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ABSTRACT

The Helios model simulates the optical behavior of reflecting concentrators.
The model follows the incident solar radiation through the system (including

the atmosphere) and includes all the factors that influence the optical per-
formance of a collector. An important output is the flux-density pattern
(W/em?) at a grid of peints on a surface such as the absorbing surface of a
receiver and its integral (power in watts) over the surface. The angular dis-
tribution of sunrays for the radiation incident on a concentrator is modified

by convelution, using the fast Fourier transform, to incorporate the effects

of other nondeterministic factors such as sun-tracking errors, surface slope
errors, and reflectance properties. The analytical methods used for the
statistics, the off-axis reflecting optics, the atmospheric effects, and the
various coordinate systems are described and illustrated. This model forms

a basis for the simulation code HELIOS as well as for other codes under
development, Some of the HELIOS routines are described, a few of its capa-
bilities are discussed and illusirated, and comparisons of data with calculations
are presented, These capabilities have been used for performance predictions,
safety studies, design trade-offs, data analysis problems, the specification

and analysis of concentrator quality, and for the general understanding of solar-
concentrator technology.

“This work supported by the U, S. Department of Energy.
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CHAPTER 1

INTRODUCTION

A vast amount of solar energy is intercepted by the earth each day. Approximately one kilo-
watt of sunlight irradiates a square meter of land at noon on a clear, dry day in New Mexico.
Collection of this valuable energy from its diffuse state is a challenge to teday's technology. This
source cail more than supply future needs of our society. However, the energy is not available at
a given location on the earth's surface at night and varies with atmospheric conditions. Because
so many factors atfect the use we can make of the sun, we must optimize the design of solar col-
lectors to make the best use of available solar energy at the least cost, True optimization re-
guires a thorough understanding of solar systems. An analytical model is a valuable tool in

accomplishing this goal.

Rough egtimates of collection efficiencies, material costs, conversion efficiencies, ete,
recently indicate that electricity from & solar-thermal power plant would cost more than electric-
ity from an oil-fired plant. It is not so clear, however, that this will continue to be the case as
oil shortages and world politics combine to drive up the price of crude oil faster than the general

inflation rate.

It is important that we compare the cost of solar-thermal ener‘gy with the cost of energy
from other gsources, These relative costs depend on many factors: availability of materials,
energy-use patterns, environmental problems, and even changing life styles as energy costs
increase, Thus, solar-thermal energy is just one of many alternative sources. To predict the
optimum use of these sources, even for a short time into the future, is an exceedingly complex
problem. A program of carefully planned experiments combined with computer simulation would

provide the knowledge needed to optimize the use of this energy source.

1.1 Alodeling

One way to analyze the solar energy alternative is to include it in a model of the entire energy

production and utilization system. Such an effective overall model with accurate input from all
sources would provide encugh information to analyze problems on the production and utilization of
energy. A solar-thermal power station is sufficiently complex to benefit from a mathematical
model which could be used to quickly analyze its performance. A more general energy utilization

model could then use such data as input for further studies.

11
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Computational models also serve other purposes., Such a model is a convenient aid in the
degign, construction, and operation of a complex solar collector system, such as a solar-thermal
power plant. It simulates the behavior of the solar collector and can be used to answer questions
on performance predictions, safety problems, and design trade-offs. It can also be used fo

analyze and interpret experimental data.

A simulation model and experimental work on solar collectors complement each other. Ex-
perimental results are used to authenticate the model, after which the model is used to extrapolate
experimental results and to provide guidance in planning new measurements. A good simulation
model enables the engineer to extract the maximum information from experiments. This is
especially important when dealing with experimentation as expensive as a heliostat field of a solar

power plant.

1.2 Helios

The Helios model mathematically simulates the solar flux density pattern from reflecting con-
centrators; the computer program HELIOS implements it. When we wish to refer specifically to the
computer program, we will use capital leiters (HELIOS), The name Helios is given to both the
model and to the computer program because it is a simple name that is easy to pronounce; also it
forms the first part of the word heliostat, which is an important subsystem of a central receiver
solar power plant. From Greek religion, Helios is the sun god, represented as driving a four-

horse chariot through the heavens,

During its development, Helios has been used extensively in analyzing the Centiral Receiver
Test Facility (CRTF) at Sandia Laboratories in Albuguerque, New Mexico. The model has been
used to answer questions on safety, to predict facility performance under various conditions of
operation, and fo provide guidance in identifying and solving design problems, Calculated and

measured results are compared whenever feasible to help validate the model.

This model has been used on the design and analysis of solar concentrators, inciuding not
only heliostats, but also other concentrators such as the parabolic-dish concentrator., In the
evaluation of concentrators it is sometimes convenient to measure the quality of the reflected
beam in a convenient measurement geometry, use results from the model to unfold concentrator
performance specifications from this data, then use the gpecifications as an input for simulating

the use of the concentrator in other geometries.

1.3 Purpose, Organization, and Scope

The purpose of this report ig to present the theory of the Helios model. This iz not a user's

guide for the program HELIOS; a separate document {Reference 1.1) is available for that purpose.



Since the computer program is still evolving to include new capabilities, to refine or streamline
calculations, and to simplify its use, a new edition of the User's Guide is required from time to
time. The third edition of it has already been published and other editions will likely follow.
This report on the theory is less subject to change.

Although the User'!s Guide provides adequate information for using program HELIOS, it does
not treat the underlying theory that is needed for a thorough understanding of the code, This re-

port is especially useful for anyone interested in making changes in the program,

There are some topics that fall between the central purpose of the User's Guide and that of
this document. Same of the "Auxiliary Capabilities' of Chapter § are in this category. As new
topics of this nature occur, they either will be included in subsequent revisions of the User's

Guide or will be discussed in separate reports.

Although this report is useful as a companion document to the HELIOS User's Guide, it is
also a valuable reference for its own sake because of the careful treatment of the technology of
gsolar concentrations., It is with this thought in mind that we have developed and illustrated the

topics contained in this report.

We have organized this report into chapters for major topics with subheadings for different
categories of information within these topics, Although there is no index, a complete T'able of
Contents is provided to guide the reader to an appropriate chapter or subsection of the document.
Also, a Glossary of Terms is given in Appendix A for convenient reference to definitions that may

have gpecial meaning in this report.

The major sections of each chapter are numbered with the section number separated from
the chapter number by a decimal, For example, Section 3.2 is the second section in Chapter 3.
Subsection are numbered within each section by adding another number, again separated by a
decimal; i.e., subsection 3. 2.1 refers to the first subsection of Section 3. 2. Figures and tables
are numbered within each chapter and equations are numbered within each major section. A dash
is used to separate the equation number from the subsection number (i.e., Eg. 3,2-1 refers to
the first equation in Section 3. 2). Sometimes the letters {(a, b, ¢, etc.) are appended to the
equation number to designate equations that are closely related or to designate members of a
gystem of equations. We often refer to a system of equations by citing the equation number without
the letters; for example, Eg. (4.3-10) refers to the system of equations from Iq. (4. 3-10a) through

{4.3-10e). References are provided at the end of each chapter,
Chapter 2 provides an overview of the Helios model as it applies to the concentrator system

of a central~receiver power station. This was used as our overview example because it contains

the relevant elements and we have had more experience with this solar collector than with others.

13



14

However, neither the Helios theory nor the HELIOS computer program is limited to this appli-

cation. It has been applied to a growing list of other types of solar collectors.

There are many coordinate systems utilized in the Helios model. Calculations are often
done in one coordinate system and then transferred to another coordinate system. This facilitates
the development of the program in a modular form with separate subroutines for most major tasks
30 that changes and extensions can easily be made. Most of the coordinate systems are described
in Chapter 3, There are a few other systems, such as the "reference planes' of Chapter 5 that
are not included in Chapter 3. These are so uniquely associated with statistics that it is appro-

priate to define them in conjunction with their utilization in Chapter 5.

Chapter 4 reviews the basic theory of the optics of reflecting concentrators and puts it into
a convenient form for use in the Helios model. Most optics texts emphasize on-axis (or nearly on-
axis) optical systems for imaging purposes. In solar concentrators, off-axis systems are more

the rule than the exception, Therefore, the off-axis effects are carefully developed and illustrated.

The statistics of reflecting optics play a central role in the Helios model. These concepts
are also very useful in providing a basis for understanding the effects of nondéterministic factors,
such as sun~tracking errors and reflecting-surface slope errors on the performance of solar con-
centrators. The measurement of the quality of a concentrator and methods for writing speci-

fications, acceptance criteria, etc., also involve these concepts. This material is developed in

Chapter 5.

Atmospheric effects impact the Helios model in several ways., The atmosphere gbsorbs
sunlight both before and after its reflection from a concentrator. Refraction changes the apparent

direction of the sun. The sunshape is sensitive to atmospheric changes. These topics are treated

in Chapter 6.

Chapter 7 describes the numerical procedures used in some of the HELIOS routines. This
material will be especially useful to code users who wish to make changes or extensions in any of

these routines,

Chapter 8 describes the "Auxiliary Capabilities" developed for the HELIOS program so far.

Some of these serve as convenient illustrations of the flexibility of the program,

In Chapter 9 we describe some of the important comparisons of data with HELIOS predictions

that have been done to date,

Appendix A contains a Glossary of Terms which provides a convenient reference for special
terms used in this report and ig also a useful terminology reference for solar concentrator tech-
nology. The other two appendices contain derivations that were too lengthy to put in the body of

the report.



Finally, we reemphasize that the Table of Contents has been carefully organized for con-
venience in locating a particular topic of interest. This enhances the usefulness of this document

as a reference on both the Helios model and on the corresponding computer program.

Reference

1.1 C. N. Vittitoe, F. Biggs, and R, E. Lighthill, HELIOS: A Computer Program for Modeling
the Solar-Thermal Test Facility, A User's Guide, SAND76-0346, Third Edition, Sandia
Laboratories, Albuguerque, NM, October 1978.
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CHAPTER 2

MODEL DESCRIPTION - AN OVERVIEW

In this chapter we describe the Helios model of a concentrator system as it applies to a
central receiver, organizing the digscussion in roughly the order that a photon from the sun tra-
verses the system., Detailed developments of some parts of the model are contained in séparate
chapters; some of these are referenced within this chapter, The table of contents is specifically

constructed to be a useful aid in locating topics of interest.

Figure 2-1 shows a schematic drawing of a central-receiver solar-collector sysiem em-
phasizing the important elements, Three heliostats are shown on a small hill to illustrate that the
ground may not be level. There are, of course, more than three heliostats in the usual concen-

trator field but these will be adequate to illustrate some of the main ideas of the model including

shadowing and blocking.

SUN POSITION ./ :
S

ATMOSPHERE

TARGET GRIQ‘

BLOCKED

SHADOWED

Figure 2-1, Geometry of a Central-Receiver
Solar-Collection System

From the time a photon leaves the sun until it reaches the receiver of a solar collector, it
is subjected to many effects., [Helios is designed to simulate these effects and to determine their

consequences on the operation of the system.

First we define the system through a few specisal terms, then redefine it by describing the

important effects. We follow with a brief discussion of how Helios treats them. The "central ray"

17
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1 1

from the sun originates from the center of the solar disk, The "sun position' is the direction
(azimuth and elevation) of the incoming central ray. Each heliostat consists of one or more re-
flecting surfaces called "facets." Figure 2-1 shows nine square facets on each heliostat for con-

venience in drawing. Each heliostat is guided so that a central ray from the sun will reflect from
the center of its ""reference facet' (center facet) to intercept the "aim point." The distance from
the center of a heliostat to the target center is called the "slant range' for that heliostat; the path
followed by a central reftected ray is called the "slant path," The individusal facets also have
slant-ranges which may differ slightly from the corresponding heliostat slant-range. The "target
grid" is a grid of points at which HELIOS calculates the incident flux density in watts/cm2 and

infegrates over the farget to give the intercepted solar power in watts,

The placement of the aim point and the target grid are arbitrary, Different aim points may
be used for different heliostats, The target grid need not contain the aim point within its boundary;
for example, it may be positioned off to the side for use in "spillage" calculations, Spillage is
defined as solar power that is reflected from the concentrator system but misses the receiver

aperture. This feature has been used extensively for safety calculations.

2,1 Sun Position

The geometry of the sun-earth portion of the solar system is used to calculate the direction
of the central ray from the sun at any time of the year. This information is needed for heliostat
alipnment calculations, facet prealignment sirategies, and atmospheric transmission effects. A

defailed development is given in Chapter 3.

2,2 Heliostats

2.2.1 Heliostat Alignment

The direction of the incoming central ray from the sun and the heliostat~-receiver geometry
provide information from which the heliostat alignment is calculated. Since the heliostat rotates
abouf two tracking axes that for some systems displace the center of the heliostat, it is necessary
to iterate this calculation so the final center position of the aligned heliostat correctly defines the
geometry. This is not an undue numerical complication because these heliostat motions are small

compared to the corresponding slant ranges and convergence is rapid.

2,2.2 Prealignment of Facets

It is necessary to prealign each facet of a heliostat with respect to the heliostat frame.
This provides a focusing capability for the heliostat. One option is to prealign the facets so that

a ray from the sun would reflect from the center of each facet to the aim point on the receiver



whenever the heliostat is properly aligned on the aim point, As the sun position changes, the
sun-tracking system keeps the reference facet correctly aligned, but the reflected central rays
from the other facets do not continue to intersect the aim point, Astigmatic aberrations cause

them to spread out about it.

Several options are available for specifying the prealignment geometry for the facets. In
one option, the sun position is specified in terms of a date and time from which HELIOS calculates
a sun position and, together with the tower-helicstat geometry, then calculates facet prealignment
settings. These settings are stored and used in subsequent calculations. Another option causes the
facets to be prealigned "on axis.' In this geometry each facet center would be tangent to a spher-
ical surface which corresponds to a focal length equal to the heliostat slant range to the prealign-

ment point.

The actual facet prealignments will probably be made in some geometry different from that
of the intended use and then related to the geometry of the specified option by computer calcula-

tions.

In the Helios model the facet prealignments are exactly calculated according to the option
specified. The nondeterministic measurement errors resulting from implementing this alignment
option are accounted for statistically in Helios by including them in the facet-alignment error

distribution,

2.2.3 Facet Focus

In some cases it is desirable fo change the surface shape of an individual facet to improve
its ability to concentrate the reflected sunlight on the receiver. The facets are focused to maxi~
mize the concentration of reflected light on the receiver under the geometry corresponding to the
specified prealignment option. For spherical surfaces this is a matter of specifying the radius of
curvature. The facet surface shape may be more complicated, however, and controlled by some
parameter such as the distance that the facet center is pulled down relative to the reference plane
of the undeflected flat facet., The facet shape and iis focusing properties then depend on this
pull-down distance. For such a facet it is necessary to use an iterative procedure to calculate
the optimum value of the pull-down distance. A similar method can be used when the facet shape
is controlled by more than one parameter as long as a computer algorithm can be constructed to

determine the shape of the surface as a function of these parameters.

2.3 Atmosphere

The solar insolation at a collector site is strongly affected by atmospheric attenuation., The
length of the air path changes with the sun position because of the {irne-dependent angle at which

the sun rays encounter the atmosphere. Also, the attenuation properties of the atmosnhere change
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with weather conditions (moisture content, haze, etc.). A model of the atmosphere that provides
the solar insclation at any position on the earth, for any sun position, and for a variety of atmos-
pheric conditions is useful, This permits the use of the model to predict behavior at any geo-
graphical location and to analyze time-of-day variations and weather effects on the design and

operation cf a solar-power facility,

Measured values of the insolation can also be used. These can be used directly as input or

may be used for normalization purposes in one of the atmospheric models.
The Helios model also includes effects of atmospheric attenuation along the slant paths

between the heliostats and the target grid. This becomes an important effect for large central

receivers where the slant ranges can become large (approximately a kilometer).

2.4 Shadowing and Blocking

2.4.1 Shadowing

In a concentrator field some of the heliostats may interfere with others by partially "shadow-
ing'' them from incoming sunlight as indicated in Figure 2-1. This effect is likely to become es-
pecially severe when the sun position is low in the sky. The tower or other objects may also
shadow part of the concentrator field. In HELIOS the effect of shadowing is calculated by project-
ing the outlines of the aligned heliostats, the tower, and anything else that casts a shadow onto a
plane perpendicular to the central ray from the sun. Shadowed portions of any heliostat will
appear in overiapped regions of this projection. A graphic presentation of shadowing ags well as

a numerical calculation of its effect on heliostat performance is provided by HELIOS,

2.4.2 Blocking

A light ray reflected from one heliostat may be ''blocked" by another heliostat or by some
other object to prevent it from reaching the target grid, The effects of blocking are calculated by
projecting the outlines of the aligned heliostats and any other obstacles that might block reflected
light onto a unit sphere centered about the aim point., Blocked portions of any heliostat will appear
in overlapped regions on this projection., This projection provides a pictorial representation of

the effects of blocking. The effect is also quantified numerically in HELIOS,

An auxiliary program is available in HELIOS to make a movie of the shadowing and blocking

projections. This capability will be described in more detail in Chapter 8.



2,5 Statistics of Reflecting Optics

Concentrator optics would be simpler to describe if collimated light were used to irradiate
them and if the error tolerances of all gystem components were small enough to be neglected.
Neither of these conditions exists; sunlight is not well collimated and a concentrator system with
negligible error tolerances would not be cost effective for most solar-collector applications. It
is, therefore, necessatry to use statistical methods to analyze the concentrator system. In this
section we define terms and give an overview of some important concepts in the statistical analysis

of errors for solar reflectors.

2,5,1 Sunshape

A random photon from the sun is drawn from a distribution of directions depending upon
where it originated on the sun., The probability density function describing this distribution with

' This directional

respect to the direction of the central ray from the sun is called "'sunshape.’
distribution is widened by atmospheric scattering (aureole scaftering), especially during hazy
atmospheric conditions. Light clouds can cause considerable broadening of the sunshape., The
sunshape plays a key role in defining the upper limit to the concentration level that can be obtained

by a given concentrator.

2.5.2 Error Cone

When a light ray undergoes specular reflection from a concentrator surface, the angle of
reflection is equal to the angle of incidence. These angles are measured with respect to the
surface normal at the point of reflection. However, in solar-collector applications, the direction
of the surface normal is not always exactly known. It is subject to errors for a variety of reasons.
The surface normal at a given place on the facel may deviate from iis design value because of
manufacturing defects, focusing errors, wind loading, gravity loading, temperature effecis, etc.
A facet may also have alignment errors with respect to the heliostat frame. These errors arise
from such things as measurement errors during the prealignment procedure or from wind loading
of the heliogtat. The entire heliostat is subject to alignment errors such as sun-tracking errors.
There may be a nonspecular contribution to the reflected light that also contributes to the non-

deterministic nature of the reflected light.

These effects are combined and interpreted in terms of their net effect on the uncertainty
in direction of a reflected ray that corresponds to a known direction for an incoming ray. This
produces a distribution of directions for the reflected ray even though the incoming-ray direction
is specified. The probability density function that describes this distribution of reflected rays

is called the "error cone,"
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2.5.3 Effective Sunshape

Since the error cone of reflected rays corresponds to an incoming ray of specified direc-
tion, it is necessary to combine the error cone with the sunshape in order to obtain the resultant

average distribution of reflected rays corresponding to incident sunlight., The probability density

r 3

function describing this distribution of directions is called the "effective sunshape."” 1t is obtained
by convolving the sunshape with the error cone in a reflected-ray reference system as is described

in detail in Chapter 5.

2,5.4  Summary of Reflecting-Concentrator Statistics

The methods used in Heliog for handling the statistical analysis warrant some elaboration
since sfatistics form a basis for so much of the model. In this section we provide a descriptive
overview of the statistics; a detailed development is provided in Chapter 5. Since concepts utilizing
both time averaging and space averaging occur in Helios, it is instructive to use some hypothetical

examples to clarify these concepts,

Figure 2-2 depicts a light ray T incident on a small plane surface element of surface
normal N and reflecting along ﬁ. The three vectors lie in a plane and the angle of incidence p is

equal to the angle of reflection in agreement with the law of specular reflection.

—_>
z>
>

Irigure 2-2. Specular Reflection From a
Surface Element AQ

As a time-average example, suppose that the element AQ of Figure 2-2 flutters slightly
in the wind so that the surface normal N is time dependent. Assume that one photon per second
is incident on AQ in the fixed direction 1 and reflects to a distant receiver. After a gufficient
interval of time, a flux pattern is formed on the receiver by the collected photons, For simplicity
in this example we assume that the fluitering motion of AQ is a ''stationary” (in time) stochastic
process. By this we mean that once the flux pattern is established on the receiver, it does not
thereafter change its shape. In principle, one could keep frack of the time dependence of IQT and
calculate the position where each photon strikes the receiver; the integral of this result over time
would give the flux patiern. However, in practice (if all you need is the flux pattern on the receiver)

keeping track of the time dependence in order to calculate the photon position is neither necessary nor



feasible. To obtain a flux pattern, you need not know the order in which the photons strike the re-
ceiver. Therefore, we can relinquish the time-history information about ﬂI and settle for a distri-
bution function that gpecifies the fraction of time that RT spends in any solid-angle increment. This
distribution can then be used to determine the time-average flux-pattern on the receiver. If the
stochastic fluttering motion is not stationary in time, then the appropriate distribution becomes
time dependent. Even a time dependent distribution function is a more convenient description

than is a complete time history of the surface normal ﬂT

As a space-average example, suppose that a collimated beam of photons is incident on a
concentrator that is properly shaped to focus them at a point on the receiver, Now suppose that
the concentrator is deformed to produce a small random surface waviness so that the photons no
longer come to a point but are spread out into a pattern around it. For simplicity in this example,
we assume that the stochastic "slope-error' pattern (surface waviness) is stationary (in space}.
By this we mean that the shape of the flux patterns resulting from one (large) part of the con-
centrator is the same as that resulting from another (large) part of the concentrater. In principal
one could map out the detailed shape of the concentrator surface and calculate the point of impact
on the receiver for photons from each small increment of the concentrator. In practice this is
not necessary if all one needs is the flux pattern on the receiver. It is not necessary to know
from what part of the concentrator the photons were reflected, Therefore, we can relinguish the
detailed slope error versus position information and settle for a distribufion of slope errorsa. This
distribution gives the fraction of the concentrator surface that has slope errors in any specified
solid-angle increment and then can be used to obtain a flux pattern on the receiver that represents
a space average over the concentrator surface. If the stochastic slope errors are not stationary

in space, then the distribution function becomes a function of position on the concentrator surface,

Such a space-dependent distribution function would still be a simpler description of the surface than

would & detailed map.

The direction from which photons from the sun are incident on a concentrator surface
is also a stochastic process because of the size of the solar disk, Even without the previously
illustrated errors, the flux-pattern of reflected sunlight {solar image) on the receiver has a lower
limit to its size. Rather than trying to keep track of where (or when) photons originated on the
sun, a distribution (the sunshape) is used to describe them. When sunlight iz reflected from con-
centrators with errors that are degcribed by probability distributions, thesge distributions are
combined with each other and with the sunshape by convolution to obtain the average resultant of

the combined effects., The details of this process are given in Chapter 5.

Figure 2-3 is a useful aid in summarizing these statistical concepts, The surface normal
of a concentrator element A@ that is free of errors would lie along N and the incident central
ray T from the sun would reflect in direction R for specular reflection. Also in this ideal error-
free case, the sunshape (iilustrated in the figure by the cone drawn about f) would reflect un-

changed in shape as indicated by the dashed cone about f% When errors (time dependent or space
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dependent) cause the alignment of ﬂT to become nondeterministic, it is then described by a distri~
bution of directions as shown by the cone drawn about N. This cone of directions is mapped into
its effect on reflection rays and convolved with the sunshape to obtain a distribution called the
Veffective sunshape'' shown in Figure 2-3 by the solid cone about R. The effective sunshape is

projected onto the receiver to obtain the flux contribution from the concentrator element AQ.

>
=>
o>

| .\,‘l",/ '

Figure 2-3. Statistics of Solar Refectors



CHAPTER 3

HELIOS COORDINATE SYSTEMS

A series of coordinate systems are required to fulfill the needs of a concentrator system
numerical model for a central receiver, The celestial sphere is used to specify the sun position
for given day and time, The latitude of the heliostat array and tower is needed to calculate the
elevation and azimuthal angles for the sun. The heliostat and tower bases are distribuied in an
N-3 and E-W array on a nonuniform earth (the tower coordinate system). A rotation and trans-
lation then transform the coordinates of an arbitrary point to those in the heliostat coordinate
system where the origin is the center of the mirror array with the x axis taken to be horizontal
and the z axis taken to be normal to the facet at the heliostat center. The heliostat coordinate
system is most convenient for specifying the center position of each facet with respect to the
center of the facet array. An additional translaticn and a slight rotation transform to the sun-
concentrator coordinate system where the origin is at an individual facet center, the z axis is
normal to the facet center, and the central ray of the incident energy is in the y-z plane., This
sun-concentrator system is most convenient for calculating the distribution of reflected energy.
However, it 1s not convenient for observing the collected energy since there are 25 different systems
for each heliostat in the CRTF array, The distribution of reflected energy is transformed to the
target system before output, Additional coordinate systems are introduced to treat shadowing
and blocking, This chapter introduces the coordinate systems involved and gives additional detail

concerning their use.

3.1 Celestial Coordinates

3.1.1 The Solar Declination

Imagine a sphere of very large radius centered at the earth's center. The points where
the earth's axis intersects the sphere are defined as the north and south celestial poles, The
great circle defined by the intersection of the plane of the earth's equator with the sphere is the
celestial equator. A star position may be specified by the intersection of the line joining the center
of the earth to the star with the celestial sphere. . If refraction of light is neglected, the altitude
of the celestial pole which is above the horizon is equal to the latitude of the observer., The
rotation of the earth gives the appearance of rotation {from east to west) of the celestial sphere
as if it were a rigid body. The great circle joining the north and south points of the horizon which
passes through the zenith is called the meridian of the observer. A star which is on the meridian

of an obgerver in the northern hemisphere, between the zenith and the southern point on the horizon,
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is at its greatest altitude at that moment. This crossing is called the meridian passage. As in-
dicated in Figure 3-1, the prime meridian on the celestial sphere is the one passing through the

vernal equinox.

NORTH
CELESTAL POLE

STAR POSITION

AUTUMNAL
EQUINOX

RIGHT ASCENSION

CELESTYAL EQUATOR

VERNAL
EQUINOX

SQUTH
CELESTIAL POLE

PRIME MERIDIAN
Figure 3-1. The Celestial Sphere

The position of a star on the celestial sphere is given by the coordinates declination and
right ascension. The declination, § , is defined as the angular distance of a point on the celestial
sphere north of the celestial equator (points to the south have negative §). The elevation angle of

a star at its meridian passage is

'
Ll

-]
- +
(3.1-1)

(3
"

90 +q)£+52 52>¢p£,

where (px is the latitude of the observation point. As indicated in Figure 3-1, the right ascension
is measured from the celestial meridian that passes through the vernal equinox, (i.e., one of the
intersections of the celestial equator with the great circle marking the apparent path of the sun
across the sky (the ecliptic) during a year}), The vernal equinox occurs about March 21 each year
{(March 20 at 17 h 43 min in 1977). Before defining right ascension we introduce the concept of

sidereal tirne and hour angle.



The time between successive meridian passings for a particular star is called a sidereal
day. Each 15° of rotation of the earth in space then corresponds to ! sidereal hour of time, With
the definition that 1 (solar) h is 1/24th of a solar day, then a sidereal day is 23 h 56 min 3 s long.

The difference between a sideral d-ay and a solar day occurs because of the earth's motion in its orbit.

The hour angle of a star on the meridian is defined as zero; its hour angle increases by 15°
per sidereal hour., The hour angles are positive (negative) for stars to the west (east) of the
meridian. Instead of a star, an observer can also determine the local hour angle for the vernal
equinox at any moment. This is how the origin for local sidereal time is defined. Local sidereal
time at any point and time is the local hour angle of the vernal equinox at that moment. If the
observer is at Greenwich, for example, the hour angle he measures for the vernal equinox gives

the Greenwich sidereal time,

The right ascension of a star is defined as the local sidereal time for meridian passage of
the star. The right ascension runs eastward around the celestial equator from 0 at the vernal
equinox to 24 sidereal h at the same point after completing the circle. A star with right ascension
3 sidereal h is 45° to the east of the vernal equinox. Sidereal time is so convenient for astronomers

that they often have siderecal clocks to aid in locating specific stars of interest.

