAME SET OF ABSCISSAS AS A PREVIOUS SET. 
AND IF THE CONTENTS OF W HAVE NOT ~EEN CHANGED SINCE 
THAT PREVIOUS FIT WAS COMPUTED, THEN ISX MAY BE 
SET Te ONE FOR FASTER EXECUTION. 

AI,RI.AN,EN - SPECIFY THE END CONDITIONS FOR THE SPLINE WHICH 
ARE EXPRESSED AS CONSTRAINTS ON THE SECONO DERIVATIVE 
OF THE SPLINE AT THE END POINTS (SEE YPP). 
THE END CONDITION CONST~AINTS ARE 

YPP(1) = Al·YPP(2) + Bl 
AND 

WHERE 
ABSIAl).LT. 1.0 AND ASS(AN).LT. 1.0. 

THE SMOOTHEST SPLINE lI.E., LEAST INTEGRAL OF SQUARE 
OF SECOND DERIVATIVE' IS OBTAINED BY Al=81=AN=8N=O. 
IN THIS CASE THERE IS AN INFLECTION AT X(I) AND XIN). 
IF THE OATA IS TO BE EXTRAPOLATED (SAY, BY USING SPLINT 
TO EVALUATE THE SPLINE OUTSIDe THE RANGE XlI) TO Xl~'), 
THEN TAKING Al=AN=O.5 AND Bl=BN=O HAY YIELD BETTER 
RESULTS. IN THIS CASE THERE IS AN INFLECTION 
AT XlI) - (X(2'-X(111 AND AT XlN) + lXlNI-X(N-1». 
IN THE HORE GENERAL CASE OF Al=AN=A AND 81=BN=O, 
THERE IS 4N Ih~LECTI0N ATXll) - IX(ZI-X(1)).A/ll.0-AI 
AND AT xlNI + lXlN)-XIN-I).A/ll.G-A). 

A SPLINE THAT HAS A GIVEN FIRST DERIVATIVE YPl AT X(1) 
AND YPN AT YIN) MAY 8E DEFINED 8Y USI~G THE 
FCLLCWING CONDITIONS. 

Al=-0.5 

Bl= 3.0.l(YI2)-Yll)I/IX(2)-Xll»-YP1'/(X(2)-Xlll) 

AN=-O.5 

BN=-3.0·«Y(Nl-Y(N-II)/lX(NI-X(N-1»-YPN)/lXlN)-XlN-1)1 

--OUTPUT--
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YP - ARRAY OF FIRST DERIVATIVES OF SPLINE CAT THE XCI" 
YPP - ARRAY OF SECOND DERIVATIVES Of SPLINE CAT THE XII" 
IER~ - A STATUS CODE 

--NCRMAL CODE 
1 MEANS THAT THE REQUESTED SPLINE WAS COMPUTED. 

--ABNOR~AL CODES 
2 MEANS THAT N, THE NUMBER Of POINTS, WAS .LT. 4. 
3 MEANS THE ABSCISSAS WERE NOT STRICTLY INCREASING. 

--WORK--

W - ARRAY OF WORKING STORAGE DIMENSIONED AT LEAST 3N. 

SPLINT SPLINT SPLINT SPLINT SPLINT SPLINT 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE SPLINT CX,Y,YPP,N,XI,YI,YPI,YPPI,NI,KERR' 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUrDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY RONDALL E. JONES 

ABSTRACi 

SPLINT EVALUATES A CUBIC SPLINE AND ITS fIRST AND SECOND 
DERIVATIVES AT THE ABSCISSAS IN XI. THE SPLINE CWHICH 
IS DEFINED BY X, y, AND YPP, MAY HAVE BEEN DETERMI~ED BY 
SPLIFT OR SMOOTH OR ANY OTHER SPLINE FITTING ROUTINE THAT 
PROVIDES SECOND DERIVATIVES. 

OESCRIFTION OF ARGUMENTS 
THE USER MUST DIMENSION ALL ARRAYS APPEARING IN THE CALL LIST, 
E.G. XCN', YCN', YPPCN), XICNI), YIlNI), YPICNI', YPPI(NI) 

--INPUT--

X - ARRAY OF ABSCISSAS lIN INCREASING ORDER' THAT DEFINE THE 
SPLINE. USUALLY X IS THE SAME AS X IN SPLIFT OR SHOOTH. 

Y - ARRAY OF ORDINATES THAT DEFINE THE SPLINE. USUALLY Y IS 
THE SAHE AS Y IN SPLIFT OR AS R IN SMOOTH. 

YPP - ARRAY CF SECONe DERIVATIVES THAT DEfINE THE SPLINE. 
USUALLY YPP IS THE SAME AS YPP IN SPLIFT OR R2 IN SMOOTH 

N - THE NUMBER OF DATA POINTS THAT DEFINE THE SPLINE. 
THE ARRAYS X, Y, AND YPP MUST SE DIMENSIONED AT LEAST N. 
N MUST BE GREATER THAN OR EQUAL TO 2. 

XI - THE A8SCISS~ OR ~R~AY OE ~SCISSAS (LN AR8IT~~Y ORDER) 
AT ~HICH THE SPLINE IS TO BE EVALUATED. 
EACH XICK' THAT LIES BETWEEN Xli' AND XCN' IS A CASE OF 
INTERPOLATION. EACH XIlK' THAT DOES NOT LIE BETWEEN 
XCi' AND XCN' IS A CASE OF EXTRAPOlATICN. BOTH CASES 
ARE ALLOWED. SEE DESCRIPTION OF KERR. 

NI - THE NUMBER OF ABSCISSAS AT WHICH THE SPLINE IS TO BE 
EVALUATED. IF NI IS GREATER THAN 1, THEN XI, VI, YPI, 
AND YPPI MUST 8E ARRAYS DIMENSIONED AT LEAST NI. 
NI MUST BE GREATER THAN OR EQUAL TO 1. 

--OUTPUT--

YI - ARRAY OF VALLES OF THE SPLINE (ORDINATES' AT XI. 
YPI - ARRAY OF VALUES OF THE FIRST DERIVATIVE OF SPLINE AT XI. 
YPPI- ARRAY OF VALUES OF SECOND DERIVATIVES OF SPLINE AT XI. 



SPLIQ 

KEP~- A STATUS CODE 
--NOR"'AL CODES 

8& 

1 MEANS THAT THE SPLINE HAS EVALUATED AT EACH ABSCISSA 
IN XI USING ONLY INTERPOLATION. 

2 MEANS THAT THE SPLINE WAS EVALUATED AT EACH ABSCISSA 
IN XI, BUT AT LEAST ONE EXTRAPOLATICN WAS PERFORMED. 

A8NORI"AL CODE 
3 MEANS THAT THE REQUESTED NUMBER OF EVALUATIONS, NI, 

WAS NOT POSITIVE. 

SPUQ SPLIO SPLIQ SPlIQ SPLIQ 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUPROUTINE SPLIQ(X,Y,YP,YFP,N,XLO,XUF,NUP,ANS,IERR' 

SANDIA MATHEMATICAL PROG~AM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. ~UDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

THIS ROUTINE HAS WRITTEN BY M. K. GORDON 

A8STRACT 

SPUQ SPLIQ 

SUBROUTINE SPLIQ INTEGRATES A CUBIC SPLINE (GENERATED BY 
SPLIFT,SMOOTH,ETC., ON THE INTERVALS (XLO,XUP(I», WHERE XUP 
IS A SE~UENCE OF UPPER LIMITS ON THE INTERVALS OF INTEGRATION. 
THE CNLY RESTRICTIONS ON XLO AND XUP(.) ARE 

XLO .LT. XUP(lI, 
XUPU) .LE. XUPU+1J FOR EACH I • 

ENOPCI~TS BEYOND THE SPA~ OF ABSCISSAS ARE ALLOWED. 
TH~ SPLINE OVER THE INTEPVAl (X(I',X(I+1» IS REGARDED 
AS A CU1IC POLYNOMIAL EXPANDED A90UT X(II AND IS INTEGRATED 
ANAL YT ICALL Y. 

DESCRIPTICN OF ARGUMENTS 
THE USER MUST DIMENSION ALL AR~AYS APPEARING IN THE CALL LIST, 
E.G. X(N), Y(NI, YP(N), YPP(N), XUP(NUP', ANS(Nep, 

--INPUT--

x - ARRAY OF ABSCISSAS (IN INCREASING ORDER' THAT DEFINE THE 
SPLINE. USUALLY X IS THE SAME AS X IN SPLIFT OR SMOOTH. 

