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Clifford D. Skoog 
Device Studies Division 8342 

Sandia Laboratories, Livermore 

ABSTRACT 

The absorption induced in fiber optic waveguides by pulsed electron 
and X -ray radiation has been measured as a function of optical wavelength 
from 450 tq 950 nm, irradiation temperature from -54 to 71°C, and dose 
from 1 to 500 krads. The fibers studied are Ge-doped silica core fibers 
(Corning Low Loss), "pure" vitreous silica core fibers (Schott, Bell 
Laboratories, Fiberoptic Cable Corp., and Valtec Fiberoptics), polymethl
methacrylate core fibers (DuPont CROFON and PFX), and polystyrene core 
fibers (International Fiber Optics and Polyoptics). Models that have been 
developed to account for the observed absorption recovery are also 
summarized. 

* This work was supported by the United States Energy Research and 
Development Administration, Contract Number AT-(29-1)-789, and 
the U. S. Air Force Weapons Laboratory. 

3/4 



• 

ACKNOWLEDGMENTS 

The author is indebted to S. J. Vasey for assistance with the measure
ments and data reduction, and to E. H. Barsis for direction and many useful 
discussions. The author is also indebted to P. L. Mattern, L. M. Watkins, 
J. R. Brandon, Lt. K. Soda, Capt. J. Tucker, Jake Tausch, and Carl F. 
Porter, who participated in the overall fiber program. 

5/6 



" A SUMMARY OF RADIA TION-INDUCED TRANSIENT 
ABSORPTION AND RECOVERY IN FIBER OPTIC WAVEGUIDES 

Introduction 

Recent studies 1- 5 have shown that the operation of optical waveguides 
can be impaired in radiation environments. In particular, false signals 
can be generated by luminescence, and signal strengths can be lowered by 
radiation-induced absorption (Figure 1). These effects occur with both 
continuous and pulsed radiation sources; however, the loss of signal strength 
following pulsed irradiation is particularly serious when the duration of the 
pulse is shorter than the lifetime of the induced absorption centers. This 
situation occurs in many applications and produces large values of absorp
tion, even in systems employing short fiber lengths. Thus adequate system 
design requires knowledge of the time-dependence of absorption values as a 
function of optical wavelength, irradiation dose, irradiation temperature, 
and the en~ironment surrounding the fiber. 

In the last few years, extensive investigations have been performed 
at Sandia Laboratories on the transient absorption that results from pulsed 
radiation. These investigations have produced many new results which 
supplement the extensive permanent absorption data collected in Reference 
1. The results of these new transient investigations are presented here for 
several fibers which have been identified as the most radiation-resistant, 
that is, the most promising for use in pulsed radiation environments. For 
the sake of completeness, the previously unpublished data presented here 
are supplemented by data already reported elsewhere. 

In general, this document contains the absorption and the absorption 
recovery data necessary for designing fiber optic data links that will be 
exposed to pulsed electrons, X rays, and gamma rays. Data are given for 
radiation doses up to 500 krads, for irradiation temperatures from -54 to 
71°C, and for operating wavelengths from 450 to 950 nm. Although neutron
induced absorption data are not included here, the effect is determined by 
the neutron ionizing dose4 and is generally small compared with the absorp
tion induced by ionizing radiation in many practical environments. Data are 
also included on the significant effects of atmospheric oxygen on the recovery 
of plastic fiber waveguides. Fiber recovery models which are useful for 
extrapolating the measured values are also summarized here. 

7 



00 

>
I-

V'l 
Z 
UJ 
I
Z 

I
:::c 
c.::> 

~r~;:·;;t./:'i':?/.·);~ R A D I A T ION BUR S T 

ABSORPTION 

--'I INITIAL 1 
~ Ll GHT LEVEL 

LUMINESCENCE r" PERMANENT 

-------------------------------------
l
I-

:2: 
V'l 
Z 

~ I :·:}.·ij\\.~'0T- M A X I MUM T RAN S lEN TAB S 0 R P T ION 

TIME .. 