The coordinates of the sun are constantly changing. As measured in the ecliptic plane,

the time variation of azimuthal angle of the sun is given ag

0 o~ =T
“se = 365 days

(t - 80 days) , (3.1-2)
where the angle is measured from the sun's position on the 80th day of the year (i.e., March 21
barring leap year, near the vernal equinox). The t here is measured in solar days. The relative

orientation of the ecliptic and the celestial equator are indicated in Figure 3-2,

The ecliptic plane intersects the celestial equator plane along the line connecting the vernal
and autumnal equinoxes. The 1977 value of the angle between the planeg is 60 = 23°,442274. A
perpendicular from the sun position to this intersection line has length Ro sin (pse where Ro is
the radius of the celestial sphere. The distance between the sun pogition and the plane of the

celestial equator is Ro sin 5S where 6S is the declination angle for the sun., The triangle thus
formed in Figure 3-2 gives

sin GS = gin 60 sin (pse . {3.1-3)

as illustrated. The declination is plotted versus time in Figure 3. 3.
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Figure 3-3. Declination of the Sun
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The positions of the celestial pales, the celestial equator, the vernal equinox, and the mean
obliquity (60) of the ecliptic do change with time, but at extremely slow rates. Because of these
changes, astronomers often refer right ascensions and declinations of stars to a given epoch, such
as 1800, 1950, or perhaps 1977. The changes are mainly caused by precession of the earth's
axis. The gravitational forces of the moon and sun interacting with the earth's bulge at its equator
produce a torque that causes the axis to precess westward about the vertical with a complete
revolution requiring 25 800 yr. In addition, the plane of the moon's orbit aboui the earth rotates
with respect fo the ecliptic with a period of 18.6 yr. This produces an additional oscillation
(called nutation) in the earth's axis superimposed upon the precession. Qur calendar has been
designed to prevent these effecis from altering the months that correspond to specific seasons.
Leap years help somewhat, Fine tuning is accomplished by abandoning leap year every century

yvear not divigible by 400. The present calendar develops an error of about a day each 3400 yr.

3.1.2 Elevation and Azimuthal Angles for the Sun

The right ascension of the sun continually increases, changing about 1° per day to tra-

verse the ecliptic each year. The hour anglie of the sun increases with time as,

H = 15 £ (3.1-4)
E

where t is the local solar time in hours measured from local noon. As indicated in Figure 3-4,

the dot product of ér and a unit vector directed toward the sun gives

cosz = sin o, sind_ +cos ¢, cos 6 cosH (3.1-5)
L 3 2 ] s
where 2, is the observer latitude.
The elevation angle is
T
- Lo g . (3, 1-6)

The cos HS term causes rapid variation in the elevation angle. Under average atmospheric
refraction the solar edge will appear on the horizon when the true elevation angle of the sun is
about 0,0145 radians (50') below the horizon., The entire sun subiends an angle of about 0,0093
radians (32') when viewed from the earth. Atmospheric refraction accounts for the additional

9, 85 mrad (34') leading to early sunrise. Daylight corresponds to ts > - 14.5 mrad.

Consider in Figure 3-4 the coordinate system where fl is the vertical direction at local
noon on the equator, and ll«\:1 is directed along the earth’s axis., At the observation point lsbeled

0, unit vectors to the north, east, and upward are given by
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eN 11 cos 91, cos (‘Dl Jl cos % sin (‘Dl kl sin Bg s
L) ~ -~
- s . i
en i sin (pl i cos <p1 .
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u 1131n8£ cosgal i sms’gsmgpl-f-kl cosel,
where
8, = m/2 - 0,
and
¢ = mf2 - H_ -
A unit vector directed toward the sun is
A ~ )
= 9 + 3
e, iy cos GS kl sin 68 .
The projections of 'és to the north and east are
. - . i .
s °N cos BS cos 9ﬁ sin ¢, + sin (SS sin 61?,
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e " ey = CO8 @ cos 65

>

Figure 3-4. Zenith Angle (z) and Hour Angle (Hg) for the Sun
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The azimuthal angle for the sun as measured from the east toward the nerth in the horizontal

plane is then given by

e e
o, = tan 1| 2 |, (3.1-12)
&, e
or
) -1 smés cos ¢, - cos 65 sin ¢, cos Hs (3.1-13)
gy = tan - cos b sinH . T
] s
The cosine may ke written in the simpler form
gin Hs cos GS
COS P, = " e (3.1-14)

Cos
CS

. -1 : :
however, computer evaluation from the tan = function has the advantage of removing quadrant

ambiguities, The £ and @y variations are indicated in Figures 3-5 and 3-6.

_ Elevation angle for sun

i

-100 -50 00 50 10.0
Time of day

Figure 3-5. The Elevation Angle of the Sun as Seen From Albuquerque,
NM on June 21 (&), March 21 (0}, and December 21 (O).
Time is in hours from local noon.
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. Azimuthal angle for sun
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Figure 3-6. The Azimuthal Angle of the Sun as Seen From Albuquerque,
NM on June 21 (A), March 21 {¢), and December 21 (0O)}.
Time is in hours from local noon.

3.2 Tower Coordinates

3.2.1 Heliostat Geometry

In Figure 3-4 let us agsume the position O is at the center of the fower base, With this
origin we construct an x~-y-z Cartesian coordinate system with the axes in the east, true
north, and vertical directions, This is the tower coordinate system. The positions of the center
for each heliostat base (Ei’ Ni‘ Zi) are specified in this system as illustrated in Figure 3-7. The
top of the tower is specified by (0, 0, Zt)' The Z coordinates should be adjusted to account for

the slope of the land. They may also account for the curvature of the earth's surface.

The center of the reflecting surface is given the coordinates (Xl’ Yy zl) in the same
coordinate system., The transformation from (El, Nl, Zl) to (Xl’ yl, zl) will be dependent upon
the method of mounting the heliostat upon the base as well as upon the orientation of the heliostat.

With the mounting illustrated in Figure 3-8 we have



x :E1+1 cos ¢ cos ¢ ,

1

y1=N + 4. cos P sin ¢ ,

1 L

z, =2 + L, + L sing ,

where the azimuthal angle ¢ is the angle between the E axis and the projection of £

horizontal plane.

elevation angle of the heliostat is labeled ¢ .

mirror assembly.

1 2 1

1

(3.2~1)

onto the

Azimuthal angles are measured from the east, positive toward the north. The

This design gives the values J?,l = 0,318 m and 22 = 3.987 m.

The 2L

2

Figures 3-2 and 3-10 give an actual design of the

is

measured between the leveling plate and the center of the tube-support interface in Figure 3-10.

N, y

CENTER OF
HELIOSTAT BASE

CENTER OF TOWER BASE

Figure 3-7. Heliostat Deployment in Tower
Coordinate System

CENTER PORTION OF
REFLECTING SURFACE

€, Ny Z))
~Y—HELIOSTAT BASE

Figure 3-8. Sample Heliostat Mounting
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Figure 3-9. Martin-Marietta Heliostat Design
for Solar-Thermal Test Facility
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Figure 3-10. Martin-Marictta Heliostat Design
for Solar-Thermal Test Facility
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The mounting in Figure 3-8 requires rotation about horizontal and vertical axes like a
piece of artillery. Several of the largest steerable antennae used in radio gstronomy are mounted
in this manner. Computers are used to keep the antennae aligned to a certain position in the sky
for astronomy work. In this application the computers align the antennae to collect solar energy
at the receiver. The necessary azimuthal and elevation angles will vary with the time of day,
with the day of the year, with the position of the tower on the earth's surface, and with the receiver

design.

3.2.2 Elevation and Azimuthal Angles for the Aim Point and Heliostat

The alignment geometry is indicated in Figure 3-11. The aim point is at (Xa’ Yy Za) s

hence the distance between the heliostat center and the aim point is
N 9 1/2
= - + - + - ’ . L 2-
d [(x1 xa) (y1 ya) (z1 za) :I _ (3.2-2)

(x_,

SUN

Figure 3-11. Alignment Geometry

The elevation angle of the aim point, ':t , and the azimuthal angle, ¢, . are defined by

¢, - tan” ! a 1 , (3.2-3)



(¥, -7 :
1[—51———1 \ (3, 2-4)

(;ot = tan lxa - Xl
At the heliostat a unit vector directed toward the sun is given by

{}3 = : cos Cs cos O + gcos CS sin @ + l: sin i‘,’s s (3.2-5)
while a unit vector toward the aim peint is

{}r = ihcos Et cos (Dt +_;cos Ct sin(pt +l:sin Ct . {3.2-6)

"~

The sum Vr + Vs is a vector in the scattering plane which bisects the angle between Vr and VS .

This is the direction of the arm 12.1 in Figure 3-8.

”~

V‘g’1 =1 a[cos Cs cos (PS + cos Ct cos ('Dt]

+ a[cos CS sin U + cos tt sin qot}

+ka[sin ¢, + sin ‘:t] , (3.2-7)
where
a = JV +V l—l , or
r 5
_2 A " " ~ .
o = |V +V V.tV (3.2-8)
T s r 5
v P lv Peev v .
r s r S

A unit vector in the horizontal plane directed along the projection of V is given by

2

1
Vh =1 B[cos gs oS @ + cos Ct cas (pt:l
+j i + i 3.2-
j B[cos £, sin ¢ + cos g, sin @t] , (3.2-9
where
B-z = [cos £ cos ¥_+cos{, cos 2
s S Zt (pt]
+ [cos £ sin + cos sin ]2 (3.2-10)
s 9 £, T ‘

37



The cosine of the elevation angle for the heliostat, Ch , may now be written in terms of the angles

of the aim point and sun (':h < 7/2),

~ o~
cos Ch = Vh'VJal . (3.2-11)

In like manner, the heliostat azimuthal angle, wh , is given by

I
<>

.
-

cos @ b (3.2-12)

s gy = Vil (3.2-13)

where
=L@ <7 .
The sine of the heliostat elevation angle is given by

) sin 2;3 + sin Ct
gin £, = [ : : 7T (3. 2-14)
2 {1 + cos [ cos £, cos ((pS - @)+ sin £ sin :t}]

When Q=9
then gy, = %—# .
When CS = /2,
then also
Ls T L
™" 2

independent of (ps . "Dt , and Ct.

When CS =0,

sin ct
sing, = . (3.2-15)
h [2{1 + cos £, cos (@ -wt)}]llz
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Hence in a generzal case the elevation angle of the heliostat is dependent upon the difference in

azimuthal angles of the sun and aim point.

3.3 Heliostat Coordinates

3.3.1 The Origin

The point (xl, Yy zl) in Figure 3-8 is the origin of the heliostat coordinate system. It
is a Cartesian system with the ul axis horizontal, the Uug axis along the arm ﬂl (normal to the
heliostat at its center), and the Uy axis completing the right-handed system. The positions of
facet centers are designated in the heliostat coordinate system by Ujcs Ug, Ug, where 1 varies

from 1 to the number of facets in the heliostat (25 for the CRTF).

Figure 3-12 gives a plane projection of the heliostat with 25 facets illustrated along with
the choice of indices for the facets. Consider an individual facet with center coordinates (uli .

u u3i). The center of the heliostat was earlier designated by the vector

2i*

- ~ ~ "~
Vh = %l ygd zlk (3.3-1)

in the tower coordinate system. The unit vector norral to the heliostat is

~ L] ~ A

= i + 3 +
V;al iny +iny + kng

(3.3-2)

where the n; are given by Eq. (3.2-7),

Figure 3-12. Plane Projection of Facet Array
on One Heliostat
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3.3.2 Facet Placement and Orientation

The center of a facet is given by

- - -
Vs Vyp o (3.3-3)
where
-3 ) L] )
BE e, TUye, TUg e, - (3.3-4)
1 2 3

The unit normal to the facet in the heliostat coordinate system is determined by the time at which
the facet is positioned for optimumn collection of power at the tower. Figure 3-13 illustrates the
tower (i, j, k) and heliostat (ul, U, u3) coordinate systems. The u’, u’z, u'3 axes given are
respectively parallel to Uy, Uy, Ug to illugtrate the angles @ and Pps

The u, axis is in the V!?, direction, hence

3 1
" - » " - " A . _
Sug T Mt Mg ngk {3. 3-5)
The ay axis is taken to be horizontal, hence
e = i {+ $ 3. 3-8
eul—-smwhl cos @, 7 (3, 3-6)
where 2N is given by Egs. (3.2~12) and (3.2-13}). Then eu:2 = eus x eul , oOr
" . A "
ellz = —ingcos th — ingsin g + k (172 sin (,Oh + n, cos (;Dh) . (3.3-7}
- [ ~
If we let x'l, yi, and z; be the coordinates of the i‘Eh facet center in the i, j, k (tower) co-
ordinate system,
o _ : _ +
X T E T U SING, T gy Mg c08 G Fugmy
(3.3-8)

! = - i +
Yp T ¥yt C08 @ 7 Mgy ng sin @ fugm,
f = i + -+ .
Z z + Uos ('r,r2 sin ¢, + 7, cos (ph) Ug: Mg

These small changes will alter the elevation and azimuthal angles for the aim point cauging small

variation in the direction of the normal for each facet,



1 Yo Ysi

Figure 3-13, Geometry Indicating Normal to Facet in Heliostat
and Tower Coordinate Systems

Reference to Figure 3-13 allows the normal to the i~ facet center to be written as

cosw ., COS P, . (3.3-9)
ni ni

n, =e cosa .sing . te sine . +e

i uy ni ni u, ni ug
Assuming for the moment that ani and (pni are known, Eqgs. {(3.3-5) through (3. 3-7) allow con-
version to the tower coordinate system.,

A ~

= id_ai - +
n 1{ S @ Py T Mg COS @ A "1%1}

*i {+C°S @ Py " M3 80 @, 5 Ty rni}
(3. 3-10)

H‘{‘"z sin @, +mycos V) q; * g rni} :
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where

.= cosa , sineg
Ppi ni Pni

. = 8ineo ., 3,3~-11
9 ni ? ( )
r ., = cos & . COS .

ni ni Pni *

3.3.3 Heliostat Alignment

If data for @ s and (‘Dni are not available, they may be determined from the time at which
the facets are tuned for maximum reception of solar energy. Substitution of xi s yi . zi (Eq.

(3. 3-8)) for X 3 yl, z_ in Egs. (3.2-3) and (3. 2-4) and insertion of time data allow calculation of

1
a new vector \71’31 which is normal to the facet. Very slight corrections can also be inserted to
account for the facet being at a slightly different hour angle from the sun and a different latitude
on earth than the heliostat center. These slight corrections are neglected at present, The known

normal may then be set equal to Eq, (3, 3-10)

Me = 311Ppg T % T Byg Ty -
My = B9y P T 3559 T 33T {3.5-12)
M, = 831 Py T oAgedy; tAg3Ty; o

where al.. are determined from Eq. (3.3-10). Note agy = 0 and the determinate of the matrix
2
i + + i = i
of values aij is n,y (nl cos tph Ny sin <ph) 1., These equations may be solved for Puiv 4y

and rni' The angles may then be obtained from

. -1( )
ani ® sin qni ’
-1 (3, 3-13)
@, ° tan (pni/rni) .

Both O!ni and (Dni shotld be small angles, hence the intervals -7/2 < wni < 7/2 and
-1/2 < @, < #/2 are suitable for camputer evaluation of the functions. Of course the P
i Ts themsgelves are used to generate the central normal to each facet surface.

In order to calculate normals when the facets are focused on-axis, the identical equa-

tiong are used with the angular coordinates of the sun replacing those of the prealignment point.



3.4 The Sun-Concentrator Coordinates

3.4.1 Axes

In this section the geometrical variables are determined for the sun-concentrator coordi-
nate system in terms of the systems introduced earlier, The system has z in the direction of the
facet normal at its center, the yz plane contains the facet normal and the central reflected ray
from the sun as it would be if no slope error occurs on the facet surface, and x completes the
right-handed system. These coordinates are convenient for expressing the feﬂection properties

of the facet (or of the individual reflector).
Let us now form unit vectors along the facet-coordinate axes in terms of the tower co-

ordinates. The z axis is along the facet normal so

” ~ - - ~

e, = ni = Vﬁl + ijJ + vfkk ’ (3.4-1)

with the coefficients as in Eq. (3.3-10). The unit vector toward the sun is taken from Eq. (3. 2-5)

" A ~

VS = sil + st + Skk . (3.4-2)

Thus the angle of incidence for the central ray is
= cos L im V) (3.4-3)
i oS n V) - .

The central reflected ray is reflected at the same angle in the same plane of incidence; hence a

unit vector along the central reflected ray is

gr = 2 cos ”;71 - ;/‘S . (3.4-4)
The x axis may now be formed as

QX = ::r x ’;i”;r x ;;iJ , (3. 4~5)
and the unit vector along the y axis is

;y = ;’i X eﬁX (3.4-6)

The e ey » m, are illustrated in Figure 3-14.
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Figure 3~14. Target Point in the Sun-Concentrator Coordinate
System. The central solar ray is in the y-z plane

3.4,2 Target Points

In usual applications it is anticipated that the distribution of radiant flux density will be
desired near a specific target location. Thus a series of target points must be considered. The
facet geometry with a general target point igs specified in Figure 3-14, In the tower coordinate

gystem, let the target point be identified by

v = (x z )
gt - gt Vg %

Translation to the facet center may be accomplished via Eq, (3. 3-8},

-
ng = (ng: ygf: ":gf) 3 (31 4_7)
where
~ _ ot
ng xg Xy
y Yy, ¥4
gf g "1’
z .=z -z

The coordinates in Figure 3-14 are rotated with respect to the translated system now considered,
-5
In the sun-concentrator system of Figure 3-14 the components of the vector, r, from the facet center

to the target point are readily identified as



1 g X
-2 . (3. 4-8)
r, = vgf ey s .
- ~
Fg © ng.n1 ’

with each of the vectors in the inrier products expressed for convenience in the tower system after
translation to the facet center. These components are useful for evaluating the reflected light

intensities.

For the present the mesh of target points is assumed to be distributed in a plane. In the
-
tower coordinates, the normal to this plane is designated by Vi This normal is required for
calculating the power per unit area falling on the target. In order to find the contribution of each

facet the \_r)m must be converted to the coordinates of the individual facet. The facet components

are

- -
\'s =V _re
mx m X
- ~

v = v -8 (3.4-9)
my m 'y
e ~
=V -
sz m nl

3.4.3 Facet Orientation

In some applications the effect of facet orientation may be required., In Figure 3-14 this

would appear as variation of the angle § between the x axis and the line that passes between

the x and y axes from the facet center orthogonal to the edge of the facet square. Let us assume

the bottom edge of the facet remains horizontal., Then a vector in the direction of this edge can

be conveniently calculated. The normal to the facet is (in tower coordinates)
" N N ~
_: 4+l - _
'r[i 1nX ]ny knz , (3.4-10)
where nX , n_, nZ are defined by Eg. {3.3-10), Its projection on the horizontal plane is

-3 py A
h, = in_ + jn (3.4-11)

=;/ n2+n2 (3,4-12)
hi i/. X v o .
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A unit vector in the direction of the bottom edge of the facet is then

e = my % e lng x el (3.4-13)
In the special case when n = 0, ;hi may be replaced by k in order todefine ep- The angle
.3 A
between e_ and e is then
B X
B = cos (eB-eX). (3.4-14)
In order to restrict the angle to the § above, we write
cos B = leB- exl . {3.4-15)
sinfd = F {1 -0052;5’ . {3.4-18)

where the upper (lower) sign is appropriate when the sign of e ey is positive (negative). The

angle B gives the angle of rotation required to align one of the facet edges with the x axis.

3.5 Target Coordinates

3.5.1 Target Mesh

In order to evaluate the coordinates of a target point in the sun-concentrator system (va ,

v ., v ), the tower coordinates are needed (x , v , z ). For comparison with experimental
my mz g g g
data or for predictions of the energy flux distribution on some aperture, the target coordinates

related directly to the target itself are most convenient. Let us divide the target surface into

a matrix of points identified by the indices ix’ iZ . The number of points in the surface is

i, =i * i . The points are divided inte rows and columns such that the row number is

n_ = (i~ 1/i + 1 andthe columnnumberis n =i-(n - 1I)*%i where 1l < i< i . The
r x c r x - T ="t

middle row is mI_ = (iy + 1)/2 while the middle column is Inc = (iX +1)/2, i.e., when ix and

iy are odd numbers.

Let the extent of the target surface be Xoxt and 2 oxt along the horizontal and the ortho-

gonal direction (in the surface). The origin of the target coordinate system is taken at the target

center. In this system the coordinates of a specific target point are given by x = (nC - mc) ¥ X ogt

(i -1 and z,=(n_~-m)*z [(i -1). Conversion from these target coordinates to the tower
X t T T ext’ 'y

coordinates requires further specification of the target surface. Three shapes are treated here;

planar, spherical, and cylindrical,



3.5,2 Planar Target Surface

We assume that tower coordinates are given for three noncolinear points in the target
Py
plane, We also assume a vector V'vmd is given that is roughly an outward unit vector at the

target gurface, Vectors (V V) are formed from the orlgm to the pomts defmmg the plane
with V1 directed to the center of the target surface. With V12 W_/z - V1 and V13 V3 - V1 ,

a normal to ihe furface is Vrl = V12 13 In order to insure this is an outward directed normal,
the sign of Vn'vivmd may be tested, A negative sign is corrected by replacing V by —V .

The V‘J'.de must be sufficiently accurate for the correct Vn to pags the test.

- -
A linear combination of V12 and V13 is horizontal and is in the target plane.

7 o= (v V12 v g V122 v . (3, 5-1)
B} - . 122 , 5.
h 12x V13z 13x x 12y V13z 13y / v

where the notation V indicates the x component of V in the tower coordinate system. When

12x 12
- =
V13Z =~ 0, the Vh = V13 . The vector in the target plane orthogonal to the horizontal ig
v = X—}n X —‘}h . Normalization converts to the corresponding unit yvectors Vh’ Vo‘ Vn . Co-

ordinates of the ith target point in the tower coordinates is given by

V-V, txV. 42V (3.5-2
TS TS AP -5-2)

The Xt and 2oyt BT the dimensiong of the target surface (in metres),

3.5,3  Spherical Target Surface

We assume that the tower coordinates are given for the sphere center (the center of
curvature for the spherical surface), that the radius of curvature (r) is given, and that the polar
(ec) and azimuthal (<pc) angles (as_}measured from the sphere center} are given for the center
of the target surface. We assume Vivmd ig given as for the planar cage. We also assume
x and = are given as the total extent of the azimuthal and polar angles (radians) subtended

ext ext
by the target surface.

A vector, ; is formed from the origin of the tower coordinates to the sphere center. The
azimuthal and polar angles for individual target points are then given by ®, = 0, + X, and
91 = Gc + Z, where X, and z, are evaluated as before. In keeping with % oxt being a horizontal
measurement, azimuthal angles are measured in the horizontal plane. For consistency with the

tower coordinates, azimuthal angles are measured from the east and pogitive toward the north,
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Polar angles are measued from the vertical, The position of the ith target point in the tower co-

ordinates is given by

-~ A A

= -
= + i + i . e JdT
Vt s + r cos Bi cos ;e +t T cOS e.l sin "Diey v sin g; e (3.5-3)
The normal to the surface is given by
Vo= (¥, -8 3.5-4
Vn—(Vt sHr . (3.5-4)

- -
As in the case of a planar target, the normal is replaced by its negative if it fails the Vn 'Vivmd

test.

3.5.4 Cylindrical Target Surface

Only portions of a right-circular cylinder with a vertical axis are considered at present.
We assume that the (x, y) tower coordinates (xa, ya) are specified for the cylinder axis, that
the axis-surface distance (p) is given, that the 2z coordinate of the target center (Zc) is given,

ext
is the total extent (radians) of azimuthal angle subtended by the target while - is the vertical

and the azimuthal angle (qoc) is given for the center of the target surface. We alsc assume x

dimension of the target surface. The azimuthal angle for an individual target point is then given

by ®; = cpc + x, and z, is the vertical coordinate in the target coordinate system.
-
A vector, 3 , is formed from the origin of the tower coordinates to the point (Xa’ g zc) .

The position of ’che ith target point in the tower coordinates is given by the vector

" " ~

- -
= + i + . .5-
Vf S + p cos @;e, +p sin (piey z, e, (3.5-5)

The normal to the cylindrical surface at the ith target point is

A A

= .
ﬂ:Vn = cos g e + sin goiey . (3.5-86)

-
The upper (lower) sign is used for the outward (inward) drawn normal. The Vivmd is not used

for cylindrical target surfaces,

3.6 Shadowing and Blocking Coordinates

In the Central Receiver Test Facility there will be times when the tower and some heliostats
interfere with the collection of solar energy. The shadows cast by the tower and the heliostats
may fall on other heliostats preventing collection of energy by them. Even though the sun may
strike some heliostats, the reflected energy may be blocked from reaching the tower receiver by
interference from other heliostats; Accurate models of the performance of the facility must in-

clude such effects,



One of the problems which may be addressed by HELICS is the posgibility of improving the
distribution of heliostats. As they are spread apart the blocking and shadowing effects are re-
duced, yet the increase in distance to the receiver may reduce the Collect.ed energy, Thus an
optimum deployment is expected to exist, likely dependent upon time of use, focusing strategy,
reflector surface accuracy, alignment and tracking errors, and perhaps other variables. The

search for optimum deployment requires consideration of shadowing and blocking.

As an aid in the shadowing calculation, the outline of each heliostat is projected onto a plane
through the origin in Figure 3-11, orthogonal to the_)direction to the sun (X}s). The geometry
(tower coordinates) is given in Figure 3-15. The rs, jepresents a specific POil}f of interest on
the heliostat (one of the corners), The distance from r, to the plane is — Vs . The pro-

jected point is then

- - » - ~
P=r —I:V ‘r }V . (3.6-1)
o o]

- ’ A “
In the new plane, we define x’, 2/ axes such that all points P have y’ = 0. Hence, ey, ==V, -

- E) "
The x! axis ig chosen to the horizontal, with € s s defined by the vector e, X VS after normaliza-
tion, The z'’ axis (éz, = EX, x € ;) completes the right-handed system. In the new coordinates,

e a

== A
the components of P are x' = P e z’ = P ‘e, In this manner, the (x’, z/) coordinates

are found for each corner of each heliostat.

-5 Py
Figure 3-15, r, and VS Vectors in the Tower Coordinate System

As a rough model of the tower, we take 7T m (rt) for a radius at the top, 8 m (rb) for a radius

at the bottom, and an effective height of 61 m (zef). The projection of the tower onto the x’, =’
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*

. 2
plane g;.ve; the corners (x’, z’) = (—rb, ), (+rb, 0}, (+rt, 2o 1-a ), and (-rt,
2ot 1-a where o is the z component of VS . This x’, z' coordinate system is the most

convenient for examining shadowing.

A convenient projection for examining the seriousness of heliostat blocking is to project the
heliostat outlines onto a unit sphere centered at the aim point. Let us assume in Figure 3-15 that
-
the aim peint is (O, O, Zt) (a tranglation converts to the more general case), A line from ro to

1

the aim point intersects the unit sphere at azimuthal angle P, = tan YOIXO and polar angle

- -
g = tan 1[(}(2 + Y2)1/2/(Z - Z )] where v = (X , Y , Z )., Each corner of each heliostat
o/ o o 0 t o] o o o]
is projected in this manner to generate the blocking diagram on the unit sphere. Any overlap of
heliostats here indicates blocking occurs. The methods of calculating shadowing and blocking are

given in Chapter 7 on numerical procedures.



CHAPTER 4

OPTICS OF REFLECTING CONCENTRATORS

In this chapter, we develop some relationships that are useful in calculating the optical
behavior of a reflecting surface. Some general focusing properties of curved-surface reflectors
are given and illusirated analytically for the gpecial case of a spherical reflector used in an off-
axis geometry with a colliminated incident beam. Even though this apecial case may not often be
realized in practice, it does provide a simple means of illusirating some interesting off-axis
optical effects. Similar effects occur for more complicated reflector surfaces. The correspond-
ing calculations, however, must be done numerically. The simple examples used here illustrate

some of the important properties of off-axis reflecting optics.

4.1 Specular Reflection of a Light Ray From a Surface Ilement

We start with the law of reflection of a light ray from an element of surface, This is illus-
trated in FFigure 4-1 where a light ray coming from the direction of the unit vector A reflects
from an element of surface that has the unit normal N, The direction of the reflected ray is

indicated by the unit vector B. These vectors satisfy the equation

~ ~

A +
N--_ATB (4.1-1)

A+ B
Note that the laws of specular reflection are satisfied by these directions. The three vectors lie
in a plane because N is a linear combination of the two vectors A and B. Algo, the angle of
incidence is equal to the angle of reflection because AN = B-N and the vectors all have unit

magnitude.

=
= >
w >

LT

Figure 4-1, Reflection From a Surface Element.
The light ray comes from dir;ection
A and reflects in direction B or
x{ice versa, The surface normal is
N. All three vectors have unit length.
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It is useful for our subsequent work to express the unit vector B in terms of the unit

vectors A and ICI Observe that

|z§+ él - 2cosu = 2N-A . (4.1-2)

A

Substituting ¥q. (4.1-2) into Eq. (4.1-1), and solving for B gives

B=2N{N"A -4 . (4, 1-3)
This equation also applies with unit vectors B and A interchanged because of the symmetry of

the geometry. This is clear from Eq. (4. 1-3) using the fact that N*A = N+B., We write this

form of the equation in order to have explicit expressions for each of the unit vectors A, N, and

~

B in terms of the other two.