Y - ARRAY OF ORDINATES THAT DEFINE THE SPLINE. USUALLY Y IS 
THE SAME AS Y I~ SPLIFT OR AS R IN S,",OOTH. 

YP - ARRAY CF FIRST DERIVATIVES OF THE SPLINE AT ABSCISSAS. 
USUALLY YP IS THE SAME AS YP IN SPLIFT OR R1 IN SHOOTH • 

. YPP - ARRAY OF SECOND DE~IVATIVES THAT DEFINE THE SPLINE. 
USUALLY YPP IS THE SAME AS YPP IN SPLIFT OR R2 IN SHOOTH 

N - THE NU~B~R OF OATA POINTS THAT DEFINE THE: SPLI.loIE~ 
XLO - LEFT ENDPOINT OF INTEGRATION INTERVALS. 
XUP - RIG~T ENCPOINT OR AR~AY OF RIGHT ENDPOINTS OF 

INTEGRATION INTERVALS IN ASCENOING OROE~. 
NUP - THE NUMBER OF RIGHT ENOPOINTS. IF NUP IS GREATER THAN 

1, THEN XUP ANC ANS MUST BE OIMENSIO~ED AT LEAST NUP. 

--OUTPUT--

ANS -- ARRAY CF INTEGRAL VALUES, THAT IS, 
ANS(I) = INT~GRAL FRCH XlO TO XUP(I) 

IER~ -- ERRCR STATUS 
= 1 INTEGRATION SUCCESSFUL 
= 2 I~FROPER INPUT - N.LT.4 OR NUP.LT.1 
= 3 IMFROPER INPUT - ABSCISSAS NOT IN 

STRICTLY ASCENOING ORDeK 
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= 4 IMPROPER INPUT - RIGHT ENDPOINTS XUP NOT 
IN ASCENDING OROER 

= S IMPROPER INPUT - XLO.GT.XUP(1) = e INTEGRATION SUCCESSFUL BUT AT LEAST ONE ENDPOINT 
NOT WITHIN SPAN OF ABSCISSAS 

•• NOTE. ERRCHK PROCESSES DIAGNOSTICS FOR coeES 2,3,4,5. 

SSORT SSORT SSORT SSORT SSORT SSORT SSORT SSORT 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE SSORT(X,Y,N,K) 

SANDIA MATHEMATICAL PROGRAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY RONDALL E JONES 

ABSTRACT 
SSORT SORTS ARRAY X AND OPTIONALLY MAKES THE SAHE 
INTERCHANGES IN ARRAY Y. THE ARRAY X HAY BE SORTED IN 
INCREASING ORDER OR DECREASING ORDER. A SLIGHTLY MODIFIED 
SHELL SORT ALGORITHM IS USED. 

REFERE toCE 
A HIGH SPEED SORTING PROCEDURE, D L SHELL, CACM JULY 1959 

DESCRIPTION OF PARAMETERS 
x - ARRAY OF VALUES TO BE SORTED (USUALLY ABSCISSAS) 
Y ARRAY TO BE (OPTIONALLY) CARRIED ALONG 
N NUMBER OF VALUES IN AR~AY X TO 8f SORTED 
K CONTROL PARAMETER 

=2 HEANS SORT X IN 
=1 HEANS SORT X IN 
=-1 MEANS SORT X IN 
=-2 HEANS SORT X IN 

INCREASING 
INCREASING 
DECREASING 
DECREASING 

ORDER 
ORDER 
ORDER 
ORDER 

AND CARRY 
(IGNORING 
(IGNORING 
AND CARRY 

Y ALONG. 
y) 

Y) 

Y ALONG. 

CHECK INPUT DATA 

STEP1 STEP1 STEP1 STEP1 STEP1 STEP1 
•••••••••••••••••••••••••••••••••••••••• .......... ~.~ .... ~ ... ~."' ....... . 

•••••••••••••••••••• •••••••••• 
SUBROUTINE STEP1(F,NEQN,Y,X,H,EPS,WT,START, 

1 HOLD,K,KOLD,CRASH,PHI,P,YP,PSI, 
2 AlPHA.BETA,SIG,V,W,G,PHASE1,HS,NORND) 

SANDIA MATHEMATICAL PROGPAM LIBRARY 

CONSULTANTS AT SLL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY L. F. SHAMPINE AND H. K. GORDON 

ABSTRACT 

STEP1 STEP1 
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SUAROUTINE STEP1 IS NORMALLY USED INDIRECTLY THROUGH Sl8~OUTINE 
ODE. BECAUSE ODE SUFFICES FOR MOST PROBLEMS AND IS MUCH ~ASIER 
TO USE, USING IT SHOULD 9E CONSIDERED BEFORE USING STEPl ALONE. 

SUBROUTINE STEP1 INTEGRATES A SYSTEM OF NEQN FIRST ORDER ORDINAR 
DIFFE~ENTIAL EQUATIONS ONE STEP, NORMALLY FROM X TO X+H, USING A 
~ODIFIED DIVIDED DIFFERENCE fDRM OF THE ADAMS PECE FORMULAS. LOCAL 
EXTRAPCLATICN IS USED TO IMPROVE ABSOLUTE STABILITY AND ACCURACY. 
THE CODE ADJUSTS ITS ORDER AND STEP SIZE TO CONTRDL THE LOCAL ERROR 
PER UNIT STEP IN A GENERALIZED SENSE. SPECIAL DEVICES ARE INCLUDED 
TO CONTROL ROUNDOFF ERROR AND TO DETECT WHEN THE USER IS ~EQUESTING 
TOO HUCH ACCURACY. 

THIS ceDE IS CO~PLETELY EXPLAINED AND DOCUMENTED IN THE TEXT, 
COMPUTER SOLUTIC~ OF ORDINARY DIFFERENTIAL EQUATIONSt THE INITIAL 
VALUE PRC8LEM ey L. F. SHA~PINE AND H. K. GORDON. 

THE PARAMETERS REPRESENTt 
F -- SUBROUTINE TO EVALUATE DERIVAT IVES 
NEQN -- NUMeER OF EQU~TICNS TO BE INT~GRATED 
Y(.) -- SOLUTION VECTOR AT X 
X -- INDEPENDENT VARIABLE 
H -- APPROPRIATE STEP SIZE FOR NEXT STEP. NORMALLY DETERMINED BY 

CODE 
EPS -- LOCAL ERROR TOLERANCE 
WT(-) -- VECTOR OF WEIGHTS FCR ERROR CRITERIO~ 
START -- LOGICAL VARIABLE SET .T~UE. FOR FIRST STEP, .FALSE. 

OTHERWISE 
HOLD -- STEP SIZE USED FOR LAST SUCCESSfUL STEP 
K -- APPROPRIATE ORDER FOR NEXT STEP (DETERMINED BY CODE) 
KOLD -- ORDER USED FO~ ~AST SUCCESSFUL STEP 
CRASH -- LOGICAL VARIABLE SET. TRUE. WHEN NO STEP CAN BE TAKEN, 

.~ALSE. OTHERWISE. 
YP(.) -- DERIVATIVE OF SOLUTICN VECTOR AT X AFTER SUCCESSFUL 

STEP 
THE AR~AYS PHI, PSI ARE REQUIRED FOR THE INTERPOLATION SUBROUTINE 
INTRP. THE AR~AY P I~ INTERNAL TO THE CODE. THE REMAI~ING NINE 
VARIARLES AND ARRAYS ARE INCLUDED IN THE CALL LIST ONLY TO ELIMINATE 
LOCAL RETENTION CF VARIA3LES BETWEEN CALLS. 

INPUT TO STEPl 

FIRST CALL --

THE USER MUST PROVIDE STCRAGE IN HIS CALLING PROGRAM FOR ALL ARRAYS 
IN THE CALL LIST, NAMELY' 

DIM~NSION Y(NEQN),WT(NEQN),P~I(NEQN,16),F(NEQN),YP(NEQ~),PSI(12), 

1 ALPHA(12),BETA(12),SIG(13),V(12),W(12),G(lJ) 

THE USER ~UST ALSO DECLARE START, CRASH, PHASEl AND NORNO 
LOGICAL VARIABLES AND f A~ EXTERNAL SUBROUTINE, SUPPLY THE 
SUBROUTINE F(X,Y,YP) TO EVALUATE 

DY(I)/OX = YP(I) = F(X,Y(1),y(~), ••• ,Y(NEaN)) 
AND INITIALIZE ONLY THE FOLLOWING PARAMETERSt 

NE'lN -- NUMBER OF EQUA-TI(lIllSTO ilE INTEG~A'f~O 
Y(.) -- VECTOR OF INITIAL VALUES OF DEPENDENT VARIABLES 
X -- INITIAL VALUE OF THE INDEPENDENT VARIABLE 
H -- NOMINAL STEP SIZE INDICATING DIRECTION OF INTEGRATION 

AND MAXI~UM SIZE OF STEP. MUST BE VARIABLE 
EPS -- LOCAL ERROR TOLERANCE PER STEP. MUST BE VARIAELE 
WT(·) -- VECTOR OF NON-1ERO WEIGHTS FOR ERROR C~ITE~ION 
START -- .TRUE. 

