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ABSTRACT

The absorption induced in fiber optic waveguides by pulsed electron
and X-ray radiation has been measured as a function of optical wavelength
from 450 td 950 nm, irradiation temperature from -54 to 71°C, and dose
from 1 to 500 krads. The fibers studied are Ge-doped silica core fibers
(Corning Low Loss), 'pure'' vitreous silica core fibers (Schott, Bell
Laboratories, Fiberoptic Cable Corp., and Valtec Fiberoptics), polymethl-
methacrylate core fibers (DuPont CROFON and PFX), and polystyrene core
fibers (International Fiber Optics and Polyoptics). Models that have been
developed to account for the observed absorption recovery are also
summarized.

* This work was supported by the United States Energy Research and
Development Administration, Contract Number AT-(29-1)-789, and
the U.S. Air Force Weapons Laboratory.
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A SUMMARY OF RADIATION-INDUCED TRANSIENT
ABSORPTION AND RECOVERY IN FIBER OPTIC WAVEGUIDES

Introduction

Recent studiesl~9 have shown that the operation of optical waveguides
can be impaired in radiation environments. In particular, false signals
can be generated by luminescence, and signal strengths can be lowered by
radiation-induced absorption (Figure 1). These effects occur with both
continuous and pulsed radiation sources; however, the loss of signal strength
following pulsed irradiation is particularly serious when the duration of the
pulse is shorter than the lifetime of the induced absorption centers. This
situation occurs in many applications and produces large values of absorp-
tion, even in systems employing short fiber lengths. Thus adequate system
design requires knowledge of the time-dependence of absorption values as a
function of optical wavelength, irradiation dose, irradiation temperature,
and the environment surrounding the fiber.

In the last few years, extensive investigations have been performed
at Sandia Laboratories on the transient absorption that results from pulsed
radiation. These investigations have produced many new results which
supplement the extensive permanent absorption data collected in Reference
1. The results of these new transient investigations are presented here for
several fibers which have been identified as the most radiation-resistant,
that is, the most promising for use in pulsed radiation environments. For
the sake of completeness, the previously unpublished data presented here
are supplemented by data already reported elsewhere.

In general, this document contains the absorption and the absorption
recovery data necessary for designing fiber optic data links that will be
exposed to pulsed electrons, X rays, and gamma rays. Data are given for
radiation doses up to 500 krads, for irradiation temperatures from -54 to
71°C, and for operating wavelengths from 450 to 950 nm. Although neutron-
induced absorption data are not included here, the effect is determined by
the neutron ionizing dose4 and is generally small compared with the absorp-
tion induced by ionizing radiation in many practical environments. Data are
also included on the significant effects of atmospheric oxygen on the recovery
of plastic fiber waveguides. Fiber recovery models which are useful for
extrapolating the measured values are also summarized here.
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Figure 1. Schematic Representation of the Response of Glass and Plastic Fiberoptic Waveguides to Pulsed
Irradiation. The signal level increases as a result of luminescence during the radiation pulse and
reaches a minimum at the end of the pulse because of the induced absorption.



Experimental Technique

Previous studiesl~4 have shown the transient absorption to be
independent of the type of ionizing irradiation, a result to be expected from
considerations of energy loss mechanisms in solids (ionization versus dis-
placement). Thus for most of the experiments, an electron beam machine
was used since it offered the advantages of high dose capability and simple
shielding to define exposure length accurately, and since machines were
readily available. TUnless the data reported here are specifically labeled
"X ray, " the fibers were exposed to electrons from a 600 keV Febetron
750 in conjunction with a Model 5237 electron beam tube. With this machine-
tube combination, there is very little self-pinching of the beam and the ex~-
posure dose is controlled by varying the anode-to-fiber spacing. Doses of
from 10 to 500 krads per shot were obtained with spacing variations of 25 cm.

Because the range of the electrons was short, the fiber bundles were
stripped of their protective sheaths and the individual fibers fanned out
across the exposure aperture. The fiber length from light source to detec-
tor was typically three metres. The routing of the fiber bundle into and out
of the exposure chamber contained several bends to ensure that the wave-
guide properties were measured. The length and routing of the bundles also
minimized signal transmission through the cladding, and photo-optical
measurements confirmed that such transmissions were negligible.

Dose measurements for the electron beam irradiations were made with
0.05 mm thick, nylon-base radiochromic film supplied by Far West Tech-
nology. Pretest and posttest film densities were measured with a Far West
Technology Model FWT-90 film reader. The film reader system calibration
was verified by making known irradiations in the Sandia gamma irradiation
facility.

Data which are labeled 'X ray' were collected from specimens
irradiated by a 2 MeV Febetron 705 operated in the bremsstrahlung mode.
The beam was directed into a tungsten bremsstrahlung converter backed with
an aluminum plate to stop all electrons passing through the converter. Dose
measurements for the X-ray irradiations were made with TLLD-400 dosimeters.

