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ABSTRACT

A general phenomenological model is developed to describe rate-
dependent behavior in multi-dimensional strain. It is applied to the
specific problem of two-dimensional viscoelasticity. Results are compared
to one-dimensional calculations and to two-dimensional experiments.
Calculations are also done for the problems of applied pressures at the

surfaces of cylindrical and spherical cavities in viscoelastic media.



I. Introduction

Recent developments have indicated the need for a calculational model
capable of describing strain rate effects in problems involving multi-
dimensional strain [1]. Models exist which are suitable for uniaxial strain
calculations [27, but a theoretical basis for the general extension of these
models into two or more dimensions with substantiating experimental evidence
does not exist at this time. A general, coherent, multi-dimensional theory
will ultimately be required. However, a first step in this direction, which
would also satisfy present calculational needs, would be an easy-to-implement
phenomenological model capable of producing the required type of rate sensitive
behavior. Problems of immediate interest require a model capable of describing
two-dimensional viscoelasticity which would allow comparison to one-dimensional
calculations and to experiment [1]. Such a model would be a significant
addition to present calculational capabilities.

This paper describes the inclusion in the two-dimensional Lagrangian finite-
difference code TOODY [3] of a general phenomenological model which can be used
to describe strain rate effects in two or three dimensions. It has previously
been successfully used to include stress relaxation due to dislocation theory
in a two-dimensional Lagrangian finite-difference code [4]. The method is quite
straightforward and easy to include in a finite-difference code, and is capable

of describing various types of effects.

II. Phenomenclogical Model

IT.1 One-Dimensional Model

The one-dimensional model [2] is based on the equation

6 -F (g,m) N +6G (g,m) =0 (1)



where g is the stress in the direction of motion, M is the strain, given

by

N=1- pO/p (2)

where p is the density, and F and G are arbitrary functions of stress and

strain. The form of F for this wviscoelastic model is
F=F (L+F, N+F, 1) (3)
o 1 2

where

o -2
o oi

F =p (&)

and C . is the instantaneous sound speed in the reference state. G is

oi
given by
8§ = ol (5)
where
Ooq = Ko (1 + K1 + K1) (6)
K, = 9, coe2 (7)

and Coe is the equilibrium sound speed in the reference state. T is a

relaxation time given by

TRy (g ) (8)
where
g =0 R<O
g =[1 - cos n-R/Rw]/2 0 <R <R, (9)
g =1 R>R,



R =p/p (10)
and TL’ TB and Rw are adjustable parameters.

II.2. Two-Dimensional Model

The two-dimensional model is based on the equation

Syy = ey - AF, (11)
where S and e are the stress and strain deviators, M is the shear modulus and
the Fij are the relaxation functions. This can be derived on the basis of
elastic-plastic theory, but is essentially the deviatoric Hooke's law equation
with the deviatoric stresses reduced by an arbitrary relaxation function. The
implementation of this equation as it stands is made difficult by the necessity

of choosing the appropriate forms for the F A method for doing this in the

13"
general case is not clear.

The model is implemented by extending the procedure used to perform elastic-
perfectly-plastic calculations based on Eq. (11). The state of an elastic-
perfectly-plastic material may be represented by a point in prinecipal stress

deviator space, in which the axes are the principal stress deviators S., S

v il

and 33. The Von-Mises yield criterion,

J,=1/28,,8,, <— (12)

where YO is the yield strength in simple tension and Jé is the second invariant
of the stress deviator tensor, defines a sphere centered on the origin in this
space. The requirement thet the trace of the stress deviator tensor vanish
forces the state point to lie on a plane passing through the origin. The
intersection of the Von-Mises sphere with this plane is the circle of Figure 1.

Points within the circle are elastic states, and points outside the circle



are plastic states. Elastic-perfectly-plastic theory is implemented by cal-

culating the state of the material from the perfectly elastic equation

TR ThE (13)
If the state follows a given path and at some time step reaches a state out-
side the yield surface (e.g., path OA in Fig. 1), it is set normally back to
the yield surface to state B, so that Eq. (12) is not violated.