STEPl REQUIRES THAT THE L2 NOR~ OF THE VECTOR WITH COMPONENTS 
LOCAL ERROR(L)/WT(L) BE LESS THAN EPS FOR A SUCCESSFUL STEP. THE 
ARRAY WT ALLOWS THE USER TO SPECIFY AN ERROR TEST APPROPRIATE 
FOR HIS P~OBLEM. FOR EXAMPLE, 

WTfL) = 1.0 SPECIFIES ABSOLUTE ERROR, 
ABS(Y(L)) ERROR RELATIVE TO TH£ HOST RECENT VALUE OF THE 

L-TH COMPONENT OF TH~ SOLUTION, 
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= ABSIYPIl)) ERRO" RELATIVE TO THE MOST RECENT VALUE OF 
THE L-TH COMPONENT OF THE DERIVATIVE, 

= AMAX1IWTIL),ABS(Y(L')) ERROR RELATIVE TO THE LARGEST 
MAGNITUDE OF L-TH COMPONENT OBTAINED SO FAR, 

= ABSCY(L')·RELERR/EPS + ABSERR/EPS SPECIFIES A MIXED 
RELATIVE-ABSOLUTE TEST WHERE RELERR IS RELATIVE 
ERROR, ABSERR IS ABSOLUTE ERROR AND EPS = 
AMAX1(RELERR,ABSERR) • 

SUBSEQUENT CALLS --

SUBROUTINE STEPl IS DESIG~ED SO THAT ALL INFOR~ATION NEEDED TO 
CONTINUE THE INTEGRATION, INCLUDING THE STEP SIZE H AND THE OReER 
K • IS RETURNED WITH EACH STEP. WITH THE EXCEPTION OF THE STEP 
SIZE, THE ERROR TOLERANCE, AND THE WEIGHTS. NONE OF ,THE PARAMETERS 
SHOULD BE ALTERED. THE ARRAY WT HUST BE UPDATED AFTER EACH STEP 
TO MAINTAIN RELATIVE ERRCR TESTS LIKE THOSE ABOVE. NORMALLY THE 
INTEGRATION IS CONTINUED JUST BEYOND THE DESIRED ENDPOINT AND THE 
SOLUTION INTERPOLATED THERE WITH SUBROUTINE INTRP. IF IT IS 
IMPOSSIBLE TO INTEGRATE BEYOND THE ENDPOINT, THE STEP SIZE MAY BE 
REDUCED TO HIT THE ENDPOINT SINCE THE CODE WILL NOT TAKE A STEP 
LAA>ER THAN THE H INPUT. CHANGING THE DIRECTION OF INTEGRAnO~, 
I.E., THE SIGN OF H, REQUIRES THE USER SET START = .TRUE. BEFCRE 
CALLING STEPl AGAIN. THIS IS THE ONLY SITUATION IN WHICH START 
SHOULD BE ALTERED. 

OUTPUT FROM STEPl 

SUCCESSFUL STEP 

THE SUBROUTINE RETURNS AFTER EACH SUCCESSFUL STEP WITH START AND 
CRASH SET .FALSE.. X REPRESENTS THE INDEPENDENT VARIABLE 
ADVANCED ONE STEP OF LENGTH HOLD FROM ITS VALUE ON INPUT AND Y 
THE SOLUTION VECTOR AT THE NEW VALUE OF X. ALL OTHER PARAMETERS 
REPRESENT INFORMATIO~ CORRESPO~DING TO THE NEW X NEEDED TO 
CONTINUE THE INTEGRATION. 

UNSUCCESSFUL STEP --

WHEN THE ERROR TOLERANCE IS TOO SMALL FOR THE MACHINE PRECISION, 
THE SUBROUTINE RETURNS WITHOUT TAKING A STEP AND CRASH = .TRUE •• 
AN APPROPRIATE STEP SIZE AND ERRCR TOLERANCE FOR CONTINUING ARE 
ESTIMATED AND ALL OTHER INFORMATION IS RESTORED AS UFON INPUT 
BEFORE RETURNING. TO CONTINUE WITH THE LARGER TOLERANCE, THE USER 
JUST CALLS THE CODE AGAIN. A RESTART IS NEITHER REQUIRED NOR 
DESIRABLE. 

SUPORT SUPORT SUPORT SUPORT SUPORT 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• •••••••••• 

SUPORT SUPORT 

~ SUBROUl'INLSUP01H U_,~RQIO' .tIc.rutP4 XPTS-.NXPIS .. A-.NROWA ..Al2HA_.N.lC. 
1 B.NRONB.BETA,NFC,IGOFX.RE,AE,IFLAG,NORK,NDW, 
2 IWORK,NOIW) 

SANDIA ~ATHEHATICAL PROGRAM LIBRARY 

CONSULTANTS AT SlL INCLUDE -
R. E. HUDDLESTON DIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

WRITTEN BY MELVIN R. SCOTT AND HERMAN A. (BUDDY) NATTS 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
ABSTRACT 
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SUBROUTINE SUFORl SOLVES A LINEAR TWO-POINT ~OUNDARY-VALUE PRoeLEM 
OF THE FORM 

DY/DX = MATRIX'X).Y,X, + G'X) 
A·YIXINITIAU = ALPHA, B.Y(XFINAU = eETA 

THE METHOD OF SOLUTION USES SUPERPOSITION COUPLED WITH AN 
ORTHONORMALIZATICN PROCEDURE AND A VARIABLE-STEP QUNGE-KUTTA
FEHLBERG INTEGRATION SCHEME. EACH TIME THE SUPERPOSITICN SOLUTIONS 
START TO LOSE THEIR NUMERICAL LINEAR IND£PENDENCE, THE VECTORS ARE 
REORTHCNORMALIZED EEFORE INTEGRATION PROCEtDS. THE UNDERLYING 
PRINCIPLE OF THE ALGORITHM IS THEN TO PIECE TOGETHER THE 
INTERMEDIATE ICRTHOGONALIIED) SOLUTIONS, DEFINED ON THE VARIOUS 
SUO INTERVALS. TO OBTAIN THE DESIRED SOLUTIONS • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
REFERE t;CES 

M.R. SCOTT AND H.A. WATTS. ~UPORT - A COMPUTER CODE FOR TWO
POINT BOUNDARY-VALUE PROBLEMS VIA 
ORTHCNO~~ALIZATION, SAN075-019a, SANDIA LABS., 
ALBUQUERQUE, NEW MEXICO, 1975. 

S.K. GODUNCV, ON THE NUMERICAL SOLUTION OF BOlNDARY VALUE 
PRoeLEMS FOR SYSTEMS OF LINEAR ORDINARY 
DIFFE~ENTIAL EQUATIONS, USPEKHI. MAT. NAUK., 
VOL. 16, 1961, 171-17~ • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
INPUT TO SUPORT 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
NROWY = ACTUAL ROW DIMENSION OF Y IN CALLING pqOG~AM. 

NROWY MUST BE .GE. NCO~P 

NCOMP = NUMBER OF COMPONENTS PE~ SOLUTION VECTOR. 
NCOMP IS EQUAL TO NU~6ER OF ORIGINAL DIFFERENTIAL 
EQUATIONS. NCOMP = NIC + NFC. 

XPTS = DESIRED OUTPUT POIt;TS FeR SOLUTION. THEY MUST BE MONOTONIC. 
XINITIAL = XPTSll' 
XFINAL = )PTSINXPTS) 

NXPTS = NUMBER OF OUTPUT POINTS 

AINROWA,NCOMP) = BOUNDARY CONDITION MATRIX AT XINITIAL 
MUST BE CONTAINED IN INIC,NCO~P) SUB-~ATRIX. 

NROW~ = ACTUAL ROW DI~ENSION OF A IN CALLING PROGRAM, 
NROWA ~UST BE .GE. NIC. 