In all experiments, the light source, fiber, and detector were arranged
as shown in Figure 2. A flash lamp was used for making peak transient ab-
sorption measurements and for recovery measurements over times up to five
microseconds after the radiation pulse. For longer-time recovery (up to
ten seconds), a continuous-source quartz lamp powered from a well-regulated
dc power supply was used. The value of absorption obtained using the quartz
lamp was normalized to the data obtained with the pulse source.
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Figure 2. The Lamp, Fiber, and Detector Configuration Used in the Transient Absorption Measurements.
The fiber length from source to detector was typically three metres, and the exposure length
ranged from 1 to 10 cm. '



Two different photodetectors were used. A C70042K photomultiplier*
tube (RCA) was used to detect very low signal levels (involving a few fibers)
and to ensure that the larger signal levels were not masking other phenomena.
For most measurements, however, an SGD-100A photodiode (EG&G) with a
traceable calibration was employed. The photodiode has good long-term
stability and is linear over a much wider range of signal levels than is the
PM tube. Both qualities simplify data reduction.

Luminescence measurements were made on experimental configurations
identical with those used for the absorption measurements, except that the
light source was not energized.

Wavelength discrimination was accomplished with nine individual notch
filters ranging from 450 to 950 nm. Each filter has a band pass of approxi-
mately 100 nm. The precise bandwidth of each filter was determined using
a Cary 14 spectrometer and is reported in the appendix. Some transient ab-
sorption measurements were also made with a spectrometer to ensure that
significant fine structure was not masked by the wider bandwidth of the notch
filters.

Transient Absorption Defined

The peak transient absorption «(0) has been defined as follows: /

‘ I
(0) = 10log, 4 I—O— Lx dB/m (1)
min

where Lx is the exposure length in meters, I, is the pre-irradiation signal
level, and I, i, is the minimum signal level tq'xat occurs following the
radiation pulse (see Figure 3).

The fractional recovery is defined as the absorption remaining at time
t divided by the peak absorption oa(t)/a(0). Values of «(0) and a(t)/a(0) are
presented as a function of wavelength, dose, and temperature in following
sections. The absorption at any time after irradiation can be determined
by multiplying the fractional recovery by the peak absorption: aft) =
a(t)/ a(0) x o(0).

* Extended-red multialkali photocathodes.
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Figure 3. An Oscilloscope Record Indicating Radiation-Induced Absorption and Luminescence in a Polystyrene
Fiber Bundle. The lower trace shows the zero-voltage (no-detected-signal) level. With the light source
energized, the unirradiated transmission is given by the amplitude of the upper trace for the first 75 ns.
The sharp increase in detected intensity, which peaks at 100 ns, is caused by luminescence in the fiber
during a 1 krad, 50 ns X-ray pulse. A minimum in detected intensity occurs near 170 ns shortly after
the termination of the irradiation and indicates the maximum transient absorption. For the remainder
of the trace, the recorded intensity gradually increases toward the value shown prior to irradiation. The
amount of absorption remaining after approximately 24 hours is considered permanent.
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I. CORNING LOW LOSS FIBERS

Manufacturer: Corning Glass Works
Telecommunications Products Department
Corning, NY 14830
Core: Ge-Doped Silica
Cladding: Silica

Fiber Diameter: 0.09 mm

—> 0.05mm <=—

The Ge-doped silica fibers from the Corning Glass Works show peak
transient absorptions which are approximately two orders of magnitude
larger than those of 'pure'' vitreous silica fibers.
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The spectral dependence of the peak transient absorptions for 70 and
9 krad electron doses are shown in Figures 4 and 5, while similar data for
X~ray doses of 900 and 240 rads are presented in Figures 6 and 7. Maxi-
mum absorption occurs at wavelengths from 500 to 550 nm, a result common
to all the silica core fibers studied. The spectral dependence of absorption
in the Corning fibers, however, is more pronounced than in other silica core
fibers.

Peak transient absorption as a function of dose is shown in Figure 8
for wavelengths of 500 and 800 nm; the insert shows similar data for low
X-ray doses. The data in Figure 8 were recorded on fibers purchased in
1973, while the data in Figures 9 and 10 were recorded on fibers procured
more recently (1975-76). The effect of temperature on the peak transient
absorption is also shown in Figures 9 and 10. The absorptions measured
at room temperature for the newer material are slightly larger than those
for the ''old'" material (Figure 8). Microprobe analysis suggests that this
difference in induced absorption is probably related to variations in dopant
concentration; however, no effort has been made to establish the dependence
quantitatively.

The recovery of the transient absorption for Ge-doped Corning fibers
is shown in Figure 11. The most striking feature of these data is the large
temperature dependence of the recovery, a trait not generally observed in
"pure' vitreous silica fibers. For example, the data in Figure 11 show
that a system which is 'off-the-air'' until the absorption diminishes to 0.1
of the peak value will recover in 0.1 ms at 71°C, but will require 0,15
second to recover at -54°C, a difference of three orders of magnitude in
time. Two other features of the data in Figure 11 are also noteworthy:
first, the recovery is independent of dose and wavelength within the accur-
acy limits of the measurements; and second, the 21 and 71°C recovery
curves show a t-1/2 dependence, while the lower-temperature curves
approach a t-1/2 dependence at longer times. The data suggest a geminate
recombination process wherein defects created by irradiation recombine
by diffusion under the influence of a mutual electrostatic field.