Figure 1. Schematic Representation of the Response of Glass and Plastic Fiberoptic Waveguides to Pulsed 
Irradiation. The signal level increases as a result of luminescence during the radiation pulse and 
reaches a minimum at the end of the pulse because of the induced absorption. 
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Experimental Technique 

Previous studies 1-4 have shown the transient absorption to be 
independent of the type of ionizing irradiation. a result to be expected from 
considerations of energy loss mechanisms in solids (ionization versus dis
placement). Thus for most of the experiments, an electron beam machine 
was used since it offered the advantages of high dose capability and simple 
shielding to define exposure length accurately, and since machines were 
readily available. Unless the data reported here are specifically labeled 
l'x ray, "the fibers were exposed to electrons from a 600 keV Febetron 
750 in conjunction with a Model 5237 electron beam tube. With this machine
tube combination, there is very little self-pinching of the beam and the ex
posure dose is controlled by varying the anode-to-fiber spacing. Doses of 
from 10 to 500 krads per shot were obtained with spacing variations of 25 cm. 

Because the range of the electrons was short. the fiber bundles were 
stripped of their protective sheaths and the individual fibers fanned out 
across the exposure aperture. The fiber length from light source to detec
tor was typically three metres. The routing of the fiber bundle into and out 
of the exposure chamber contained several bends to ensure that the wave
guide properties were measured. The length and routing of the bundles also 
minimized signal transmission through the cladding, and photo-optical 
measurements confirmed that such transmissions were negligible. 

Dose measurements for the electron beam irradiations were made with 
0.05 mm thick, nylon-base radiochromic film supplied by Far West Tech
nology. Pretest and posttest film densities were measured with a Far West 
Technology Model FWT-90 film reader. The film reader system calibration 
was verified by making known irradiations in the Sandia gamma irradiation 
facility. 

Data which are labeled l'x ray" were collected from specimens 
irradiated by a 2 MeV Febetron 705 operated in the bremsstrahlung mode. 
The beam was directed into a tungsten bremsstrahlung converter backed with 
an aluminum plate to stop all electrons passing through the converter. Dose 
measurements for the X-ray irradiations were made with TLD-400 dosimeters. 

In all experiments, the light source, fiber, and detector were arranged 
as shown in Figure 2. A flash lamp was used for making peak transient ab
sorption measurements and for recovery measurements over times up to five 
microseconds after the radiation pulse. For longer-time recovery (up to 
ten seconds), a continuous-source quartz lamp powered from a well-regulated 
dc power supply was used. The value of absorption obtained using the quartz 
lamp was normalized to the data obtained with the pulse source. 
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Figure 2. The Lamp, Fiber, and Detector Configuration Used in the Transient Absorption Measurements. 
The fiber length from source to detector was typically three metres, and the exposure length 
ranged from 1 to 10 cm. 
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Two different photodetectors were used. A C70042K photomultiplier* 
tube (RCA) was used to detect very low signal levels (involving a few fibers) 
and to ensure that the larger signal levels were not masking other phenomena. 
For most measurements, however, an SGD-100A photodiode (EG&G) with a 
traceable calibration was employed. The photodiode has good long-term 
stability and is linear over a much wider range of signal levels than is the 
PM tube. Both qualities simplify data reduction. 

Luminescence measurements were made on experimental configurations 
identical with those used for the absorption measurements. except that the 
light source was not energized. 

Wavelength discrimination was accomplished with nine individual notch 
filters ranging from 450 to 950 nm. Each filter has a band pass of approxi
mately 100 nm. The precise bandwidth of each filter was determined using 
a Cary 14 spectrometer and is reported in the appendix. Some transient ab
sorption measurements were also made with a spectrometer to ensure that 
significant fine structure was not masked by the wider bandwidth of the notch 
filters. 

Transient Absorption Defined 

The peak transient absorption 0'(0) has been defined as follows: 

0'(0) 
10 

= 10 log10 -I -.- Lx dB/m 
min 

(1 ) 

where Lx is the exposure length in meters, 10 is the pre"-irraqiationsignal 
level, and Imin is the minimum signal level that occurs following the 
radiation pulse (see Figure 3). 

The fractional recovery is defined as the absorption remaining at time 
t divided by the peak absorption O'(t)/O'(O). Values of 0'(0) and O'(t)/O'(O) are 
presented as a function of wavelength, dose, and temperature in following 
sections. The absorption at any time after irradiation can be determined 
by multiplying the fractional recovery by the peak absorption: O'(t) = 
O'(t)/ O'{O) x O'{O). 