ALPHA(NIC) = eOU~DARY CONOITIO~S AT XINITIAL. 

NIC = NUMfER OF BOUNDARY CONDITIONS AT XINITIAL. 

RINROWB,NCOMP) = eOUNDARY CONOITION HATRIX AT XFINAL. 
I"UST BE CONTAINED IN INFC,NCOMP) SUB-MATRIX. 

AAowB = ACTUA!.. ~OW DI~ENSI.oN OF !l IN CALLING' PROGRAH, 
NROWB HUST BE .GE. NFC. 

BETA(NFCt = BOUNDARY CONDITIONS AT XFINAL. 

NFC = NUMBER OF BOUNDARY CONDITIONS AT XfINAL 

IGOFX = 
o THE INHOMOGENEOUS TERM GIX) IS IDENTICALLY ZERO. 

1 THE INHOMOGENEOUS TERM GIX) IS NOT IDE~TICALLY ZERO. 
'IF IGOFX=1, THEN SUBROUTINE GVEC MUST 8E SUPPLIED.) 

RE = RELATIVE ERROR TOLERANCE USED BY THE INTEGRATO~ 
ISEE GERK OR RKF) 

AE = AaSOLUT~ ERROR TOLERANCE USED BY THE INTEGRATOR 

r • 



'SEE GE~K OR RKF' 
•• ·NOTE- SINCE THE COST TYPICALLY RISES RAPIDLY FOR TOLERA~CES BELOW 

1.0E-08, WE SUGGEST THE USE OF LARGER ERROR TOLERANCES. ALSO, 
RE AND AE SHOULD NOT BOTH BE ZERO. 

WORK'NDW' = FLOATING POINT A~RAY USED FOR INTERNAL STORAGE. 

NOW = ACTUAL DIMENSION OF WORK ARRAY ALLOCATEO BY USER. 
AN ESTIMATE FOR NOW CAN BE COMPUTED FROM THE FOLLOWING 

NDW=NCOMP •• 2.'10 + NXPTS/2 + EXPECTED NUMBER OF 
ORTHONORMALIZATIONS/8J 

IWORK'NOIW' = INTEGER ARRAY USED FOR INTERNAL STORAGE. 

NOIM = ACTUAL DI~ENSIO~ OF INORK ARRAY ALLOCATED 8Y USER. 
AN ESTIMATE FOR NOIN CAN BE COMPUTED FROM THE FOLLOWING 

NDIW=11+NCOMp.'1 + EXPECTED NUMBER OF 
ORTHONORHALIIATIONS' 

•• ·NOTE -- THE AMOUNT OF STORAGE REQUIRED IS PROBLEM DEPENDENT AND MAY 
8E DIfFICULT TO PREDICT IN ADVANCE. EXPERIE~CE HAS SHOWN 
THAT fOR MOST PROELEMS 20 OR FEWER ORTHONOR~ALIZATIONS 
SHOULD SUFFICE. IF THE PROBLEM CANNOT BE CO~PLETED WITH THE 
ALLOTTED STORAGE, THEN A MESSAGE WILL BE PRINTED WHICH 
ESTIMATES THE AMOUNT OF STORAGE NECESSARY. 

THE USER MUST SUPPLY SUBROUTINES FMAT AND GVEC 'THEY MUST 8E 
NAMED FMAT AND GVEC' TO EVALUATE THE DERIVATIVES AS FOLLOWS 

SUBROUTINE FMAT(X.Y,YP' 
X = INDEPENDENT VARIABLE (INPUT TO FHAT) 
Y = DEPENDENT VARIABLE VECTOR (INPUT TO FHAT, 
YP = DY/DX = DERIVATIVE VECTOR COUTPUT FROM FHAT' 

COMPUTE THE DERIVATIVES FOR THE HOMOGENEOUS PROBLEH 
YPCI' = DY(I'/OX = MATRIX(X' • Y(I) ,I = 1, ••• ,NCOMP 

SUBROUTINE eVPDER CALLS FHAT NFC TIHES TO EVALUATE THE 
HOMOGENEOUS EQUATIONS AND,IF NECESSARY,IT CALLS FHAT ONCE 
IN EVALUATING THE PARTICULAR SOLUTION. SINCE X REMAINS 
UNCHANGED IN THIS SEQUENCE OF CALLS IT IS POSSIBLE TO 
REALIZE CONSIDERABLE COMPUTATIONAL SAVINGS FO~ COMPLICATED 
AND EXPENSIVE EVALUATIO~S OF THE MATRIX ENTRIES. TO DO THIS 
THE USER ~ERELY PASSES A VARIABLE,SAY XS,VIA COMMON WHERE 
XS IS DEFINED IN THE ~AIN PROGRAM TO BE ANY VALUE EXCEPT 
THE INITIAL X. THEN THE NON-CONSTANT ELEMENTS OF MATRIX(X' 
APPEARING IN THE DIFFERENTIAL EQUATIONS NEED ONLY BE 
COMPUTED IF X IS UNEQUAL TO XS .WHEREUPON XS IS RESET TO X. 

SUBRCUTINE GVEC'X,G) 
X = INDEPENT VARIABLE eINPUT TO GVEC' 
G = VECTOR OF INHOMOGENEOUS TERMS GeX' (OUTPUT FROM GVEC' 

COMPUTE THE INHOMOGENEOUS TERMS GCX) 
G(I) = GeX' VALUES FOR I = 1 •••• ,NCOMP. 

SUBROUTINE BVPDER CALLS GVEC IN EVALUATING THE PARTICULAR 
SOU~-TlC-" PRQ.VH)EO G{)O- ~S NOl IOENfICA~&'Y l~O-. THUS. WHiM 
IGOFX=O, THE USER HEE[ NOT WRITE A GVEC SUBROUTINE. ALSC, 
THE USER DOES NOT HAVE TO BOTHER WITH THE COMPUTATIONAL 
SAVINGS SCHEME FOR GVEC AS THIS IS AUTOMATICALLY ACHIEVED 
VIA THE BVPDER SUBROUTINE. 

THE fOLLOWING IS OPTIO~AL INPUT TO SUPORT TO GIVE USER HORE 
FLEXIBILITY IN USE OF CODE. SEE SAND15-01Qe FOR HORE INFORMATION. 

··.··CAUTIO~ -- THE USER IS ADVISED TO ZERO OUT IWORK(1', ••• ,IWORK'10' 
PRIOR TO CALLING SUPORT. 

IWORK'1' -- IF IWORK,7, = -1, THEN USER CAN INPUT INTO IWORK(S) 
THE EXPONENT PARAMETER TO BE USED IN TOLERANCE TEST 
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FOR CRTHCNORM~LIZATION. 

IWORK(8' -- THE VALUE OF THE EXPONENT PARAMETER IN THE TOLERANCE 
TEST FOR ORTHCNORHALIZATION. IF USER HAS NCT SET 
IWCRK(7'=-1, THEN THE DEFAULT VALUE IS o. 
DECREASING THE VALUE OF IWORK(6' RESULTS IN MORE 
FREQUENT ORTHCNORHALIZATIONS. 

IWORK(Q' -- INTEGRATOR AND ORTHONORMALIZATION PARA~ETER 
(DEFAULT VALUE IS l' 

IWORK(10' 

1 = RKF USING GRAM-SCHMIDT TEST. 
Z = GERK USING GLOBAL ERROR TEST. 

NOR~ALIZATIC~ OF FARTICULAR SOLUTION 
lDEFAULT VALUE IS 0' 
o - NOR~ALIZE PARTICULAR SOLUTION TO UNIT LENGTH AT 

EACH POINT OF ORTHONORMALIZATION. 
1 - 00 NOT NCRMALIZE PARTICULAR SOLUTION 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
OUTPUT FROM SUPORT 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

YCNROWY,NXPTS' = SOLUTION AT SPECIFIED OUTPUT POINTS. 

IFLAG OUTPUT VALUES 
=-3 SUPORT WAS CALLED WITH INCORRECT NUMBER OF ARGUMENTS. 
=-2 INVALID INPUT PARAMETERS. 
=-1 INSUFFICIENT NUMBER OF STORAGE LOCATIONS ALLOCATED FOR 

WORK OR IWORK. 

=0 INDICATES SUCCESSFUL SOLUTION 

=1 A CCMPLTED SOLUTION IS RETURNED BUT UNIQUENESS OF THE 
SOLUTION OF THE BOUNDARY-VALUE PROBLEM IS QUESTIONABLE. 