Strain rate sensitive behavior can be modeled by setting the state point
only part of the way back to the yield surface during a given time step. Thus
the relaxed state of the material during the given time step is represgnted by
point C. The type of behavior to be modeled is determined by the poaifﬁbn of
the yield surface and the amount of relaxation allowed during a given time step.
If the state A of the material calculated from Eq. (13) represents a value of
the second invariant of the stress deviator tensor of J2, and that of the relaxed

state at C is JéR’ then

J._=J. =F (14)

where F may be termed the relaxation function and may be a function of what-
ever parameters desired. In terms of the individual stress deviators, J2R

is obtained by multiplying each principal stress deviator by

- i
c=\/—§:- =\/1 - ¥/J, (15)

so that the new value of the second invaeriant of the stress deviator tensor is
J2R. It is naot necessary to calculate the principal stress deviators in order
to do this. Since the principal stress deviators are linear functions of the

stress deviators in any other reference frame, the same result is obtained by

multiplying all stress deviators in any frame by the constant in Eq. (15).



IT.3. Connection of the One- and Two-Dimensional Models

In order to make a connection between this model and that of Eq. (1),
the constants for this model have to be chosen to produce the same behavior
as the one-dimensional model. The one-dimensional model is described in terms
of instantaneous and equilibrium behavior, with the two connected by a relaxation
function. The two-dimensional model is described in terms of the elastic states
given by Eg. (13) which relax back to states on the yield surface. Thus the
material is described elastically before any relaxation takes place, and this
corresponds to the instantaneous behavior of the one-dimensional model. The
equilibrium behavior corresponds to the fully relaxed states on the yield
surface. To correspond to the relaxation function of Eq. (5), F of Eq. (14)

is taken as

I, - I,

where At is the time step and v is given by Egs. (8), (9) and (10). The
equilibrium behavior is modeled by taking a zero radius yield surface so that

the equilibrium response is hydrodynamic with the pressure given by
" :
Pak(1+KN+KN) (17)

with K , K,, end K, the same constents used in Eq. (6). The only parameter to
vary in Eq. (13) is M, and this has to be related to the instantaneous response

given by Eq. (3). Since F is pCia where C, 1s the instantaneous sound speed,

i
the constants can be related by the equation

2 2 2
¢~ =¢,” - 4/3c (18)

where Co is the bulk sound speed corresponding to Coe and given by

co2 = (3®/3p) » (19)



C.a is the longitudinal sound speed corregponding to Ci’ and Cs is the

shear wave sound speed given by (u/p)%. Solving Eq. (18) for  yields
fo 2 2 2
L= 34, —p—(1+f1n+f2n)-_oo/pKo(1+2K1n+3K2n) (20)
with Egs. (17) and (19) used to evaluate 002, Assuming | to be of the form
M=y (L4 g+ + ) (e1)

and equating coefficients of powers of m yields

Mo = 3/4 (£, - K) »
 EF ARG K
My = T -K ’
o o (22)
ff_ - 3KK, + 2K K
2 2
fhy = [e) —= o1l , and
o o
} 3K K2
< ke~ By
Since W = and Ko are related by
1.2 '
Mo " 2(T F v %o (23)
where v 1s Polsson's ratio, v is given by
3K =24
v =gy - (24)
(<} (e

_This defines all material properties needed to implement the model. Since

Jéeq is assumed to be zero, the only extra calculation necessary is to multiply

each stress deviator at each time etep by



c:{m(o,l-%— }%- (25)