':< Extended-red multialkali photocathodes. 
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Figure 3. An Oscilloscope Record Indicating Radiation-Induced Absorption and Luminescence in a Polystyrene 
Fiber Bundle. The lower trace shows the zero-voltage (no-detected-signal) level. With the light source 
energized, the unirradiated transmission is given by the amplitude of the upper trace for the first 75 ns. 
The sharp increase in detected intensity, which peaks at 100 ns, is caused by luminescence in the fiber 
during a 1 krad, 50 ns X-ray pulse. A minimum in detected intensity occurs near 170 ns shortly after 
the termination of the irradiation and indicates the maximum transient absorption. For the remainder 
of the trace, the recorded intensity gradually increases toward the value shown prior to irradiation. The 
amount of absorption remaining after approximately 24 hours is considered permanent. 
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I. CORNING LOW LOSS FIBERS 

Manufacturer: Corning Glass Works 
Telecommunications Products Department 
Corning. NY 14830 

Core: Ge-Doped Silica 

Cladding: Silica 

Fiber Diameter: 0.09 mm 

~ 0.05mm ~ 

The Ge-doped silica fibers from the Corning Glass Works show peak 
transient absorptions which are approximately two orders of magnitude 
larger than those of "pure" vitreous silica fibers. 
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The spectral dependence of the peak transient absorptions for 70 and 
9 krad electron doses are shown in Figures 4 and 5. while similar data for 
X-ray doses of 900 and 240 rads are presented in Figures 6 and 7. Maxi
mum absorption occurs at wavelengths from 500 to 550 nm. a result common 
to all the silica core fibers studied. The spectral dependence of absorption 
in the Corning fibers. however. is more pronounced than in other silica core 
fibers. 

Peak transient absorption as a function of dose is shown in Figure 8 
for wavelengths of 500 and 800 nm; the insert shows similar data for low 
X-ray dose's. The data in Figure 8 were recorded on fibers purchased in 
1973. while the data in Figures 9 and 10 were recorded on fibers procured 
more recently (1975-76). The effect of temperature on the peak transient 
absorption is also shown in Figures 9 and 10. The absorptions measured 
at room temperature for the newer material are slightly larger than those 
for the "old" material (Figure 8). Microprobe analysis suggests that this 
difference in induced absorption is probably related to variations in dopant 
concentration; however. no effort has been made to establish the dependence 
quantitatively. 

The recovery of the transient absorption for Ge-doped Corning fibers 
is shown in Figure 11. The most striking feature of these data is the large 
temperature dependence of the recovery. a trait not generally observed in 
"pure" vitreous silica fibers. For example. the data in Figure 11 show 
that a system which is "off-the-air" until the absorption diminishes to O. 1 
of the peak value will recover in 0.1 ms at 71°C. but will require 0.15 
second to recover at -54°C. a difference of three orders of magnitude in 
time. Two other features of the data in Figure 11 are also noteworthy: 
first. the recovery is independent of dose and wavelength within the accur
acy limits of the measurements; and second. the 21 and 71°C recovery 
curves show a t-1 / 2 dependence. while the lower-temperature curves 
approach a t-1 /2 dependence at longer times. The data suggest a geminate 
recombination process wherein defects created by irradiation recombine 
by diffusion under the influence of a mutual electrostatic field. 

A model for geminate recombination taken from'the literature on 
pulsed radiolysis of liquids6• 7 and glasses 8• 9 explains the observed data. 
In this model. 

net) 1/2 
- = exp{At) erfc{At) nCO) 

where ~~~\ is the fraction of electron -ion pairs remaining at time t. X. is 

(2 ) 

the recombination rate. and erfc{x) is the complement of the error function. 
Equation (2) reduces to 

~{~~ == {1 /TT x.t)l /2 (3 ) 

14 



-. 

for x.t » 1. yielding the t-1 / 2 dependence observed in the data at long times 
and for large values of x.. 

The data of Figure 11 are shown again in Figure 12 normalized to the 
peak transient absorption at -54°C. The average values of the data collected 
at each temperature are given by the symbols. while the solid lines were 
calculated from expression (2). varying only the parameter X. to aohieve the 
best fit. The curves calculated in this fashion are in excellent agreement 
with the data. The values of X. used to produce the fit shown in Figure 12 
are plotted semilogarithmically against T-1 in Figure 13. The near linear 
curve over five orders of magnitude in X. is further evidence for a thermally 
activated diffusion process for recombination which is characterized by 

x. = x. exp(-E/KT) o (4) 

where E is approximately 0.45 eV. A similar range of recovery rates has 
been observed as a function of temperature in other inorganic glasses. 8 
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Figure 8. Peak Induced Absorption as a Function of Dose in Corning Low Loss Fibers for Wavelengths of 
500 and 800 nm. The insert provides an expanded scale for the low X-ray doses. {Measurement 
error is less than 10 percent of values plotted.} 
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II. SCHOTT PURE FUSED SILICA FIBERS 