=2 A CCMPlTED SOLUTION IS RETURNED BUT THE EXISTENCE OF THE 
SOLUTION TO THE BOUNDARY-VALUE PROBLEM IS QUESTIONABLE. 

··.NOTE-WE ATTEMPT TO DIAGNOSE THE CORRECT PROBLEM BEHAVIOR 
AND REPORT POSSIBLE DIFFICULTIES BY THE APPROPRIATE 
ER~CR FLAG. HOWEVER,THE USER SHOULD PROBABLY RESOLVE THE 
PROBLEM USING SMALLER ERROR TOLERANCES AND/OR 
PERTURBATIONS I~ THE gOUNDARY CONDITIONS OR OTHER 
PARA~ETERS. THIS WILL OFTEN REVEAL THE CORRECT 
INTERPRETATION FOR THE PROBLEM POSED. 

=3 NO SOLUTION RETURNED 8~CAUSE THE BOUNDARY CONDITION 
MATRIX e·YlXFINALI IS SINGULAR. 

=4 MAXI~U" NUHBER OF ORTHONORMALIZATIONS ATTAINED BEFORE 
REACHING XFINAL. 

=13 RANK OF BOUNDARY CONDITION MATRIX A IS LESS THAN NIC. 
=ZO+FLAG FROM INTEGRATOR lGERK OR RKFI. 
=30 HOMOGENEOUS VECTORS FORM A DEFENDENT ScT. 
=31 HOMOGENEOUS VECTORS PLUS PARTICULAR VECTOR FORM A 

DEPENDENT SET. 

WORKC1" ••• ,WORKCIWORK(111 = O~THONORHALIZATIO~ POINTS 
DETERMINED HY BVPORT. 

IWORKl1' = NUHfER OF ORTHCNOR~ALIZATIONS PERFORHED BY eVPORT. 

IWORKlZI = MAXIMUM NUMBEF OF O~THONORMAllZATIO~S ALLOWED AS 
CALCULATED FRO~ STORAGE ALLOCATED BY USER. 

IWORKl3I,IWORKl4',IWORKl~',IWORKl6' GIVE INFCR~ATION ABOUT 
ACTUAL STORAGE REQUIREMENTS FOR WORK AND IWCRK 
ARRAYS. IN PARTICULAR, 

REQUIRED STORAGE FOR WORK ARRAY IS 
IWORKC3, + IWORK(4'·(EXPECTED NUMBER OF ORTHONORMALIZATIONSI 

REQUIRED STORAGE FOR IWORK ARRAY IS 
IWORK'S, + IWORKl61·lEXPECTED NUMBER OF ORTHONORMALIZATIONSI 

IWORK(81 = FINAL VALUE OF EXPONENT PARAHETER USED IN TOLERANCE 
TEST FOR ORTHONOR~AlIZATION. 



IWORKlll' = NU~BER OF INDEPENDENT VECTORS RETURNED FRO~ HGS. 
IT IS ONLY OF INTEREST WHEN IfLAG=30 OR 31 IS OBTAIhEO • 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

THE FOLLOWING ARE MACHINE CONSTANTS AND THE SUBROUTINES IN WHICH 
THEY APPEAR. THESE ARE SET FOR THE COC-&&OD WHICH CARRIES 
APPROXIMATELY FOURTEEN DIGITS. 

SUBROUTINE NAME VARIABL=: NAME VALUE 
SUPORT LPAR 7 
BVPORT EPS 1.0E-11 
MGS EPS 1.0E-11 
COEFF SRU 1.0E-1l7 
UCHECK URO 7.1E-15 
RKFS U 7.1E-15 
GERKS U 7.1E-15 

THE COMPUTER UNIT ROUNDOFF ERROR U IS THE SMALLEST POSITIVE VALUE 
REPRESENTABLE IN THE MACHINE SUCH THAT 1.+U .GT. 1. 

VALUES TO EE USED ARE 
U = Q.5E-07 fOR IBM 360/370 
U = 1.5E-08 FOR UNIVAC 1108 
U = 7.5E-09 FOR POP-I0 
U = 7.1E-15 FOR COC-&&OO 
U = 2.2E-l& FOR IBM 3&0/370 DOUBLE PRECISION ....................................................................... 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

TJMARl TJI1ARl TJ"'AR1 TJMARl 
•••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 

TJMAf(l T JUR1 

SUBROUTINE TJMARl IB.LIN,XIN.WORK.XOATA.Y.IB,fUNCT,DERIV) 
FOR DOCUMENTATION SEE SLL-73-0305 TJHAR1. A FORTRA~ SUBROUTINE 
FOR NONLINEAR LEAST SQUARES PARAMETER ESTIMATICN 

TJMARl WRITTEN BY THOMAS H. JEFFERSON JR, SANDIA, LIVE~MORE 
• • • •• TJMARl IS NOT II ROUTINE OFFICIALLY ON THE MATH ~IBRARY, BUT 
• • • • • IT IS SUPPORTED BY THE AUTHOR AT LIVERMCRE. 

TJMARl SOLVES THE NONLINEAR LEAST SQUARES PROBLEM AS FOLLOWS. 
GIVEN N+NCONS FUNCTIONS, RES SUB ICB) • I=1,N+NCONS, OF THE 
K-VECTOR OF PARAMETERS B, FINO THE VALUE Of THE VECTOR B THAT 
MINIMIZES PHI, THE SUM OF SQUARES OF THE N+NCONS RESIDUAL 
fUNCTIONS. 

EXAMPLES OF USE ARE IN DATA FITTING WHERE THE ~ESIOUAL 
FUNCTIONS MIGHT BE DEFINED AS THE DIFFERENCE BETWEEN THE 
OBSERVED VALUE AND THE PREDICTED VALUE AT EACH DATA POINT. 

RES SUB I = (YII) - F(XDATAII),B ) 
ANOfHER AP.$!UCAlI-CH ~S- IN SOt.VIN~ A SYSTE:M OF AL-GE611AIC 

EQUATIONS W~ERE THE RESIDUAL fUNCTIONS COULO BE DEFINED AS THE 
DIFFERENCE BETWEEN THE RIGHTHANO AND LEFTHANO SIDES OF 
EACH EQUATION. 

B INPUT AND OUTPUT ARRAY OF PARAMETERS. 

LIN 
XIN 
WORK 

INPUT INITIAL GUESS FOR PARAMETER VALUES. 
OUTPUT FINAL VALUES fOR PARAMETERS. 

I~PtT ARRAY OF INTEGER SUBROUTINE CONSTANTS. 
INPUT ARRAY OF REAL SUBROUTINE CONSTANTS. 
TEMPORARY WORK ARRAY OF LENGTH AT LEAST 

c·K+.S·K·(K+l' FOR AUXILIARY FILE MOOE OR 
7·K+K.IK+l) FOR ALL IN CORE MODE. 

ON OUTPUT 
WORK(l)=CONV, STOP INDICATOR. 

CONV=O. E~RCR IN TJMARl 
CONV=l. EFSILON TEST--PARAMETERS DID NOT CHANGE 
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MUCH FROM ONE ITERATION TO THE NEXT 
CONV=2. PHI.LE.PHIHN--SUM OF SQUARES.LE.PHIHN 
CONV=J. GAMHA LAHBDA TEST--COULO 6E ROUNDOFF 

PROBLEHS. 
CONV=4. GRADIENT OF PHI IS ZERO 
CONV=5. FORCE OFF--HAXIHUH NUMBER ITERATIONS 

EXCEEDED. SEE LINCU). 
CONV=6. USER ERROR--CHECK INPUT. 

WORKC2'=PHIZ. S~ALLEST SUM OF SQUARES SO FAR. 
WORK(3)=XL. LAST VALUE OF LAMBDA. 
WORK(4)=GAHHA. LAST ANGLECIN D£GREES) BETWEEN 

GRADIENT AND LAST INCREHENT. 
WORK(S'=PHIUNZ=SUH OF SOUARES OF UNCONSTRAINED 

RESIOUALS USING BEST PARAMETERS. 
WORKf6J=PHICNZ=SUH OF SOUARES OF CONSTRAINT 

RESIDUALS USING BEST PARAHETERS. 
XDATA INPUT ARRAY CONTAINING VALUES OF INDEPENDENT VARIABLE 

XDATA IS NOT USED BY TJHARl EXCEPT TO PASS IN 
ARGUHENT LIST TO FUNCT AND DERIV. 

Y INPUT ARRAY CONTAINING VALUES OF DEFENDENT VARIABLE 
AT THE N DATA POINTS. 