~ " ~

A= 2N(N*B)-B . (4. 1-4)

Another useful result is obtained by uging dyadics to render Eq, {4.1-3) into a form that
expresses B as a mairix operating on A. The elements of this matrix operator depend only

on the components (direction cosines) of N. The resull is

oo - 2 F -
B 2N2—1 2N N 2N N A
x ® Xy z x
B = 2N_N 2N2—1 2N N A (4.1-5)
y y x y y 2z ¥
2
B 2N N 2N N 2N -1 A
[ "z L x z'y z ") Lzl

or in matrix notation

LY "

B =.FVA (4.1-86)
where
— 2 —‘
2N -1 2N N 2N N
b Xy X 2
A = 2NN ZNZ -1 2N N . (4.1-7)
y % ¥ Yy Z N
2
2N N 2N N 2N~ -1
L 2 X zy -2 _ w




Because of the problem!'s symmetry we can also write

A = AB {4,1-8)

which means that the matrix .# is its own inverse, This is also evident from other considerations.
The unit vector A can be obtained by rotating the unit vector I]; 180° about 1:], the same rotation
A takes :& into ]% Therefore, .4is its own inverse. Also, since 4 represents a rotation, it

is an orthogonal matrix, moreover, inspection of Eq. (4,1-7) reveals that it is symmetric. A

symmetric orthogonal matrix is its own inverse.

4.2 Specular Reflection of a Beam of Light From a Surface Element

We now extend our treatment to a beam of light reflecting from a surface. Consgider the
geometry shown in Figure 4-2 where a beam of collimated light incident from direction 1;; re-
flects from the element dQ to strike the receiver element dS, The light ray that strikes point C
in the center of dQ reflects about the surface normal r} and goes in direction lg to intercept
the receiver at point D in accordance withthe results given in the previous section., Such a ray
trace can, of course, be done for any single light-ray in the beam. For the beam of light rays
striking d@, however, there can be divergence or convergence of the beam upon reflection, de-
pending upon the curvature properties of the surface element dQ. It is of interest to explain the

behavior of the reflected beam in terms of the intringic properties of the reflecting surface,

RECEIVER

Figure 4-2. Reflector-Receiver Geometry

To be specific, we ask what is the flux density at point D on the receiver when the reflector
is irradiated at point C with a collimated beam of light from direction A2 This question is
addressed in gufficient detail by Shealy and Burkhard (Refs. 4.1 and 4. 2) so that it suffices for us

to begin with some of their results.
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Congider a beam of collimated light incident on the reflector from direction A, The flux
density I', at point D on the receiver in terms of the intrinsic geometry of the reflecting surface

at point C of the reflector is

WO COS U cosy (4.2-1)

2
+ +
agr ajr+a |

where ( is the flux density on the reflector at point C, ¢ is the coefficient of specular reflectance

of the surface element dQ, and r is the distance from point C to point D; the angles u and Y are

defined in Figure 4-2, and

ao = Cos u (4. 2-2a)
2 . 2

al = ——-2(2H cos p + KN sin u) {4, 2-2b)

a, ~ 4K cos u , {4.2-2¢)

where H and K are the mean and the Gaussian curvatures, respectively, of the reflecting surface
at point C. The parameter K:\q is the normal curvature of the line generated by the intersection

of the plane of incidence with the reflecting surface at point C. These curvatures are defined

4. . .
in Kreyszig 3 and illustrated in an example below.

4,3 Spherical or Paraboloidal Concentrators

We now illustrate the use of Eq, (4.2-1) in an example, Figure 4-3 shows a portion of a
concentrating reflector that is illuminated from above by a collimated light beam. Consider a
sphere of radius, R, centered at point P on the z-axis a distance z = R above the origin. In

cylindrical coordinates with

p2 = x2 + y2 (4. 3-1)

the equation of this surface is

Glp, z)=z—R+qR2-—p2=O. (4. 3-2)

For the purposes of thig illustration, it is sufficient to limit our attention to a small enough portion
of the spherical surface that p/R << 1 and to neglect higher powers of p/R than the first. With

this restriction, Eg. (4. 3-2) simplifies to

Glp, z) =z - B= =0, p/R<<1 (4. 3-32)



or in rectangular Cartesian coordinates

2 2
+
G{x, v, 2} = z — i’—‘-—é—ﬁz-) =0, x/R<<1and y/R <<1 . (4. 3-3b)
This is the equation of a parabola of revolution about the z-axis with a focal length of
f=R/2 . ' (4, 3-4)

The focal point, as we shall prove later, is on the z-axis a distance f above the origin,

Ve

Figure 4-3. A Concentrating Reflector

4, -
In order to use results from Kreyszig 8 to evaluate the curvatures of Eqg. (4. 2-2), it is

convenient to express the surface of Eqs. (4. 3-3) in terms of a position vector f’(x, y¥) to get
2 2
= +
P(X, Y) = (Xs Y. X_—Y_) 3 (4- 3'5)

where the z-component of this vector has been written in terms of x and y. Note that

82 P
9X3y

= (0, 0, 0} . (4. 3-8)
This will be useful in simplifying subsequent curvature equations.

The mean curvature is

H =(gxxbyy + gyybxx )/Zg , (4.3-7)
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the normal curvature is

p'e 2 b 2
KN:icos o+ gin“ o, (4. 3-8)
Loy By -
and the Gaussian curvature is
b b
K = 2 (4.3-9)
e Byy
where
2A
b o=ge 2L, (4. 3-102)
XX 2
ax
[y 2-$
b =25, (4. 3-10D)
Yy 3y
=2
3P
gxx 3% , (4. 3-10¢)
-
2
BP’
-1 4, 3-104
g - 12 (4. 3-100)
g =8, By s (4. 3-10€)

~

« 1is the angle between the normal section considered and the x axis, and 7 is the unit normal to

the surface, To get a normal to the reflecting surface, we take the gradient of Eq. (4. 3-3b) to get

R 1) =9 . (4. 3-11)

i

VG:('TRE’—

Note that the magnitute of this vector differs from unity only by powers of x/R and y/R higher

than the first so we neglect them,

From Eq. (4, 3-5)

22 -1, 0, x/R) , ' (4. 3-12a)

o

= = (0, 1, y/R} , (4, 3-12Db)



and

2

2 3

° L - 10,0, 1/R) -
3% 3y

L
o)A

. (4.3-12¢)

m|
N‘

Using these derivatives and 1; in Eqgs, (4, 3-10) gives the parameters needed to calculate the

mean curvature

1
H = = (4. 3-13)
the normal curvature
1 2 1 .2 1
= = 4= = — -
KN R cos « = sin” o = (4, 3-14)
and the Gaussian curvature
1
K = - - (4. 3-15)
R

Substituting these curvatures into Eqgs. (4, 2-2), then using the results in Eq. (4. 2-1) and using

Eq. (4.3-4) gives the flux density

- log cOS ¥ . (4, 3-16)

‘(-fl: - cosp)(% - secu)l

Note that the denominator of this equation vanishes at the distances

r=fcospu (4, 3-17a)

and
r=fsecu . {4, 3-17b)

When the angle of incidence u = 0, hoth of these equations give r = f corresponding to the well-
known result in geometric optics that collimated light incident on a paraboloidal reflector along
its axis of symmetry is reflected through the focal point of the parabola of revolution. When a

collimated bundle of rays is incident from an off-axis direction (u # 0), astigmatic aberration

results and two line focuses occur, The distance to the tangential focal line is given by Eq. (4. 3-17a}

and the distance fo the sagittal focal line is given by Eq. (4. 3-17b).

A geometric derivation of these focal distances is given in Longhurst4‘ 4 Section 16-7,
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4.3.1 The Tangential-Ray Fan

In order to illustrate and clarify some of the preceding concepts, we use results from
Section 4. 1 to demonstrate some of the results in Section 4.2, We also elucidate some of the

terminology used in describing solar concentrators.

Consider the fan of rays incident on the spherical reflector of Figure 4~3 in the y-z
plane when a collimated beam of light is incident on the reflector from an off-axis direction,
Figure 4-4 shows two rays from this fan; one incident on the center of the reflector at the origin
and the other incident on the reflector at the small distance y = 8§ << [ from the origin along the
y-axis. We have neglected to show the curvature of the reflector along the y-direction because
we intend this result to apply only in the limit &6/f - 0. These two rays ére said to be in the
tangential-ray fan because they are in the plane that contains the incoming principal ray (the ray
incident at the origin of Figure 4-3) and the central normal of the reflector {parallel to the z-axis
of Figure 4-3), These rays converge upon reflection from the spherically concave surface to

intersect as shown in Figure 4-4, It is of interest to use geometry to verify and to interpret

Eq. (4.3-17a}).

z
3
!
el
A -
“C 8 L %\ H-25
T BN
e
: Y
\ Y

Figure 4~-4, Geometry for the Tangential Focus
of an Astigmatic System

Figure 4-4 can be thought of as a magnified view of a slice of Figure 4-3 in the y-z plane
and near the origin. One ray is incident at the origin where the reflecting-surface unit-normal 6
is along the z-axis. The other ray in the incoming beam is parallel to the firgt one but iz incident
at ¥y = § where the surface unit-normal is not parallel fo the z-axis but ig rotated a small angle
B as shown schematically in the figure, Using the fact that the angle of reflection is equal to the
angle of incidence together with a little geometry involving the angles labeled in Figure 4-4, it is

easy to conclude that the two reflected rays intersect at an angle of 23 as indicated in the figure.



In order to calculate the distance, r, from the origin to the point of intersection, we use the

law of sines from trigonometry to write

] r r
- = = . (4. 3-18)
sin (28) sin (% ry - 23) cos (u - 2B)

Now use Eq. (4.3-11) and the fact that 3 is small to get 5 = §/R, giving an angle of intersection

of

28 = 26/R = 6/t (4, 3-19)
and for small § Egq. (4.3-18) reduces to

r="f cosu (4, 3-20)
in agreement with Eq. (4. 3-17a).

Before proceeding to analyze the reflection in the sagittal-ray fan, it is instructive
to rederive the above result using formalism developed in Section 4.1. We first use Eq. (4. 1-5)
to derive the direction of the reflected ray B of Figure 4-4; then compare this direction with the

direction of the ray reflected from the origin, The incident beam comes from the direction

A

A = {0, -sinu, cosu) . {4. 3-21)

Recall that the convention used for the unit-vector directions is defined in Figure 4-1, The sur-

face normal at Y = § is according to Eq. (4.3-~11)

A- —'g- _
D= (0, B l). (4, 3-22)

Applying Eq. (4, 1-5) with vectors written as columnar matrices and neglecting powers of 6/R

higher than the first gives

B -1 0 0 0 0
X
B -26 . _ . 25
By = 0 1 R sinp | = | sinp - & cos (4. 3~23)
~-20 6 .
= 22 +
LBZ Q R 1 cos U R sinu t cos u

We can now compare the glopes of the two reflected rays of Figure 4-4 to determine their angle

of intersection, Let the angle between the Y-axis and the reflected-ray direction B be 5 as
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indicated in Figure 4-4, then

-G-Sinu+cosu

tan y = B /B B s (4. 3-24)
2y sinu-'—fs-cosu

where we have used f= R/2. Note thatat 6/f = 0, tan ¢ = cotu as it should. The change in y

corresponding to a small change in § near § = 0 is obtained by differentiating Bq. (4.3-24)

2
gy = 2 COSE Y 5 . (4. 3-25)
(sinu - § cos ,u)

When §/f << 1, the change in v corresponding to A5 = § is

Ay = % cos y . % {4, 3-26)

as obtained before in Eq. {4.3-19),

4,3,2 The Sagittal-Ray Fan

The sagittal-ray fan also contains the principal ray, but it lies in a plane perpendicular
to the tangential-ray fan. Note that the incident tangential-ray fan is in the same plane as the
corresponding reflected-ray fan, whereas this is not true of the sagittal-ray fan. It is, therefore,

more difficult to visuzalize the geometry for the sagittal focus of an astigmatic system.

Figure 4-5 shows two rays in the sagittal fan incident on the spherical reflector of
Irigure 4-3 from an off-axis angle (u # 0). Ray 1 strikes the reflector at the origin and Ray 2
at a small distance § along the x-axis from the origin, These rays reflect to intersect at the
sagittal focus as indicated in the figure; The intersection occurs in the y-z plane because in-

coming Ray 1 and the surface normal C at the origin are both in the y-z plane.

A

The incoming rays come from the direction of the unit vector A of Eq. (4. 3-21). The

surface normal at (x, y, z) = (§, 0, 0) from Eq. (4.3-11) is
" 5
= (.2 4, 3-
D ( g 0, 1) , (4.3-27)

which has unit length to first order in the small quantity §/R. The direction of reflected Ray 2

using Fqg. (4,1-5) (to first order in §/R} is



L _ . . s -
-2 = -9 2
BX 1 0 2 R r 0 R cos |
By = 0 -1 0 ~ginu | = gin p {4, 3-28}
-2 5 0 1 J CcOS U COS U
Lz L~ R - 4 L J

Reflected Ray 2 intercepis the y-z plane when the x~component of B is renormalized so that

B = -6 . (4, 3-29a)
The other components of f3 corresponding to this normalization are

B = ftanu (4. 3-29b)

B =1f {4, 3-29¢)

where we have again used R = 21,

Figure 4-5, Geometry for the Sagittal Focus
of Astigmatic System

Note that

Bz/By = cot (4, 3-30)
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is also the slope of reflected Ray 1 in the y-z plane. Therefore, these two reflected rays inter-

sect at the point

(x, y, 2) = (0, ftanu, (4, 3-31)

in the y-=z plane which is a distance

A 2
r=If\tan u+1 =1 secpu

from the origin, This agrees with Eq. (4. 3-17b).

4.3.3 Focusing by an Astigmatic System

In order to summarize the resulis of the last two sections, we show the reflected portions
of both the tangential-ray fan and the sagittal-ray fan in Figure 4-8, The collimated incident beam
{(not shown) is from an off-axis {(u # 0) direction, The tangential~-ray fan is roughly vertical,
whereas the sagittal-ray fan is roughly horizontal in the perspective drawing of the figure, If the
reflector were rotated toward a zero angle of incidence, the two focal lines would become shorter
and closer fogether until at p = 0 one focal point at 0 would be obtained at a distance f from

the center of the spherical reflector.

Tangential Ray Focus

Sagittal Ray Focus

Figure 4-6. Reflected Tangential~-Ray Fan and Sagittal-Ray Fan
and the Corresponding Focal Lines for an Off-Axis
Spherical Reflector

4,3.4 Focal Length Versus Slant Range

In order to address the question of what the focal length should be for a given slant range
from the heliostat fo the receiver aperture and for a given off-axis geometry, we again consgider
2 gspherical mirror. This illustrates the concept and provides analytical results. For reflectors

with more complicated shapes than spherical, HELIOS calculates the optimum focal properties

numerically.



Figure 4-7 shows the tangential-ray fan in the top of the figure, A collimated beam is
incident at an angle of incidence u. The bottom part of the figure shows the sagittal-ray fan; in
this case only the reflected rays are in the plane of the page. The appropriate distance for the

slant range D in most applications is such that the image height h, in the tangential-ray fan

1
is equal to the image width h2 in the sagittal-ray fan. This puts the receiver aperture at the

"circle-of-least-confusion,

=

L2

e f SECu

Figure 4-7., The Tangential-Ray Fan (top) and the Sagittal-Ray Fan (bottom).
In the sagittal-ray fan the incident rays are not in the plane of
the page.

From the geometry of Figure 4-7

h
W cos u 1
= << . 3~
fcosu D-fcosp (W D) (4.3-33)
from which
hl = %f (D~ £ cog }.,L) (4‘3_34)
and
h
2 - : (4. 3-35)

fsecu - D fsecu
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from which

h, = f-Dcosu . (4. 3-36)

W
5 =T ¢
If we impose the condition

h. =h (4, 3-37)

then
f=D (4.3-38)

is the relationship that places the circle-of-least-confusion at the receiver aperture, [t does not

depend on the angle of incidence wu.

4,3.5  Astigmatic Image Size

When D = f, then from Eqs. (4. 3-34) and (4. 3-36)

. 2/p
= = - = £y, 4, 3~
h1 h2 W(l - cos ) = 2W sin (2) (4.3-39)
Since this applies to collimated incident light, it must be modified for sunlight which is not

well collimated. The envelope of the height H, of the solar image at the focal distance in the

1
tangential plane is

H. = h +J3D=W-F

1 1 (D-fcosu) + 8D , (4, 3-40)

where B is the angle subtended by the sun. The width of the solar image at the focal distance in
the sagittal plane is

i
T

H, = h_+ 8D = (t - Dcosu) + D, (4, 3-41)

At the slant range D = f, both of the above dimensions become

H. = 0 = 2W sin® (%)+ gt , (4, 3-42)

These equations can be used to approximate image sizes resulting from individual facets when W
is taken to be a facet diameter (or average diameter) or for entire heliostat effects when W is
the average heliostat diameter. The derivation is based on a spherical or almost spherical re-
flector., The heliostat facets approximate a spherical surface when the facets are prealigned with

respect to the heliostat frame in an on-axis (4 = 0) geometry.



Since the effects of astigmatic aberrations are calculated numerically in HELIOS without
the need for any of these special-case analytical approximations, we shall not pursue this topic
further here, More details on the effects of astigmatic aberrations on the performance of central-
receivers including effects of prealigning the heliostat facets off-axis {u # 0) is given by Igel

4,
and Hughes. >
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CHAPTER 5

STATISTICS OF REFLECTING OPTICS

Many solar energy applications require focussing concentrators to increase the concentra-
tion of golar radiation. The shape of the concentrator surface, the geometry under which it
operates, and the angular distribution of incoming sunrays (sunshape) combine to define an upper
limit to the concentration levels that can be obtained. 0.1 In practice, however, other factors de-
grade the average concentration to values below this ideal limit. Thus, it is appropriate to in-
clude thesge effects in specifying the optical quality of a concentrator; this should be done in such
a way that the optical performance can be defermined for any operating geometry using its specifi-

cation parameters.,

In this chapter we describe a scheme for specifying the optical quality of a reflecting con-
centrator in terms of error distributions. We give the statistical methods needed to analyze the
error distributions required for the various nondeterministic factors. We develop the mapping
of error disiributions from a reference system that is convenient for specifying the quality of a
concentrator to a reference system suitable for reflected beam-quality analysis, Finally, a
method for projecting the effective sunshape onto a receiver or other reference surface is

derived.

5.1 The Optical Quality of a Reflecting Concenirator

As a hypothetical example, suppose that the reflecting surface of a solar concentrator is
composed of a thin gsheet of material, one surface of which is reflective, When this sheet is
attached to its supporting structure, various distortions occur in the surface, Assume that the
resulting surface has a wavy pattern and that the average shape obtained by averaging out the
waves also differs from the degired surface, Finally, agssume that the reflecting surface has
a small-secale gtructure congisting of a grainy texiure plus a striation pattern. A given con-
centrator may not exhibit all of the surface effecis assumed in the example. However, the
method developed here encompasses all of these features and allows freedom to include other

nondeterministic effects such as sun-tracking errors as well.

There are three categories of surface features in this example. The average shape of the
surface is a "large scale' feature, The surface waviness is a "'medium-scale" feature. The
grainy texture and the striation pattern are "'small-scale" effects. Figure 5-1 pictures these
three categories of surface features. The dashed curve shows a crosas section of the large-scale
average shape of the surface which is designated as the "reference surface” for brevity. The

solid curve represents the actual surface emphasizing its medium-scale wavy nature, There is

87



68

no attempt to show the small-scale surface irregularifies directly; instead, this effect is implied
by the small arrows which depict a collimated beam incident on a small sample of surface but

reflected into a cone of directions designated as the "reflectance cone, '

~ ra
SLOPE NN
ERRORS '
~ B i
i REFLECTANCE
' CONE
|
I / /
| ACTUAL
*SSS;\ | /4:/ SURFACE
{ /

REFERENCE
SURFACE

Figure 5-1. Large-Scale (reference surface),
Medium-Scale (slope errors), and
Small-Scale (reflectance errors)
Features of a Concentrator Surface

The medium-scale surface errors are quantified by "'slope errors" such as the angle 8
shown in Figure 5-1. The slope error is the angle between the normal ICIO to the reference sur-
face and the normal N to the reflecting surface, It is not necessary to specify the slope error
at each point on the reference surface, Rather, it is adequate to specify a statistical distribution
of slope errors that apply, on the average, to some portion {or perhaps all} of the concentrator
surface. Effects of wind turbulence or gravity loading may even cause slope errors to be time

dependent, but a distribution of slope errors (perhaps time dependent) is still an appropriate and

convenient way to describe the effect.

We assume that the small-scale surface irregularities are modeled the same way as the
medium-scale glope-errors; i.e., they are caused by variations in the directions of surface
normals but on a smaller scale., The reason for distinguishing them is primarily for convenience
in their measurement and in clarifying the meaning of specular-reflectance measurements. The
small-scale effects including surface reflectance may usually be measured from samples of the
reflecting material in the laboratory. However, the medium and large-scale features must be
measured in the field on a fully assembled concentrator in order to include defects that occur

"reflectance errors’ and the correspond-

during assembly. We refer to the small-scale effects as
ing cone of directions as the "reflectance cone” becauge surface reflectance refers to the integral of

reflected light over this cone of directions.,



Although we have indicated a clear-cut distinction beiween small-scale and medium-scale
surface errors, this is not always the case. There could be, for example, a continuous gradation
of surface waviness extending into the small-scale category. In this case it is necessary to specify
a "test area'; medium-scale measurements would average over this test area whereas the small-
scale description would apply within it, It is necessary to coordinate the small-scale and the
medium-scale measurements to be sure that some surface errors are neither missed nor included

in both categories.
The procedure used to relate reflected-beam quality to these error specifications will be

described and illustrated after we summarize some statistical optics.

5,2 Two-Dimensional Distributions

5.2.1 Reference Planes

In order to describe an angular distribution of errors in the direction of a unit vector, it
is convenient to use a reference plane as suggested by Schrenk. 5.2 To illustrate this concept,
suppose we wish to specify a distribution of slope errors for a reflector, Let the z-axis of the
coordinate system in Figure 5-2 be perpendicular to the reference surface of the reflector at a
point of interest. The x-y plane is tangent to the reference surface with the x-axis oriented in
some convenient direction with respect to the reflector, such as parallel to an edge. If the re-
flector is a part of a heliostat, the x-axis might be parallel to the horizontal sun-tracking axis.
We define the r-s plane to be perpendicular to the z-axis, to intercept it at z = 1, and to have
its r-axis parallel to the x-axig as indicated in the figure. It is the concept that is important
here, not the names of the variables used as coordinates. Later on, we define other reference
planes for specifying distributions (the P-Q and U-V planes of Figure 5-22). Although the con-

cepts are the same as described here, it is convenient to use different variable names.

V4
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X

Figure 5-2. The r-s Reference Plane for Specifying
Slope~Error Distributions in the Re-
flector Coordinate System x~-y-z
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Suppose that N is a unit normal to the actual surface at the origin of the coordinate system
of Figure 5-2 where the slope ervor is 3 as indicated. The direction of 1(1 is specified by the
coordinates {r, s) of the point where the unit vector N (extended) intercepts the r-s plane,
The probability that this intersection occurs in the element dr ds about the point (r, s) is
[F(r, g) dr ds] where I' is a probability density function which is normalized fo unify when
However, we will usually call such a function as I', a

integrated over the entire r-s plane.

Ydistribution, "'

In general, the slope-error distribution is a function of the fwo variables r and s, but in

some gpecial cases circular symmetry reduces the distribution fo a function of one variable p

where

p = tanf = (r2 + sz) . (5.2-1)

Note from the geometry of Figure 5-2 that p is the radial distance from the origin of the r-s

plane to the point (r, s).

5.2.2 The Pillbox Distribution

Let p be the radial distance to the point (r, s) as defined by Eq. (5.2-1} and assume

that F has a nonzero constant value over a disk bul vanishes outside of if. Then
1 <
;12 ' P =
Ploy = ) 7 (5.2-2)
l 0 , g > a
is called a pillbox distribution of disk radius a.
The mean square radius of the pillbox distribution is
a 2
, 2 3 a
(P = 217] p Flp)do = & (5.2-3)
O
from which its root-mean-square radius is
, 2
(% = afN2 . (5. 2-4)

This distribution is sometimes used as an approximation to the sunshape with the parameter a equal

to the angular radius of the solar disk as viewed from the earth (a ~» 4.2 mrad as Mlustrated in

Section 3. 2.3).



5,2.3 The Elliptic-Normal Distribution

In the r-g plane of Figure 5-2 the elliptic-normal distribution which has its principal

axes along r and s is

1 1 r2 32
o — == 4 == . -
r, s) p— exp 3 5 5 (5, 2-5)
rs O s

The parameters o and o, are standard deviations in the r and s directions, respectively.
This is a two-dimensional '"nmormal' distribution for the independent random variables r and s.
The mean values of r and s are taken to be zero which is adequate for our purposes here, How-
ever, these mean values can he changed to r and s by replacing r by r - r and s by s -5

in Eq. (5.2-5).

The mean square value of r is

" 2 B 2 l
2 2
r) = L r2 exp |- dr N s exp |- dsh .

N7 o, ] N o, L we ]

—co

(5.2-6)
Using the regult
2 ~(k+ +
exp[—Axlxkdx:%A (k 1)/21"(1{—2-3) R k>-1, x>0 (5. 2-T)
(e}
from page 64 of Grobner and Hofreiters' 3 to evaluate this, gives
2 2
{r) = 0. (5. 2-8a)
or
2
{(r Y=o . (5. 2-8b)
T
In a similar way we get
2
{<S y o . (5.2-9)

The voot-mean-square values of v and s are, therefore, equal to their standard deviations for

the elliptic-normal distribution of Tig. (5.2-35).
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The mean-square radius of the elliptic~normal distribution is

(% = r% + (8% - ci + crsz . (5.2-10)

A continuous randem variable v is normally distributed (normal) with mean £ and

. 2 - .
variance o (standard deviation o) if

N | =

2
Qlv, o, &) = (u) % - (5.2-11)

1 exp {-
o N27

L4 : e iroer . .
Refer to Korn and Korn,5 Section 18, 8-3, This distribution is, of course, normalized to unity

when integrated over the interval -ee < v < +eo ,

The distribution F(r, s} of Eq. (5, 2-3) is a product of two of these normal distributions
F(r, s) = Qr, 0., 0) Qfs, o, 0) . {5.2-12)

It is useful to calculate the probability that lr] < a for arbitrary s using the distri-

bution F of Eq. (5.2-5), This probability is given by

g=a o
P(|s| <a) = f I F(r, s) dr ds (5.2-13)

§=-8 rF-®

Using Eq, (5.2-12) in Eq. (5.2-13) we observe that the integration over r yields unity

leaving

a

P(ls| < a) = [ Q(s, ¢, 0)ds = erf )—2 (5.2-14)

g==a ° OS ‘12—

where erf denotes the error function (page 297 of Abramowitz and Stegun5' 5). The probability

that Ir’ < a is obtained by integrating over the variable s to get Eq. (5.2-14) with ’s| replaced

by lr[ and o, by O

In line-focus concentrators, it is convenient to integrate the effective sunshape in strips
parallel to the focal line to obtain a one-dimensional description of the statistics. The above

results are useful in analyzing such systems.



5.2.4 The Circular Normal Distribution

In the special case of circular symmetry we have

o =0 =0 (5. 2-15)

and the elliptic-normal distribution of Eq. (5.2-5) reduces to the circular-normal distribution

2
Flp) = 2:02 exp l —25;—2-} {5.2-16)

where (using the terminology of Korn and Korn5'4‘) the parameter ¢ is called the dispersion.

The root-mean-square {rms) radius of this distribution is from Eqs, (5, 2-10) and (5, 2-15)

VoD - oNF (5.2-17)

The rms width of the sunshape appropriate for a clear day in New Mexico is near 3.5 x 10_3.

When the root-mean-square radii of the pillbox and the circular-normal distributions are

equated, we get

oc=af2 . (5,2-18)

The circular-normal distribution with dispersion given by Eq. (5.2-18) is designated as the
circular-normal approximation "associated" with the pillbox distribution of disk radius a. This
associated approximation is sometimes useful in convolution calculations as will be illustrated

later in some examples involving the Central Limit Theorem.