IIT. Uniaxial Strain Calculations

In order to evaluate the two-dimensional viscoelastic model, comparisons
were made to WONDY [5] runs using the one-dimensional viscoelastic model. The
calculations were made for the problem of the impact of a A1203-epoxy flyer
upon a similar target backed by fused quartz [1]. The calculated variable of
primary interest was the velocity history in the target at the interface be-
tween the A1203—epoxy and the fused quartz. This was compared to laser inter-
ferometer records of the experiment obtained by Munson et. al. [1]. The re-
laxation time T given in Egs. (8), (9) and (10) was chosen to match previous
[1] experimental observations for the A1203-ep0xy mixtures which showed release
wave velocities to be larger than unloading wave velocities. Thus a two-rate
relaxation time with long relaxation times on unloading and short relaxation
times on loading was used in the one-dimensional model. The identical form
with the same constants was used in the two-dimensional model, even though it
is not clear that identical constants T should produce identical relaxation
rates in the two different models. |

Fig. 2 shows the results for a 6.28 mm flyer with a velocity of .27 mm/us
impacting a 6.34% mm thick target. The constants used in the equations for

T were .25 Ws for T .02 ps for TS and .11 us for Rw' The dotted line is

g’
the experimental result and the solid line is the calculated result obtained

by Munson et. al. [1].

Figures 3, 4, 5 and 6 show TOODY calculations for the same problem using
the two-dimensional viscoelastic model compared to the one-dimensional results.
These calculations were done using material properties derived from those of the
one-dimensional model as described in Section II.2. Figure 3 shows the wave

profile when the material is always hydrodynemic, which means the material
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response is along the equilibrium curve. This corresponds to the case T = O.
Fig. 4 shows the wave profile when the material is always elastic, so that the
instantaneous response is always seen. This corresponds to the case 7 = « .
Fig. 5 shows the viscoelastic respanse*WityNE}l parameters the same as in the
one-dimensional model, and Fig. 6 shows the result of changing the value of
Tg to .1 us. The curve calculated using T, = .1 us in the two-dimensional
viscoelastic model shows excellent agreement with the WONDY results, but the
Ty ™ .25 us calculation seems to give better agreement with the release portion
of the experimental wave profile. Thus the two-dimensional model can very
accurately reproduce the results of WONDY calculations using the viscoelastic
constitutive relation, although the relaxation time constants are slightly
different. This is attributed to differences in the relaxation methods in

the one- and two-dimensionel models.

IV. Cylindrical and Spherical Calculations

A further test of the two-dimensional model was accomplished by predicting
the results qf configurations in which a pressure is applied to the boundary
of cylindrical or spherical cavities in a material medium. Analytic solutions
are available for the case of completely elastic material response [6], and
the results of the viscoelastic calculations can be compared to these solutions.
An analytic solution is not available for the viscoelastic case, so a rigorous
evaluation of the results of these calculations requires comparison to experi-
ment. Although these problems involve one-dimensional motion in the radial
direction, they cannot presently be performed on WONDY because the WONDY
viscoelastic model is limited to uniaxial strain.

Figs. 7, 8, 9 and 10 show the analytically calculated response of a medium
subjected to a constant pressure of 0.6 GPa at the boundary of a 5.0 mm radius

spherical cavity. Figs. 7 and 8 show the circumferential stress and radial



velocity as a function of radius at several times for a hydrodynamic material.
Figs. 9 and 10 show the same quantities for an elastic material. Results for
cylindrical cavities are qualitatively similar. The most interesting feature
of these calculations is the major difference between the response of the hydro-
dynamic and elastic materials. In the elastic material the circumferential
stresses are compressional at the head of the wave, but tension quickly follows.
The radial velocity is a maximum at the wave front and quickly drops off to
negative values., The hydrodynamic material shows a response that is almost
opposite in character. The circumferential stresses are always compressional
and the radial velocity is a minimum at the wave front and increases toward the
cavity boundary. Finite difference code calculations for spherical cavities in
elastic and hydrodynamic materials are in agreement with these results. Similar
calculations for cylindrical cavities show most of the same major features.