IB INTEGER INPUT ARRAY CONTAINING NUHBERS OF OHITTED 
PARAf'ETERS. 

FUNCT USER DEFINED EXTERNAL SUBROUTINE FOR EVALUATING 
FUNCTION AND CONSTRAINT RESIDUALS. FORM CF ROUTINE 

SUBROUTINE FUNCT(I,XDATA,Y,B,F,RES,PRNTJ 
DIHHSIOt- XDATA( ),vtU,B(1),FRNTtSJ 

TJHARl WILL PASS TO THIS ROUTINE I,XDATA,Y, AND 
B. F, RES, AND PRNT( , SHOULD THEN BE DEFINED IN 
FUNCT. I IS THE DATA POINT NUHeER BETWEEN 1 AND 
N+NCONS. XDATA AND Y ARE AS IN TJMAR1 CALLING LIST. 
B IS THE CURRENT SET OF PARAMETERS BEING CONSIDERED. 
F SHOULD BE THE FUNCTION VALUE AT DATA POINT I. 
RES SHOULD BE THE RESIDUAL AT DATA POINT I. 
PRNT(J),J=l.NPRNT ARE THE ADDITIOt-AL ITEHS TO BE 
PRIt-TED ALO~G WITH DATA IF LIN(12J IS POSITIVE. 

DERIV USER DEFINED EXTERNAL SUBROUTINE FOR EVALUATING 
ANALYTIC DERIVATIVES IF LINeS)=2. DERIV IS NOT 
CALLED IF ESTIMATED DERIVATIVES ARE USED, BUT EVEN 
T~EN SOHE APGUHENT MUST APPEAR IN ITS PLACE IN 
THE TJHARl CALLING LIST. FORM OF ROUTINE 

SUBROUTINE DERIV(I,XDATA,Y,B,F,RES,PDJ 
OI~ENSION XDATA( ),Y(1',Ee1"PDelJ 

I,XDATA,Y,B,F,RES ARE AS DEFINED ON THE PREVIOUS 
CALL TO FUNCT. FOR J=l,K PO(J' SHOULD 9E DEFINED 
TO BE THE NEGATIVE OF THE DERIVATIVE OF RESIDUAL I 
WITH RESPECT TO PARAMETER eeJ'. 

••••• FUNCT AND DERIV MUST APPEAR IN AN ~XTERNAL STATEMENT 
••••• IN THE ROUTINE THAT CALLS TJMAR1. 

1 K 
2 N 
3 NCONS 
.. NF 
5 KO~V 

~ l.ISTl 
7 LISTZ 

8 LIST3 
q It-IT 

10 LOP 

11 KILL 

12 NPRNT 

13 ITAPE 

LIN ARRAY BELOW 

NUMBER OF PARAHETERS. 
NUM9ER OF DATA POINTS. 
NUMBER OF CONSTRAINTS, I.E. RESIDUALS WITH NO OATA. 
NUMBER OF OMITTED PARAHETERS. 
.EQ.l ESTIMATED DERIVATIVES. 
.EQ.2 ANALYTIC DERIVATIVES. 
OETERMIN£S TYPE OUTRUT 8E£ORE LNIT LTERAXIONS 
DETERMINES OUTPUT AFTER INIT ITERATIO~S BUT BEFORE 

CONVERGENCE OR FORCE OFF. 
DETERMINES TYPE OUTPUT AFTER CONVERGENCE OR FORCE OFF 
.GT.O lESS OETAILED PRINT OUT AFTER INIT ITERATICNS. 
.EO.O SAME TYPE PRINT OUT fOR ALL ITERATIONS • 
• EO.l PRINTER PLOT SCALE DETERMINED BY IhPUT YHN AND 

YMX • 
• EO.2 PRINTER PLOT AUTOMATICALLY SCALEO BY ROUTINE • 
• EO.3 NO PRINTER PLOT. DATA LISTED INSTEAD • 
• GE.1 FORCE OFF AFTER KILL ITERATIONS. 
.EO.D NO FORCE OFF 
NUHBER OF ADOITIOt-AL WORDS TD BE PRINTED AT EACH 

DATA POINT. MUST BE .GE.D AND .LE.5. 
NUHBER OF FILE ON WHICH OUTPUT IS WRITTEN. 

ITAPE=6 IS DEFAULT SO ON PROGRAH CARD SHOULD BE 
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DECLARED TAPE6=OUTPUT. 
14 JKTAPE NUMBER OF TEMPORARY SCRATCH FILE. 

JKTAPE=3 IS DEFAULT, SO IF SCRATCH FILE IS USED 
TAPE3 SHOULD BE DECLARED ON PROGRAM CARD. 

15 LNWORK .LE. NUHBER OF WORDS AVAILABLE IN TEMPORARY 
WORK ARRAY WORK. USED IN DETERMINING WHETHER OR 

NOT TO WRITE ON SCRATCH FILE. 
16 JCENTD .EQ.1 DO NOT USE CENTRAL DIFfERE.CES IN CALCULATING 

ESTIMATED PARTIAL DERIVATIVES • 

1 YHN 
Z YMX 
3 XLAM , OLT 
5 DEL 

6 GAMCR 

7 E 
8 TAU 

• fQ.l USE CENTRAL DIFFERENCES ONLY AFTER CONVERGENCE 
WITHOUT CENTRAL DIFFERENCES • 

• EQ.3 USE CENTRAL DIFFERENCES FOR ALL ESTIMATED 
PARTIAL DERIVATIVES. 

XIN ARRAY BELOW 

MINIMUM SCALE VALUE FO~ PRINTER PLOTTING. 
MAXIMUM SCALE VALUE FOR PRINTER PLOTTING. 
I~ITIAL VALUE TO SE ADDED TO DIAGONAL OF FTP=A MATRIX 

I~ ESTIMATED DERIVATIVE ROUTINE S·DEl + OR - OLT 
IS THE INCRE~ENT USED FOR CALCUALTING DERIVATIVE 

CRITICAL VALUE OF ANGLE BETWEEN GRAOIENT AND 08 
INCREMfNTS IN CONVERGENCE ROtTINE. ANGLE IS 
MEASURED IN SCALED SPACE. 

USED IN EPSILON TEST. 
USED IN EPSILON TEST. 

EPSILON TEST FO~ CONVERGENCE IS SATISFIED 
IF FROM ONE ITERATION TO THE NEXT ALL COMPONENTS OF 
PARA~ETER VECTOR B AND CORRESPONDING INCREMENT VECTOR 
DELe SATISFY 

9 PHIMN 
ABSCDElBCJ" .LE. CE·ABSCBCJ"+TAU' • J=l,K 
END ITERATING AND RETURN IF PHI.LE.PHIMN 

IF ANY VALUE IN THE XIN AND LIN A~~AYS IS .LE. 0 THE DEFAULT VALUE 
CORRESPONDING TO THAT INPUT CONSTANT WILL BE USED. 

THIS DOES NOT APPLY TO XI~Cl' AND XINCZ'. 
LINC1',LlhC2',LINC15' MUST BE SPECIFIED AS POSITIVE 

QUANTITIES OP ERRORS WILL OCCUR. THE BUILT IN DEFAULT 
VALUES ARE USUALLY SATISFACTORY FOR ALL OTHER XIN 
AND LIN QUANTITIES. 

-----FURTHER EXPLANATION OF THE THREE LIST PARAMETERS, LISTV,V=l,Z,l 
LISTV = 1 Ne OUTPUT 

= Z ERRORS 
= 3 ERRORS+AeBREVIATED 
= 4 ERRORS+ABBREVIATEO+OATACPLOT OR COLUMN OEP O~ LOP' 
= 5 ERRORS+ABBREV.+CORREL MATRIX 
= 6 ERRORS+ABBREV.+CORREL MATRIX+DATA 
= 7 ALL EXCEPT FOR 80TH DATA AND CORREL. MATRIX 
= 8 ALL EXCEPT DATA 
= 9 ALL 

LISTV.GE.1C INDIVIDUAL DIGITS ARE EXAMIhEO TO OETER~INE 
OPTIONS. 

, DIGITS ARE ORDERED FROM LOW ORDER TO HIGH ORDER. 
DIGIT ONE. 

~ ~ -1 MEADER 
= 2 TABLE OF INPUT CONSTANTS. 
= 3 BOTH HEADER AND TABLE OF INPUT CONSTANTS. 

DIGIT TWO. 
= 1 COLUMNAR DATA LISTING 
= Z PRINTER PLOT OF DATA. 
= 3 BOTH COLUMNAR DATA LISTING AND PRINTER PLOT. 