The probability that p < a for the circular normal distribution of Eq. (5.2-18) is

) | a2
Plp < a) = 271[ pFlp)de = 1~ exp t- —-—-5‘ (5.2-19)
o

A useful form of this result is obtained when the radius a is expressed as a multiple of o

a = no (5. 2-20)

which gives

2
P(p<a)=1-expl-%—‘. (5.2-21)
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Now consider a circular-normal effective sunghape of dispersion o, The fraction, f,
of reflected power that falls within a cone of radius a is given by P = f. Note that the "radius
of the cone' as used here is the radius p in a reference plane such as the r - s plane of Fig-

ure 5-2. Because of the usefulness of the result, we rewrite Eq. (5,2-21} in terms of f= P,

2
£=1- exp -ﬂz—g (5.2-22)

Solving this for n2 gives
2
n =-2In{l-10) . (5.2-23)

As an example of these results, suppose that a circular-normal effective sunshape hasg
dispersion ¢ . What ig the radius, a, of the reflected cone that contains 90% of the reflected
power? Setting £f=0.9 in Eg, (5.2-23) gives 1 = 2.15 from which Eq, (5, 2-20) gives
a = 2,15¢ . Therefore, 90% of the reflected power is contained in a cone of radius equal to

2. 15 dispersions of the circular-normal effective sunshape.

5.2,56 The Sunshape

A distribution that plays a central role in the Helios model is the sunshape. It describes
the angular distribution of incoming sunrays with respect to the central ray from the sun., Al-
though this distribution does not describe errors such as sun-tracking errors or surface-glope
errors, it does represent a stochastic process, the position of origin of photons on the solar disk.
The sunshape is convolved with the error cone in a reflected-ray reference plane to obtain the
effective sunshape. The purpose of this subsection is to show a typical measured sunshape and

discuss briefly some of its properties.

Figures 5-3a and 5-3b show a sunshape S versus p in milliradians (since p = tanf = J)
by the solid curve with squares on it. The guantity 2ppSdp gives the fraction of the solar radiation
indp about p. The squares represent measurements by the Lawrence Berkeley Laboratory
Circumsolar Telescope taken in Albuquerque, NM on August 7, 1976 at 11.72-h solar time.

Part {(a) of the figure has a linear ordinate whereas that of part (b) is logarithmic in order to better

resolve differences at small values of S,

A treatment of how the sunshape varies with atmospheric conditions is given in Section 6, 4.
This sunshape is used in a convolution example later in this chapter where Figure 5-14 shows

the distribution in three dimensions.



(a)

(b)

10"
4.0

Figure 5-3. A Measured Sunshape (solid curve), Pillbox (dotted),
and Circular Normal (dashed) With Mean-Square Radii
Equal to That of the Measured Sunshape. The squares
represent measurements of the LBL Circumsolar
Telescope
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The mean-square radius of the sunshape is calculated by

0.01
2 3 -6
™y = 29 S{p) p dp = B.76 x 10 (5. 2-243)
0
from which results
2 -3
(™) = 2,96 x 10 " =~ 2,96 mrad . (5. 2-24b)

We terminated the integration in this example at 10 mrad because that represents the maximum p
for which the sunshape is plotted in IMigure 5-3; also in some concentrator applications the radi-
ation at larger values of p would not strike the receiver. The Lawrence Berkeley Laboratory
(LBL) measurements extend out fo nearly 50 mrad, however, and it is arbitrary where one cuts
off the sunshape except for some changes in numerical complexity in convolving sunshapes with

error cones.

By comparing Eqs. (5.2-4) and (5. 2-24b) we obtain a pillbox with a root-mean-square
radius equal to that of S at a = 4,19 mrad, This pillbox distribution is shown in Figure 5-3

by the dotted rectangles.

By comparing Eqgs. (5,2-17) and (5. 2-24b) we obtain the circular-normal approximation
associated with the sunshape at a digpersion of ¢ = 2.09 mrad. This distribution is shown for

comparison purposes by the dashed curves in Figure 5-3.

5.2.6 The General Two-Dimensional Distribution

For use in this subsection we denote a general distribution in the r-s plane by G(r, s).

As mentioned earlier, this is a probability-density function normalized so that

j fG(r, s)dr ds =1, (5. 2-25)

Ir=-® g=-—c

The mean-square width of this distributicn in the r direction (mean-square value of r) is de-

fined by
2 2
{r7) = f f r Glr, s)drds . (5.2-26)
Z-m S=-w

The mean-square width in the s direction is defined in the same way with 32 replacing r

The root-mean-square widths are the square roots of these quantities.



The "mean-square radius' of the distribution is given by

(0% = f f pZG(r, s) dr ds = (r2) + (s (5.2-27)

r=-w g=~=

where we have used Egs. (b.2-1) and (5, 2-26) as applied to both r and s. Note that the result

cbtained earlier in Eq. (5.2-10) for the elliptic-normal distribution is a special case of this.

If the distribution G has circular symmetry, then the mean-square values of the two

rectangular coordinates r and s are equal
ity = st . (5.2-28)

In the case, the root-mean-square radius of the distribution G (root-mean-square value of the

polar radius p) is related to the root-mean-square values of the rectangular coordinates r and s

by

J(p’?) =Nz ¢<r2> = 427 \Es—?ﬁ (5. 2-29)

These results are useful when investigating line-focus systems where the desired distribution is
often one-dimensional and is obtained by taking lateral slices across the two-dimensional distri-

bution and integrating out the variable along the slices.

5.3 Convolution of Two-Dimensional Distributions

Suppose there are two independent distributions of surface errors such as the slope errors
and reflectance errors of Section 5. 1. If each direction in a distribution, F, of slope errors is
subject to a distribution, G, of reflectance errors, what is the resultant distribution H that
describes the combination of these effects? There are many ways the arguments of ¥ and G

add up to give a point (r, s}). Combining these by integration gives

Hir, s) dr ds = dr ds f f Flr-n, s-¢) Gln, £)dn d (56.3-1)

or the two-dimensional convolution integral

H(r, s) = f f Flr-mn s8-§&) Gy, £)dndg = F*G . (5.3-2)
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The manner in which the mean-square values of the rectangular coordinates add under
convolution is derived in Appendix B. In the important special case where either one or hoth of
the averages (r)F or (r)G is zero, the mean-square value of r with respect to the distri-

bution F * G is
2 ,. 2 2 .
= + -
(P e = 0 T, (5.3-3)
If either one or both of the averages (S)F or (S)G is zero, the mean-square value of s with

respect to the digtribution F * G is

<sz> = <82>F+<52>G . (5. 3-4)

PG

5.3.1 Convolution of Circular-Symmetric Digtribution

When a distribution F(r, s) has circular symmetry about the origin, the mean values of
both r and s are zZero with respect to this distribution. Therefore, when F is convolved with
any other distribution G Egs. (5.3-3) and (5. 3-4) apply. Now using these results together with
Eq. (5.2-1) leads to

2 2 2
P hpug ~ P Tl g - (5. 3-5)

Additional details of this development are given in Appendix B.

If both ' and G have circular symmeiry, then the convolution F * G also has circular

symmetry.

5.3.2 Convolution of Elliptic-Normal Distributions

When two elliptic-normal distributions are convolved, the result is also elliptic normal.
Thig is a very useful result for the analytical convolution of the various error distributions. The

results of this convolution are summarized here for convenience, but the details of the proof are

relegated to Appendix C,

Suppose that the two elliptic-normal disiributions to be convolved are

Plu, v) = 1 21 .,"1_2.. + ,.VE (5. 3-8a)
* YV T %o P)T 2 T3 2 .
v o, o,



and

Glx, ) = —1 _lﬁﬁ’_z 5. 3-6b
%Y 7 950 ¢ SFP 2|27 (5. )
Xy Ty cry

where the u - v and x - y systems are related to each other by a rotation as shown in Figure 5-4,
It is convenient to picture an elliptic~normal distribution by the confour where the argument of the
exponential term is equal to -1/2 because the axis intercepts of this curve are equal to the corre-
sponding standard deviations. A portion of this elliptical contour is shown for F by the dashed

curve and for G by the golid curve in Figure 5-4.

v
av \q\y ’11

-
A
A}
-
>

Figure 5-4. Elliptic-Normal Distributions
F and G of Eq. {5.3-6)

The resultant distribution H obtained by convolving F with G is

1/2
o1 D+1-A-B 1 2 2
H(x, y) = Gy ( ) ) exp { ) [ax + 2kxy + by j” . {(5.3-7)
Xy
where
e = 255 (5. 3-8a)
Dg
X
C
k = ——— ‘ {5, 3-8b}
D()'XGy
p =2 -2A (5.3-8c)
Da,
¥y
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and

A=1+e +g° (5. 3-98)
B=1+ fz + h2 (5. 3-9h) .
C = ef - gh (5. 3-9¢)
D= AB - C° (5.3-94)
and finally
iz
e = -2 cos 2] (5. 3-10a)
0[1
o
£ = ;51 sin 8 (5. 3-10b)
1
a
g =% sing (5. 310c)
UV
a
h = EX cos @ . (5. 3-104d)
v

The principal axes of the equal probability-density contours (ellipses) are given by the eigenvectors

of the matrix

a k
M = (5.3-11)

where a, k, b are given in Eq, (5. 3-8), The standard deviations o, associated with the directions

of these eigenvectors are related to the corresponding eigenvalues )‘i by

. = , i=1,2 . (5.3-12)
i )‘i

Analytically, the eigenvalues are

; 5 1/2
1)p-B,D-A, |/[D-B _D-aA} [z (5. 3-13) -




-t

in which one eigenvalue results from the plus sign in front of the bracketed term, and the other

eigenvalue from the negative gign., The angle n between the x-axis and the eigenvector {principal

axis}) t1 corresponding to Al is
Al -a
n = arctan ! (5.3-14)

The resultant elliptic-normal distribution is shown in Figure 5~5.

t, y

Figure 5-5. The exp (-1/2) Contour of H
in its Principal-Axis System

ty =t

In the special case where 8 = 0, the results simplify to give n = 0 and

02 = 02 + 02 (5, 3-15a)
1 u x
2 2 2

= + . 5.3-15b

Oy = 0, oy ( )

Alsoif 8 = §/2 , the result can be written with 8 = 0 if we interchange the roles of the cu

and crV to get

2 2 2
Oy =0, T Oy (5. 3-162)
2 2 2

Ty = Oy T Oy (5. 3-16b)

5.3.3 Convolution of Circular-Normal Distributions

Since the circular-normal distribution is a special case of the elliptic-normal distri-
bution, we can use the results of the previous section by changing the notation and simplifying the

regults. Let ¢ be the dispersion of one of the distributions to be convolved and y the dispersion
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of the other distribution. In order to use the results of the previous section, let

€E=0_=20 (5.3~17)

and
y=a_ =0, (5.3-18)

Because of the circular symmetry, the value of 8§ (Figure 5-4) between principal directions of
the two distributions is arbitrary. We therefore, set 89 = 0 and use the results of Eq. (5. 3-15).

First, note that
02 = 'y2 + €2 = (rz . (5.3-19)

Therefore, the convolved distribution is also circular normal. We designate its dispersion by

o and use Eq. (5.2-10) together with Eq, (5. 3-15) to get the mean-square radius
2 2 2
P =206 +e) . (5. 3-20)

Finally, using Eqg. (5.2-17) to relate the mean-square radius of a circular-normal distribution to

its dispersion, gives

02 = 'yz + 52 (5.3~21)

5.3.4 A Heliosgtat-Specification Example

We now use an example to illustrate some uses of the concepts developed above. Suppose
that the response function of an error-free heliostat when convolved with the sunshape and pro-
jected on the target grid gives a flux-density pattern corresponding approximately to a circular-
normal distribution of dispersion ¥ . (The response-function of a heliostat is its ideal response
[no errors] to a collimated incident beam.) Now asgsume that a fraction, f, of the reflected power
would fall within a radius a of this cone. Suppose a requirement is made so that when errors
are included the average reflected power falls within a radius b of an enlarged "resultant” cone
where b (or b - a = 5} is specified, How wide can an error cone be and still satisfy this require-

ment?

We assume that the error cone ig circular normal with dispersion ¢ . Therefore, the
resultant cone is also circular normal and we designate its dispersion by o so that Eq. (5. 3-21)
relates the three dispersions. The radius, a , is relatedto v by a =1Y and the radius b is
relatedto ¢ by b =nc where 7 is in turn related to the fraction, f by Eq. (5.2-23), Now
multiply Eq. (5. 3-21) by 172 and substitute these quantities to get

b2 = a2 + 77262 (5. 3-22)

.



or

2_b2—az_ b2»32 _ _b6{(2a +6) , (5. 3-23)
€ - 2 -2In{l-8 -2In(l-D )

where we have used Eq. (5.2-23) and the definition 6 = b -~ a. This shows that for a given
value of 8, ¢ increases with the conical radius, a . For example, if 8 = 1 mrad, a = 3 mrad,
and f = 0,9 this gives ¢ = 1,23 mrad. But if a = 10 mrad for the same values of 6 and f,

Eq. {5.3-24) gives ¢ = 2,14 mrad.

5.3.5 Numerical Convolution of Two-Dimensional Distributions

The numerical convolution of two-dimensional distributions is a matter of evaluating the
double integral of Eq. (5, 3-2}. Fourier transform methods are useful in performing convelutions
because the operation reduces to multiplication in the transform space. In order to do this oper-
ation numerically, it is convenient to convert the continuous distribution functions to a series of
discrete data samples and to do numerical operations on these samples. Since we use the finite
Fourier transform to convolye the resulting data samples, it is expedieni to use the fast Fourier
transform. The use of the fast Fourier transform to compute convolution integrals is discussed

6

3. . . ) :
by Cooley et al, The fast Fourier transform routine FOURT used in HELIOS is taken from the

Sandia Numerical Subroutine Library.5

.
5.6,5.8,5.9

Since the theory of the Fourier transform is amply described elsewhere,
the routine we are using is described in Reference 5,7, we will simply illustrate the use of the
two-dimensional fast Fourier transform on an example in this section and relegaie a description

of numerical procedures to Section 7, 3,

In this example we show the results of convolving the distribution of two variables using

a fast Fourier transform routine. One of the functions is the rectangular pillbox

1 1
_ I
1ab lxi < a and lv| <b
F(x, y) = . (5.3-24)
a |, Ix} > a or iyf > b
and the other one is
2
g (tl)z. t2 F ! l |
-l = ln(—-—),,t;‘(c and Jt, | < d
at,, t) - {6 ed ¢ d 1 2 . (5.3-25)
1772
0 ,ltljzc or itzjzd
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This equation is written in terms of the rectangular coordinates t1 and t2 with the understanding

that the tl - t2 system is rotated by an angle 6 with respect to the x - y system., The angle 8

is measured from the x-axis to the tl - axis.

A plot of Eq. (b.3-24) with a =3, b= 1, and g = 0 is shown in Figure 5-6,

AR
z

VR

Figure 5-6. A Plot of Eq. (5.3-24) With a= 3, b= 1, and
g =0, (f is the angle between the x-axis and

the t] ~axis)

A plot of Eq. (5, 3-25) is shown in Figure 5-~7. The parameters used for this plot are
c =5, d= 2, and the angle 8 between the x-axis and the tl-axis is 60°, The tl - t2 axes are
called the principal axes (or principal directions) of this distribution because of its symmetry

about them.

DR .0 Q.‘iﬁa

AT Y

Figure 5-7, A Plot of £q, (5.3-25) Withc =5, d =2,
and 9 = 60°, (@ is the angle between the
x-axis and the tl—axis.)

-



These functions are normalized to unit volume in order to properly simulate two-

dimensional probability density functions, The convolution of these distributions

i

H=F*G (5, 3-28)

is shown graphically in Figure 5-8.

L W+ R .3

T

W

Figure 5-8, A Plotof I =F * G

This convolution was calculated numerically using subroutine CONV of program HELIOS,
The essential part of the calculation is done within this routine by the fast Fourier transform
routine FOURT which is described in Reference 5.7. More details on the ase of FOURT to calcu-

late two-dimensional convolutions are given in Section 7. 3.

5.3,8 The Central-Limit Theorem

As more and more distributions are convolved together (two-dimensional convolution is
defined by Eq. (5. 3-2), the resultant distribution tends toward a normal distribution. This is a
result of the Central Limit Theorem, Rather than go through an extended discussion, we refer
the reader to the literature (see Section 11. 3 of Papoulis). 5.9 In this section we illustrate some

consequences of the Central Limit Theorem that are relevant to applications of the Helios model.

As our first example, consider the distribution G of Eq. (5.3-25). A plot of this with

¢=3,d= 1.3, andg = 0 (6 is the angle between the x-axis and the t, - axis) is shown in Figure

1
2-9, The mean-square widths of the distribution G along its principal axes are

2 2 2
-;'tl} :[ x Gix, vidxdy = (5.,3-27)

Ull(‘:
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and
2
2 2
{ty) :[/y Glx, y)dxdy = d? . (5.3-28)

For the parameters of the distribution used in this example (¢ = 3, d = 1.5, 8 = 0), we get

{<x2> =4(t?> =L - 1,34 (5. 3-29)
N5 .

and

‘I 3 3 d
¥y =¢t> = —— = 0,87 . {5.3-30)
\2 =

[
NN

N

. e aah oaas

[N

Figure 5-9, A Plot of G in Eq, (5.3-25) With ¢ = 3
d= 1.5, and g = 0°

)

Comparing the results of Eqs. (5, 3~29) and (5. 3-30) with Eqs. (5.2-8b) and (5, 2-9), we get
o= 1, 34 and oy = 0,67 as the standard deviations of an elliptic-normal distribution with the same
mean-square widths along its principal axes. A plot of the elliptic-normal distribution is shown
in Figure 5-10. The elliptic-normal distribution that has the same principal axes as another
distribution and has the same root-mean-square widths along these principal axes shall hereafter
be designated as the elliptic-normal approximation "associated" with the other distribution. The

associated elliptic-normal approximation is often useful in convolution calculations.

In order to indicate more clearly how distribution G of Figure 5-9 differs from its
associated circular-normal approximation of Figure §-10, we show a plot of slices across the
center of both of these distributions in Figure 5-11. The slices are in the x and y directions.
The solid curves correspond to G of Figure 5-9 and the dashed curves correspond to its asso-

ciated elliptic-normal approximation of Figure 5-10,
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Figure 5-10, The Elliptic-Normal Approxi- Figure 5-11. Slices in the x and y Directions
mation Associated With the Across the Centers of the Dis-
Digtribution of Figure 5-9 tributions of Figure 5-9 (solid
curves) and Figure 5-10 (dashed
curves)

When the distribution G of Figure 5-9 is convolved with itself, the result shown in Fig-

ure 5-12 is obtained.

Figure 5-12. The Result of Convolving Distribution G
(of Figure 5-9) With Itself

The mean-square widths of the convolution G * G are equal to twice those of the distri-
bution C. The associated elliptic-normal distribution with mean-square widths matching that of
G * G, looks much the same as the plot of Figure 5-12. Rather than show a separate three-
dimensional plot, we show a graph of slices in both the x and the y directions across the center
of both distributions in Figure 5-13, The solid curves represent the convolution G *# G whereas

the dashed curves represent its associated elliptic-normal approximation.

Note that although the fistribution G differs significantly from ifs associated elliptic
normal as shown in Figure 5-11, the convolution G * G is better represented by its associated

elliptic normal as seen in Figure 5-13,
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Figure 5-13. Slices Across the Center of the Convolution G * G
{solid curves) and Across the Center of the Agso-
ciated Elliptic-Normal Approximation {dashed
curves)

As another illustration of the Central Limit Theorem, we convolve the sunshape with an
elliptic-normal error cone to obtain the effective sunshape. This is an especially useful example
because the sunshape is sometimes approximated by its associated circular-normal distribution
to expedite convolving it with the error cone. We illustrate this convolution with two error cones,

one that is wider and one that is narrower than the sunshape.

We now illustrate the Central Limit Theorem using the measured sunshape previously de-
scribed in Section 5. 2,5 and graphed in Figure 5-3. This sunshape (for p £ 10 mrad} has a root-
mean-square radius equal to 2. 86 mrad and its assoclated circular-normal approximation (equal
mean-square radius) has a dispersion of o = 2,09 mrad, A three-dimensicnal plot of this sunshape

is shown in Figure 5-14,
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Figure 5-14, Measured Sunshape
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The circular-normal approximation associated with the sunshape of Figure 5-14 is shown

in Figure 5-15. The difference between the distributions is obvious from the three-dimensional

plots. Figure 5-3 is also useful for cbserving this difference.
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Figure 5-15, Circular-Normal Distribution (g = 2. 09 mrad)
Associated With the Measured Sunshape of
Figure 5-14

Now suppose we convolve this sunshape with an elliptic-normal error cone, F, with

gtandard deviations o, - 4 mrad and O'y = 3 mrad. This error cone is shown in Figure 5-186.
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Figure 5-16. Elliptic-Normal Error Cone
With gy = 4 mrad and o, =
¥
3 mrad
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The convolution of the sunshape with this error cone gives the effective sunshape shown
in Figure 5-~17, For convenience in comparing this effective sunshape with its associated
elliptic-normal approximation they are plotted together in Figure 5-18, The solid curves show
slices across the center of the effective sunshape in the % and y directions. The dashed curves
show the gsame sglices across the associated elliptic normal distribution., The elliptic-normal

approximation to the effective sunshape has standard deviations,

1/2
o = [(2.09 mrad)? + (4.0 mrad)z] = 4.51 mrad (5.3-31a)
and

1/2
[(2.09 m:rE:Ld)2 + (3.0 mrad)z} = 3.66 mrad . {5.3-31b)

G
1

These were obtained by using results of Section 5. 3.2 to analytically convolve the elliptic~normal

error cone with the elliptic normal approximation associated with the sunshape,
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Figure 5-17. The Effective Sunshape Obtained
by Convolving the Sunshape of
Figure 5-14 With the Error Cone
of Figure 5-16 .
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Figure 5-18, Slices Across the Center of the Effective
Sunshape (solid curves) in the x and ¥
Directions and Across Its Associated
Elliptic-Normal Approximation (dashed
curves)

In this illustration the root-mean-square widths of the error cone along both principal
axes are larger than the corresponding root-mean-square widths of the sunshape. The resulting
effective sunshape is in good agreement with its associated circular-normal approximation. In
the next example we illustrate the reverse situation in which the error cone is narrower than the

sunshape.

Consider the elliptic-normal error-cone, F, shown in Figure 5-19 where o, 1 mrad

and Gy = 0.5 mrad.

Figure 5-18, Elliptic-Normal Error Cone With ¢, = 1.0 mrad
and gy = 0.3 mrad
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Convolving this error cone with the sunshape of Figure 5-14 gives the effective sunshape,

H, shown in Figure 5-20.

g/

Figure 5-20. The Effective Sunshape Resulting
From Convolving the Sunshape of
Figure 5-14 With the Error Cone
of Figure 5-18¢

In order to compare this effective sunshape with its associated elliptic-normal approxi-
mation, we show curves in Figure 5-21 thal represent slices across the center of both distribu-
tions in both the x and y directions. The solid curves correspond to the effective sunshape of

Figure 5-20 and the dashed curves represent its associated elliptic-normal approximation in which

1/2
o = [(2. 09 mrad)? -+ (1.0 mrad)z] = 2.32 mrad (5.3-32a)

and

1/2

a = [(2.09 mrad)2 + (0. 5 mrad)z] - 2,15 mrad . (5. 3-32b)

In this example where the error cone is narrower along both principal axes than is the
sunshape, the resulting effective sunshape is not well approximated by its associated elliptic

normal.
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Figure 5-21, Slices Across the Center of the Effective
Sunshape of Figure 5-20 (solid curves) in
the x and y Directions and Correspond-
ing Slices of its Associated Elliptic-
Normal Approximation (dashed curves)

5.4 Mapping of Distributions

Farlier in the chapter we described a technique for specifying the optical quality of a re-
flecting concentrator in terms of error distributions. We defined a reference-plane method for
use in representing these distributions and discussed convolution of two-dimensional distributions.
In order to make use of thegse concepts in the Helios model, it is frequently necessary to map a
distribution from one reference system to another, In this section we develop some of the most

common mappings that occur in the analysis of solar reflectors.,

It is convenient to specify surface glope errors in a system that is defined with respect to
the concentrator, but these errors must be interpreted in a system that is defined with respect to
the reflected rays in order to determine their effect on reflected-beam quality. This involves a
mapping of error distributions from a concentrator reference system to a reflected-ray reference
system, Sun-tracking errors are naturally specified using separate angular distributions for
errors about each tracking axis. These errors must be mapped into a concentrator reference
system, then further mapped into the reflected-ray reference system in order to determine their

effect on the quality of the reflected beam,

5.4,1  Mapping From a Concentrator Reference Plane to a Reflected-Ray Reference Plane

Figure 5-22 shows a small increment of the reflector reference surface at the origin of
-~

a rectangular coordinate system x-y-z. The reference-surface unit normal No is along the

-

z-axis. A ray of light incident on this area along unit vector A at an angle of incidence u would
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reflect along ]% . The coordinate system is oriented so that the plane of incidence (plane con-
taining A, iTo’ Bro) coincides with the y-z plane. This is the sun-concentrator coordinate system
described in Chapter 3. It is a convenient system for use in describing the reflection of light
rays becimse the tangential fan lies in a coordinate plane (the y-z plane), When the actual surface
normal N differs from ];To (nonzero slope error), what happens to the reflected ray };» ? In
addition, what is the corresponding distribution of reflected rays for a given distribution of

slope errors? To facilitate answering these questions we have defined two reference planes.

ﬁThe P-Q plane at unit digtance from the origin is perpendicular o the reference surface normal
N and has its P axis parallel to the x axis, The U-V plane at unit distance from the origin,

is perpendicular to the reflected reference ray Bo with its U axis parallel to the x-axis ,

P-Q
PLANE

Figure 5-22, The Concentrator Reference Plane
(P-Q) and the Reflected-Ray Refer-
ence Plane (U-V) Showing the
exp (-1/2) Contour of an Elliptic-
Normal Slope-Error Distribution
in Both Planesg. In the P-Q plane
(Fig. 5-23) 9 = 57.9°, 01 = L. 29
mrad, and g9 = 0,92 mrad. In the
U-V plane (Fig, 5-24) = 74.8°,
n = 2,45 mrad, and g = 1. 36 mrad

We designate a distribution of slope errors in the P-Q plane by G(P, Q) and wish to
determine the corresponding distribution H(U, V) of reflected rays in the U-V plane, assuming
that the direction of the incoming ray ;& is held fixed. This mapping from the P-Q plane fo
the U-V plane is determined by the law of specular reflection and by the geometry of Figure 5-22.

The basgisg for this transformation is

!Gdsll = IHds2! (5.4-1)



S

where ds, is the area swept out in the U-V plane by the reflected ray B whenever the surface

2
normal N sweeps out the area ds, in the P-Q plane. An equivalent but more convenient form

of this expression is

ds ’
_ 11 3(P, Q) -
H = G‘——dszi = G ————B(U, V) R (5.4-2)
[

where we have used the Jacobian of the variable P and @ with respectto U and V in the last

term of the equation.

ﬂThe unit vector AN {extended) intercepts the P-Q plane at the point (P, Q) and the unit
vector B (extended) intercepts the U-V plane at the point {U,V). The unit vectors ANO and ]230
point to the origins of the P-Q and TU-V planes, respectively, as mentioned earlier. Irom the
geomefr’y ?f Figure 5-22, the column vector consisting of the x, y, z components of the differ-

ence B - Bo to first order in the small quantities U and V is

u
B - Bo = V cos u |, {5.4-3)
-V sin u

where 5 is the angle of incidence of incoming ray A with respect to the reference surface
normal NO . Next we use Eq, (4,1-5) to express this same difference but in terms of the co-

ordinates P and Q , To first order in the small quantities P and Q, the result is

0 0 2P 0 2P cos u
B - BO = 0 4] 2Q - gin u | 2Q cos p . (5, 4-4)
2P 2Q 0 COS U -2Q sin u

Fquating corresponding components in the two preceeding equations gives

U = 2P cos u (5.4-5a)
and
Vo= 2Q . (5.4-5b)

From this result we evaluate the Jacobian needed in Eq. (5.4-2) to get

olP, Q) 1
3L, V) 4cosu (5. 4-6)

and finally

U v

G 2 cos > 3

H(U, V) = K . (5.4-7)
4 cos i
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This is a useful result for mapping a distribution G from the concentrator reference

plane P-Q to obtain the corresponding distribution H in the reflected-ray reference plane U-V.

5.4,2 Mapping Elliptic-Normal Distributions From a Concentrator Reference Plane
to a Reflected-Ray Reference Plane

In this section we apply the results of the preceeding section to map a general elliptic-
normal distribution from the P-Q plane of Figure 5-22 to the J-V plane. This is especially
useful because a common way to specify slope errors is to use an elliptic-normal distribution or

its special case, the circular-normal distribution.