Manufacturer: Schott Optical Glass 
400 York Avenue 
Duryea. PA 18642 

Core: Vitreous Silica 

Cladding: Plastic 

Fiber Diameter: O. 1 mm 

~ 0.1mm ~ 

The "uv transmitting" fibers from Schott Optical Glass are one of 
the several commercially available plastic-clad fibers with a nominally 
pure vitreous silica core. Fibers of this type are among the most radiation
resistant studied. 

The peak transient absorption spectra are shown in Figures 15 through 
18 for several irradiation doses. At 550 nm. the spectra show a peak which 
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is not seen in the bulk material from which the fibers were drawn, thus 
indicating that impurities were introduced in the drawing process. 

The peak transient absorption is plotted as a function of dose in 
Figure 19 for wavelengths of 500 and 800 nm and for an irradiation tempera
ture of 20°C. The insert shows the results for low X-ray doses. Figure 20 
shows the transient absorption versus dose at 500 nm for temperatures of 
-54, 20, and 71°C, and similar results are shown in Figure 21 for a wave
length of 800 nm. 

The room-temperature data in Figures 20 and 21 differ significantly 
from those in Figure 19. The data in Figure 19 were obtained after the 
fibers had been pre-irradiated to a high dose (",100 krads) before the peak 
transient absorption measurements were made. The data in Figures 20 and 
21, on the other hand, were obtained by exposing a "fresh" section of fiber 
for each datum. Comparison of the data shows that pre-irradiation increases 
the transient absorption. Further, the change to higher absorption values 
appears not to occur gradually with increasing pre-dose, but to increase 
abruptly at about 100 krads and 20°C. The increase occurs at lower pre
dose levels (",20 krads) for lower-temperature irradiations. The pre-dose 
phenomenon is not understood at this time. 

The recovery data for several exposure doses and temperatures 
(Figure 22) show the recovery to be independent of dose, wavelength, and 
temperature within experimental error limits over the temperature range 
of interest. The recovery was also found to be independent of pre-dose. 

The recovery behavior is consistent with a tunneling model 2, 10 
developed to explain the recombination kinetics of irradiated organic glasses. 
In this model, 

3 

~ 
15 + log10 t ) 

= a r + --------
1 0 0.443(V

O
-E

O
)1/2 

(5) 

where n(t) is the fraction of trapped electrons remaining at time t, a1 is 
proportional to the concentration of acceptors that recombine with the 
trapped charges via a tunneling process, VO(eV) and EO(eV) are the potential 
height and zero-point energy respectively, and rO corrects for the finite 
radius of the trapped electron. Equation (5), which was fitted to the data 
of Figure 22 by varying a1 and using estimates for rO' VO' and EO' ad
equately describes the data over five orders of magnitude in time as shown 
by the solid line. 

The data also show that at very low temperatures (-172°C) there is a 
significant reduction in the recovery rate. This behavior can be explained 
qualitatively by summing an exponential recovery (0. 6 relative amplitude) 
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and the tunneling mechanism (0.4 relative amplitude). The quality of the 
fit indicates that the tunneling process remains active for only 0.4 of the 
recombining species. while the remainder are described by 

Ne(t) = 0.6 exp(-t/Te) 

where Ne is the fraction recovering exponentially and Te is the recovery 
time =0. 1 second. 

(6) 
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III. VALTEC PURE FUSED SILICA FIBERS 

Manufacturer: Valtec Fiberoptics >!< 
West Boylston. MA 01583 

Core: Pure Fused Silica 

Cladding: Plastic 

Fiber Diameter: O. 12 mm 

~ 0.1 mm +--

>:<Formerly Electro Fiberoptics Division, V ALTEC Corporation 
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The transient absorption response of the plastic-clad, "pure" vitreous 
silica core fibers from Valtec Fiberoptics is similar to that of the Schott 
fibers. The spectral dependence of the peak transient absorption is shown 
in Figures 24 and 25, and the peak transient absorption versus dose for 
wavelengths of 500 and 800 nm are shown in Figure 26. These data were 
obtained by exposing a previously unirradiated section of fiber, and they 
compare very closely with the Schott data (Figures 20 and 21) obtained 
under similar conditions. The effect of temperature on the peak transient 
absorption is shown in Figures 27 and 28 for wavelengths of 500 and 800 nm, 
respectively. For these fibers, the peak absorption increases with de
creasing temperature, as it does for the other fibers. At 500 nm after a 
dose of 150 krads, the absorption doubles as the irradiation temperature 
varies from 71 to -54°C. 