Figs. 11 and 12 show the results of finite difference code calculations
for the same configuration as in the analytic calculations except that the visco-
elastic material modei is used. The material properties and relaxation rate
are the same as those given in Section IIT, with Ty = .25 us. The figures show
that with this relaxation rate the wave profiles show the same general features
seen in the hydrodynamic analytic calculetions. The cireumferential stress is
compressional and the radial velocity increeses rather than decreases with
decreasing radius. However, the magnitude and wave shape for the circumferential
gtress do show signifiicant differences from either the hydrodynamic or elastic
cases., Figs. 13 and 14 show the circumferential stress and radial velocity for
the problem of a constant 0.6 GPa stress on a 25.0 mm diameter cylindrical
cavity in a viscoelastic medium with the same materiasl properties as those used
in the elastic calculation. Again, the relaxation rate is such that the material
response shows the same general features seen in the hydrodynamic analytic

calculations.
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These results indicate that the geometries considered here would provide
useful configurations for experiments designed to measure material properties.
The major differences between the hydrodynamic and elastic responses indicate
that these geometries would be worthwhile for experiments designed to detect
material strength. The rate of transformation between elastic and hydrodynamic
responses should also provide information on viscous and rate effects. Although
a means for obtaining quantitative measurements of these quantities is not
presently clear, further studies of different cavity radii and relaxation rates

should produce further insight into the problem.

V. Comparison with Two-Dimensional Experimental Data

The final evaluation of the two-dimensional model was to compare its
predictions to the results of measurements made of wave profiles in explosively

driven ferroelectric poﬁer supplies using Ale -epoxy mixtures as an encapsulant.

0]

3
Fig. 15 shows the power supply configuration as zoned by Buller [7]. Laser inter-
ferometer velocity measurements were made by Schuler [8] at the quartz-potting

campound interface for two different thicknesses of Al O potting material.

23

Figs. 16 and 17 show the calculated wave profiles for the thin and tﬁick
experiments respectively, obtained by assuming that the potting compound is
hydrodynemic, compared to the experimental records. There is a significant
discrepancy between the calculated and measured results. The calculated
results show a two-peak structure which is absent in the experimental results,
and the calculated velocity maximum is too high by a factor of 3 for the thick
configuration.

Figs. 18 and 19 show the calculated results using the two-dimensional
viscoelastic model for the potting compound with T, = .25 us. These results

are in much better agreement with experiment. The two-peak structure is



missing from the calculation for the thicker configuration so that the release
wave profile is in agreement with experiment, and the peak velocity is .166 mm/us
as compared to .135 mm/us for the experimental record and .37 mm/us for the
calculation without the viscoelastic model. Thus the two-dimensional viscoelastic
model is successful in predicting the results of both these two-dimensional

experiments.,

VI. Conclusions

The two-dimensional phenomenological viscoelastic model described here has
been implemented in a two-dimensional ILaegrangian finite-difference code and
has been campared to the results of one-dimensional viscoelastic calculations
and two-dimensional experiments. It has been shown to be able to reproduce the
results of both. 1Its ease of implementation and versatile capabilities for
describing different rate effects by changing the functional dependence of the
relaxation function make it a useful tool for studying these effects in various

different geometries.

VII. Acknowledgements

Thanks are due to the following people for their contributions to this
paper: Rod Boade for emphasizing the need for the model and providing the
model for the relaxation rate; Darrell Munson and Karl Schuler for providing
the one-dimensional data; Larry Bertholf for providing the analytic solution
for the problem of transient waves from a spherical cavity in an elastic medium;
Dan Buller for the original TOODY zoning of the ferroelectric power supplies;
and Karl Schuler for the use of unpublished data on the two-dimensional experi-

ments and for many helpful discussions and comments regarding the work.

13



14

References
"Stress Wave Propagation in Al_O.-Epoxy Mixture," D, E. Munson, R. R. Boade,
K. W. Schuler, SAND-76-0376, i reparation.

"A General Viscoelastic Constitutive Relation for Use in Wave Propagation
Calculations," R. J. Lawrence, SC-RR-72-011k, Feb. 1972.

"TOODY-II - A Computer Program for Two-Dimensional Wave Propagation,“
L. D. Bertholf, S. E. Benzley, SC-RR-68-41, Nov. 1968.

"A Method for Performing and Interpreting Gas Gun Experiments in Two-
Dimensional Strain," J. W, Swegle, Ph.D, Thesis, Washington State University,
Pullman, Washington, 1976, p. 1hk.