DIGIT THREE. 
= 1 CORRELATION MATRIX. 

DIGIT FOUR. 
= 1 INCREHENTS 
= Z BETTER PHI OR NOT. 
= 3 BOTH INCREMENTS AND BETTER PHI OR NOT. 

DIGIT FIVE. 
= 1 PARA~ETERS 

= 2 PHI,GA~MA,LAMAOA •••• 
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= J 
= 4 
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80TH PARAMETERS AND PHI,GAMMA,LAH80A, ••• 
HAS STRECHING HELPED. 
BOTH PARAMET~RS AND HAS STR~CHING HELPED. 

= 6 
= 7 

IF ANY DIGIT 
CHOSEN. 

BOTH PHI,GAMMA,lAMBDA, ••• AND STRECHING HELPED. 
ALL THREE--PARAHETERS,PHI, ••• , AND STRECHING. 
IS ZERO, THE CORRESPONDING OPTIONS AkE NOT 

IF lISTV IS .GE.2 THEN ERRORS WIll BE PRINTED. 
IF ANY MORE OPTIONS THAN ERRORS ARE CALLED FOR. THEN 

HEADER(ANO ~RAIlERI IS CHOSEN AUTOMATICAL~Y. 

ZEROIN ZEROIN ZERCI~ ZEROIN ZERO IN 
•••••••••••••••••••••••••••••••••••••••• 

ZEROIN 

•••••••••••••••••••••••••••••• 
•••••••••••••••••••• 

•••••••••• 
SUBROUTINE lEROl~(F,B,C,RE,AE,IFlAGI 

SANDIA MATHEMATICAL PROGRAM LIERARY 

CONSULTANTS AT SlL INCLUDE -
R. E. HUDDLESTON OIVISION 8322 
T. H. JEFFERSON DIVISION 8322 

BASED O~ A MET~OO BY T J DEKKER 
WRITTEN BY l F SHAMPINE AND H A WATTS 
MODIFIEO FOR THE ~ATH LI8RARY BY C B BAILEY 

ABSTRACT 
ZEROIN SEARCHES FOR A ZERO OF A FUNCTION F(XI BETWEEN 
THE GIVEN VALUES BAND C UNTIL THE WIDTH OF THE INTERVAL 
(B,CI HAS COLLAPSED TO WITHIN A TOLERANCE SPECIFIED AY 
THE STOPPING CRITERION. ABS(B-C) .lE. 2.·(RW.A8S(81+Af). 
THE METHOD USED IS AN EFFICIENT COMBINATION OF BISECTION AND 
THE SECANT QULE. I~ ORDER TO INSURE THAT ZERCIN WILL CONVERGE 
TO A ZERO. THE USER SHOULC PICK VALUES FOR 8 AND C AT WHICH 
THE FUNCTIO~ DIFFERS I~ SIG~. 

DESCRIfTION OF ARGUMENTS 
f,B,C.RE ANO AE ARE INFUT PARA~ETERS 
B.C AND IFLAG ARE OUTPUT PARA~ETERS 

F - NAME OF THE REAL VALUED EXTER~AL FUNCTION. THIS ~AME 
MUST BE IN AN EXTERNAL STATEMfNT IN THE CALLING 
PROGRAM. F MUST BE A FUNCTION OF ONE REAL ARGUMENT. 

B ONE END OF THE INTERVAL (S,C). THE VALUE RETURNED fOR 
B USUALLY IS THE BETTER APPROXIMATION TO A ZEKO OF F. 

C THE OTHER END CF THE INTERVAL (B,C) 
RE RELATIVE ERROR USED FOR RW IN THE STOPPING CRITERIO~. 

IF THE REQUESTED RE IS LESS THAN MACHIN~ PRiCISION. 
THEN RW IS SET TO APPROXIMATELY MACHINE PRECISION. 

AE ABSOLUTE ERROR USEO IN THE STOPPING CRITERION. IF THE 
GIVEN INTERVAL (8,C) CONTAINS THE ORIGIN, THEN A 
NONZERO VALUE SHOULD BE CHOSEN FOR AE. 

IFLAG - A STATUS CODE. USER HUST CHECK IFLAG AFTER tACH CALL. 
CONTRCl RETURNS TO THE USER FROM ZEROIH IN ALL CAS£S. 
ERRCHK DOES NOT PROCESS DIAGNOSTICS I~ THESE CASES. 

1 B IS WITHIN THE REQUESTED TOLERANCE OF A ZERO. 
THE INTERVAL (B,C) COLLAPSED TO THE REQUESTEO 
TOLERANCE, THE FUNCTION CHANGES SIGN IN (B.C). AND 
F(X) DECREASED IN MAGNITUDi AS (B,C) CCLLAPSEO. 

2 f(B) = O. HOWEVER, THE INTERVAL (8.C) MAY NOT HAVE 
CCLLAPSEO TO THE REQUESTEO TOLERANCE. 

3 B MAY BE NEAR A SINGULAR POINT OF F(~). 
THE INTERVAL (6.C) COLLAPSED TO THE REQUESTEO 
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TOLERANCE AND THE FUNCTION CHANGES SIGN IN (B,C' BUT 
F(X' INCREASED IN MAGNITUDE AS (e,C' COLLAPSED,I.E. 

ABS(FCB OUT" .GT. HAX(A8SCFCS IN)'.ABseFCC IN») 
4 NO CHANGE IN SIGN OF FeX) WAS FOONO ALTHOUGH THE 

INTERVAL eB.C) COLLAPSED TO THE REQUESTED TOLERA~CE. 
THE USER MUST EXAMINE THIS CASE AND DECIDE WHETHER 
e IS NEAR A LOCAL MINIMUM OF FeX). OR 8 IS NEAR A 
ZERO OF EVEN MULTIPLICITY. OR NEITHER OF THESE. 

S TOO HANY e.GT. 500) FUNCTION EVALUATIONS USED. 

1. L F SHAMPINE AND H A WATTS. ZEROIN, A ROOT-SOLVING CODE, 
SC-T"-10-631. SEPT 1970. 

2. T J DEICKER, FINDING A ZERO BY MEANS OF SUCCESSIVE LINEAR 
INTERPOLATION, .CONSTRUCTIVE ASPECTS OF THE FUNDAMENTAL 
THEOREM OF ALGEBRA·, EDITED BY B OEJON AND P HENRICI, 19E9. 
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LAWRENCE LIVER~ORE LABO~ATORY. L310 FRITSCH FREDERICK N 
LOS ALAMOS SCIENTIFIC LABORATORY, C6 KAHANER DAVID 
8110 BLACKWELL ARLYN N 
8111 ABRAMS MARTIN 
8111 KEE ROSERT J JR 
8111 BRAMLETTE T TAZWELL 
8111 CHENOWETH DONALD R 
8111 BAKER ALVIN F 
8111 GREEN ROBERT M 
8111 CATTOLICA ROBERT J 
8111 CULL EDWARD T 
8113 VOELKER L EUGENE 
8113 SCOTT CARLTON A 
8113 CALLAeRESI MELVIN L 
8113 KEILHAN JOHN C 
8113 GRANT JOSEPH E 
8113 HOYLE CHARLES S 
8113 BENEDETTI GERALD A 
~113 ROGERS L ALICE 
811~ JACOBSON RICHARO S 
811~ ZINKE WILLIAM 0 
811~ JONES ALFRED T 
811~ GRISBY SYLVESTER 
8114 DELAMETER WILLIA~ ~ 
811~ MAMARCS THEODORE C 
8115 HARDESTY DONALD R 
8115 WITlE PETER 0 
8115 SMITH JAMES R 
8115 COLEMAN HUGH W 
8115 MITCHELL REGINALO E 
8115 ASHURST WILLIAM T 
8156 DEAN DAVID K 
8156 DIGHTCN LEONARO E 
8156 FURNBE~G CARLTON H 
8156 WRIGHT JAMES B 
e156 STARKEY DONALD 8 
8157 PAGE ~CDGER J 
8157 HANSER HENRY 
8157 POLEN JACK L 
8157 DREMALAS JAMES F 
8156 KRYVORUKA JOHN K 
8158 EVERETT ROGER N 
8158 HUMPHREY ROBERT E 
8158 LOLL MARVIN B 
8158 BOLTON WILLARD R JR 
6158 RIVENES ARNOLD S 
8158 HILES LEONARD A 
8158 DUGGAR JAMES A 
8158 ROGERS MICHAEL H 
8159 WATKINS LAURENCE H 
8159 KELLEY RALPH W 
8159 CASHEN JERRY J 
8159 TANNER DUNCAN N 
8159 BRAY DAVID N 
8159 SODER STRANO MICH4i~ A 
8159 HULL ARTHUR L 
8161 MARTIN G~RTRUDE A 
8161 SHELEY JAMES W 
8161 WARE ROBERT A 
8165 WILSON WM G 
8165 LEONARD CHARLES ~ JR 
8166 ANDERSON JOHN S 
8167 VIEIRA JOSEPH R 
8168 HAUCK CHARLES J 
8168 JONES JEROME F 
8181 TOCKEY ROBERT J 
8181 COOLEY NOEL H 
8181 SWANSON OONALD H 
8183 COFIELD CURTIS H 
8183 HUNT CHA~LES T 