The recovery data for the Valtec Fiberoptics material (Figure 29) 
are independent of dose and wavelength, as are the data for the other "pure II 
vitreous silica core fibers, within the limits of experimental error. For 
practical purposes, the recovery may also be considered independent of 
temperature over the range of interest. The recovery closely follows that 
of the Schott fibers at short times « O. 1 ms), but occurs more slowly at 
longer times. 
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-. N. BELL LABORATORIES PURE FUSED SILICA FIBERS 

Manufacturer: Bell Laboratories 
600 Mountain Avenue 
Murray Hill, NJ 07974 

Core: Pure Fused Silica 

Fiber Diameter: O. 125 mm 

~ 0.1mm ~ 

These research grade "pure" vitreous silica core fibers with glass 
cladding and glass sheath from Bell Telephone Laboratories (BTL) are also 
among the most radiation-resistant studied, showing results very similar 
to the Schott and Electro Fiberoptics data. The peak transient absorption 
is shown as a function of wavelength in Figures 31 and 32 for electron doses 
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of 70 and 230 krads, respectively. The peak in absorption at about 550 nm, 
which appears to be characteristic of the silica core fibers, again occurs. 

The peak transient absorption as a function of dose is plotted in 
Figure 33 for wavelengths of 500 and 800 nm. Because of the small amount 
of fiber available, these data were obtained for several radiation exposures 
on the same section of fiber. The results are similar to those for the 
Schott data recorded on pre-irradiated fibers. The commercially available 
form of this fiber (with a plastic cladding) is now manufactured by Fiber
optic Cable Corporation, and additional data are reported in the following 
section. 

The effect of temperature on the peak transient absorption is shown 
in Figures 34 and 35 as a function of dose at temperatures of -54, 20, and 
71°C and for wavelengths of 500 and 800 nm. 

The recovery data for the BTL fibers (Figure 36) differ from that for 
the "pure" vitreous silica fibers manufactured by Schott and by Valtec 
Fiberoptics in that the recovery of BTL fibers is not independent of tempera
ture over the range from -54 to 71 °C. The fact that the recovery rate 
increases with increasing temperature may indicate the presence of a 
thermally activated untrapping process. Moreover, it is tempting to surmise 
that the thermally activated process is similar to that observed in Schott 
fibers at -172°C, but with a lower temperature of onset. 
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V. FIBEROPTIC CABLE CORPORATION PURE FUSED 

SILICA FIBERS 

Manufacturer: Fiberoptic Cable Corporation 
P. O. Box 1492 
Framingham. MA 01701 

Core: Pure Fused Silica 

Cladding: Optical quality plastic 

Fiber Diameter: 0.25 mm 

~ O.1mm ~ 

The plastic -clad. "pure" vitreous silica fibers produced by the 
Fiberoptic Cable Corporation are the commercially available forms of the 
Bell Telephone Laboratories research fiber described previously. 
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Peak transient absorptions as a function of wavelength are shown in 
Figures 37 and 38 for doses of 50 and 150 krads. The peak transient ab
sorption obtained at 20°C is plotted as a function of dose and temperature 
in Figures 39 through 41 for wavelengths of 500 and 800 nm. In general. 
the results are similar to those for the other vitreous silica fibers studied; 
that is. the absorption increases with decreaSing temperature. and the 
absorption at a dose of 250 krads is about three times larger at a tempera
ture of -54 than at 71°C. 