We specify an elliptic-normal distribution in the FP-Q plane by writing an equation for

it in terms of itg principal-axis coordinates t. and t2 and an angle of rotation 8. The angle 8

. 1
is measured from the P axis to the tl axis, In its principal axis system, the elliptic-normal
distribution is
2
1 R
- - = = -
F(tl’ t2) Sro 0. °%P 5135t 3 (5,4-8)
1”2 o, 02

where oy and o, are standard deviations along the tl and t, axes, respectively. PFigure 5-22

shows the exp (-1/2) contour for F of Eq. (5. 4-8} in the P-Q plane for the case where the

axis t1 ig along the doited line, o

axis t2 is perpendicualr fo t1 s

ence planes of Figure 5-22 is 0,001 in each direction, When the slope error [ between N0 and

1.29 mrad, o, = 0.92 mrad, and 8 = 57.9°. Principal

17 2
but it is not drawn in the figure, The grid spacing in the refer-

N is a few milliradians or less, the radial distance from the origin in the P-Q plane to the point

(P, Q) that identifies N 1is approximately equal to the angle B in radians. This occurs because
3
p=tanf =B +B8/3 +... {5, 4-9)

and B is a good approximation to tan 8 when B << 1. We, therefore, sometimes use the
terminology milliradians for p as a convenient means of designating intervals of 0,001 in a

reference plane.

Figure 5-23 shows the orientation of the tl - t2 system in the P-Q plane. A portion

of the exp (-1/2) contour of an elliptic-normal distribution with standard deviations % and 0,

is also shown.
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Figure 5-23.

The P-@ variables are related to the principal-axis coordinates ¢t

t, = Pcosg + Q@ siné

t, =~Psinf + Q@ cos 8

P

A Portion of the exp (-1/2) Contour
of an Elliptic~-Normal Distribution
With Standard Deviations o3 and o g
Along Principal Axes §q1 and tg,
Respectively

{5.4-10a})

(5. 4-10b)

We now designate the quadratic form ingide the brackets of the exponential of Eq. (5.4-8) by Z,

use the system of Eqgs, (5,4-10) to eliminate t. and t

1 2’

the P and Q to finally get a degcription of 72 in the U-V plane.

where

Z = aU2 + 2kUV + bV2

2

1 cc::s2 2] sin29
a = +
4 2 2 2
cos [ 0-1 0'2
_sinfcosp |1 1
k= 22T AP0 2 L L
4 cos u 2 0_2
1 2
. 2
b -1 [8in 6 | cos @ .
4 2 2
o %2

then use the system (5.4-5) to eliminate

(5.4-11)

(5.4-12a)

(5.4-12b}

{5.4-12¢)

The principal axes w., - w, of this quadratic form Z inthe U-V plane are along the eigen-

1 2

vectors of the matrix
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Al o= . {5.4-13)

2
Z:sz*lw=w—l+-——* {b.4-14)
11 2 2 - .
™ 2

where )\1 and )Lz are cigenvalues of M corresponding to the eigenvectors along the axes Wy

and Wy s respectively, The standard deviations my and N, are associated with the axes Wy
and Wo o respectively, in the U~V plane, The eigenvalues are related to the standard deviations
bv
A, = (5. 4-152)
17 2 .
m
and
Ao = L . (5, 4-15b}
2 2
M
5.10

The theory of quadratic forms used in this development is given in Chapter 12 of Noble, “*

Figure 5-24 shows the Wi T Wy system in the U-V plane, The angle 8 specifies the

orientation of the Wy axis with respect to the U auis,

W Vv
4
\
\
\
\ -
A P R ,,” wl
Y Nk
\\ ’Bﬂ/ B
T A ]

Figure 5-24, Principal Axes wy - wg in the U-V
Plane Showing Part of the exp (-1/2)
Contour
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The eigenvalues of M are

A= —2]"* [a-&-b + (a—b)2 + 4k2 J ) {5.4-15)

where )\1 corresponds to one of the signs in front of the square root and )\2 to the other aign.

The angle 3 is given by

>‘1 - a
£ = arctan 5 {5.4-17)

Figure 5-22 shows an example of this mapping. As mentioned earlier, the ellipse in the
P-Q plane is the exp {(~1/2) contour of an elliptic-normal distribution with 6 = 57.9°, o=
1. 29 mrad, and Oy = 0. 92 mrad. The dotted line indicates the direction of the t1 axig in the
P-Q plane. The corresponding distribution in the U-V plane is specified by £ = 74,8°, n =
2,45 mrad, and g = 1, 36 mrad, The direction of the Wy axis is indicated by the dotted line,
The grid spacing in Figure 5-22 is 1 mrad. The exp (-1/2) contours were drawn by computer

using DISSPLA graphics. > '

In the special case, # = 0, the quadratic form Z of Eq. {5.4-11) ig already in its
principal axis system so 3 = 0 and from Eq. (5.4-12k) k = 0. Comparing Eq. (5,4-11) with
Eq. (5.4-14) we get Al = g and AZ = b, Combining this with Eqs. (5.4~12) and (5. 4-15), we

obtain

, = 20, CcOsS i (b.4-18a)

Mg = 204 « (5. 4-18b}

When (rl and 02 are equal, the distribution in the P-Q plane becomes circular normal

and the value selected for @ is arbitrary. We, therefore, set 8 = 0 and use the result above

with o, =0, =0 to get

1 2
711 = 20 cos u (5, 4-19a)
Ny = 20 . (5.4-19h)

Therefore, when a circular-normal distribution is mapped from the P-@ plane to the U-V plane,

it becomes elliptic normal except at normal incidence {u = 0). For example, at u = 60°, a circular-

normal distribution of dispersion ¢ = 1l mrad in the P-Q plane corresponds to an elliptic-normal
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distribution in the U-V plane with a standard deviation M 1 mrad in the U direction, and a

standard deviation Ny = 2 mrad in the V direction.

It is instructive to calculate the mean-square radius of the elliptic-normal distribution
in the U-V plane that corresponds to an arbitrary elliptic-normal disiribution in the P~Q plane.

Applying Eq. (5. 2-10) to an elliptic-normal distribution in the U-V plane gives
2 2 2
(% =y +n, . (5. 4-20)

Now using Eqgs. (5.4-15) gives

_|_
A A

<p2> = ;}— + AL = _)\A_z . (5.4-21)
1 2 172
From the theory of matrices
TrM = Xy + Ay (5.4-22)
and .
Det M = )lez . {5, 4-23)

Thege results enable us to express the mean-square radius in terms of the trace and determinant

of the matrix, M (Eq. (5.4-13)), to get

TrM _ a+b (5. 4-24)

<p2> = =
Det M ab - k2

where a, b, k are defined in Eqs. (5,4-12). FEliminating these parameters and simplifying the

result gives

2

(102) = 401 |:sin2 g + coszu coszs] + 402 [cos2 g + coszu sin2 9] . (5. 4-25)

In the special case where 8 = 0, this reduces fo
(pz) = 40’? cosz,u + 40'2 (5. 4-286)
which agrees with the result obtained from Eqs. (5.4-18) and (5, 4-20).
Another special case of interest is when o, = Gy = 0 Here Eg. (5.4-25) reduces to

1

<p2> = 402 (1+ cos2u) . (5.4-27)



from which the root-mean-square width of a reflected-ray distribution corresponding to a circular-

normal slope-error distribution of dispersion ¢ is

J(pz) = 2¢ 41+c052u . {5.4-28)

If we select a circular-normal distribution in the U-V plane that has this same root-mean~square

radius, its dispersion 0 is related to the P-Q plane dispersion ¢ by using Eq. {5.2-1T) to get

2
o = 20 4§ HC—;S“ . (5. 4-29)

At normal incidence (u = 0), this gives the well-known result ¢ = 20. At nonnormal incidence

©“#0),0<2g¢. At p = 30°, for example, g = 1.87 5.

5,4.3 Mapping Sun-Tracking Errors to a Concentrator Reference Plane

In order to keep the reflected solar radiation fixed on the receiver as the sun position
varies, a typical heliostat utilizes two axes of rotation. The sun-tracking mechanism has error
tolerances. Our purpose here is to interpret these errors in terms of their effect on the reflected

ceniral ray so that sun-iracking errors can be combined with other kinds of errors for use in the

Helios model,

Figure 5-25 shows a schematic drawing of a heliostat frame that follows the sun by
rotating about the horizontal axis u, and about the vertical axis 7. The heliostat coordinate
gystem hag its origin at the center of the heliostat reference gsurface, its Uy aiild u, axes are
perpendicular to its sides as shown in the figure, and ug is along the normal No to the refer-
ence surface at the origin, Assume that a central ray from the sun is incident on the center of
the heliostat along A . The intersection of the plane of incidence with the heliostat frame is
indicated by the dashed line in the figure. The sun-concentrator system for the center of the
heliostat is indicated by the axes x-y-z.

We designate the angle between the reference-surface normal IQTO and the vertical sun-
tracking axis A by B, and the angle between the x-axis of the sun-concentrator system and the u,
axes of the heliostat system by 8 as indicated in Figure 5-25. Suppose that sun-tracking errors are
specified separately using distribufions about the tracking axes uy and Z. How do we map this

description to the reflector reference plane P-Q? (Figure 5-22 defines this P-Q plane in the

sun-concentrator systems,)
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Figure 5-25, Heliostat System uy - ug - ug;
Sun-Concentrator System x, y, z;
and Sun-Tracking Axes u; and

Z

First consider motion about the ul

the heliostat frame to rock back and forth about its correct alignment on the a,

sun-tracking axis. When sun-tracking errors cause

axis, the sur-
face normal N will deviate from its correct direction No and trace cut a line in the P-Q

reference plane as indicated by the axis t, in Figure 5-26. When the heliostat frame rotates

1

through an angle, o , the position of N in the T-V plane moves a distance tan o along the

axis t1 to give t. = tana.

1

Figure 5-26. Sun-Tracking Errors

in the P-Q Plane

Now consider the rocking motion of the heliostat frame about its vertical tracking axis 7,

This causes the tip of the vector N to move in a circular arc,
from the top as shown in Figure 5-27 where the 7 axis is perpendicular to the page at 0. A sun-

tracking error § causes N to move along an arc that is tangent {o t The value of t2

9*
sponding to § is

t2 = sin 3 tan §.

It is convenient to view this motion

corre-

(5.4-30)



. t2

SINA

Figure 5-27, The Geometry for Rotation About
Sun-Tracking Axis 7 as Viewed
From the Top

We degignate the distribution of sun-tracking errors « about the horizontal axis u by
F(p) where p = tan & and the distribution of sun-tracking errors about the vertical axis 7 by
G(s) where s = tan 6 . The sun-tracking errors o and 0 are measured in radians. The one-
dimensional distributions F and G are normalized to unity when integrated from minus infinity
to plus infinity. If the sun-tracking errors about these two axes are independent of each other,

the corresponding P-Q plane description H becomes

t

1 2
Hity, t) 5 g P G| g (5. 4-31)

where tl and ‘c2 are related to P and Q by a rotation @ as indicated in Figure 5-26. The

factor 1/sin B is needed to preserve the unit normalization of the distribution.

For the important special case of normally distributed sun-tracking errors

—

I}

1 , \2
F(p) T eXp g 5((_}'9_) (5, 4-32)

\im o, P

and

2

oo

G(s) = —L exp y -

5
— . (5.4-33)
\,217 cs (Gs)

The corresponding distribution H is the elliptic-normal distribution

£2 ¢
o Fi(t t)=—1—exp S R (5, 4-34)
1° "2 210 0, l 2 Uz 02 '
1 2
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where
(5.4-35a)

and
(5.4-35b)

q
il

in .
o s B

Note that even when the sun-tracking errors are normally distributed about the tracking axes with
equal standard deviations o_ = O+ this does not lead to a distribution in the P-Q plane with

equal standard deviations because of the sin 8 factor in Eq. (5.4-35b).

These results can be expressed in the P-Q system using a rotation of the coordinate
system through the angle 6 as shown in Figure 5-23. Then the results of the previous section

are applicable to further map the sun-tracking errors to the reflected-ray reference plane

(U-V plane of Figure 5-22}.

5.5 Projecting the Effective Sunshape on the Receiver

The reference surface of the concentrator is divided into an integration mesh and the effec-
tive sunshape from each integration zone is projected onfo the receiver. This result is weighted
according to the zone size and concentrator reflectance for sunlight at the angle of incidence in-
volved, then integrated over the entire reference surface of the concentrator. In this section we

develop a method for evaluating the effective sunshape for use in this projection,

Let AQ of Figure 5-28 be an integration mesh zone on the concentrator-reference gurface
and define the "sun-concentrator” coordinate system x-y-2z to have its origin centered on AQ, its
z-axig along the normal NO to the reference surface at the mesh point, and its y-z plane
coincide with the plane containing the incident central ray from the sun 13: , the reference gsurface
rlormal EA\TO . and the reflected central-reference ray ;30. In the presence of sun-tracking errors,
N  is defined as the nominal direction of the reference-surface normal. The reflected-ray refer-
ence plane (the U-V plane) is perpendicular to the reflected central-reference ray ]_;,O and is at unit
cii\istance from the origin., Let P be a point on the receiver in the surface element AS and let
M be the outward surface normal to A4S, Our objective here is to develop an expressgion for

2
the flux density in W/em™ at P in terms of the effective sunshape E{U, V) and the geometry of

Figure 5-28,

The element of receiver area A4S defines a solid-angle cone with respect to the origin that

intercepts the U-V plane as indicated by AS% The areas AS and (S’ are related by

. 2
L8f = g (M)(E_fzs_@) , (5. 5-1)
CcOs o i



where r is the distance from 0 to P and the angles o« and ¥ are indicated in Figure 5-28,
Since the element AS‘ lies in the IE-V reference plane, its normal is parallel to 11‘30 and makes
an angle o with the reflected ray B. The ratio in the first parenthesis on the right side of

Eg, (5.5-1) corrects for the angular alignments of the two surface elements and the next factor

accounts for their distances from 0.

Figure 5-28. Reflected Ray Reference Plane (U-V) in
the Sun-Concentrator Coordinate System
X-y-2
The power reflected from AQ is padQ cos p where a is the incident solar insolation in
w/ sz, and p is the specular reflectance of AQ for sunlight at an angle of incidence n. The

fraction of this reflected power that strikes AS is EAS’ giving a power contribution of

apEAQAS cos u cos Y . (5.5-2}

2 3
r cos «@

AH = EAS'apAQ cosyu =

The corregponding contribution to the power per unit area (flux density) F at P is AF = AH/AS.

The flux density F at P is obtained by combining contributions received from different elements

of the concentrator surface by integration to get

0 COS i cOS P EQ(U, VidQ
F=a . (5.5-3)

2 3
r cos «

The subscript Q is used to emphasize the fact that the effective sunshape E may change during

integration over the concentrator surface.
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The effective sunshape E is described mathematically in terms of coordinates in the re-
flected-ray reference plane (the U-V plane of Figure 5-28). In order to project the effective
sunshape on a receiver it is necessary to determine the intergection of line OF in Figure 5-28 with
the U-V plane. This provides values of the variables U and V for use in E to evaluate the

integrand of Eq, (5.5-3),

Figure 5-29 shows the geometry of the mesh point C, the receiver point P at coecrdinates
(x, ¥, z), and the reference plane U-V in the sun-concentrator system again in a form that is
convenient for the present calculation., The projection of fhe line OP on the y-z plane is indi-
cated by a dashed line in the direftion of the unit vector C. The angle v between (;‘ and the

reflected central reference ray Bo is given by

v = arctan (y/z) - u . (5.5-4)
A
/Bo A

Z /
v 4
N & e
SF X, :
h- Q .*/ A E
BT A NP A B
/A\ /// Q E

Figure 5-28. The Geometry of Receiver Point P and the
Reflected-Ray Reference Plane (U-V) in
the Sun-Concentrator System

The V coordinate of the intersection of line OP with the U-V plane is

V = tan y (5.5-5)

which can bhe written

%- tan u
V 2 — - . (5.5-6)
1+ytanu
z



From the geometry of Figure 5-29 we can also write

1/2
2
1+V {5.5-T)

U=x
y2+V2

A

It is useful to express the quantities U, V, and p = tan o (o is the angle between Bo and

A ~ ~

B) in terms of the unit vectors B, Bo’ and C, Also from the geometry

__“____“-(;SHC‘)Z (5.5-8)

U_ ’
(B+C)
s
1- (C'BO)
Vi — , (5,5-9)
CoB,
and
- - 2
SRR 1"(B'Bo)
o= NU +V* = - . (5.5-10)
BB

When the effective sunshape has circular symmetry, it becomes a function of the one variable

p and it is not necessary to calculate the quantities U and V {fo evaluate the integrand of Eq. (5. 5-3).
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CHAPTER 6
SOLAR IRRADIATION

8.1 Afmospheric Parameters

At the present time, there are two atmospheric models that are built into HELIOS: the
models for atmospheric refraction and for relative optical airmass. It is possible that future

versions will relax these limitations.

6.1,1 The Refraction Model

Refraction of the visible light from the sun affects its apparent zenith angle. For angles
less than 1, 396 radians (80°), the true zenith angle is € 1.6 mrad greater than the apparent value.
Table 6-1 gives the refraction model used in HELIOS. The data were taken from Allen. 6.1 Tem-

perature and pressure effects are taken into account by multiplying the difference by

P{torr)
760 x {0.962+0.0038 T ("C)}] °

TABLE 6-1

Refraction Data

Apparent Elevation Angle True Elevation Angle
(radians) (radians)”® Difference
J.o0cogo -.010788 «010243
817453 +01u239 007194
034047 029546 0305367
LDEGB13 +JB6386 «003w27
-0 87285 86332 »002874
104728 1022%2 L0062 468
122173 120020 «0062153
.139626 137718 2001910
+1 57080 .155368 L001712
2174533 +172986 +001547
261799 . 260757 .0081042
+ 349 065 «3 48235 020771
436332 35726 «0003b60%
.523593 +523139 »Q0CL90u
.598132 B 97792 »J00 340
+B72865 872827 006238
1.,947198 1,947033 .000165
1,221730 ) 1.221628 0001062
1.39€E263 1.396215 LO0G0Gasd
1.510796 1.570796 000000

"1 atm pressure, 10°C. Data from Reference 6, 1,
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6.1.2 The Relative Optical Airmass Model

Degradation in the solar energy as it propagates through the atmosphere is exponentially
dependent upon the amount of air traversed, This amount is described by the relative optical
airmass, m. Consider a monochromatic energy flux, S)\. In traveling a distance, ds, through the
atmosphere, the energy flux will be attenuated by an amount, dSk: - aXSAp ds , where ak is the
mass attenuation coefficient for wavelength A and where p is the air density. The optical thick-
ness of the atmosphere along a ray path from sea level to the sunis § =_';m akp ds. The optical
thickness in the vertical direction is 60 =J:° a/\p dh where dh is the vertical element of path
length. The relative optical airmass along the path from sea level to the sun is defined by m = 6/60.

If the obgerver is not at sea level or if weather conditions have altered the standard pressure (Po),

the effective relative airmass is given by r_rﬂ?’/PO where P is the air pressure.

Photon attenuation is wavelength dependent. Even though the mass attenuation coefficient
appears in the numerator and denominator of m = 5/60 , the relative optical airmass varies with
wavelength because of variation in the path taken by photons with different wavelengths. Since these
refraction effects are small, the wavelength dependence of m is neglected. In the approximation of
straight-line ray paths dh = ds cos { where [ is the zenith angle for the element of ray path. Then
m = 1/cos ¢ for observers at sea level. Thig is reasonably accurate until the zenith angle ap-
proaches 7/2. Kondratyevﬁ' 2 furnishes data on the variation of m with the apparent zenith
angle of the sun., These data are the present model used in HELIOS, The model is dependent upon
the clear, dry atmosphere assumed by Kondratyev?' 2 The m values resulting from several
atmogpheric models are compared in Figure 6-1. AllenG' 1 gives data for relative optical airmass
variation in addition to his refraction data. His m wvalues agree with the more extensive tables

6.2, .. . : . .
of Kondratyev, indicating their atmospheric models are consistent.

6.2 Sclar Insolation

A data base of the solar energy incident upon the earth's surface is necessary if the energy
collected by any solar collector is to be predicted. The atmosphere itself is the most important
variable that leads to large uncertainty in predictions. ERDA (now DOE) supported a solar-energy
data network extending over the continental US.G' 4 After sufficient data are available, good esgti-
mates should be possible for sunshape and for solar insolation as a function of time-of-day, day-of-

vear, and weather conditions., HELIOS models for sclar insolation are described here.

Scattering and absorption in the atmosphere greatly alter the sun's insolation and shape. The
mogt important processes involved are Rayleigh scattering, Mie scattering, absorption by O3 and
H2O, and slight absorption by 02, CO2, and CH4. The Rayleigh scattering occurs from various
molecules in the air, The Mie scattering occurs in the aerosols (dust, water droplets) present in
the atmosphere. This aerosol scattering and absorption are rather involved phenomena that de-

pend upon the particle density, the distribution of particle size (which varies with altitude), the



complex index of refraction of the particles, and the spectral content of the radiation. Some
aerosols exhibit layering phenomena where separate indices of refraction must be assigned to a
core and to an outer layer. The meteorological terms "visibility" and "meteorological range' are
gometimes used as an indication of particle density after a particle-size distribution is assumed.
Since these effects are sensitive to the wavelength of radiation, they depend upon the extrater-

restrial solar spectrum,
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Figure 6-1, Relative Optical Airmass Variation With Apparent Sclar Zenith Angle
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6. 2.1 Extraterrestrial Irradiation, the Solar Constant

One of the latest determinations of the solar spectrum gives the data in Figure 6-2. The
data are the result of efforts of the Standards Subcommittee of the Solar Radiation Committee of
the Institute of Environmental Sciences. It is appropriate for normal incidence at the earth's
_mean distance {one astronomical unit: R = 149.5 x 106 km) from the sun. The solar constant
is the rate at which solar-radiant energy passes a unit area normal f{o the rays at this distance.
Integration over wavelength in Figure 6-2 gives the value Soo = 1353 +21 W/m2 or 1,940 +0.03
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Figure 6-2, Solar Spectral Irradiance. The extraterrestrial solar
spectral irradiance (Ref, 8, 5), the irradiance after
propagation through one choice of atmosphere, and the
irradiance after further propagation through 1 km of
the atmosphere from elevation 0.62 10 0.72 km

6.2,2 Earth Orbit Effects Upon Insolation

The actual distance, R, between the earth and the sun is approximated by

R 2
o\ _ .. 21 (D + 10) -
(?> ~ 1+ 2e cos [—-—~—-——-—-——-—-365 ] (6.2-1)

where Ro is the mean separation, the orbit eccentricity e = 0.01875, and where D represents

the day of the year (starting with 1 for January 1), Neglecting the earth's atmosphere, the solar



insolation is given by

Ro
S5 = Soo (—-—-) cos € (6. 2-2)

where [ is the angle between the unit normal to the element of area and the rays coming from the

sun.

8,2.3 Models of Atmospheric Loss

Atmospheric effects upon solar insolation have been modeled in a variety of ways. Thomas
and Thekaekarae' 6 have modeled the solar insoclation as a function of airmass traversed for a
large number of combinations of atmospheric parameters describing the content of ozone, water
vapor, and aerosols. Their comparisons with data indicate that atmospheric opacity is less in
the afternoon than in the morning. Their model is cumbersome to use because the detailed
spectral character of the attenuation is treated. The data are more convenient after integration

over wavelengths of interest. Such results have been gathered by Kondratyev, 6.2 Allen, 6.1

Moon, 6.7 and Gatess' 8 for a series of atmospheres,

Kondratyev gives the reduction factor caused by transmission of the solar insolation through

relative optical airmass, m.

$/S_ = 1.041 - 0,160 Jm (0.949 = + 0.051> , (6.2-3)
o]

where P(Po)' is the atmospheric preasure at the observer (sea level) position and m is the
relative optical airmass. This empirical formula includes ozone absorption, Rayleigh molecular
scattering, and corrections for the portion of solar energy absorbed by constant gases (mostly

oxygen)} in the atmospheric model for a clear, dry day.

Vant-Hull has devised analytic functions that represent this factor (S/SO) for the Allen,
Moon, and Gates data. 6.9 The functions fit the data within +0, 5% {5 W/m2). Allen's data are

represented by

Y
S I w+ 2, 72] mP _
s - A=1-0,263 [_——W+5.00 (—P ) s (6.2-4a)
o] o
where
~ w+ 11,53 .
y = 0. 367 I:mé—] . (6. 2-4b)

The variable, w, is the total preciptiable water overhead (in mm).
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The fit to Moon's cloudless atmosphere, appropriate for w = 20 mm, ozone = 2,8 mm,

3
and 300 aerosol particles/cm™ is

S _ _ mP _ mP -
”S*; = M = 0,183 expl: T PO] + 0.715 exp]: TP Po} + 0,102, (6. 2-5)

The Gates data are based upon w = 10 mum, ozone = 3,5 mm, and 200 aerosol particles/cmg.

They also are consistent with a clear day. The analytic representation of these data is

S _ _ _ mP _ __mP _
-S-; =G = 0,135 exp[ upo] + 0.805 exp[ 30335 Po + 0.06, (6.2-6)

Here u is an unknown constant < 0.3 so the first term yields <5 W/m2 for m = 1, All these

models have been incorporated into HELIOS. The default model used is that of Moon. The models

are compared in Figure 6-3.

: P, Pyl
Kondratyev T

w:O ........ .

Allen w= 10

Figure 6~3. The Effect of Relative Optical Airmass
Upon Solar Insolation

The variation of m with time of day is shown in Figure 6-4. This representation is that
used by Kondratyevs' 2 and is evaluated by table~lock-up in HELIOS, More extensive work is re-
quired to make the m vs t, S/SO vs t, refraction vs t, and S/So vs m representations all con-
sistent with each other. Improvements may be added later. Solar flux variation with time ig
illustrated in Figure 6-5 for the Moon model. Comparison indicates the experimental data can be

matched by the proper choice of atmosphere.
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" Figure 6-4. Atmospheric Mass Traversed. The number of atmospheric
masses traversed by the sun’s rays as a function of time-of-
day (hours from local noon) for days 183 (4 ),90 ( ¢ ),
and 1 ( D) of the year for observers in Albuquerque, NM.
The atmospheric model used is for a very clear, dry
atmosphere

115



118

R
78]
Le,
g8
~e

=

ssefeerengunns

;

S 7 e
0080 60 -4-0 -8:0 0:0 80 40 60 00

]

Time of day

Figure 6-5. Incident Solar Flux. These are variations with time-of-day

for January 1 (0 ),March 31 (o ),and July 2 ( A) as
predicted by the Moon model for Albuquerque, NM. The
experimental data ( v ) were measured on July 2.



6. 2.4 Other Effects on Insolaticn

The solar insolation is dependent upon variations in solar emission. Sunspot activity gives
large changes in radio wavelengths emitted. Only negligible change occurs in the solar constant.
In addition to factors already noted, there are variations in the number dengity and size distri-
bufion of aeroscls with time of day and with observer position. Solar ingolation variations of 5%
have been found in data collected in a large city and in that collected in the country on clear days.
A much more involved treatment is required along with additional data before such effects can be

predicted by the calculational HELIOS model,

6.3 Mirror-Receiver Propagation Loss

As the goals increase for electrical-power generation from solar energy, the arrays of
mirrors surrounding {ower receivers extend to larger distances from the towers. This expansion
increaseg the distance that solar energy must be propagated from each mirror before it can be
collected. Planned propagation distances are £ 700 m for the 10-MW pilot plant now being built

at Barstow, CA. Resulting propagation losses are significant.

The purpose here is to estimate the propagation logss for central receiver solar collectors
as a function of range, examine sensitivity of the results to choice of atmosphere, and find the
variation of these losses with height of the tower receiver. The calculations are done for the
10-MW pilot plant at Barstow, CA. Receiver heights of interest vary from 100 to 300 m. Propa-
gation distance is studied from 0.1 to 1.0 km. A simple functional representation of the loss is
found for convenient computer simulation of the effect in the models of solar-energy collection by

central receivers.

6.3.1 Methods of Calculating Propagation Lioss

Methods of determining the propagation loss have been reviewed by La Roceca and Turner.e'
The methods that have greatest adaptability (easiest alteration of boundary conditions, and physical
and geometrical parameters) are stated to be the Monte Carlo and LOWTRAN methods; i, e., if the
atmospheric models built into the computer codes are acceptable. The Monte Carlo method suffers
from large computer-time requiremenfs. The T.LOWTRAN method only includes the direct compo-
nent of the transmitted radiation; the gcattered contribution is ignored. Codes are readily avail-
able that implement these methods.ﬁ' 11-6. 13 Ease of input, computation speed, and direct
applicability influenced the choice of LOWTRAN III for the present study. Omission of the scattered
energy results in a conservative (upper) bound on the transmission logses. This neglect is not
thought fo be serious; most of the scattered energy will not be directed toward the receiver. Later
the more detailed Monte Carle calculationg couid be used to predict correlation hetween the sun-
shape (including scattering effects) and the choice of atmosphere and time of day, LOWTRAN uses

a scheme for determining atmospheric absorption and scattering with about 20 cm © wave-number
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. 6.14 . s .
resoclution across the spectral region. ! This low resolution is satisfactory for the present
study where integrations over wavelength are required. At specific wavelengths--such as for
laser propagation studies--the LOWTRAN model may underestimate or overestimate the actual

.14
value of transmittance. Other methods are then re:commended.6 1

All the propagation methods considered are wavelength dependent. Hence, the propagation
losg between each mirror and the receiver is dependent upon the spectral irradiance of the energy

originating at the sun,

6.3.2 Atmospheric Transmittance

Before calculating the propagation loss between mirror and receiver, the spectral irradi-
ance must be determined at ground level. The transmittance is found from LOWTRAN III, 6.11
As input, we set altitude = 0, 6096 km, sun zenith angle = 22°, haze model visual range = 23.0 km,
wave-number range of interest from 350 to 40 000 cm_l in steps of 20 cm 1, and atmosphere = the
midlatitude winter model built into LOWTRAN III. The alfitude is appropriate for the location of
the 10-MW electrical pilot plant being built at Barstow, CA. The resulting transmittance for the
slant range to space is given in Figure 6-8, IFolding this data with the extraterrestrial solar-

spectral irradiance gives the center curve in Figure 6-2.