A model for geminate recombination taken from' the literature on
pulsed radiolysis of liquids6, 7 and glasses8, 9 explains the observed data.
In this model,

n(t) _ 1/2 .
n(0) exp(\t) erfc(it) (2)
where % is the fraction of electron-ion pairs remaining at time t, \ is

the recombination rate, and erfc(x) is the complement of the error function.
Equation (2) reduces to
n(t) /2

n(0) @

= (1/mat)}

14



for \t > 1, yielding the t=1/2 dependence observed in the data at long times
and for large values of \.

The data of Figure 11 are shown again in Figure 12 normalized to the
peak transient absorption at -54°C. The average values of the data collected
at each temperature are given by the symbols, while the solid lines were
calculated from expression (2), varying only the parameter \ to achieve the
best fit. The curves calculated in this fashion are in excellent agreement
with the data. The values of \ used to produce the fit shown in Figure 12
are plotted semilogarithmically against T~1 in Figure 13. The near linear
curve over five orders of magnitude in \ is further evidence for a thermally
activated diffusion process for recombination which is characterized by

A = )\0 exp(-E/KT) (4)

where E is approximately 0.45 eV. A similar range of recovery rates has
been observed as a function of temperature in other inorganic glasses. 8

15
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Figure 4. Peak Transient Absorption Spectrum for Corning Low Loss Fibers Exposed to a 70 krad Electron Dose.
(Measurement error is estimated to be less than 10 percent of values plotted.)
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Figure b. Peak Transient Absorption Spectrum for Corning Low Loss Fibers Exposed to a 9 krad Electron Dose.
(Measurement error is estimated to be less than 10 percent of values plotted.)
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Figure 6. Peak Transient Absorption Spectrum for Corning Low Loss Fibers Exposed to a 900 rad X-ray Dose.
{Measurement error is estimated to be less than 10 percent of values plotted.)
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Figure 7. Peak Transient Absorption Spectrum for Corning Low Loss Fibers Exposed to a 240 rad X-ray Dose.
(Measurement error is estimated to be less than 10 percent of values plotted.)



0¢

PEAK TRANSIENT ABSORPTION (dB/m)

CORNING LOW LOSS (TYPE B) FIBERS

3500
© 500 nm O
0 800 nm
3000 -
2500
O
2000 o
1500 -
1000 - 06 al
O a
500 &, 8 ] o 0 2 4 6 810
Céo [ E O
g o
0 | | 1 I I | 1 1 ] |
0 50 100 150 200 250 300 350 400 450 500

DOSE (krad)

Figure 8. Peak Induced Absorption as a Function of Dose in Corning Low Loss Fibers for Wavelengths of
500 and 800 nm. The insert provides an expanded scale for the low X-ray doses. {(Measurement

error is less than 10 percent of values plotted.)

550



12

PEAK TRANSIENT ABSORPTION (dB/m)

1400

@)
CORNING LOW LOSS -54 c//
12009 (TYPE B) FIBERS )
500 nm . O
10004 20 c)/
O
O
o /
N l:]/O 1=
000+ o
409 P
e
200-
J ‘ ! L ‘ | ' I T
0 10 20 30 40

DOSE (krads)

Figure 9. Peak Transient Absorption at 500 nm as a Function of Dose for Temperatures of -54, 20, and 71°C in

Corning Low Loss Fibers. {Measurement error is less than 10 percent of values plotted.)




(44

400

CORNING LOW LOSS
(TYPE B) FIBERS

E
o=
= -54°C.
<&
Z 300— 800 nm 20°C /
—_
(a4
- ‘ v /
2200 o
= o
L _ 71°C
— O
Z o
=
7
=100 =
= o
o« -
<C ]
(S8 ]
o
0 T I T | T | l T
0 10 20 30 40 50
DOSE (krads)
"Figure 10. Peak Transient Absorption at 800 nm as a Function of Dose for Temperatures of -54, 20, and 71°C

in Corning Low Loss Fibers. (Measurement error is less than 10 percent of values plotted.)



1344

NORMALIZED ABSORPTION

|

[ T
...
3
7y
o1
¥
>
Bh
l..
C
[ g
>

CORNING LOW LOSS
(TYPE B) FIBERS

-54 °C
] . p /
"aa
_ m oA
[ ] ]
-‘_’
A 20°C y O
0.1 / -
i 20 A"
- A",
] a
. qh?) A
A
7] & 500 nm 20°C 1 krad & * D‘?j e}
© 500nm 20°C 15 krad * w * O
— 0 500 nm 20°C 45 krad
® 650nm 20°C 240 rad * * 0
e 850nm 20°C  1krad Py W O
- ® 500 nm -54°C 50 krad * * O
4 650 nm -54°C 110 krad g O
* 800nm 71°C 60 krad &
% §00nm 71°C 110 krad 71°C =
o 500 nm 121°C 52 krad
0.01 L ||||||l 1 ||l|lr| 1 llllllll T llllll[ L IIII]II T lllllll| LR
0.1lps lus 10us 0.1ms Ims 10ms 0.1s
TIME

Figure 11.