The recovery data for these fibers (Figure 42) show the normalized 
recovery to be independent of dose wavelength and temperature within 
the limits of measurement error. The recovery is similar to that for 
Valtec Fiberoptics fibers and slightly slower than that for Schott fibers. 
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VI. POLYSTYRENE CORE FIBERS 

Manufacturers: International Fiberoptics 
2644 Buckaroo Avenue 
Oxnard, CA 93030 

Poly-Optics, Incorporated 
1815 East Carnegie 
Santa Ana, CA 92705 

Core: Polystyrene 

Cladding: Polymethylmethacrylate (PMMA) 

Fiber Diameter: 0.13 - 0.25 mm 

~ 0.1mm ~ 
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The transient response of polystyrene core fibers to radiation is 
significantly different from that of the glass fibers studied. One striking 
difference is the shape of the curves for peak absorption versus wavelength 
(Figures 44 through 47) for a 1 krad X-ray dose. and for electron doses of 
6, 30. and 300 krads. In all cases. a minimum in the peak value of induced 
absorption is observed in the wavelength region from 600 to 700 nm. The 
other fibers studied show an absorption peak at short wavelengths, with 
monotonically decreasing absorption values toward the longer wavelengths. 

The peak absorption is shown as a function of dose in Figure 48 for 
wavelengths of 500, 650, and 800 nm. The insert shows data obtained using 
low doses of X rays. In general, the peak transient absorption values are 
larger than those observed in the "pure" vitreous silica core fibers. Al
though the peak, as well as the unirradiated, absorption values are larger 
than those for vitreous silica fibers, the plastic fibers are less expensive 
and have applications in short fiber lengths. 

The' effect of temperature on the peak transient absorption is much 
less pronounced in the plastic fibers than in the glass fibers studied. The 
peak transient absorptions are shown as a function of dose at temperatures 
of -54, 20, and 71 DC in Figures 49 through 51 for wavelengths of 500, 650. 
and 800 nm. 

The recovery behavior of the polystyrene core fibers is rather strongly 
affected by temperature (Figure 52). although independent of wavelength and 
dose within the limits of experimental error. For times greater than 
approximately 10 ms the recovery curves for all temperatures are approxi
mately described by T-1/ 4 . This dependence also describes the temperature
independent portions of the recovery curves for vitreous silica fibers and 
for the other plastic fibers; however. it appears that a temperature-dependent 
mechanism is operating at short times «0. 1 flS) and is causing an increase 
in recovery rate with increasing temperature. 

A noteworthy characteristic of the response of plastic fibers is the 
effect of environment on recovery behavior. As Figure 53 shows. recovery 
is slowed substantially when the fibers are irradiated and held in vacuum 
(,...,10 microns); and similar results are obtained when the irradiation occurs 
in a dry nitrogen atmosphere created by evacuating the exposure chamber 
and back-filling with nitrogen. Moreover. subsequent exposure to oxygen 
will speed up the recovery of fiber irradiated in an oxygen-free environment. 
The magnitude of the environmental effect, the fact of occurrence in a 
nitrogen environment. and a correlation of its onset with known diffusion 
rates. 13 indicate that molecular oxygen scavenges the absorption centers. 
thereby increasing the recovery rate. The data in Figure 53 show that the 
recovery curves for vacuum -irradiated fibers are independent of tempera
ture. a finding which implies the applicability of- a tunneling model. as was 
observed for Schott. PFX. and Crofon fibers. 
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VII. DU PONT PFX FIBERS 

Manufacturer: Plastics Department 
E. I. Du Pont de Nemours & Company 
Wilmington, DE 19898 

Core: Polymethylmethacrylate (PMMA) 

Cladding: Proprietary Plastic 

Fiber Diameter: 0.38 mm 

~ O.lmm ~ 

The polymethylmethacrylate (PMMA) core fibers from Du Pont 
(designated PFX fibers) are similar to Du Pont Crofon fibers, 11 but contain 
a lower impurity concentration, and thus display better unirradiated trans
mission characteristics at some wavelengths. In general, this fiber has 
the lowest unirradiated transmission (-550 db/km at 650 nm) of the plastic 
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fibers, and is probably the most satisfactory plastic fiber for many appli
ca tions in radiation environments. 

The spectral dependence of the transient absorption is plotted in 
Figures 55 and 56 for doses of 46 and 100 krads. The shapes of these curves 
are similar to those for the Crofon fibers, showing a peak at the short wave
lengths and decreasing absorption with increasing wavelength. The peak 
transient absorption is shown as a function of dose in Figure 57 for wave
lengths of 500, 650, and 800 nm. The peak transient absorption is slightly 
larger in these PFX fibers than in the Crofon, a condition which suggests 
that impurities in the Crofon act as scavengers during the radiation pulse. 