Transmittance
0

...............................

160
A ( um)

Figure 6-6. Atmospheric Transmittance for Midlatitude Winter Model Atmo-
sphere and for 22° Slant Range to Space From Altitude 0,6069 km
‘With Visual Range of 23 km
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In this section we assume specular reflection without energy loss for the solar energy
that is incident upon the mirror surfaces. Hence, no calculation is required to account for wave-
length and angle of incidence variations of the spectral irradiance upon reflection. Integration
over wavelengths here gives a solar ingolation of 925 W/'m2 {insolations are given normal to the
incoming beam), This is a high value of insclation (corresponding to an unrealistically small
22° zenith angle) for winter at Barstow, CA. The midlatitude summer atmosgpheric model gives

801 W/m2 under these conditions while the 1982 US standard atmosphere gives 912 W/mz.

LOWTRAN III could also be used to furnish data given by the models of atmospheric loss
(paragraph 6. 2. 3) used in HELIOS. This may be included as a future, expanded aption on choice
of atmosphere. However, it would require integration over the solar spectrum which is not now
required in HELIOS. The new method would automatically yield airmass and refraction data con~

sistent with the choice of atmosphere.

6, 3,3 Mirror-Receiver Loss Function for Barstow, CA

After the significant loss of energy the solar insolation suffers in propagating to the earth's
surface, negligible further loss might be expected in propagating the distances from heliostats to
receiver apertures in the pilot plant, Such is not the case. For ranges ~ 1 km, losses greater
than 10% are encountered. Thus the 925 W/m2 solar insolation at Barstow, with the midlatitude
winter atmospheric model, is reduced to 823 W/m2 after propagation over 1 km {o a tower eleva-
tion of 100 m. The lower curve in Figure 6-2 gives the resulting solar spectrum after traversing
this path, The loss results primarily from the larger concentration of water vapor and aerosols

at lower elevations. Pressure broadening also increases the attenuation at low altitudes.

LOWTRAN II1 calculations were performed for a series of slant ranges between the altitudes

0.6096 and 0.9096 km above sea level {corresponding to a tower receiver altitude of ~ 300 m).
The results of folding the transmittance with the spectral irradiance and integration over wave-
length are summarized in Table 6-II. The tabulated losses are caused only by the propagation

along the slant range between the altitudes 0.6096 and 0. 2096 km.

The water-vapor densities for the 1962 US Standard Atmosphere correspond to relative
humidities of approximately 50% for altitudes up to 10 km, while the relative humidity values for

the other models decrease with altitude from approximately 80% at sea level to approximately 30%

at 10-km altitude. These humidities are rather high for typical locations for solar central-receiver

power stations., LOWTRAN does have a convenient option for relative humidity input along a chosen

horizontal path. For altitude 0. 60986 km and relative humidity of 10%, the (range, loss) values are
(0.2 kan, 3.1%), (0.4 km, 5.3%). (0.6 km, 7,4%), (0.8 km, 9.3%), (1.0 km, 11,1%). The data

are reasonably congistent with the earlier models as indicated in Figure 6-7,
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TABLE 6-II

Solar Insolation After Atmospheric Transmission

Midlatitude Midlatitude 1962

Slant Winter Summer Standard
Range Atmosphere Atmosphere Atmosphere

R 5 Toss 8] Loss S Loss
{Jem) (W/m2)  (percent) (w/m2)  (percent) (W/m?)  (percent)
0 925 0.0 891 0.0 g12 0.0
0.30 888 4,0 852 LW 87h h,2
0. by 871 5.8 836 6.2 858 5.9
0.65 856 7.5 821 7.9 843 7.6
0.82 8h3 9.0 806 9.5 - 89 9.1
1.00 828 10.5 793 11,0 816 10.5

“The Propagation path through the atmosphere is along a 22° slant range to alti-
tude 0. 6096 km and then along a slant range from altitude 0.6086 to 0, 9096 km.
The nonphysical R = 0 values give the direct solar insolation at 0. 6096-km
altitude.

)

g

I

Loss { percent )
&

4 0

00 01 02 03 04 05 0
Range ( km )

Figure 6-7, Propagation Loss as a Function of Stant Range
for Four Choices of Atmosphere: (0O, x) mid-
tatitude winter, (0, {) midlatitude summer,

(A, ¥) 1862 US Standard, and { +) 10% relative-
humidity path

For 0,30 < R < 1.00 km, the percent loss, Ls’ for the midlatitude winter atmosphere is

well represented by the standard loss:
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Ls = -1,97 R2 +11,76 R + 0,679 (6, 3-1)

as shown by the solid curve in Figure 6-7. Loss data have also been generated for a slant range
from galtitude 0.6096 to 0, 7096, These data correspond to a lower tower receiver, and allow data
points in Figure 6-7 to extend down to 0,1 km, Loss differences from the standard are given in
Figure 6-8, The paths are somewhat different, Symbols 0, O, and A correspond to paths
between 0. 6096 and 0. 9096 km; symbols x; O, and v correspond to paths between 0.6098 and
0.7096 km; and symbol + corresponds to a horizontal path at 0.6096-km altitude. All the data
in Iigure 6-7 are within 1. 2% of LS for 0.1 < R < 1.0 km. Consistency with LS is not

changed if the slant range to space is altered from 22° to 50°.
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Figure §-8. Loss Variation From Standard. Differ-
ence between propagation loss and gtan-
dard for four choices of atmosphere;

(0. x} midlatitude winter, {0, {) mid-
latitude summer, (¢, A ) 1962 US Stan-
dard, and ( +) 10% relative-humidity path

The energy loss (percent) caused by propagation of solar energy from mirrors to receiver

ig estimated by

1,97 R% + 11,76 R + 0,679 0.1 < R< L.Okm, (6.3-2)

.
"

L = 100 exp(-0.1852 R) 0 <R <0.1km, (6.3-3)

where the propagation distance, R, is in km, the tower elevation is 100 to 300 m, and the site

altitude is ~ 0.61 km above sea level in the midlatitude appropriate for the continental US. This
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function is presently in use in HELIOS, As data appropriate to other tower elevations, site alti-

tudes, and sgite latitudes become available, they may be incorporated into HELIOS,
The reader may object to the choice of a function (in Figure 6~-7) such that most of the

data lie above Ls' LS was chosen as the lower limit of the data because scattered energy is

ignored. Hence, the loss should be somewhat overestimated by LOWTRAN IIIL,

6.4 Sunshape Variation

A set of 16 standard sunshapes has been generated by Lawrence Berkeley Laboratory. 6.15

The data are intended to span the shapes that may be of interest for central receivers. The data
were taken for a range of wind direction and speed, pressure, temperature, and dew point, The

data are discussed here to indicate the wide variations that are possible and their consequences,

6.4.1 Lawrence Berkeley Laboratory Data

Parameters describing the sunshapes from LBL6'15 are listed in Table 6-III. The I (4.80
mrad) is the solar radiation (W/mz) tabulated by LBL for the ~ 0,557 subtended by the sun plus
the angular resolution of the measuring system, The I {55,2 mrad) results from numerical inte-
gration of the LLBL sunshape profiles out to the limit of the data furnished; i.e., a cone angle of
55. 2 mrad. The circumsolar ratio is the ratio of the power received from one solar radius (taken
as 4.8 mrad) out to ~ 55, 2 mrad to the total power received. The circumsolar ratio can he esti-
mated from I (4.80 mrad) and I {55, 2 mrad). Differences that occur are thought to result from
factors such as the finite width (0,41 mrad) of the detector aperture or slight differences in inte-
gration procedure. The I (55.2) <I (4.80) impossibility in data set 9 is thought to result from
these same factors. The § (rms) is the root-mean-square width of the distribution with an
assumed cut-off at the extent of the data (55. 2 mrad). The table appears limited in the season of
data collection, with over half the data being collected on December 14 or 29, 1976, or on
January 25, 1977, The data have the advantage of indicating how quickly the insolation can vary
in addition to spanning the distributions that naturally occur. Sunshape variation is not systematic

with time of day or with season.

The possibility of correlation between I {55. 2 mrad) and § {rms) is tested in Figure 6-9.
The solid curve is an analytic fit to a second degree polynomial that minimizes the relative error

of the data, The curve is given by

61"ms (mrad) = 3,7648 - 0.0038413 (I - 1000} + 1.5923 x 10_4 (I - 1000)2 (6, 4-1)

2
where I is in W/m~. Three of the points (data sets 9, 10, and 16 in Table 6-III} are chosen for

additional study in Section 6. 4.5 to determine the effect of sunshape variation.
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TABLE 6-III

Sun Parameters

Solar :
Data Times I (4,80 mrad) 1I(55.2 mrad) Circumsolar § {rms)
Set Date (hour) Location (W/m2) (W /m?) Ratio C {mrad)
1 Aug 25, 1976 9. 36 Fort Hood, TX 708, 9 718, 4 0.0100 3.08
2 Nov 20, 1076 11,22 Fort Hood, TX 894.8 920, 7 0.0270 3.55
3 Nov 22, 1976 14, 89 Fort Hood, TX 775, 8 798.9 0.0290 h.19
4 Dec 29, 1976 10, 39 Fort Hood, TX 168, 1 353.3 0. 5260 22.63
5 Dec 29, 1976 12,74 Fort Hood, TX 40.5 97.7 0. 5870 19.15
8 Dec 29, 1976 13,64 Fort Hood, TX 217.5 361.4 Q. 3980 12.05
ki Dec 29, 1976 14,00 Fort Hood, TX 705,4 788.1 Q. 1061 6. 36
8 Dec 29, 1978 15. 45 Fort Hood, TX 714,9 780. 4 0.0571 7.21
9 Aug 07, 1976 11,72 Albuguerque, NM 947, 8 943,17 0.0082 3.86
10 Dec 14, 1976 10.21 Albuquerque, NM 340.6 480.4 0.2938 10.53
11 Dec 14, 1976 11. 29 Albuguerque, NM 918.5 943.0 0.0345 4,68
12 Dec 14, 1976 12,92 Albuquerque, NM 699.8 816. 2 0. 1461 8.99
13 Jan 25, 1977 9.34  Albuquerque, NM 736, 6 806, 3 0.0888 6.13
14 Jan 25, 1977 9,88  Albuquerque, NM 164, 0 309.7 0.4708 14,66
15 Jan 256, 1977 10.79 Albuquerque, NM 517.3 649, 3 0. 2042 8, 31
16 Jan 25, 1977 12,78 Albugquerque, NIM 29.5 95, 3. 0.6920 18.94
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Figure 6-9, Variation of Solar Width With Insolation
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Variation of the rms width with the circumsolar ratio, C, is shown in Figure 6-10. A
linear least-square fit constrained to pass through 6 = 3.5 mrad at C = 0 with equal weighting

of all the points gives
5 (mrad) = 3.5 +26.2C. (6.4-2)
rms

Note that 8 and C are correlated.
TS

8 (mrad)

o : : ' '

- H L
¥

1 T T T
00 0l 02 03 04 05 08 07
C (Circumsolar ratio)

Figure 6-10. The Root-Mean-Square Radius of the Sunshape
vs Circumsolar Ratio

The 6rms refers to a two-dimensional sunshape. However, line-focus collectors re-
quire a one~-dimensional description, The appropriate description is formed by taking lateral

slices across the two-dimensional shape. Since the sunshape has circular symmetry, the one-

dimensional root-mean-gquare width W is related to GI_ by

ms

W =5 /1—2 (6.4-3)
in accordance with the result of Eq. (5.2-29). Therefore,

W=2,47+18,5C (6, 4-4)

describes the the appropriate measure of width as a function of the circumsolar ratio for line-

focus collectors. )
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We also examined the extent to which the circumsolar effects can be identified with the
broadening effects of error cones on a basic, narrow sunshape. By using b as the rms radius
of the basic gsunshape and convolving another distribution of rms radius, nb, with it, the rms

radius of the resultant is
2 2
8" =b +qup b =Db(l+n), (6.4-5)

Combining Eqs. (6.4-2) and (6.4-5), setting b = 3.5 mrad, and solving for 7 gives

n-qU+nac’o1, (6. 4-6)

A plot of n versus C is given in Figure 6-11. The data points are obtained by rewriting 62 as

(6.4-7)

setting b = 3.5, and using values of § from Table 6-III, It may be surprising to note that at
C=0,3, avalue of n ~ 3 results. This means that at 30% circumsolar, the sunshape is broad-
ened by an amount approximated by convolving a distribution about three times as wide as the

gunshape together with the sunshape.
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Figure 6-11, A Graph of p (Eq. 6.4-6) vs C (solid curve)
and the Corresponding Data (Eq. 6.4-7) From
Table 6-111
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6. 4,2 Anglytical Sunshapes

A convenient analytical form representing the sunshape has been adapted from that given

by Minnaert;ﬁ' 16 ive.,

%; - %ﬁ , (6.4-8)
where 6 is the angle between rays from the center of the sun going to the observation point and
to the observed position on the solar surface. The f is a wavelength-dependent adjustable
parameter (3 = 2.2 at 0.5 um)}. If we let o represent the angle between rays from the observer
toward the solar center and toward the position on the solar surface, and let 6 represent tan o

for the solar edge, then the 8 variation may be expressed in terms of tan o.

1+ V1-tan2a/62 (6.4-9)

L
I 1+ B :

o]

Normalization of the brightness to a unit integral over the solar surface yields the probability

distribution function for the brightness.

2 2
1+BY1-tan afb v <6

82 (1 + 28/3) (6. 4-10)

Thig digtribution has been called the Kuiper sunshape. 6. 17 In the cases examined to date, mea-
sured sunshapes have been represented by this analytical form to within an error that is small
compared to the daily sunshape variations found in the L.BL dats. The proper representation is
found from curve fitting with f and 8 as adjustable parameters. Typical values of 5 range
from 0.6 to 4, 8 with tan_l § near 4,65 mrad. In the cases examined, the fits are for the inte~

grated solar spectrum, rather than for separate spectral regions.

At the edge of the solar disk, the shape is widened by small-angle scattering of the direct
beam from atmospheric aerosols with dimensions on the order of or slightly larger than the
optical wavelengths., This broadening produces the circumsolar radiation that is sometimes
referred to as the solar aureole. At the edges the sunshape is poorly represented by the analytical

form of P given in Eq. (6, 4~10).

The aureole effect is typically represented by smoothing functions (such as linear, ex-
ponential, or cosine functions) to reduce the brightness to zero at the solar edge. At times the

shapes are exceptionally wide., However, numerical convolutions with the error cones noted in



Chapter 5 require matrix-dimension limits on computer representation of the sunshape. Hence,
outer limits are sometimes employed beyond which the brightnegs is taken as zero., The aureole

effect slightly alters the normalization of P,

In application to those systems that are particularly sensitive to the sunshape and those
that use only a small portion of the solar spectrum, detailed treatment is required. Then each
portion of the sclar spectrum may be treated separately, each with its appropriate insolation,

sunshape, and wavelength,

Several other sunshape forms have been treated in the literature {Ref. 6.1 p 170 and
Ref. 6.18). However, the forms are generally more complicated. A simple analytical form
(even if it involved a series of terms) would allow shape specification with only a few parameters
rather than a table of intensity variation with the tangent of the angle measured from the solar
center. A sufficiently simple form would allow analytical expressions to be formed for the con-
volution with elliptic normal distributiong to quickly find the effective sunshape. Relatively simple
expressionsg would also be expected for the one and two dimensional cumulative distribution functions.

Effort to find appropriate analytical forms is in progress at the present time.

8.4.3 Sunshape Ex{remes

One of the narrowest sunshapes furnished by LBL is that provided by Data Set 9 in Table
6-1II. This set also has the smallest circumsolar ratio. Its rms width of 3.86 mrad is some-
what larger than that for a uniform brightness over the solar disk of halfangle 4, 6525 mrad
(6 = 4, 6525/\]5 = 3, 29 mrad), Data Set 18 in Table 6-III has the largest circumsolar ratio tabu-
lated, as well as one of the largest 6{rms) values. These distributions are given in Figure §-12
after reducing the cut-off angle to 46.03 mrad and normalizing to an integrated brightness of

lW/cmz.

6.4, 4 Idealized Cumulative Distribution Functions

One of the parameters of interest to designers of solar energy collectors is the portion
of the solar energy within various acceptance angles. This portion is given by the cumulative
distribution function. The acceptance angles may be either one or two dimensional as for parabolic
trough or for heliostat methods for energy collection. Consider the circular nofmal distribution

of digpersion o.

1 2
Glp) = 5 eXp (— —p—z) , (6,4-11)
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™

where p = tan o, It is normalized with J; 270 G(p)do = 1. The cumulative digiribution function

is given by

0
Cip) =j Gp’) 2mp’ do?’ , (6. 4-12a)
Q
or
2
Clp) = 1- exp (- —9?) (6. 4-12b)
2¢g

If the sun is viewed from a slot where zll the energy is accepted in one direction (say the

y direction), then the one~dimensional cumulative distribution function is

X -]
Cl(x) = f Gix!, y')dy’ ax’ (8. 4-13)
Y e
2 2\
where G(x, y) = 1 5 eXP (- ELZY_) + Substitution gives
2ro 20
x/N 2o o
Cl(x) - 2 et at = ert 2 . (6.4-14)
'VF ‘QZG

When the sunshape is convolved with an error cone as discussed iﬁ Chapter 5, a cut-off
radius is employed to limit the dimension statements necessary for the fast Fourier transforms.

Existence of this cut-off alters the cumulative distributions. Consider the distribution

NZ exp(— p2/202) p < R
2r g

. . 4=
Gc(n) - (6 15)

Although ¢ was defined to be the dispersion when R = «, we retain that nomenclature for this

more general case. N provides the normalization

R
f Go(p’)Zﬂp’dp'=l.

]
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The two-dimensional cumulative distribution function is now altered to

1- exp(—p2/202)

1- exp(—R2/202)
C lp) = . (6. 4-16)

D
A
jas}

-

©

bv
os]

In one dimension for x < R, we have

X JR2+}:2
2 2
N x!'“ + v
Ccl(x) = f 5 exp ———+ dy?’ dx’ , (6.4-17)
c

27

QP

2 2
where 1/N =1 - exp(-R"/207). This may be reduced to the form

.
5N %2 3 2
— &« ¥ - ' ' _
Ccl(x) -J; 5 exp 5 erf R™+x dx’ . (6.4~-18)
2o
o

Although not convenient for analytic integration, numerical integration can be easily employed,

As an additional example, let us consgider the pillbox distribution, F(p)(Eq. 5.2-2), with

half angle a. The two-dimensional cumulative distribution function ig

pz/az 1 <a

Clp) = . (6.4-19)

In one dimension, the cumulative distribution function becomes

2 . -1
— sin

CIP(X) = . (6. 4-20)}

[oRiE
»
A
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Even after convolution with error cones, actual sunshapes do not match the idealized

However, numerical integration can be used for rather arbitrary

distributions presented here.

The analytic results form a convenient check upon the numerical

shapes experienced in practice,

An

Congider the pillbox sunshape in Figure 6-13.

procedures used for the more general cases.

error cone of 4-mrad dispersion is also given along with the convolufion of the two distributions.

In Figure 6-14, the two-dimensional cumulative distribution function is given for six effective

sunshapes, i.e., for the pillbox shape convolved with circular normal distributions of dispersion

dependence for

0 case has the characteristic mpz

The o

0, 2, 4, 6, 10, and 20 mrad.

The corresponding cumulative distributions for one dimension are in Figure 6-15.

0 <p < a,

Unless the acceptance angle of the solar collector is very large, uncertainty in the aim can cause

significant loss of efficiency.
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Figure 6-14, Two-Dimensional Cumulative Distribution Functions
for a Series of Effective Sunshapes
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Figure 6-15. One-Dimensional Cumulative Distributions
for a Series of Effective Sunshapes
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If the error cone were sufficiently wide and cylindrically symmetric, one would expect
the effective gunshape to be well approximated by a circular normal distribution. Then simple
analytic forms could be used to evaluate the distribution function. However, the proper method
for choosing the appropriate dispersion of the effective sunshape is not obvious., One could match
rms widiths or perhaps match the p's at which both cumulative distribution functions are one (i, e.,
within a chosen number of significant figures). The presence of the cut-off, R, further complicates

the choice,

Using a circular normal distribution with a cut-off, R, the mean square width is given by

R

2 2
2 o
(P ettective - T R - (6. 4-21)
2 2
f p exp(-p~/207)dp
o
The O that produces a given ( p2 h) 3 is then obtained from the zero of the function
effective
2 - 2 2 :
foy = {p ) =~ 202-—e7[(p ? - 20 (1+y)] (6. 4-22)

2 2 2 2 . . .
where v = R7/2g0° ., Notethatas R-o«, {p ) » 20 as required for a circular normal dis-

tribution. By Eq. (5.3-5), this choice for ¢ is equivalent to a mean square width given by

2, ,.2 2 .
= + . . 4-
<p ) \e >el"I'OI‘ cone <p >sunshape - (6 23)

Also, one could just take ¢ = J (p2 )effective/2 for comparison of cumulative distribution func-

tions, or just choose ¢ = T error cone to find where the actual sunshape has negligible effect. For
many applications such differenceg are of little consequence, In others, the differences require

additional care in interpretation.

6.4.,5 Actual Cumulative Distribution Functions

Data Sets 9, 10, and 16 (narrow, medium, and wide widths) referred to in Table 6-1I1
have been processed to find their cumulative distribution functions. These functions have also
been generated for the effective sunshapes after convolution with a series of error cones., The
resgults are recorded in Figures 6-16 through 6-18, The dashed lines give the cumulative dig-
tribution function for a circular normal of the same (pz) and the same cut-off R as for the
corresponding effective sunshape, The rms width of the error distribution given in the caption
would be \E x the half angle (or dispersion) of the error distribution if R were infinite.

The rms widths noted in the one-dimensional distributions are one-dimensional widths., The
figures indicate that for sufficiently large error cones, the effective sunshapes are well repre-

sented by circular normal distributions.
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Figure 6-16.
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Figure 6-18.
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6.4.6  Sensitivity of Collected Power to Sunshape Variation

The power collected by a central receiver is dependent upon many related variables. If
the receiver is sufficiently large, sunshape variation will matter only slightly. If the receiver
barely accepts the intensity pattern produced by the narrowest possible sun, then glight changes
in sunshape or in alignment or surface uncertainties will have a significant effect upon the results.
As an illustration of the effect of sunshape, HELIOS resulis for the 78 heliostats (2902.4 m2 of
glass) in the north field (Zone A) of the Central Receiver Test Facility are presented in Table 6-1V,
The 1 x l-m Martin-Marieita 1-MW receiver aperture at 44. 5-m altitude is used as the target.
Solar inselation is normalized to 800 W/m2 and facet reflectivity is set to 0. 80 to remove these
variations., Prealignment is set for noon on March 21 at the target center. Because of this pre-
alipnment, the sensitivity should be most pronounced on March 21, Error-cone dispersions are
taken ags 0 and as the more realistic 2. 82 mrad, since the sengitivity must vary with the size of

uncertainties in the system of heliostats.

TABLE 6-IV

Comparison for Sunshape Variation, S = 800 Wlmz, p=0.8,
78 Heliostats in Zone A, 1-MW Martin-Marietta Receiver.
0 = error cone dispersion

Power Collected (MW)

[_ March 21 June 21 Deceniber 21
Sunshape 8 AM  [10 AM | Noon 8 M i 10 AM| Noon 8 A 10 AM | Noon
Pillbox 0.79 1.bo * 1.72 0.66 : 1,21 | 1.48 0.b1i 1.19 | L1.46
=0
Narrow I
Data Set 9 0.87 i1.h5 1.69 0.75 L1.25 1.4k 045 1,29 1.52
c=0 ; : .
Wide ;
Data Set 16 0.43 ;0.67 | 0.77 0.39 | 0,60 0.68 0.231 0.59 0.68
3=0 ;
Pillbox 0.69 '1.12 | 1.30 0.57 | 0.98 1.17 0,341 0,94 1.12
o= 2,82 mrad ; !
Narrow 0.71 j1_15 1.3k 0.62 | 1L.01 1.16 0.37] 1,00 1.19
g = 2.82 mrad | ;
H H
T H
Wide 0.37 iC.57 | 0.65 0.34% | 0.52 | 0.60 0.20] C.hg | 0.56
| |
o = 2.82 mrad ! !