818~ MURPHY LAWRENCE M 
8184 HAVIS CLAYTON L 
8184 RADOSEVICH LEE G 
8184 SCHAFER CLIFFORD T 
8184 YCKOMIZO CLIFFCRD T 
8184 MOORE C W 
8185 POTTHOFF C M 
8185 AMARAL RONALD J 
8185 CHRISMAN SANDRA E 

__ ~8=2~1~2 __ ~JO=I~N=E~ E~ILY A 
8214 MCCLURE JANE H 
8261 CROW ROBERT E 
82e5 CUPPS FRANK J 
8266 AAS EUGENE A 
8310 MEINKEN ROBERT H 
8312 KRAMER CAROLYN M 
8312 GERMAN RANDALL M 
8313 DARGINIS JOSEPH P 
8313 BRADSHAW ROBERT W 
8313 NICHOLS MONTE C 
8313 WEST LLOYD A 
8313 BROWN LESLIE A 
8313 SEIBEL LEON J 
8314 WEST ANTON J 
8314 ESTILL WESLEY B 
8314 ROBINSON STEVEN L 
8314 ODEGARD BENNIE C JR 
8320 GOLD THEODORE SATTN: 
8321 BIRNBAlM MICHAEL R 
8321 WOODARD JAMES B JR 
8321 EICKER PATRICK J 
8322 JEFFERSON THOMAS H JR 
8322 LEARY PATRICIA L 
8322 BASINGER RICHARD C 
8322 ROGERS JAMES N 
8322 MANSFIELD JUANITA 
8322 HUDDLESTON ROBERT E 
8322 HILLER GORDON J 
8322 HANKINS JOE D 
8322 GABRIELSON VERLAN K 
8322 NEIGHBCRS PAULA K 
8322 LEE ROY Y 
8322 WILLIAMSON LAWRENCE J 
8322 BISSON CHARLES L 
8322 JONES HILARY D 
8322 BARKER BERTON E 
8322 LATHROP JAMES F 
8323 BALLOU MARLENE A 
8323 CROW ANNE E 
8323 BRYAN GAIL H 
8323 8RINT HAROLD L 
8323 CZAPINSKI ROBERT H 
8323 CARSON SHIRLEY Y 
8323 ISLER RICHARD E 
8323 POLlAK RALPH S 
8323 HEIDELBERG S T 
8323 BROWN CHARLES V 
8323 WHITWORTH FREDDY L 
.323 WOOD BURTO~ L 
8323 BARNHOUSE JOHN N JR 
8323 SCHUKNECHT ARNOLD G 
8323 SPRINGER EUGENE B 
8323 DRUMMOND G B JR 
8323 WILLIA~S GERALD L 
8323 HOUK SHANNON P 
8323 THOMAS OWEN R 
8323 YANO HESA 
8323 GUMMUS RANDALL G 
8323 SHORT HAROLD G 
8323 BENAFFL JOHN S 
8323 NERTON GERALDI~E S 
8323 PORTOLESE JOSEPH A 
8323 CODY TIHOTHY J 
8323 ALLEN BOBBY G 
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8323 CELONI CAROLE L 
8323 WAGNER NORMAN R 
8323 BRAZIL JOSEPH G 
8323 SIMMONS THEOOORE H 
8323 QUOCK HANLOY 
8323 INZERILLA JANET K 
8324 BROWN GARRY S 
8324 STRANDIN GERALO E 
8324 HICKS ~EARLE G 
6324 BREAZEAL NORMAN L 
8332 STORY G COOK 
8332 HAVLIK DAVIO J 
8332 MARION JOHN E 
8333 GALLAGHER ROBERT J 
8333 ROBINSON CLARE~CE W 
8333 MUNRO OO~ALD N 
8333 WIEHKEN ALBERT J 
8333 NG RAYMOND 
8334 MATTERN PETER L 
8334 MALINOWSKI MICHAEL E 
8334 VITKO JOHN JR 
8334 SWANSIGER WILLIAM A 
8334 MORSE DANIEL H 
8334 PENDLEY MICHAEL H 
8335 DUFFEY CHARLES T 
8335 WALL WILLIAM R 
8335 GILOEA PATRICK D 
8340 WIRTH JOHN L 
8341 WILSON WILLIAM D 
8341 IANNUCCI JOSEPH J 
8341 COLL CCR~ELIUS FIll 
8341 BASKES MICHAEL I 
8341 MELIUS CARL F 
8341 KEETON STEWART C 
8341 HAGGMARK LEROY G 
8342 DELLIN THEODORE A 
8342 BARSIS EDWIN H 
8342 ZUPPERC ANTHONY C JR 
8342 SKOOG CLIFFORD D 
8342 ~AHN LARRY A 
8342 HARTWIG CHARLES M 
8342 SCHMIEDER ROBERT W 
8342 VASEY STEPHEN J 
8342 BARR VER~ON C 
8342 GRAY STEPHEN C 
8344 TICHENOR DANIEL A 
8344 HENRY KENNETH W 
83~4 DOLAN KENNETH W 
8344 WILLIS ALEC R 
8344 DAHLKE LUTZ W 
8345 MARTINELL RONALD E 
8346 CHILDE~S CARL W 
8346 DECARLI CHARLES J 
836C BARHAM JAHES F JR 
8362 BROWN ~ELVIN E 
8362 NORRIS HAROLO F JR 
8362 CLARK RALPH E 
8362 HENDERSON GERALD W 
U6S ljl-l£K Hi: .. Rl' H 
8366 MITCHELL KENNETH A 
8366 SCHOOLER CHARLES C 
8410 COZINE RALPH D 
8411 CONVERSE LOUISE S 
8411 BENTO~ JOE D 
8411 HOLBROOK ELHOND 0 
8411 HANROW BRITT HARlE 
8411 MACMILLAN DOUGLAS C 
8412 ROSNOSKI LOUIS J 
8412 WHITNEY WILLIAM L 
8412 HOUSER RICHARD M 
8412 ANGVICk GENE L 
8413 DANNENBERG DAVID J 
8413 WILSON JACK L 
8413 SKINROCD DONALO A 
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8"13 
8 .. 13 
8413 
8 .. 23 
8 .. 23 
8ft23 
8423 
8423 
8 .. 23 
8 .. 23 
8 .. 31 
8432 
8lt32 
8 .. 32 
8432 
8432 
8 .. 33 

26 .. 2 
26lt2 
5121 
5121 
5122 
8265 
3141 
8265 
8266 
8322 

NELSON DENNIS B 
GREEN OURWOOD P 
WITTHAYE~ NICHOLAS G 
REIS HERfi'ANN L 
YON STEEG HERMAN J 
FORD ALBERT 0 JR 
JACKSCN ROBERT W 
SCHMEDCING WILLIAM 
AFFELDT BRUCE E 
WACKERL Y CARL A 
MCGUIRE WILBUR V 
EICHERT FRED F JR 
FINN RICHARD W 
BORELLO LAWRENCE A 
BYFIELD VERNON E 
FERRARIO MICHAEL T 
COOK RICHARD S JR 

H. R. SCOTT 
R. E. JONES 
O. E. AMOS 
L. F. SHAf'!PINE 
R. J. THOMPSON 
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TECHNICAL PUBLICATIONS AND ART DIVISION, FOR TIC (2) 
I TECHNICAL LIBRARY SYSTEMS AND PROCESSES DIVISION 

F.J. CUFPS I TECHNICAL LIBRARY SYSTEMS AND PROCESSES DIVISION 
LIBRARY AND SECURITY CLASSIFICATION DIVISION (5' 
R. E. HUDDLESTON I SANDIA LABORATORIES (LIVERf'!ORE' 

MATHEMATICAL SUBROUTINE LIBRARY (501 

eft. 