Transient Absorption Recovery in Corning Low Loss Fibers Plotted as the Fraction of the
Absorption Remaining at Time t, as a Function of Time. Measurement error is less than 10
percent of the values shown for short times ( 0.1 ms) and less than 20 percent at longer times.

ls



744

ABSORPTiON

1 :
CORNING LOW LOSS
(TYPE B) FIBERS
0. 1—
i 121°C
A=107
0.01 ﬁ]lllllll 1] ITIIIIII rllllllll 1 llll[lll ) IIIHIII i llllll“l] 1 T T TTT
.lyus 1us 10us 0.1ms Ims 10ms 0.1s ls

TIME

Figure 12. Absorption Recovery as a Function of Time for Corning Low Loss Fibers Where the Data Has Been
Normalized to the Peak Absorption at -54°C. The solid lines represent values calculated by varying
X in the geminate recombination model expressed in Eq. (2) of the text.
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II. SCHOTT PURE FUSED SILICA FIBERS

Manufacturer: Schott Optical Glass
400 York Avenue
Duryea, PA 18642
Core: Vitreous Silica

Cladding: Plastic

Fiber Diameter: 0.1 mm

—> 0.1Tmm <=—

The "UV transmitting' fibers from Schott Optical Glass are one of
the several commercially available plastic-clad fibers with a nominally
pure vitreous silica core. Fibers of this type are among the most radiation-
resistant studied.

The peak transient absorption spectra are shown in Figures 15 through
18 for several irradiation doses. At 550 nm, the spectra show a peak which
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is not seen in the bulk material from which the fibers were drawn, thus
indicating that impurities were introduced in the drawing process.

The peak transient absorption is plotted as a function of dose in
Figure 19 for wavelengths of 500 and 800 nm and for an irradiation tempera-
ture of 20°C. The insert shows the results for low X-ray doses. Figure 20
shows the transient absorption versus dose at 500 nm for temperatures of
-54, 20, and 71°C, and similar results are shown in Figure 21 for a wave-
length of 800 nm.

The room-temperature data in Figures 20 and 21 differ significantly
from those in Figure 19. The data in Figure 19 were obtained after the
fibers had been pre-irradiated to a high dose (~100 krads) before the peak
transient absorption measurements were made. The data in Figures 20 and
21, on the other hand, were obtained by exposing a 'fresh' section of fiber
for each datum. Comparison of the data shows that pre-irradiation increases
the transient absorption. Further, the change to higher absorption values
appears not to occur gradually with increasing pre-dose, but to increase
abruptly at about 100 krads and 20°C. The increase occurs at lower pre-
dose levels (~20 krads) for lower-temperature irradiations. The pre-dose
phenomenon is not understood at this time.

The recovery data for several exposure doses and temperatures
(Figure 22) show the recovery to be independent of dose, wavelength, and
temperature within experimental error limits over the temperature range
of interest. The recovery was also found to be independent of pre-dose.

The recovery behavior is consistent with a tunneling model2, 10
developed to explain the recombination kinetics of irradiated organic glasses.
In this model,

15 +log, ot \?
(5)

log, . n(t) = a <r + -
10 1\o 0.443(V, - E ) /2

where n(t) is the fraction of trapped electrons remaining at time t, a; is
proportional to the concentration of acceptors that recombine with the
trapped charges via a tunneling process, Vg(eV) and E(eV) are the potential
height and zero-point energy respectively, and rg corrects for the finite
radius of the trapped electron. Equation (5), which was fitted to the data

of Figure 22 by varying a4 and using estimates for rg, Vg, and E,, ad-
equately describes the data over five orders of magnitude in time as shown
by the solid line.

The data also show that at very low temperatures (-172°C) there is a

significant reduction in the recovery rate. This behavior can be explained
qualitatively by summing an exponential recovery (0. 6 relative amplitude)

28



and the tunneling mechanism (0. 4 relative amplitude). The quality of the
fit indicates that the tunneling process remains active for only 0. 4 of the
recombining species, while the remainder are described by

Ne(t) = 0.6 exp(-t/Te) , (6)

where Ne is the fraction recovering exponentially and te is the recovery
time =0. 1 second.
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Peak Transient Absorption Spectrum in the Schott Vitreous Silica Fibers for an X-ray Dose
of 300 rads. {Measurement error is less than 10 percent of values plotted.)
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Peak Transient Absorption Spectrum in the Schott Vitreous Silica Fibers for an Electron
Dose of 6 krads. (Measurement error is less than 10 percent of the values plotted.)
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and 71°C in Schott Vitreous Silica Fibers. (Measurement error is less than 10 percent of
values plotted.)
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and 71°C in Schott Vitreous Silica Fibers. (Measurement error is less than 10 percent of
values plotted.)
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Figure 22. Recovery of Absorption in Schott Vitreous Silica Fibers. At all temperatures, recovery is independent of
dose and wavelength. For temperatures greater than -54°C, recovery is independent of temperature and is
accurately described by a tunneling model as shown by the solid line. At -170°C, the data are described by
the superposition of the tunneling process and an exponential (see text). Measurement error is less than
10 percent at times less than 0.1 ms, and less than 20 percent at longer times.
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Figure 23. Transient Luminescence Spectra Induced in Corning Low Loss Fibers During Electron and

X-ray Irradiation. The ordinate is proportional to the detected power in milliwatts per
exposed cm of fiber, per nanometer of effective detector bandwidth, per unit dose rate.