Table 6-IV indicates that the CRTF collected power can vary by more than a factor of 2
because of sunshape variation. If insolation variation is also included (rather than the 800 W/m
normalization in the table), then Table 6-III data indicate the factor 2 can change to 2 x 943, 7/
95.3, i.e., 19.8. Just the effective sunshape variation caused by altering the error cone dis-
persion from 0 to 2. 82 mrad can produce 30% reduction in the collected power. The data indicate
that the 1-MW receiver is not sufficiently large to make collected power independent of sunshape

variation.
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In addition to the collected power, the distribution of power on the receiver aperture is also

affected by the effective sunshape. Data are given in Figure 6-19. The ratio of the peak to the

average power density varies from 2.9 to 2,1 (2.0 to 1.6) as the error cone dispersion goes from

0 to 2. 82 mrad for the narrow (wide) sunghape,

Hence, importance of the distribution of power on

the receiver can also determine the criticality of sunshape variation. Of course, the power may be

distributed more evenly by allowing various sections of the heliostat field to be aimed at slightly

different points in the receiver. Depending upon specific parameters chosen, such a design

approach could certainly alter the data in Table 6-1IV.
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Receiver Center for March 21 at Noon. Insola-
tion is normalized to 800 W/m?2; reflectivity is
0.80. The narrow and wide sunshapes corre-
spond to Data Sets ¢ and 16 in Table 6-III
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CHAPTER 7

NUMERICAL PROCEDURES

7.1 Integration Over the Target Grid

HELIOS calculates the flux density (W/cmz) at a grid of target points. The resulting flux-
density pattern can be displayed by drawing contour, and three-dimensional plots, and by other
methods., The pattern is also used to integrate the flux density over portions of the target grid
to determine the power (in watis) incident upon a specified area. In this section we discuss the

numerical scheme used in HELIOS to perform these surface integrals,

Integrating a smooth kernel over a surface has properties similar to those of one-dimensional
integrals in that the integration errors can be reduced by decreasing the grid spacing between the
points at which the intepgrand is evaluated or by going to a more elaborate quadrature formula.
Certain quadrature formulas require that the integrand be evaluated at a prescribed mesh of
points. The optimum mesh of points for quadrature purposes is not an optimum mesh for dis-
playing the flux-density patterns. Since we wish to use the same values of the flux density for
displaying the flux-density patitern that we use for calculating the integral over this pattern, we
use a regular grid pattern. Whenever necessary the grid spacing is decreased in order to improve
the accuracy of integration. The integration is performed by two different approximations in order

to provide an estimate of the integration error,

7.1.1 Flat Rectangular Target

Consider a rectangle of length 2a and height 2b centered on an x - y coordinate system

as shown in Figure 7-1. The area of this rectangle is
A = 4ab (7. 1-1)

and the integral of a function F{x, y) over this rectangle is
a .b

I-= f f F(x, y)dxdy . (7.1-2a)

Za “b

Approximations to this integral can be constructed which evaluate F at discrete points. One such

approximation, Il, is defined by

I = I1 = i;— [2F(0, 0) + T(a, 0) -+ F{0, b) + F(-a, 0} + F(0, -b)] . (7. 1-2b)
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A convenient short-hand way to express this approximation is

A
Il =3 [2 center + z edge centers] . (7. 1-2¢)

The circled numbers in Figure 7-1 are the weights used to evaluate the expression ingide the
brackets of approximation I1 [Eq. (7. 1-2b and ¢)]. Thus the integral of F over a rectangle is
evaluated in the approximation 11 by multiplying the value of ¥ at the center of the rectangle
by 2, adding the values of F at the center of each of the four sides, and multiplying this sum by

one-sixth of the area of the rectangle.

e 2a >

Figure 7-1. Weighting Scheme for the Surface-Integral
Approximation Il for Eq. (7.1-2)

7.2
The approximation I1 is due to Tyler. T It is also discussed by Stroud. The

formula has a degree of exactness equal to 3 in that it is exact when the integrand F is any

linear comnbination of monomials nyB where o« and B are nonnegative integers such that

0<e+ B < 3.
Another approximation that also has a degree of exactness equal to 3 is

s I, = 2 [8F(0, 0) + Fa, b) + F(-a, b) + F(-a, -b) + F(a, -b)] - (7. 1-3a)

The shorthand notation for thisg is

A
Iy ® 12

[8 center + ¥, corners } . (7. 1-3h)
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Figure 7-2 shows the I2 welighting scheme for the terms inside the brackets. Note that
the sum in brackets is obtained by taking 8 times the value of the integrand at the center of the
rectangle and adding the value of the integrand from each of the four corners. This sum is then
multiplied by one-twelfth the area of the rectangle to complete the calculation. This approximation

and by Stroud. 7.2

ig due to EWing,T' 3 but it is also discussed by Tyler

———————

Figure 7-2, Weighting Scheme for the Surface-Integral
Approximation 12 of BEq. (7.1-3)

Other approximations can be constructed by forming combinations of I1 and 12. The approxi-
mation
2 1 '
=<1, += L1-4
I 3 1 3 I (7. 1-4a)
iz an interesting one because it can be obtained by applying Simpson's rule twice: once to integrate
the rectangle in one direction and again to integrate these resulis in the other direction. It is,

therefore, referred to as the Product Simpson's Rule formula. In our shorthand notation it

becomes

_A
13 T (16 center + 3" corners + 4 5 edge centers) . (7. 1-4b)

The approximation
.3 1 -
I—4I+4I (7. 1-5a)

4 . , 7.2
is due to Albrecht and Colia‘cz7 : it is also discussed in Stroud. In our shorthand notation

this becomes

A -
I = 15 (20 center + . corners + 6 3, edge centers) . (7. 1-5Db)
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In order to illustrate the use of these approximations, we consider an example. A flux

density that is similar to some that we have encountered in practice is
2 2

F(x, y) = exp(-x" ~y7) . (7.1-6)
We integrate this over each of the two squares shown by solid lines in Figure 7-3. Each square
has sides of length 2a, One square is centered at the origin and the other one adjoins it along the
x-axis as shown. The integral over the square centered on the origin is

a -x2 a 2 ,
El(a) = f e dx f e dy = 7 erf (a) (7.1-7)

—a =a

and the integral of F over the other square is
L2 L2
Ez(a) = [ e * dx I eV dy = g— erf(a) [erf(3a) - erf(a) ] . (7.1-8)
a

These analytical results are useful in illustrating the adequacy of our quadrature approximations.
We can illustrate the effect of mesh-size variations by changing the size of a. Note that the

integrand [Eq. (7.1-6)] changes by a factor of exp(az) between the center of the square and the

center of one side for the square centered on the origin. We cannot expect the quadrature formulas

to give good approximations when the integrand changes too much between adjacent grid points.
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Figure 7-3. Regions in the x ~ y Plane for Using
the Quadrature Approximations as -
an Example
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In order to illustrate this effect and to e‘étiﬁate how much variation can be tolerated
between grid points and still give satisfactory accuracy, we evall_late E1 and E2 using all of the
approximations at several values of a. The results are shown in Tables 7-I and 7-1I, The values
of. a are given in the first column. In Table 7-1, the next column gives the value of E1 as
obtained analytically from Eq., (7, 1-7) and is therefore correct to the number of significant places
shown. The next four columns give the numbers as calculated from the indicated approximations.
The last column gives values of exp(az). Table 7-II is organized the same way as Table 7-I except

that it applies to values of Ep from Eq. (7.1-8}

TABLE 7-I
Estimates of E1
El
Exact I1 I2 I3 I4: 2
a Eg. (7.1-7) Eg. (7.1-2) Eg. {7.1-3) Eq. (7.1-4) Eq. (7.1-5) Exp(a’)
2 3. 127 5.38 10. 7 7.15 6,71 54,6
1 2.338 2.31 2.85 2,49 2.45 2,72
0.5 0.8511 0.8525 0. 8688 0. 8579 0..8_566 1,28
0.25 0. 23083 0, 23990 0. 24020 0, 2400 0, 2400 1,06
TABLE 7-II
Estimates of E2
E2 '
Exact I1 I2 I3 I4 9
a BEq. (7.1-8) Edq. (7.1-2) Eq. (7.1-3) Eq. {(7.1-4) Eq. (7.1-5) Exp(a’)
2 0.0073 0. 049 0. 00089 0.033 10,037 54,6
1 0.2079 0.279 0,139 0. 232 0,244 2,72
0.5 0.3643 0.3655 0. 3600 0.3637 0. 3641 1. 28
0.25 0.18874 0.18875 0.18887 0.18879 0. 18878 1.086

Several things should be observed about the results of these tables:
a. At a= 2, all the approximations overestimate the value of El by

a considerable margin. This is probably caused by the highly peaked

nature of the integrand at the center of the corresponding square.
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b, At a = 0,25, where exp(az) = 1,06, all the approximations give good
accuracy. The accuracy is reasonable at a = 0,5 where exp(az)
= 1.25. We expect quadrature errors to be within 1% when the inte-
grand changes by less than 25% between grid points. This, of course,
assumes that the integrand is in some sense as smooth as that

[Eq. (7.1-7)] used in this example.

c. Eq.(7.1-2b or 2¢) (Il) generally gives better approximations to the inte-
gral than does Eq.(7.1-3) (12). One reason for this is that there is less
fractional variation in the integrand beiween adjacent integration-grid

points for the first approximation than for the latter,

d. If the difference between the values obtained from the two approxi-
mations I1 and 12 ig taken as an error estimate, then the estimate

obtained from either 13 or 14

the Tables 7-1 and 7-1I resulis. Note, however, that if the difference

ig within plus or minus this error for

between IS and 14

nor 14 is within this error of the true value for most of the examples

of Tables 7-1 and 7-1I. This probably resgults from the fact that the

is used as an estimate of the error, then neither I3

weights used in Eq, (7.1~4a) do not differ enough from those used in

Eq. (7.1-5a)

The recommended procedure is to calculate the approximations Il and Iz, use their
difference as an error estimate, and then form one of the linear combinations of either Eq. (7. 1-4a)
or Eq. {7.1-5a) to obtain either the 13 or I4 estimate to use as the best estimate of the integral.
Although all of these approximations have a degree of exactness equal to 3, we prefer either 13 or
14 as a final estimate of the integral over I1 or I2 because they use more function evaluations
on the rectangle. However, I, and I, are still required to obtain error estimates.

1 2
The current version of HELIOS evaluates the flux densify at an 11 by 11 grid of points.
A 5 by 5 array of nonoverlapping rectangles are used to calculate the integral over the entire
target grid. The integral is evaluated using each of the approximations [3 and I4 separately. The

error in each rectangle ig now estimated by comparing results from the two approximations.

The error in the integral over the enfire grid can be estimated by comparing the integrals
for the entire grid. Another estimate is obtained by squaring the error of each rectangle, adding
them all together and taking the square root. A more conservative estimate of the total error is

to add up the absolute errors from the individual rectangles.
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7.1.2  Spherical Targets

Optiong are also available in HELIOS for specifying the receiver surface in terms of
spherical or cylindrical surfaces; in these options new coordinate systems are used to specify the
grid points at which the flux densities in W/cm2 are calculated. The integration over these surfaces
to get intercepted power must take the surface properties into account. An element of area on the

surface of a sphere of radius R is

2
dS = R sin 6 d8do (7.1-9)

where § is the polar angle and ¢ is the azimuthal angle. The surface integral of the flux density

F over region 4 of the surface of a sphere of radius R is
2 .
I :ff [#(6, ¢ R sin 8] dgde . (7.1-10)
R

If the flux density is specified at a regular grid of points in the coordinates § and ¢, then we

define the integrand

P = FR2 sin 8 (7.1-11)

and proceed as we did in the rectangular coordinates.

7.1.3 Cylindrical Targets

In cylindrical coordinates the surface integral over a region & on a cylinder of radius

I =fj F(o, Z)R dpdz . (7.1-12)
74

Here we define the integrand

A

F=FR (7.1-13)

and proceed as before.

7.1,4  Circular Target Grid on a Plane Surface

For receivers with a circular aperture it may be convenient to use a target grid with

circular symmetry. In this section we develop a procedure for uging the previous approximations
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to estimate the surface integral of a functicn specified in polar coordinates. The integral of a

function G(r, 8} is

I =ff G(r, 8)rd8dr = jj F(r, 8)dgdr (7.1-14)

F(r, 8) = G(r, 8)r . (7.1-15)

where

This puts the problem into the same form as discussed in Section 7. 1, 1; hence, the same approxi-

mations can be used after applying the transformation of Eq. (7, 1-15),
As an illustration, consider the function
2
G =é (7.1-16)

which gives

et T, (7.1-17)

k|
1

The weighting scheme corresponding to Figure 7-1 is shown in Figure 7-4. We use a segment
between the radii r = 1 and r = 3 of an angular width 246, The quantity corresponding to A of

Eq. {7.1-1) is

A= 4A0Ar = 406, (7.1-18)

The approximation Eq. {7.1-2b) gives

—. —. -. -, -4
I1 = 472‘6 [2(2e 4) + 3e 9 + 2e 4 + e 1 + 2e ]: 4.99A0 . (7.1-19)
Evaluating the same integral analytically gives
1= 4,983A9 . (7. 1-20)

"

g

| 4

Figure T-4, Weighting Coefficients for Eq, (7.1-2)
for Area Segments in Polar Coordinates
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It is clear froﬁ this illustration how to use the approximation (7. 1-3) on an area segment
such as the one shown in Figure 7-4, The center node is weighted by 8 and nodes at the corners
of the segment are weighed by 1 corresponding to the scheme depicted in Figure 7-2. When this
approximation is applied to the numerical example given above, exactly the same result is obtained;
this means the difference between the approximations of Eqgs. (7.1-2b) and (7.1-3) is not a good

estimate of the error in this example.

7.2 Facet Integration

In Section 5.5 an integral [ Eq. (5.5-3)] is given for calculating the flux density at a target
point, In order to do the infegration {(numerically) it is necessary to set up a grid on each facet
of the reflecting surface that forms a part of the concentrator field, In HELIOS, subroutine FACET

performs this integration.

Options are available for facets that are square, rectangular, triangular, or circular. A
square facet is, of course, a special case of a rectangular facet but separate options are avilable in
the code. The square-facet option was built into the initial version of the code whereas the

rectangular-facet option was added later.

In the square-facet option (KORD = 1), an N- by N-grid is used to divide the facef into sur-
face elements corresponding to the AQ of Figure 5-28. In the rectangular-facet option (KORD = 3},
both the length (ELENX) and the width (ELENY) of the facet are specified; also the number of strips
into which the facet is divided is specified separately for the two directions. The facet coordinate
system has its z-axis perpendicular to the reference surface at the center of the facet. (Refer to
Section 5.1 for a description of the reference surface.) Its x-axis is horizontal (i. e., nearly

parallel to the elevation axis of the heliostat).

As explained in Chapter 3, the x-axis of the facet coordinate system makes an angle B with
the x~axis of the sun-concentrator system. This relationship is shown in Figure 7-5 where primes
are used to designate the axes of the sun-concentrator system. The z and z’ axes coincide and are

perpendicular to the plane of the page.

Figure 7-5. The Facet System
% - y and the Sun-
Concentrator System
<! - yl
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In the circular-facet option, the facet ig divided into circular strips and the strips are
divided into segments. Each segment is weighted in the calculation in proportion to its area, and
the centroid of the segment is taken as the point of reflection for the radiation striking the segment.
In thig option (KORD = 2) the parameter ELEN is the radius of the facet in meters, The parameter
N (in common block [CKORD/ is used to divide the facet into circular strips. The first element

of area is taken to be a circle of radius
R = BELEN/{2N) . (7.2-1)

The rest of the facet is then divided into N - 1 circular strips of width equal to

ELEN - R

= —_—_—, 7.2-2
AR o (7.2-2)
These strips are then divided into segments. Figure 7-6 shows & schematic of one such segment

in one of the circular rings defined by concentric circles of radil r = a and r = b. The angular

width of each segment in the strip is

Ag = 20 = 2p/M (7.2-3a)

where
M = INT (2rb/AR) + 1. (7.2~-3b)

We have used Fortran notation for the function INT which truncates its argument to an integer.
Observe that this procedure produces M segments of equal area such as the cross-hatched seg-
ment of Figure 7-6 so that the arc length bA@ is less than or equal to the strip widih AR. The

number of segments M increases in moving from one circular sirip out to another one defined

by larger radii.

Figure 7-6., An Integration Segment for
a Circular Facet

.
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The x coordinate of the segment centroid shown in Figure 7-6 is

o b o b
X = i de xrdr = 1 cos 648 rzdr
A A .
- a ~o a
S Bslno 3% (7. 2-4a)

3A
where the area of the segment is
A = a'(b2 - az) (7. 2~4b)

which gives

2 2
- _2 (a8 +tab+b7)sine _
25 TR o (7.2-4c)
The y coordinate of the segment shown in Figure 7-6 is
7 =0 (7.2-5)

which is obvious from the symmetry of the segment. The polar coordinates of a centroid are
given by an angle 6 for a ray passing through the center of the segment and a radial coordinate

equal to % of Eq, (7, 2-4¢),

In the "super-smart" facet-curvature option (IOPT = 5), the problem is treated as if the
entire contribution of reflected power comes from the facet center. This is equivalent to using
N = 1 for the square or circular facets or NX = NY = 1 in the rectangular-facet option. This

option, of course, decreases computation tirne by about a factor of N2 .

The equilateral-triangle facet option (KORD = 5) divides the triangular surface into an Nx X Nx
grid of elementary equilateral triangles. The facet coordinate sysiem has its x-axis along the
bottom edge which is assumed to be horizontal. This x-axis makes an angle B with the x-axis of
the sun-concentrator system. As earlier, the y-axis is in the plane of the facet corners, orthogonal

to the x-axis, The divisions are indicated in Figure 7-7 for Nx = 6,
Before conversion to the sun-concentrator system the origin must be tranglated to the triangle

centroid, For integration over the facet surface, the centroid of each elementary triangle must

be specified, For equilateral triangles of side 1 the centroid is at N3 1/2 from each side.
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Figure 7-7. Integration Segments for a Triangular Facet

There are ZNX - 1 rows for y values for triangle centroids, They are located at

= + S 2 . &
Vg © ;T A N3 Dx/ (7.2-6)
for i=1 to 2NX - 2. Also
¥, - N3 px/e , (7.2-7)
DX = ELENX/N_ , (7. 2-8)
ELENX = length of triangle side,
1 i odd,
A = . (7.2-9)
2 i even
Replacement of ¥ by Yy will rotate the triangle 180° in the facet coordinate system.
The initial value of x for each row of elementary triangles is given by
N + 2
] row " "\, DX _
xin = INT( 5 > D) (7.2-10)
for 1 < Nrow < QNX - 1, where again the INT notation indicates truncation of the argument to

.

«



LR

Le

an integer. The following x wvalues in each row are separated from each other by DX. The

number of elementary triangles in each row is given by

Ncol = Nx - INT (Nrow”z) . (7.2-11)

Thus the X% values in each row are given by

Xj = (xin - DX} +j * DX (7.2-12)

for 1 < j < Ncol'

The translation to the facet centroid is given by converting (xj, yi) to
(Xj - BELENX/2, y, - ELENX * N3/2). Now that the elements of area { V3 * DX * DX/4) and their

centroids are specified, the integration over the facet surface proceeds as before,

7.3 The Two-Dimensional Fast Fourier Transform

The convolution of two~dimensional distributions plays an important role in the IHELIOS
model. Affer sun-iracking error distributions are mapped to a reflector reference plane, they
are combined with the distribution of surface slope errors by convolution to obtain the error cone
in this system. This error cone is then mapped into the reflected-ray reference system where
convolution is again used to combine it with the sunshape. These mappings and convolutions can
all be done analytically when all of the distributions are elliptic normal. Although an elliptic-
normal distribution ig probably an adequate approximation for surface slope errors and perhaps
even for sun~-tracking errors, it is not a very good approximation to the sunshape. Therefore,
if a careful calculation of the flux pattern on a receiver is to be made, at least part of the con-
volution calculations must be done numerically. In this section we describe the use of the fast

Fourier transform (FFT) to calculate two-dimensional convolutions,

Suppose we wish to convolve the two distributions F and G to get the resultant distribution

H.

Hix, y) = Fx, ¥ *Glx, ¥ . (7.3-1)

In order to ugse the FFT to approximate this result, a few of its properties are explained, Although

none of the distributions F, G, or I are periodic in x or in y, the FIFT treats them all as
being periodic in both x and y, Since we are free to select the periods, we can insure that the
periodic extensions %‘, 6}, and 1 of these functions are adequate approximations to ¥, G, and H,

respectively, in a region of the x - ¥ plane (function space) of interest to us.

Consider a slice across the center of the distribution ¥ as shown by the solid curve in

Figure 7-8. The dashed curve shows a portion of its periodic extension % of period ELX.
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The function IT is equal to F inside the interval =x < IELX/ZI and equal to its periodic ex-

tension of period ELX outside this interval.

ELX

T
.

Figure 7-8. A Slice of Disiribution F ;and a Portion
of its Periodic Extension F of Period
ELX

Although we have illustrated this property in only the x-direction for the distribution F, it

ocecurs in both the x and y directions of all the distributions F, G, and H.

The period for the y direction is herein designated as ELY. For a given convolution
problem the same values of ELX and ELY must be used for all three distributions. These
parameters should be large enough that each of these distributions has negligible value whenever
IXI > ELX/2 or ly[ > ELY /2., Otherwise aliasing will occur and degrade the approximation.

This requirement is the most stringent on H since it is wider than either F or G.

To use the FFT to approximate the Fourier integral transform of the distribution I, its
periodic extension f‘ is evaluated at an array of points in the rectangle 0 < x < ELX and
0 < y < ELY, The spacing in the x direction is Ax = ELX/NX and in the y direction
Ay = BLY/NY where NX and NY are input parameters. The FFT calculation is more

efficient if these numbers are both equal to some integer power of two.

The parameter NX should be large enough that when a value of ELX is selected that is
large enough to prevent aliasing of H in the x direction, the corresponding Ax = ELX/NX is
small enough to adequately sample F in the x direction. The same considerations apply to NY
and ELY and to the other distribution G being convolved. The computer memory and time

requirements increage rapidly with increasing NX and NY.

The HELIOS subroutine CONV numerically perforins the convolution of Eq. (7.3-1). It
evaluates the periodic extension F of F in the rectangle 0 < x < ELX and 0 <y < ELY

at the points (Xi’ yj)

Y
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where

(i - 1) ELX/NZX, i=1, «¢¢, NX

o]
i

and . (7.3-2)
(j - 1) ELY/NY, j=1, -+, NY

1l
n

b6

CONV obtains I from F by replacing x by x - ELLX whenever x > ELX/2 and by replacing
vy by y - BELY whenever y > ELY/2. These function values are stored in the real parts of the
blank common array GI; the imaginary parts of this array are set to zero, The same procedure

is used on G to fill the blank common array GG.

These arrays are transformed to the transform space by the FFT routine FOURT in
CONV, This FFT routine is described in Reference 5.7. In transform space the arrays are
multiplied together to effeci convolution, The resull is then inverted by again using FOURT to

-~
obtain the periodic extension H of H back in function space.

When the FFT is used to approximate the Fourier integral transform as isg the case here,

it is necessary to multiply the result by the function-space area-element AxAy where

BLX/NX (7.3-33)

Ax
and
Ay = ELY/NY . (7.3-3b)

In inverting the transform, the multiplier is the transform-space area-element AfX times Afy

where

Ay = 1/ELX {7.3-4a)

Afy = 1/ELY . (7.3-4h)

These multipliers are all applied at one place in CONV when the two arrays are multiplied to-

gether,

The distributions F and G are normalized to unit volume and the convolved result H should

theoretically also have unit volume. Since round-off errors and aliasing can disturb this normal-
ization, a correction is applied during the transform-space multiplication. The correction is
obtained by using the property that the function gpace volume of a distribution is equal to the corre-
sponding transform evaluated at the origin.
-
The convolved result is transformed back to function space where values of H are contained
in the real parts of the blank common array GF. The x and y coordinates corresponding to this

array of fI values are the same points (Xi’ yi) defined previously to evaluate F and G. This re-

sult of the convolution is communicated back to program HELIOS through this hlank-common block.
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In HELIOS it is necessary to obtain a table of the distribution H from the ﬁ values stored
in the real parts of the complex array GF. The values of H in the interval ELX/2 < x < ELX
are translated to the left by the period ELX to give values of H in the interval - ELX/2 <x <0,

The same kind of translation is also used in the y-direction where the period is ELY,

When three distributions are to be convolved, two of them are first convolved together as
described above by setting the CONV input parameter NOPT = 2, Then CONV is called again
with NOPT = 1 and with the third distribution to be convolved entered as the second function
argument of CONV, (The first function argument is not used in this case.} In this option the
array GF, which already contains the result of the first convolution, is not changed. The new
distribution is put into the array GG and the calculation proceeds as before, Of course, this

procedure can be repeated as many times as needed to do multiple convolutions.

We have only mentioned argument parameters of gsubroutine CONV as needed to clarify
the discussion, becausge different versions of HELIOS have slightly different programming details.
The discussion here applies to the most general version of the routine. The comment cards given

in each version of CONV adequately describe its argument parameters for using the routine.

In transform space, the increments in the fX and fy directions are Afx = 1/ELZ and
Afy = 1/ELY where fX and f are the transform variables corresponding to x and y respec-
tively. The FPFT versions of the transformed arrays also exhibit periodicity in both directions.
The period in the fx divection is ELFX = NX/ELX and the period in the fy direction is
ELFY = NY/ELY. However, because of the same kind of "folding" effect shown in Figure 7-8

for T, only half of these periods represent effective frequencies. Therefore,

| Max fxl = ELFX/2 (7.3-5)
and
| Miax fy] = ELFY/2 . (7.3-6)

Since aliasing can also occur in transform space, it is sometimes necessary to also ex-

amine these relationships when specifying the parameters NX, NY, ELX, and ELY.

7.4 Blocking and Shadowing of Heliostats

T.4.1 The Projected Area

Farlier discussion in Chapters 2 and 3 gave the basic approach to shadowing and block-
ing and introduced the appropriate surfaces; i.e., the X' - Z‘/ plane through the tower base
orthogonal to the sun's central ray and the unit sphere centered about the target center. The
projections of the four corners of a heliostat onto these surfaces were also considered. These

projections are used to estimate the effect of blocking and shadowing.

1.



da

L]

Let us consider the shadowing (X' - Z’) plane first. If we assume the edges of a helio-
stat lie in a plane, the projection of the four edges onto the X‘ - Z' plane will result in a quad-
rilateral, One such quadrilateral is illustrated in Figure 7-9 where the corners are labeled.

Overlap between the quadrilaterals for neighboring heliostats indicates shadowing is occurring.

0

15

0.0 .
DN ENPE——

=N

.0

Figure 7-9, Shadowing Projection for a Heliostat

The coordinate pairs (Xi’, Z{, i=1, 4) are available from the projection. One method
of calculating the enclosed area involves direct calculation of edge lengths and angles. This
approach requires square roots and perhaps the evaluation of trigonometric functions. Consider

the following alternate approach.

The area may be decomposed into the sum of the areas of four oriented trapezoids.

Project each vertex onto the X'~ axis giving points Xl' where 1 < i < 4. The area is given by

A = A12+A23+A34+A41 (7.4-1)

where
- AN roxny . 4-
Aij 0.5 (Ai ZJ.)(Xj Xi) (7.4-2)
A simple way to avoid complications when generalizing to other quadrants is to translate the Z.l'
values to insure that all Z{ are positive, Quadrilaterals with vertices numbered in a clockwise
(counterclockwise) manner will then have a positive (negative) area as given above, The orienta~-

tion for an individual trapezoid is given by the sign of (Xl_i' - Xi’).

157



158

The four oriented trapezoids formed above are designated by the Aij' The area of inter-
section of two quadrilaterals can now be found by treating the simpler problem of finding the areas
of intersection of pairs of trapezoids, The overlap test is then simple, a nonzero (zero) area of

overlap indicates that the quadrilaterals do (do not) overlap.

Tod,2 The Overlap Test

7.
The method for measuring overlap was developed by D. S. Mason, 5 Take two quadri-
laterals designated by areas B and C. Each may be subdivided into four oriented trapezoids as

before.

B=B + B,, T B + B (7.4-3)

C=C +C_, + C + C . (7.4-4)

The area of intersection, I, of B and C may be expressed in terms of the overlap of the sub-

divisions, Dij'

I = E E sign (1, ) D - (7.4-5)

The sign {i, j) is +1 depending upon the orientation of the sides in the two oriented trapezoids
(i. e., x is increasing for both [+], decreasing for both [+}, or increasing for one and decreasing
for the other [*}) A side is oriented positively (negatively) if the x coordinates of its ends are

increasing (decreasing).

As digcussed by Mason, the area Dij will depend upon whether the quadrilateral edges
that determine Bim and Cjn intersect, When they do not intersect, the situation is illustrated

in Figure 7-10.

Let Xg = min (XiB’ XjC) . (7.4-8)
X, @ max (XmB’ xnc) . (7,4-17)
These values are Ry = Xops ¥y = XnC in the example. If Xg < Xy the Dij =0, If %y < Xg
the intergection is a trapezoid with base xg - X, and with altitudes
zg = min [ZiB’ Z(Cjn at x)] , (7.4-8)
Z, = min [ZnC' Z(Bim at x4)] s (7.4-9)
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where x(C, at x,) ig the value of z corresponding to x, on the edge C, and where z(B, at
n 3 3 jn im

x4) is the value of z corresponding to x, on the edge Bim' Then

zZ, t 2
- (x, - x,) -2 (7. 4-10)

(Xig , Z;8)

.0

10.0 15.0
1

5

0

Figure 7-10, Subdivision Overlap When Quadrilateral Edges
do not Intersect

The situation for intersecting quadrilateral edges is given in Figure 7-11, If the co-

ordinates of the intersection are Xint’ Zint , the area of intersection of the subdivisions is
z,tz 4 + z
3 int int 4
= - + - -
i (XS 1nt) 5 (Xint x,) 3 (7.4-11)

using the earlier notation. Thus the area of intersection of two quadrilaterals is evaluated using
only addition, subtraction, and comparisons fo determine maxima and minima. The method may
be eagily extended to polygons of n sides just by dividing each polygon into n oriented trapezoids

and proceeding ag before.

7.4.3 Shadowing
With the area of each quadrilateral in each pair and their overlap available, an approxi-
mation to the effect of shadowing is easily obtained. When the overlap is nonzero, the shadowed

I
heliostat must be identified. In Figure 3-15, let T (rS) represent the vector to the first vertex
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of the first (second) heliostat. The distances from these vertices to the x’ - z° plane are
d = -V .7 (7.4-12
17 Vgt <412
and
4. = - .7 7.4-13
2~ -VS I'S ’ (7.4-13)

1f dl > d2 , the shadowed heliostat is the first (labeled T). If 1:12 > dl , the shadowed heliostat
is the second (labeled S).

25|.0

(x;p , z;p)

.0

20

(xjc , ch)

Figure 7-11. Subdivision Overlap When Quad-
rilateral Edges Intersect

Let AO represent the overlap area and A represent the area of the shadowed heliostat
in the =%’ - z‘ plane. Then as an approximation to the effect of shadowing, the energy flux re-
flected from the shadowed heliostat is reduced by the r.a.tio AO/A. This approximation assumes
that

a. The distribution of power on the target surface resulting from the
unshaded portion of the heliostat may be estimated by the distri-
bution for the complete heliostat (neglecting shadowing) reduced

by the factor 1 - AOIA.

b. The ratio of the shaded facet area to facet area is the same as the

ratio of heliostat shaded area to helicstat area,

i



The quadrilateral for each heliostat is tested for overlap with each of the others and with the tower.
For times from 10 a.m. to 2 p.m., several cases examined indicate that when a heliostat is
shadowed by more than one heliostat or tower, the proper Ao should be the sum of the overlapped
areas (restricted to a maximum of A). However, for late times and for safety calculations where
an upper limit is desired, multiple shadows on a heliostat should be treated as overlapping with

AO taken as the largest shadowed area, These two options are available in HELIOS.