"WONDY ITTA - A Camputer Program for One-Dimensional Wave Propagation,"
R. J. Iawrence, SC-DR-70-315, August 1970.

"Transient Compression Waves from Spherical and Cylindrical Cavities,"
H. L., Selberg, Arkiv F8r Fysik, Band 5, nr 7, p. 97 (1951).

D. L. Buller, private communication.

K. W. Schuler, private communication.



YIELD SURFACE

FIG. 1. REPRESENTATION OF MATERIAL STATE POINTS
IN PRINCIPAL STRESS DEVIATOR SPACE

15



9T

PARTICLE VELOCITY (mm/ usec)

0.15

0. 10

0.05

0. 00

I [
e o e EXPERIMENTAL
CALCULATED

TIME ( usec)

FIG. 2. COMPARISON OF EXPERIMENTAL AND CALCULATED RESULTS

FOR THE 1-D VISCOELASTIC MODEL




T1300W J11SVTI0ISIA
TYNOISNIWIQ-OML 40 ISNOJSTY WNIYEITIndI "¢ 9l

(98s77) JWIL
L 9 G 7 ¢ Z 0.
_ I T # _ T 00 0
(0 =4) ®
11003 & =
- ‘e ° Js00 8
L ® —ed
& -
‘e, » 5
@ @ m,
n e T o010 ®
ailvinaivy —— S
TVINIWIYIdXT @ @ ®
| ] | | 1 i G100

17



8T

VELOCITY (mm/ usec)

0.15

0.05

0.00

] T [ T T
e o ¢ EXPERIMENTAL
CALCULATED
® ® °
..
[
@
| .
®
o INST. (7 =o0)
d ol | |
2 3 7
TIME ( usec)
FIG. 4. INSTANTANEOUS RESPONSE OF TWO-DIMENSIONAL

VISCOELASTIC MODEL




6T

VELOCITY (mm/ usec)

0.15 ! | T T | T
e o o EXPERIMENTAL
010 . i s ¥e — CALCULATED
®
0.05 o
U 0.25
0.00 | | | | | |
0 1 3 4 9 b 7
TIME ( usec)

FIG. 5. TWO-DIMENSIONAL VISCOELASTIC MODEL WITH T,

= 0,25 e
[ sec




0¢

0.15

0.05

VELOCITY (mm/ usec)

0. 00

T T T T I I [
eeel-D CALCULATION
2-D CALCULATION
b4 [ ]
11, = 0.1
m 1 | | | | |
1 2 3 4 5 6 1
TIME (sec)

FIG. 6. TWO-DIMENSIONAL VISCOELASTIC MODEL WITH v 0.1 usec




Te

6 STRESS (GPa)

00 ! L | | |

RADIUS (mm)

FIG. 7. CIRCUMFERENTIAL STRESS vs RADIUS
HYDRO T = 1.5, 3.0, 4.5, 6.0, 7.5, 9.0 usec



cc

0.6

S
IS

o
™o

RADIAL VELOCITY (mm/ usec)

FIG. 8

L I ) M SRR DN A LT D
\
J-' =
N
\\\
b \\ .\‘ j
\ W\
2 LY
\ \\ ‘.‘
_..c \.\\\“\ j
ST St
‘eay, * —— --_':‘:':'::-'-";;.:- -
‘-—.-- “HH“‘-‘"“’-‘ -----
| | I l\ L 1 "I l -
RADIUS (mm)

RADIAL VELOCITY vs RADIUS
HYDRO T = 1.5, 3.0, 4.5, 6.0, 7.5, 9.0 usec



6 STRESS (GPa)

FIG. 9.