Data were corrected for detector response, unirradiated fiber attenuation, and filter bandwidth.
The left-hand scale is for electron data and the right-hand scale for X-ray irradiations. The data
shown are for 120 Schott fibers with a diameter of 0.1 mm.
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ITII. VALTEC PURE FUSED SILICA FIBERS

Manufacturer: Valtec Fiberoptics*
West Boylston, MA 01583

Core: Pure Fused Silica
Cladding: Plastic

Fiber Diameter: 0.12 mm

P
Formerly Electro Fiberoptics Division, VALTEC Corporation
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The transient absorption response of the plastic-clad, 'pure' vitreous
silica core fibers from Valtec Fiberoptics is similar to that of the Schott
fibers. The spectral dependence of the peak transient absorption is shown
in Figures 24 and 25, and the peak transient absorption versus dose for
wavelengths of 500 and 800 nm are shown in Figure 26. These data were
obtained by exposing a previously unirradiated section of fiber, and they
compare very closely with the Schott data (Figures 20 and 21) obtained
under similar conditions. The effect of temperature on the peak transient
absorption is shown in Figures 27 and 28 for wavelengths of 500 and 800 nm,
respectively. For these fibers, the peak absorption increases with de-
creasing temperature, as it does for the other fibers. At 500 nm after a
dose of 150 krads, the absorption doubles as the irradiation temperature
varies from 71 to -54°C.

The recovery data for the Valtec Fiberoptics material (Figure 29)
are independent of dose and wavelength, as are the data for the other 'pure'
vitreous silica core fibers, within the limits of experimental error. For
practical purposes, the recovery may also be considered independent of
temperature over the range of interest. The recovery closely follows that
of the Schott fibers at short times (<0.1 ms), but occurs more slowly at
longer times.
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Figure 24. Peak Transient Absorption Spectrum for Valtec Fiberoptics Pure Fused Silica Fibers

Exposed to a 48 krad Electron Dose. {Measurement error is less than 10 percent of

values plotted.)
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values plotted.)
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Peak Transient Absorption as a Function of Dose in the Valtec Fiberoptics Fibers for
Wavelengths of 500 and 800 nm. (Measurement error is less than 10 percent of values plotted.)
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Peak Transient Absorption Versus Dose at 500 nm for Temperatures of -54, 20, and 71°C
in Valtec Fiberoptics Fibers. (Measurement error is less than 10 percent of values plotted.)
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Peak Transient Absorption as a Function of Dose at 800 nm for Temperatures of -54, 20,

and 71°C in Valtec Fiberoptics Fibers. {(Measurement error is less than 10 percent of values
plotted.) '
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Figure 29. Transient Absorption Recovery in the Valtec Fiberoptics Fibers for Several Doses and
Temperatures. The recovery is independent of dose, temperature, and wavelength.
(Measurement error is less than 10 percent for times less than 0.1 ms, and less than
20 percent at longer times.
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Figure 30. Transient Luminescence Spectra Induced in Valtec Fibers During Electron Irradiation.

The ordinate is proportional to the detected power in milliwatts per exposed cm of fiber,
per nanometer of effective detector bandwidth, per unit dose rate. Data were corrected
for detector response, unirradiated fiber attenuation, and filter bandwidth. The data
shown are for 17 Valtec fibers with a diameter of 0.12 mm.
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IV. BELL LABORATORIES PURE FUSED SILICA FIBERS

Manufacturer: Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974
Core: Pure Fused Silica

Cladding: B202 - 8102

Fiber Diameter: 0.125 mm

PSS TR S——

— 0.1Tmm <=—vo

These research grade 'pure' vitreous silica core fibers with glass
cladding and glass sheath from Bell Telephone Laboratories (BTL) are also
among the most radiation-resistant studied, showing results very similar
to the Schott and Electro Fiberoptics data. The peak transient absorption
is shown as a function of wavelength in Figures 31 and 32 for electron doses
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of 70 and 230 krads, respectively. The peak in absorption at about 550 nm,
which appears to be characteristic of the silica core fibers, again occurs.

The peak transient absorption as a function of dose is plotted in
Figure 33 for wavelengths of 500 and 800 nm. Because of the small amount
of fiber available, these data were obtained for several radiation exposures
~on the same section of fiber. The results are similar to those for the
Schott data recorded on pre-irradiated fibers. The commercially available
form of this fiber (with a plastic cladding) is now manufactured by Fiber-
optic Cable Corporation, and additional data are reported in the following
section.

The effect of temperature on the peak transient absorption is shown
in Figures 34 and 35 as a function of dose at temperatures of ~-54, 20, and
71°C and for wavelengths of 500 and 800 nm.