The effect of temperature on the induced transient absorption is shown 
in Figures 58, 59, and 60 for wavelengths of 500, 650, and 800 nm, respec
tively. As observed in other plastic fibers, the absorption decreases with 
increasing temperature, although the 'effect is much ~maller than in glass 
fibers studied. Although the peak absorption values as well as the un
irradiated absorption values are larger than for silica core fibers, PFX 
fibers are less expensive and have applications in short fiber lengths. 

The transient absorption recovery in PFX fibers (Figure 61) is similar 
to that for Crofon. The recovery curves are independent wavelengths within 
the limits of experimental error. However, they increase in slope with 
higher temperatures for'times greater than O. 1 ms, whereas for times less 
than O. 1 ms, the recovery appears to be independent of temperature (-54 to 
71 DC) as well as of wavelength and dose. 

The overall behavior might be interpreted as a combination of a 
tunneling process (temperature independent) and a thermally activated 
process. The tunneling model used to describe the recovery behavior in 
the Schott fibers, when applied here in modified form to include scavenging, 2, 12 
shows that the tunneling curves are multiplied by an exponential of the form 
e -kct, where k is the reaction rate constant between ions and scavenger and 
c is the scavenger concentration. With scavenging included, the theoretical 
recovery increases faster than t-1 14 (tunneling model) after some charac
teristic time T:::: llkc (0. 1 ms in Figure 61). It is also likely that k in-
creases the temperature, causing the change in recovery behavior to occur 
at shorter times and with steeper slopes for higher-temperature irradia-
tions. The data shown in Figure 61 exhibit the behavior described above, 
which suggests that scavenging of some form may be occurring in irradiated 
PFX fibers. 

Other experiments13 show that molecular oxygen may be the source 
of scavenging in these plastic fibers. The recovery rate for fibers irr~di
ated and held in vacuum and in dry nitrogen environments (Figure 62) is 
slower than for fibers treated similarly in an air environment. The recovery 
is also independent of temperature, and data can be fitted to a tunneling 
model12 with good agreement over several orders of magnitude in time. 
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VIII. DU PONT CROFON FIBERS 

Manufacturer: Plastics Department 
E. 1. du Pont de Nemours & Company 
Wilmington, DE 19898 

Core: Polymethylmethacrylate (PMMA) 

Cladding: Proprietary Plastic 

Fiber Diameter: 0.25 mm 

~ 0.1mm ~ 

These polymethylmethacrylate (PMMA) core fibers from Du Pont 
(designated Crofon) exhibit radiation responses similar to those of other 
PMMA core fibers (PFX) and of polystyrene core fibers. The spectral 
response of the peak transient absorption is shown in Figures 64 through 
67 for an X-ray dose of 930 rads, and for electron doses of 6. 9, 70, and 
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250 krads. The transient absorption shows a peak at short wavelengths, 
and it decreases toward the longer wavelengths in a fashion similar to that 
of the glass fibers studied. 

The peak transient absorption is plotted as a function of dose in 
Figure 68 for wavelengths of 500, 650, and 800 nm. Although the magni
tudes of the induced absorption and the absorption are greater in unirradi
ated materials than in the "pur,e" vitreous silica fibers, . the fibers, 
nevertheless, have applications in systems employing short fiber lengths 
as do the other plastic fibers. 

In the PMMA core fibers, as well as polystyrene fibers, the effect 
of temperature is not as pronounced as it is in the glass fibers studied. 
The peak transient absorption versus dose is plotted for temperatures of 
-54, 20, and 71°C at wavelengths of 500, 650, and 800 nm in Figures 69 
through .71. 

The absorption recovery of the Crofon fibers is plotted in Figure 72. 
The recovery is more complex than in the glass and the other plastic fibers 
studied, and exhibits several different mechanisms. 2 A pronounced change 
in the shape of the recovery curves is evident for times greater than 0.1 ms. 
For less than O. 1 ms, the recovery is relatively independent of temperature. 
This behavior suggests the operation of a tunneling process which is domi
nant over short times and a thermally activated process. dominant over 
longer times. 2 
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Data were corrected for detector response, unirradiated fiber attenuation, and fiber band
width. The left-hand scale is for electron data and the right-hand scale for X-ray irradiations. 
The data shown are for seven Du Pont Crofon fibers with a diameter of 0.25 mm . 
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APPENDIX 

Transmission spectra of the filters used for the transient absorption 
measurements are shown in Figures 74 through 84. 
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