RADIUS (mm)

CIRCUMFERENTIAL STRESS vs RADIUS
ELASTIC T =1, 2, 3,4, 5 6 usec




2

RADIAL VELOCITY (mm/usec)

0.04

0.03

0.02

0.01

0.00

-0.01

ELASTICT =1, 2, 3 4, 5 6usec

LN S RN (N SR B FE N LN T i
. N
2 A ]
— ‘3 -
: | 2 i
’: ’ i '/ ' /| :
l- I' i _/ /, I A:
B s’ 4 a

i /r' I % /’ I / t
i ’l’ l./ /, | /

A ¥ ol
fooreeeesnneenn, —7/! —> Z i 7-/| ...... il
| e ;‘.-'v:-'-?:-_:-a—- Pl ST YO NN T L :
i Lo g i T R TR TR R T S ]
5 10 15 20 25

RADIUS (mm)
FIG. 10. RADIAL VELOCITY vs RADIUS



6 STRESS (GPa)

0.0

-0.9

-0.12

|
0.15¢ 10 15 20 25

RADIUS (mm)

FIG. 11. CIRCUMFERENTIAL STRESS vs RADIUS FOR SPHERICAL
CAVITY IN VISCOELASTIC MATERIAL. T = 4.5 usec.

25



26

RADIAL VELOCITY (mm/ usec)

0.15

0.12

0.09

0.06

0.03

0.00

| -

FIG. 12

10 15 20
RADIUS (mm)

RADIAL VELOCITY vs RADIUS FOR A SPHERICAL CAVITY
IN A VISCOELASTIC MEDIUM. T = 4.5 usec.




6 STRESS (GPa)

0.00

-0.16

-0.32

-0.48

-0.60

25

L
30 35 40

RADIUS (mm)

45

50

FIG. 13. CIRCUMFERENTIAL STRESS vs RADIUS FOR A CYLINDRICAL CAVITY

IN A VISCOELASTIC MEDIUM. T = 4 usec.

27



28

RADIAL VELOCITY (mm/ ssec)

0.12

o
3

=
&

0.03

0.00

| | !
25 30 35 40 45 50

RADIUS (mm)

FIG. 14. RADIAL VELOCITY vs RADIUS FOR A CYLINDRICAL CAVITY
IN A VISCOELASTIC MEDIUM. T=4 usec.



6 STRESS (GPa)

0.00

-0. 16

-0.32

-0.48

-0. 60

25

RADIUS (mm)

50

FIG. 13.  CIRCUMFERENTIAL STRESS vs RADIUS FOR A CYLINDRICAL CAVITY

IN A VISCOELASTIC MEDIUM. T = 4 usec.

27



28

RADIAL VELOCITY (mm/ wsec)

0.12

0.09

0. 06

0.03

0.00

! | |
25 30 35 40 45 50

RADIUS (mm)

FIG. 14, RADIAL VELOCITY vs RADIUS FOR A CYLINDRICAL CAVITY
| IN A VISCOELASTIC MEDIUM. T=4 usec.



60.325 mm

— 30.163 mm

TR —
33 M4 (A1)
war D
J 25 ( - "
POTTING)
17 EXPI-OSM;E (QUARTZ)
g TEEL
M8
SYMMETRY Bl ) d_ i
AXIS 1 9 17 25 33 41 49 5 65 73
I
FIG. 15. POWER SUPPLY CONFIGURATION

62



o}9

0.6 ' LI . l 1 .
= === CALCULATED

L] . s

—— MEASURED

e
I
l

VELOCITY (mm/u sec)

S
N
|

\

0.0t—— : 1
6 7 8
TIME (microseconds)

FIG. 16. COMPARISON OF HYDRO CALCULATION TO EXPERIMENTAL
RECORD FOR THIN CONFIGURATION



1€

VELOCITY (mm/ usec)

0.4

N
0.3

——— MEASURED -

FIG. 7.