The recovery data for the BTL fibers (Figure 36) differ from that for
the 'pure' vitreous silica fibers manufactured by Schott and by Valtec
Fiberoptics in that the recovery of BTL fibers is not independent of tempera-
ture over the range from -54 to 71°C. The fact that the recovery rate
increases with increasing temperature may indicate the presence of a
thermally activated untrapping process. Moreover, it is tempting to surmise
that the thermally activated process is similar to that observed in Schott
fibers at «172°C, but with a lower temperature of onset.
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Figure 31. Peak Transient Absorption Spectrum for Bell Telephone Laboratories Pure Fused Silica
Fibers Exposed to a 70 krad Electron Dose. {Measurement error is less than 10 percent

of values plotted.)
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Figure 32. Peak Transient Absorption Spectrum for Bell Telephone Laboratories Pure Fused Silica
Fibers Exposed to a 230 krad Electron Dose. (Measurement error is less than 10 percent

of values plotted.)
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Figure 35. Peak Transient Absorption as a Function of Dose at 800 nm for Temiperatures of -54, 20,

and 71°C in Bell Telephone Laboratories Fibers. (Measurement error is less than 10 percent
of values plotted.)
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Figure 36. Transient Absorption Recovery in Pure Fused Silica Fibers From Bell Telephone Laboratories.
A small temperature dependence is seen in the data with faster recovery at higher temperatures,
while recovery is seen to be independent of dose and wavelength. (Measurement error is less '
than 10 percent of the values shown for times less than 0.1 ms, and less than 20 percent for
longer times.) S :
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V. FIBEROPTIC CABLE CORPORATION PURE FUSED
SILICA FIBERS

Manufacturer: Fiberoptic Cable Corporation
P. O. Box 1492
Framingham, MA 01701
Core: Pure Fused Silica
Cladding: Optical quality plastic

Fiber Diameter: 0.25 mm

The plastic-clad, 'pure' vitreous silica fibers produced by the
Fiberoptic Cable Corporation are the commercially available forms of the
Bell Telephone Laboratories research fiber described previously.
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Peak transient absorptions as a function of wavelength are shown in
Figures 37 and 38 for doses of 50 and 150 krads. The peak transient ab-
sorption obtained at 20°C is plotted as a function of dose and temperature
in Figures 39 through 41 for wavelengths of 500 and 800 nm. In general,
the results are similar to those for the other vitreous silica fibers studied;
that is, the absorption increases with decreasing temperature, and the
absorption at a dose of 250 krads is about three times larger at a tempera-
ture of -54 than at 71°C.

The recovery data for these fibers (Figure 42) show the normalized
recovery to be independent of dose wavelength and temperature within
the limits of measurement error. The recovery is similar to that for
Valtec Fiberoptics fibers and slightly slower than that for Schott fibers.
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Figure 37. Peak Transient Absorption Spectrum for Fiberoptic Cable Corporation Pure Fused

Silica Fibers Exposed to a 50 krad Electron Dose. (Measurement error is less than

10 percent of values plotted.)
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Figure 38. Peak Transient Absorption Spectrum for Fiberoptic Cable Corporation Pure Fused
Silica Fibers Exposed to a 150 krad Electron Dose. {Measurement error is less than
10 percent of values plotted.) '
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.Figure 40. Peak Transient Absorption as a Function of Dose at 500 nm for Temperatures of
-64, 20, and 71°C in Fiberoptic Cable Corporation Fibers. (Measurement error is

less than 10 percent of values plotted.)
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Figure 41. Peak Transient Absorption as a Function of Dose at 800 nm for Temperatures of -54,
20, and 71°C in Fiberoptic Cable Corporation Fibers. (Measurement error is less than
10 percent of values plotted.)
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Fig

ure 42. Transient Absorption Recovery in the Plastic-Clad Fused Silica Fibers From Fiberoptic
- Cable Corporation. The recovery is independent of dose, wavelength, and temperature.
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Figure 43. Transient Luminescences Spectra for Electron Irradiations in the Fused Silica Fibers

From Fiberoptic Cable Corporation. The ordinate is proportional to the detected
power in milliwatts per exposed centimeterof fiber, per nanometer of the effective
detector bandwidth, per unit dose rate. Data were corrected for detector response,
unirradiated fiber attenuation, and filter bandwidth. Data shown are for six Fiberoptic
Cable Corporation fibers with a diameter of 0.25 mm. :
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Manufacturers:

Core:
Cladding:

Fiber Diameter:

POLYSTYRENE CORE FIBERS

International Fiberoptics
2644 Buckaroo Avenue
Oxnard, CA 93030

Poly-Optics, Incorporated
1815 East Carnegie

Santa Ana, CA 92705
Polystyrene

Polymethylmethacrylate (PMMA)

0.13 - 0.25 mm
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The transient response of polystyrene core fibers to radiation is
significantly different from that of the glass fibers studied. One striking
difference is the shape of the curves for peak absorption versus wavelength
(Figures 44 through 47) for a 1 krad X-ray dose, and for electron doses of
6, 30, and 300 krads. In all cases, a minimum in the peak value of induced
absorption is observed in the wavelength region from 600 to 700 nm. The
other fibers studied show an absorption peak at short wavelengths, with
monotonically decreasing absorption values toward the longer wavelengths.

The peak absorption is shown as a function of dose in Figure 48 for
wavelengths of 500, 650, and 800 nm. The insert shows data obtained using
low doses of X rays. In general, the peak transient absorption values are
larger than those observed in the ''pure'' vitreous silica core fibers. Al-
though the peak, as well as the unirradiated, absorption values are larger
than those for vitreous silica fibers, the plastic fibers are less expensive
and have applications in short fiber lengths.

The effect of temperature on the peak transient absorption is much
less pronounced in the plastic fibers than in the glass fibers studied. The
peak transient absorptions are shown as a function of dose at temperatures
of -54, 20, and 71°C in Figures 49 through 51 for wavelengths of 500, 650,
and 800 nm.

The recovery behavior of the polystyrene core fibers is rather strongly
affected by temperature (Figure 52), although independent of wavelength and
dose within the limits of experimental error. For times greater than
approximately 10 ms the recovery curves for all temperatures are approxi-
mately described by -1 44- This dependence also describes the temperature-
independent portions of the recovery curves for vitreous silica fibers and
for the other plastic fibers; however, it appears that a temperature-dependent
mechanism is operating at short times (<0.1 ps) and is causing an increase
in recovery rate with increasing temperature.

A noteworthy characteristic of the response of plastic fibers is the
effect of environment on recovery behavior. As Figure 53 shows, recovery
is slowed substantially when the fibers are irradiated and held in vacuum
(~10 microns); and similar results are obtained when the irradiation occurs
in a dry nitrogen atmosphere created by evacuating the exposure chamber
and back-filling with nitrogen. Moreover, subsequent exposure to oxygen
will speed up the recovery of fiber irradiated in an oxygen-free environment.
The magnitude of the environmental effect, the fact of occurrence in a
nitrogen environment, and a correlation of its onset with known diffusion
rates, 13 indicate that molecular oxygen scavenges the absorption centers,
thereby increasing the recovery rate. The data in Figure 53 show that the
recovery curves for vacuum-irradiated fibers are independent of tempera-
ture, a finding which implies the applicability of a tunneling model, as was
observed for Schott, PFX, and Crofon fibers.
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Figure 44. Peak Transient Absorption Spectrum in Polystyrene Fibers for an X-ray Dose
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of 1 krad. (Measurement error is less than 10 percent of values plotted.)
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Figure 45. Peak Transient Absorption Spectrum in Polystyrene Fibers for an Electron Dose
of 6 krads. {Measurement error is less than 10 percent of values plotted.)
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Figure 46. Peak Transient Absorption Spectrum in Polystyrene Fibers for an Electron Dose
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Figure 47. Peak Transient Absorption Spectrum in Polystyrene Fibers for an Electron Dose
of 300 krads. (Measurement error is less than 10 percent of values plotted.)
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Figure 48. Peak Induced Absorption as a Function of Dose in Polystyrene Core Fibers for
Wavelengths of 500, 650, and 800 nm. The insert provides an expanded scale for
low doses. (Measurement error is less than 10 percent of values plotted.)
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Figure 49. Peak Transient Absorption as a Function of Dose at 500 nm for Temperatures of
-54, 20, and 71°C in Polystyrene Core Fibers. {(Measurement error is less than 10
percent of values plotted.)
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Figure 50. Peak Transient Absorption as a Function of Dose at 650 nm for Temperatures of

-64, 20, and 71°C in Polystyrene Core Fibers. (Measurement error is less than 10
percent of values plotted.)
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Figure 51. Peak Transient Absorption as a Function of Dose at 800 nm for Temperatures of
-54, 20, and 71°C in Polystyrene Core Fibers. (Measurement error is less than 10
percent of values plotted.)
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Figure 53. Transient Absorption Recovery in Polystyrene Core Fibers Irradiated in Vacuum or

Dry Nitrogen Environments. The recovery is slower than when irradiated in air because

of the absence of the molecular oxygen which acts as a scavenger. (Measurement error
is less than 10 percent of the values shown for times less than 0.1 ms, and less than 20
percent at longer times.)
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Figure 54. Transient Luminescence Spectra Induced in Polystyrene Core Fibers During Electron

and X-ray lrradiation. The ordinate is proportional to the detected power in milliwatts
per exposed cm of fiber, per nanometer of effective detector bandiwdth, per unit dose
rate. Data were corrected for detector response, unirradiated fiber attenuation, and fiber
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VII. DU PONT PFX FIBERS

Manufacturer: Plastics Department
E. I. Du Pont de Nemours & Company
Wilmington, DE 19898
Core: Polymethylmethacrylate (PMMA)
Cladding: Proprietary Plastic

Fiber Diameter: 0.38 mm

The polymethylmethacrylate (PMMA) core fibers from Du Pont
(designated PFX fibers) are similar to Du Pont Crofon fibers, 11 but contain
a lower impurity concentration, and thus display better unirradiated trans-
mission characteristics at some wavelengths. In general, this fiber has
the lowest unirradiated transmission (~550 db/km at 650 nm) of the plastic
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fibers, and is probably the most satisfactory plastic fiber for many appli-
cations in radiation environments.