TIME (microseconds)

COMPARISON OF HYDRO CALCULATION TO
EXPERIMENTAL RECORD FOR THICK CONFIGURATION



o
i

VELOCITY (mm/ usec)
= = =
ro w a8

o
[e—

S
o

8 | L T ] T L% I T T 71 I T PR | LN L L )
i —=-- CALCULATED -
3 —— MEASURED 4
2 ;
- -
L =
- -
| — i
— ]
N i
o B
.l R |

5 10

TIME (microseconds)

FIG. 18. COMPARISON OF VISCOELASTIC CALCULATION TO
EXPERIMENTAL RECORD FOR THIN CONFIGURATION



33

0.20_! 1 1 I | ] 1 I I ‘ I I 1 | | 1 T 171 ( I | 1 ] r ] 1 I 1 |
3 ———- CALCULATED -
i B ——— MEASURED
0.15}— ,,'
31 - /
E z !
E .10 y;
E-_‘ i !
2 |
g /
- il /
0.05— P
a /
/
= I'4
L I,
g 1
"":r_’lllllll Illlllllll_llJ_lJ_Illll
00047 12 13 14 15 16 17

TIME (microseconds)

FIG. 19. COMPARISON OF VISCOELASTIC CALCULATION TO
EXPERIMENTAL RECORD FOR THICK CONFIGURATION



3L

UNLIMITED RELEASE

DISTRIBUTION:

J. 0. Erkman

Naval Ordnance Lab
Silver Spring, MD 20910

D. J. Andrews
MIIIT.
Cambridge, MA 02139

T. J. Ahrens
CIT
Pasadena, CA 91109

Lynn Barker

Terra Tek, Inc.

Univ. Research Park

420 Wakara Way

Salt Lake City, UT 84108

P. €. Chou
Drexel Inst. Tech.
Philadelphia, PA 19104

Rodney Clifton
Brown University
Providence, RI 02916

TIan Fyfe
Univ. Washington
Seattle, Washington

Y. Horie
N. Carclina State U.
Raleigh, NC 27607

S. P. Marsh, M-6
Los Alamos Scientific Laboratory
Los Alamos, NM 87544

R. G. McQueen, M-6
Los Alamos Scientific Laboratory
Los Alamos, NM 87544

T. Michaels
General Motors Test Center
Warren, MI L8090

S. Sack, L-24

Lawrence Livermore Laboratory
P. O. Box 808

Tivermore, CA 94550

J. D. Wackerle, WX-7
Los Alamos Scientific Leboratory
Los Alamos, NM 8754k

G. E. Duvall

Dept. Physics

Washington State University
Pullman, WA 99163

M. L. Wilkins, L-24

Lawrence Livermore Laboratory
P. 0. Box 808

Livermore, CA 94550

1280 T. B. Lane

1281 S. W. Key

1282 T, G. Priddy

1284 R. T. Othmer

2310 C. B. McCampbell

2314 J, J. Marron

2314 @G. E. Clark

2314 R. K. Treece

2315 J. E. Gover

2315 S. T. Montgomery

2350 J. C. Crawford

2513 D. B. Hayes

2513 J. E. Kennedy

5000 A. Narath

Attn: 5200 E. H. Beckner

5400 A. W. Snyder
5700 J. H. Scott
5800 R. S. Claassen

5100 J. K. Galt
Attn: 5110 F. L. Vook
5120 G, J. Simmons
5150 J. E. Schirber

5130 G. A, Samara
5131 L. W. Davison
5131 P. J. Chen

5131 J. W. Nunzisto
5160 W. Herrmann
5162 L. D. Bertholf
5162 W. T. Brown
5162 D. L. Hicks
5162 M. E. Kipp

5162 R. J. Lawrence
5162 J. W. swegle (50)
5162 J. R. Tillerson
5162 W. E. Warren
5163 D. E. Munson



DISTRIBUTION: (Cont'd)
5163 D. E. Grady
5163 K. W. Schuler

5166 A. J. Chabai
5166 R. K. Byers
5166 W. R. Davey
5166 S. L. Thompson
5166 P. Yarrington
5167 B. M. Butcher
5734 A. L. Stevens

5734 R. R. Boade
8120 W. E. Alzheimer
8266 Tech. Library (2)
3141 Tech. Library (5)
3151 Tech. Writing (3)
For ERDA/TIC (Unlimited Release)

ERDA/TIC (25)

(R. P. Campbell 3171-1)

35