The spectral dependence of the transient absorption is plotted in
Figures 55 and 56 for doses of 46 and 100 krads. The shapes of these curves
are similar to those for the Crofon fibers, showing a peak at the short wave-
lengths and decreasing absorption with increasing wavelength. The peak
transient absorption is shown as a function of dose in Figure 57 for wave-
lengths of 500, 650, and 800 nm. The peak transient absorption is slightly
larger in these PFX fibers than in the Crofon, a condition which suggests
that impurities in the Crofon act as scavengers during the radiation pulse.

The effect of temperature on the induced transient absorption is shown
in Figures 58, 59, and 60 for wavelengths of 500, 650, and 800 nm, respec-
tively. As observed in other plastic fibers, the absorption decreases with
increasing temperature, although the effect is much smaller than in glass
fibers studied. Although the peak absorption values as well as the un-
irradiated absorption values are larger than for silica core fibers, PFX
fibers are less expensive and have applications in short fiber lengths.

The transient absorption recovery in PFX fibers (Figure 61) is similar
to that for Crofon. The recovery curves are independent wavelengths within
the limits of experimental error. However, they increase in slope with
higher temperatures for times greater than 0.1 ms, whereas for times less
than 0.1 ms, the recovery appears to be independent of temperature (-54 to
71°C) as well as of wavelength and dose.

The overall behavior might be interpreted as a combination of a
tunneling process (temperature independent) and a thermally activated
process. The tunneling model used to describe the recovery behavior in
the Schott fibers, when applied here in modified form to include scavenging, 2, 12
shows that the tunneling curves are multiplied by an exponential of the form
e KCt, where k is the reaction rate constant between ions and scavenger and
c is the scavenger concentration. With scavenging included, the theoretical
recovery increases faster than t-1/4 (tunneling model) after some charac-
teristic time T = 1/ke (0.1 ms in Figure 61). It is also likely that k in-
creases the temperature, causing the change in recovery behavior to occur
at shorter times and with steeper slopes for higher-temperature irradia-
tions. The data shown in Figure 61 exhibit the behavior described above,
which suggests that scavenging of some form may be occurring in irradiated
PFX fibers.

Other experimen’cs13 show that molecular oxygen may be the source
of scavenging in these plastic fibers. The recovery rate for fibers irradi-
ated and held in vacuum and in dry nitrogen environments (Figure 62) is
slower than for fibers treated similarly in an air environment. The recovery
is also independent of temperature, and data can be fitted to a tunneling
modell? with good agreement over several orders of magnitude in time.
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Figure 5. Peak Transient Absorption Spectrum in Du Pont PFX Fibers for an Electron Dose of
46 krads. (Measurement error is less than 10 percent of values plotted. )
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46 krads. {Measurement error is less than 10 percent of values plotted.)
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-64, 10, and 71°C in Du Pont PFX Fibers. (Measurement error is less than 10 percent
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VIII. DU PONT CROFON FIBERS

Manufacturer: Plastics Department
E. I. du Pont de Nemours & Company
Wilmington, DE 19898
Core: Polymethylmethacrylate (PMMA)
Cladding: Proprietary Plastic

Fiber Diameter: 0.25 mm

—> 0.1Tmm <=

These polymethylmethacrylate (PMMA) core fibers from Du Pont
(designated Crofon) exhibit radiation responses similar to those of other
PMMA core fibers (PFX) and of polystyrene core fibers. The spectral
response of the peak transient absorption is shown in Figures 64 through
67 for an X-ray dose of 930 rads, and for electron doses of 6.9, 70, and
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250 krads. The transient absorption shows a peak at short wavelengths,
and it decreases toward the longer wavelengths in a fashion similar to that
of the glass fibers studied.

The peak transient absorption is plotted as a function of dose in
Figure 68 for wavelengths of 500, 650, and 800 nm. Although the magni-
tudes of the induced absorption and the absorption are greater in unirradi-
ated materials than in the "pure' vitreous silica fibers, the fibers,
nevertheless, have applications in systems employing short fiber lengths
as do the other plastic fibers.

In the PMMA core fibers, as well as polystyrene fibers, the effect
of temperature is not as pronounced as it is in the glass fibers studied.
The peak transient absorption versus dose is plotted for temperatures of
-54, 20, and 71°C at wavelengths of 500, 650, and 800 nm in Figures 69
through 71.

The absorption recovery of the Crofon fibers is plotted in Figure 72,
The recovery is more complex than in the glass and the other plastic fibers
studied, and exhibits several different mechanisms.?2 A pronounced change
in the shape of the recovery curves is evident for times greater than 0.1 ms.
For less than 0.1 ms, the recovery is relatively independent of temperature.
This behavior suggests the operation of a tunneling process which is domi-
nant over short times and a thermally activated process. dominant over
longer times., 2
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930 rads. (Measurement error is less than 10 percent of values plotted.)
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APPENDIX

Transmission spectra of the filters used for the transient absorption
measurements are shown in Figures 74 through 84.
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Figure 74. Cary 14 Spectrometer Trace Showing the Spectral Bandwidth of the 450 nm Filter
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