7.4.4  Blocking

The chapter on coordinate systems introduced the unit sphere centered about the aim
point. Assuming the edges of a heliostat lie in a plane, the projection of the edges onto the unit
sphere will resulf in a spherical quadrilateral where the sides are arcs of great circles on the
sphere., The overlap of two of these spherical quadrilaterals indicates that one heliostat blocks

the power from the other, preventing the power from reaching the aim point,

In order to calculate blocking effects exactly, & unit sphere should be placed about each
target point with each point treated separately. The intersection of each pair of spherical quad-
rilaterals must also be calculated, with sufficient detail to define the proper blocked area when
the power from one heliostat is blocked by more than one other heliostat, The portion of the
heliostat contributing to the blocked energy flux must also be compared with the portion of that
same heliostat that may be shadowed so only the effective portion of the heliostat contributes to

the collected power,

In analogy with the calculation of shadowing, let us first calculate the area of a spherical
triangle with the pole (8 = 0) as one vertex, Consider two points on the unit gsphere (61, (ol) and
(92, coz). The great circle path between the two points gives a curve where 8 varies with ©. A
spherical triangle is then formed by connecting each point with the pole (8 = 0}, as in Figure 7-12.

The area of the spherical triangle is
2 .
=R [A+B+C-q] (7.4-14)
where R = 1,

The lower case angles are determined by a = 62, b = 91, and cos ¢ = cos 91 cos 92 +

sin 91 sin 92 cos (@1 - @2). The spherical angles are then found from

COs a - ¢Cos b cos ¢
cos A R BT COSL OO L 0 < A <og; (7. 4~ 15)
sin b sin ¢ — — )
08 b - ¢os ¢ cos ¢ .
cos 1y B T TS EEOSR L g <3 < g g (7.4-16)

sin e sin o
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cos ¢ -cosacosh 0<c <2, (7.4-17)

caos C = - n »
gin a sin b

This method leads to time consuming evaluation of trigonometric functions,

Figure 7-12. The Spherical Triangle

One might consider numerical integration over the spherical triangle to evaluate the area.
If the integration ig expressible in a simple form, perhaps a gain in computation speed will result.

In this form

@, 6{¢)

c=R sin 8 d@ do ., (7.4-18)

-3
Here 6(¢p) must be evaluated, Let n be the cross product of unit vectors from the origin to
points 1 and 2, Then ne ér = 0 for all ér that terminate along the great circle path between

points 1 and 2, This yields a transcendental equation to be solved for 8(y) .

sinBcoscp{sin 91 sin ©, cos Bz-sin stin ©, cos Gl} .
A . . _ .
smBsm(p{cos 61 sin 92 cos @, - cos 62 sin 61 cos tpl} '
+cose{sm91 smez sin (192—(91)} =0, (7.4-19}
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Replacing each bracket by a; ., we find

a, sinGcosgo+a2 sinesin(p+a3 cos 6=0, (7.4-20)
and for given ¢, the g is available from
-ag
tan B = - . (7.4-21)
a, cos @ + a, sin ¢

So in addition to evaluation of trignometric functions the numerical integration is also required.

We make the following approximations:

a. The target points are sufficiently close together so that projections
on the unit sphere centered at the target center give the proportion
of blocked heliostat area with sufficient accuracy for each target

point.

b, The heliostais which are sufficiently far away from the target so that
blocking is a problem are also sufficiently far away from the unit
sphere 50 that the area of the spherical quadrilateral is a small
portion of the surface area of the sphere. Over such a small region

the spherical surface is taken as planar.

c. In the small region of the spherical quadrilateral where the planar
approximation is made, the sides of the guadrilateral are taken as

straight lines.

With these approximations, the blocking calculation becomes directly analogous to that for shadow-
ing. The axes are 8, ¢, but since only ratios of areas are of conseguence, these angles can be
ireated directly as lengths (since length along either axis is directly proportional to the angular

interval).

As occurred in the shadowing case, in several geometries examined for 10 a.m <t <2 p.m.
when the rays from an individual helicstat are blocked by more than one other heliostat, the bklocked
portions do not overlap and should be added (subject to the limitation of the total area). In contrast,
for safety calculations and for late times, an overlapping option ig convenient where only the larger

area is taken as the blocked portion. These two options are available in the code,

When a heliostal is shadowed and when its reflected power is also blocked, the shadowed
and blocked portions are assumed to overlap, The larger ineffective area is used to reduce the
power collected by the heliostat. For all cases examined thus far, this is a good assumption for

10 a.m. <1 < 2p.m.
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The earlier approximations listed for shadowing also apply to the treatment for blocking
with "shadowed'" replaced by '"blocked." On December 21 for 10 a.m. < t <2 p,m,, for aim points
near the 1-MW tower receiver and for the 78 heliostats in zone A of the STTF, shadowing and
blocking reduce the effective area of the heliostats by & 16% with most of the reduction caused by
total shadowing of some heliostats by the tower. The same calculations on March 21 indicate
£ 7.4% reduction in effective area that is caused about equally by shadowing and blocking at the
extreme timeg in the interval. On June 21, calculations indicate shadowing and blocking give
& 1% reduction, mainly due to blocking effects. Some may argue that the assumptions concerning
the shadowing and blocking treatment must be eliminated in order to obtain accurate results for
collected power. However, even a 10% error in that calculation results in g 1% error in the col-
lected power, Future comparisons with experimental data or with more detailed treatments are
expected to verify the adequacy of the present shadowing and blocking assumptions. At late or
early times, or for aim points cloge to the ground where only a srall portion of the mirror area
is effective, the options of shadowed (or blocked) areas overlapping or not overlapping allow bounds
to be placed on the results. In such cases, a more detailed treatment of interference effects is
expected to yield more accurate results, The authors admit the assumptions chosen here were
motivated by speed and ease of programming as well as by primary interest in accuracy around

power-receiver locations for times within 2 hours of noon.

Ii is tedious bui straightforward to extend the shadowing and blocking treatments to each
individual facet. Then the contribution of each shadowed facet could be reduced appropriately,
relaxing the assumptions noted earlier. Even greater detail would specify just which portion of
each facet is shadowed and that portion could be deleted from the integration. This detail would
eliminate the need for options concerning overlap of multiple shadows on the same heliostat. A
code used at McDonnell Douglas subdivides each facet into 121 elements and tests each element
for shadowing or blocking. 7.6 It is also possible to apply a separate blocking test for each of the

~ 121 target points processed during a typical problem. Such extensions are not treated here.

7.4.5 Nearest Neighbors

In calculations for the Central Receiver Test Facility, the number of heliostats (£ 222 now)
is sufficiently small that the energy flux calculation dominates the required computer time. Hence,
little penalty results from testing each heliostat for shadowing and blocking with all the other
heliostats. On the other hand, pilot plant or commercial central receivers may require several
thousand heliostats. Then the shadowing and blocking calculation requires more computer time

and further optimization ig desired.

An obvious method for increasing efficiency is to test only the n nearest neighbors for
shadowing and blocking of each heliostat. The proper n is expected to vary with the distribution

and size of the heliostats. The minimum appropriate n will vary with the orientation of the sun

P
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and the choice of receiver. At times far from noon, n is expected to be large, Around noon, in
some designs, very little shadowing or blecking occurs and n could be zero. HELIOS now allows
4 <n < 34, n=0, or n = the number of heliostats - 1, when shadowing and blocking calculations
are performed., The specific limits 4 and 34 can be eagily altered by changes in a few code state-

ments (such as parameter dimensions).

The set of nearest neighbors is determined in HELIOS by calculating the distance (squared)

between each heliostat and all the others and selecting the heliostats with the smallest n distances.

The game set ig then used for each time of day and day of year processed. One might consider
selecting the n nearest neighbors that are closer to the target center. However, application to a
south field of heliostats would be incorrect. It is possible to then use two sets of neighbors--one

for shadowing and one for blocking. This option is not now available in HELIOS.

As an example of the selection of the number of neighbors, n, calculations are presented
for the 78 heliostats in zone A of the Central Receiver Test Facility at Sandia Laboratories,
Albuguerdque, NM. The effective mirror area (after cosine-effect, shadowing, and blocking) is
given in Figure 7-13 for 8 a.m. on December 21 as a function of n. By 10 a.m., n = 10 is suffi-
cient. On March 21, or June 21, n = 10 is sufficient even at 8 a.m. However, in Figure 7-13, it

appears the n > 15 is required,

1.6 1.8 2.02.2 2.4 2.8

Effective Area ( 1000 m® )

1 01I2 1.4

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 B80.0
Neighbors

Pigure 7-13. Variation of Effective Mirror Area for 1-MW
CRTF With the Number of Neighbors Chosen
for the Shadowing and Blocking Calculation
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Congider the penalty as larger n is selected, Figure 7-14 gives the CDC 6600 computer
time consumed in the shadowing and blocking calculation at 8 a.m. on December 21 as a function

of n.

50.0

A I

40.0

30.0
&

CDC-6600 Time ( sec )
0.0 20.0

0.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Neighbors

Figure 7~14. Variation of CDC 6600 Computer Time
for Shadowing and Blocking With the
Number of Nearest Neighbors Involved

When similar calculations are done for the 222 heliostats in Zones A and B of the CRTF
with the 5-MW receiver aperture, the shadowing and blocking require computer time which in-
creases roughly as the number of heliostats to the 1.7 power for given n. The check for overlap
between two guadrilaterals proceeds quickly compared to the rest of the calculation when overlap
occurs. Hence, the time required is very dependent upon the amount of shadowing and blocking
present in the heliostat field. A similar check would be even more importani in detailed calcula-
tions which might specify which portion of each facet is shadowed or blocked and might eliminate

such portions from the integration.
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CHAPTER 8

AUXILIARY CAPABILITIES

8.1 Reconcentrators

Some receivers are designed to work with reconcentrators. A reconcentrator utilizes
curved panels to redirect additional radiation onto the receiver. In this section we develop the
approximation used in HELIOS for modeling receivers with reconcentrators. An example will be
given in subsequent sections.

>

Consider a small cone of light reflected from a concentrator surface at poil_l;c Pf in Fig-
ure 8-1, Suppose that the reflected cenfral ray of this cone re_f;lects from point Pr of a re-
concentrator surface and continues to strike a target plane at Pl' The surface element AT de-
fines the cone of light. 'The unit vectors k, M, and N define the normals to the target plane,
the reconcentrator surface at Er , and the concentrator surface at point E , respectively. A

5
dashed line through P is used to indicate the intersection of a plane (the "tangent plane''} with

>
the page; this plane is tangent to the reconcentrator surface at Pr .

Figure 8-1. Reconcentrator Geometry

A1l the points so far are in the tower coordinate system. For use later, a coordinate
d -
gystem ig defined on the target plane, Its origin is at P0 , its o coordinate along i and its f8

coordinate along jA . In order to relate this target system « - B to the concentrator system
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X -y -z, it is necessary to specify one more vector about P

~ -
3 we gelect i. Once the point P0

and the unit vectors k and i are specified in the concentrator system, any point (@, B) in the

target system is fransformed to it by the relationship

- - “~ -
P=P0+ia+jﬁ .

"
The unit vector j is obtained from the cross product

~

fka;..

(8.1-1a)

(8.1-1b)

A Y
The reflection of the element AT, its surface normal k, and the point Pl in the tangent

A -
plane is shown by AT’, k‘, and Pi , respectively, in Figure 8-1.

- -

- A A
Given the points P P _, and P, and the unit vectors M and k, we first solve for the

£ T r 0

point at which the ray reflected along B infercepts the target plane., Since k is perpendicular to
e

-3

the target plane whereas the vector P - P0 lies in it, the dot product

“ PO Y
k'(P-PO)'—‘U B

or

-
P0

s

PR
k-P =

(8. 1-2a)

(8. 1-2b)

—
for any point P in the target plane. An equation of the line through Pr in the direction of the

~
unit vector B is

-

- -
R=P +1itB ,
r

- -3
where t is a parameter that gives the distance of point R from point Pr . When

we get (from Egs. [8,1-2b]and [8 1-3])

P P Fy A ~ -
kP, = k+P +tk*B=k"P

1 r 0
from which
" = -
k'(PD - Pr)
t = = .
k*B

The vector B is calculated from A and M by using Eq. (4. 2-6).

(8.1-3)

(8. 1-4a)

(8.1-4b)

(8.,1-5)

yo
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The coordinates (@, B) in the target system are given by

a" =
¢ =1i-C (8. 1-8a)
and
-
B=3+C (8., 1-6h)
where
" = -
N - > - a k.(PO -Pr)
C=P1~PO=PT—PO+B — .
k*B

The approximation presently used in HELIOS is to specify a grid of points on the reconcen-
trator surface and to divide the receiver target into an array of cells as indicated in Figure §-2.
For given points ;f on the concentrator surface and Er on the reconcentrator surface, the
location (@, B) of the intersection of the reflected ray with the receiver target is determined. The

cell indices ij are then determined by

o, La < @i ) (8,1-7a)
Bj < B < Bj+1 . (8. 1-7b)
-
‘When P1 (Figure 8-1) falls within cell ij , the flux density at the center of the cell
o, + o
i+
PO T S (8.1-8a)
2
B. + B.
+
g = 23 1 (8.1-8h)

is incremented by an amount AF(AS/A T)p where AF 1is an increment of the integral (5.5-3) as
calculated by HELIOS for glven points Pf and P . 'The quantity AS is an increment of area
agsociated with the point Pr on the reconcentrator, AT is the cell area on the receiver target,

-5
and p is the reflectivity of the reconcentrator surface at Pr for the angle of incidence ¢ .

8.1.1 Calculation Method Uged in HELIOS

The basic geometry is given in Figure 8-3. Unit vectors in the sun-reflector coordinate
fystem are labeled as EX, 'éy, éz,: (Recall that in this system the origjn ig at the facet center,
e, is normal to the facet center, ey ig in the plane of incidence, and &, completes the right-
handed system.) The vector from thig origin to the facet elemeni of area is designated by

RLP (I = 1, 3) inthe HELIOS FACET function routine. In the illustration here, RLP (I=1, 3)
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is zero. These coordinates are specified in the facet coordinate system {(where x is horizontal
along a facet edge, z is normal at the facet center, and y completes the right-handed system).
The corresponding facet-coordinate unit vectors are formed in Program C of HELIOS as

VX{I=1, 3), V¥{I=1, 3), and VZ(I = 1, 8), in terms of the tower coordinates.

ﬂj+_1 N

Bj

B3 |

By

B | 1 1 1

Lo ay ag aj ajy

Figure 8-2. Receiver Target Cell Structure

(XTA, YTA, ZTA) /k\

Reconcentrator

Receiver
element

plane

Figure 8-3. Reconcentrator Geometry

A vector from the facet center o the integration element expressed in tower coordinates

is

VFE(I}) = RLP{1)* VX{I) + RLP(2) * VY(I) + RLP(3) * VZ(I) (8.1-9)

e
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for 1 =1, 3, Addition of the respective tower coordinates of the facet center (X1P, Y1P, Z1P)

gives the tower coordinates of the facet integration element.

Foo= VEE(L + X1P

1
F2 = VFE(2) + Y1P
F3 = VFE(3) + Z1P . (8,1-10)

The function RVIN furnishes the normal (\7n) to the facet element in the facet coordinate system.
The normal in the tower system is then

o=V (e tV(De +V (Ha . (8.1-11)
n x n v n z

Now the initial reflection point at the facet in Figure 8-3 and the orientation are specified.

We choose one of the 121 target points on the reconcentrator surface as our target point.
A unit vector directed toward the target point is specified by UTV(I = 1, 3) and the target-point
coordinates are gpecified (in the tower system) by XTA, YTA, ZTA. The contribufion to the flux
density (W/cmz) at the target are then calculated at the target point (as done before reconcen-

trators were added). This requires calculation of the unit normal to the target (i,e., M in

Figure 8-3),

When the element of flux density is greater than 0, the cosine of the angle between M

and UTV(I =1, 3) {(~cos ¢ , designated by CO in FACET) specifies the unit vector ﬁ in Figure 8-3

B-2cosg M+ U, . (8.1-12)
tv

The receiver normal, f(l (specified by RECN [1 =1, S] in FACET) is determined from
the TARGET subroutine. The distance, t, along B to the receiver infersection point is deter-
mined from two expressions for the perpendicular distance from the reconcentrator point to the

plane of the receiver

tB:k = RECN(1) * (X, - XT4)

+ RECN{2) * (Y o YTA)

t

+ RECN(3) = (Z o ZTAY (8.1-13)

t
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where subscripts "to" refer to the receiver center. The tower coordinates of the receiver inter-

section point are then given by

XI = % B(1) + XTA

¥YI =1t*B(2) + YTA

21 =t * B(3) + ZTA . (8.1-14)

When these coordinates are known, the user is ready to determine if the coordinates lie inside the
receiver boundaries and, if so, into which section of the receiver the contribution goes and how

large the coniribution is.

In the example given later, the receiver is a vertical plane facing north at y = 3.0 m.

The vertical extent is ZEXT = 12,5 m; i.e., from 2z = 66.7 to 78. 2 m. The horizontal extent is

XEXT = 0.889 m; i, e,, from x = ~0. 4445 to +0, 4445 m, The receiver ig divided into an 11 x 11
array of equal area cells with midpoints corresponding to the 121 target points in the receiver.
Hence, the cell area ig glightly larger than the receiver itself. After a check that the receiver
intersection point has YI = 3.0 m, the XI and ZI are used to determine the cell indices of the
intersection. If the intersection does not occur within the cells, no contribution to the collected
flux dengity occurs. This decision is made in the BASKET subroutine. If a cell receiving a con-

tribution is found, the contribution to its flux density must be estimated.

The contribution to the flux density at a particular cell is determined in the FACET
subroutine. The flux density (W/cmz) reflected from the reconcentrator point is multiplied by
the reconcentrator reflectivity (taken here as 0,9} and by the ratio of areas determined in sub-
routine RARE. The ratio of areas is the ratio of the reconcentrator element of area (A = AS) to
the individual cell area (Ab = AT). Referring to Figure 8-3, the element of power incident upon

the reconcentrator element is the flux density times the element of area A, All that power is

" assumed to flow into the same cell and is distributed over that cell area Ab; therefore, the element

of flux density reaching the receiver requires multiplication by the ratio of these areas. The
reconcentrator has a portion of its target points on edges and corners; therefore, these points have

reduced effective area elements (A). The cells are all taken to be the same size.

Advantage is taken of the fact that the cells have receiver target points at their centers.
The flux density within each cell is chosen as the value at its center. The reconcentrator con-
tribution to the flux density is then added to the direct contribution to get the total distribution
of power over the receiver. Integration schemes developed in Section 7.1 are then directly appli-

cable for finding the total collected power.
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In some applications the assumption may not be valid that the element of power from a
reconcentrator element all flows into one cell, This is reasonable when the projected area elements
are roughly the same size (A sing < Ab cos y) and the propagation distances (t) are not large.

If t becomes largeorif A cog y << A sin ¢, it may be necessary to spread the elements of

b
flux densily over several cells to obtain reasonable estimates. Inclugion of multiple reflections

would also require a more detailed analysis,

8.1.2 Four-Panel Reconcentrator

The two-aperture reconcentrator design is indicated in Figure 8-4., The upper aperture
consists of two panels (reflectors) and is aimed at 22.5° east of north with edges that pass through
(-0.594, 4,92, Z) and (1, 254, 4,157, Z). The lower aperture is aimed at 22.5° west of north with
edges at (~1.254, 4,157, Z) and (0,594, 4,92, Z). Each panel has a height of 6,25 m. FEach
horizontal cross section is modeled as a circle with radii of curvature as indicated in Figure 8-4

(in meters). EBach reconcentrator panel is numbered in Figure 8-4 for convenience later,

Top
Bottom (0.594, 4,92, 7)

2230 East of North
223 West of North

{1,254, 4,157, 2)

(dimensions - m)

(0.5, 3.0, 2)
*(0. 4245, 3.0,Z)

Figure 8-4, Top View of Two Aperture Reconcentrators.
Apertures centered at (-0, 33, 4.54, 76,075)
for the top and (0, 33, 4.54, 69.85) for the
bottom., The Z values are then reduced hy
1.5 m to aid energy collection

The reconcentrator surfaces are modeled as indicated in Figure 8-3, The tower co-
ordinates of the center of curvature for each circular section are noted in the USERTG sub-
routine as (A, B) in the HELIOS permanent file HELIOSJ. Each reconcentrator panel is divided
into an 11 x 11 grid of reconcentrator points as indicated in Figure 8-5., The effective area of the
14th reconcentrator point is designated by A in Figure 8-5. Points on the edges {corners) have

effective area A/2 (A/4).
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A - EFFECTIVE AREA OF RECONCENTRATOR
TARGET POINT 14

111

Figure 8-5. A Reconcentrator Panel

8.1.3 Receiyver

The receiver itself is modeled as flat, facing north, with a height of 12,5 m and a width
of 0,889 m. It is actually one panel from the McDonnel Douglas receiver as indicated in Figure 8-6

with the expanded view in Figure 8-7,

7m(23f)
12.*5 m ‘/ Steam downcomer
(41 ) Support
structure _ @
P
8.75m (29 ft) ol
-+
Absorber T_L Panel
12.5m
65 m
(213 ft) \ yﬁtJ
Q LR
U I trol val
R ow control valve

I‘g 5 Temperature
@%/K controller
I
\ Water riser

Figure 8-6. Pilot Plant Receiver
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70 tubes
1.27 cm OD

Figure 8-7, Pilot Plant Receiver Panel

The direct contribution to the receiver is calculated as with the regular HELIOS code.
Any blocking caused by the reconcentrator panels is neglected. The indirect contribution to the
receiver resulting from reflections from the reconcentrator are treated separately. For the
indirect contribution, the receiver is divided into rectangular cells with their centers cons'isting
of the 121 mesh points in the direct calculation. When the central ray from an integration sub-
division for a facet is reflected from the reconcentrator and strikes one of the cells, the contri-
bution of that facet subdivision is added to that cell. The reflectance of the reconcentrator has
been taken as 0.9, independent of angle of incidence, When more data are available, improved
reflectance may be inserted in the facet subroutine. Of course the cells can be further subdivided
for greater detail and the contributions of individual facets can be spread among several neighbor-

ing cells for reduced statistical fluctuations. If needed, such refinemenis may be added later.

The receiver structure is mounted on top of the CRTF tower as indicated in Figure 8-8

for this example.
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Figure 8-8. Schematic of MDAC Receiver
and Support Structure Atop
CRTI Tower

8.1.4 Heliostats for Four-Panel Reconcentrator

The 222 heliostats in the north field of the CRTF are used in the calculation. They are
diagrammed in Figure 8-9. In this configuration the centers of the reconcentrator apertures are
at (0, 33, 4,54, Zl) and (-0. 33, 4,54, Zz) for the eastward and westward facing apertures. The
Z1 = 8,325 m and Z2 = 74,575 m, placing the reconcentrator discontinuity at 1.5 m bhelow the
altitude of the receiver center. The aim points for this example are given in Table 8-I, The
heliostats of the eastern sector are divided among the first five aim points while the western sector

of heliostats utilize aim points 6 through 10,

TABLE 8-I

Aim Points for Two-Aperture Reconcentrator

Point x{m) y(m) z(m) Point =(m) y{m) z{m)
1 0,33 4,54 86,90 6 -0, 33 4,54 71. 86
2 ¢. 33 4.54 67.92 7 -0.33 4,54 72.97
3 0. 33 4.54 68.93 8 -0. 33 4,54 73.98
4 0,33 4.54 89. 94 9 -0,33 4,54 74,99
5 0.33 4.54 70.95 10 -0.33 4, 54 76,00
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Heli_ostat Layout in East — North Plane
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8.1.5 Result for Heliostat 18 and the Four-Panel Reconcentrator

Ag a test of the HELIOS model of the four-panel reconcentrator, results are examined
for heliostat 18 alone. Its aim point is (-0. 33, 4,54, 73,98)., Prealignment time is noon on
March 21 with alignment point (0.0, 3.2, 72,442), Calculation time is 10:00 a.m. on June 21.

The receiver center remains at (0.0, 3.0, 72.95).

Heliostat 18 gives a direct power of 15.3 kW to the receiver. The reconcentrators add
4.6 ¥W (i.e., 57% of the power incident upon the reconcentrators). The power distribution is
summarized in Table 8-II, Consistent with the geometry, the spillage occurs mainly over the top

of the receiver and at the edge of the eastern side of the upper reconcentrator.

TABLE 8-1I

Power Distribution for Heliostat 18

Power

Identification kW)
Intercepted by facets 36.6
Reflected from facets 29. 3
Lost by propagation 0.4
Incident upon receiver directly 15. 3
Incident upon reconcentrator panel 1 0.2
Incident upon reconcentrator panel 2 7.9
Incident upon reconcentrator panel 3 0.0
Incident upon reconcentrator panel 4 0.0
Reconcentrated upon receiver 4.6
Total Collected Power 19. 9
Spillage ‘ 5.5

The calculation of the reconcentrated power that is collected by the receiver only includes contri-
butions from single reflections. Analysis of a truncated two-dimensional compound parabolic con-
centrator indicates as the acceptance half angle varies from 4° to 36 °; the average number of
reflections for accepted rays varies from 1.4 down to 0.6, The number is < 1 for 8 > 12°, Here
the acceptance half angle is near 25°, hence treatment of only the first reconcentrator reflection
is reasonable. If the reconcentrator of interest is fully analyzed, then the average number of
reflections for collected rays might be known and a corgpection factor could be applied to the
additional 4.6 kW collected; in that way, accuracy could be improved. Of course, more detailed

analysis in the code could also account for multiple reflections.
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8.1.6 Results for Zones A and B

Results for June 21 at 10 a.m. are summarized in Table 8-III. Figure 8-10 shows a
plot of flux density versus vertical distance z at the eastern edge of the receiver (x = +0. 4445 m).
The bottom of the receiver is at z = 0. Separate golid curves are shown for each reconcentrator
as well as for their total., A dashed curve shows the corresponding slice across the direct flux-
density pattern. The panel numbers are identified in Figure 8-4. The power intercepted by a
panel is obtained by integrating the incident flux density over its surface. The evaluation of this

integral requires several slices across the flux-density in addition to the one shown in Figure 8-10.

TABLE §-1II

Two-Aperture Power Distribution From Zones A and B

Power
Identification (MW)
Intercepted by facets 7. 21
Reflected from facets 5.77
Lost by shadowing and blocking 0. 26
Direct incidence upon receiver 2,08
Received from reconcentrator panel 1 0.12 (0.24 MW incident)
Received from reconcentrator panel 2 0.58 (0.98 MW incident)
Received from reconcentrator panel 3 0.55 (0.92 MW incident}
Received from reconcentrator panel 4 0.07 (0.12 MW incident)
Reconcentrated upon receiver 1. 32 (2,26 MW incident)
Total Collected Power 3. 40
Spillage and Propagation Loss 1,17
102 T T T T
~ . . . B
1 N
10 \ 3
] A\
5 Reconcentrated v
= totat \
10° E
-1 I 1
0"y 2 4 6 8 10 12

Figure 8~10. Distribution of Reconcentrated Power Along a Vertical Line at the
Fastern Edge of the Receiver (x = +0, 4445 m) Caused by Each of
the Four-Reconcentrator Panels. z = 0 is the bottom of the receiver
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8.2 Plotting Capability

The Helios model includes a large number of effects, The associated computer code is

capable of generating huge amounts of data. Several auxiliary computer codes have been developed

e

to aid in analyzing these data. The resulting graphic output allows greater ingight and more rapid
interaction with the code. This output also serves to alert the user when the input data do not

represent the problem of interest, . N

8.2.1 The PLO Plotting Package

The PLO plotting package was developed to furnish graphical output of several built-in
features of HELIOS as well as of three-dimensional flux-density distributions, power variations
with time, sunshape, and shadowing and blocking. The built-in features that may be examined
include variation of the solar declination, solar azimuthal and elevation angles, air mass tra-

8.
versed, and insolation. Graphical examples are avilable elsewhere, 2

The plotting routines use DISSPLA (Display Integrated Software System and Plotting
LAnguage) developed by the Integrated Software Systems Corporation. The DISSPLA computer
routines are proprietary and cannot be furnished with HELIOS but are available from their
originator. 8.3 Sandia has recently extended its own SCORS plotting routines; these routines are
not proprietary and could ke transferred to outside users with HELIOS. 8.4 Therefore, in the

future the PLO routines may be converted to the SCORS system for easier transfer,

8,2.2 Shadowing and Blocking Movies

As one example of PL:O capabilities, several shadowing and blocking diagrams are shown.
Let us refer to Figures 8-11 through 8-14. The shadowing effect is shown by the projection or-
thogonal to the sun's rays, The view seen from the target center gives the blocking as a projection
onto the indicated unit sphere. The area subplot gives the effective mirror area (in square meters)
before and after shadowing and blocking, The intercepted power subplot gives the power (in watts)
intercepted by the mirrors and {when calculated) the power incident upon the target surface. Fig-
ure 8-14 indicates the large shadowing effect near sundown. Very little shadowing and blocking
occur in the other diagrams. It is possible {o use the HELIOS-PLO combination to generate movies
to show the evolution of such shadowing and blocking diagrams during a day. As expected, the
movies indicate little change in the blocking diagramsg (ot_her than rotation of the heliostats) while

the shadowing diagrams change dramatically.

«
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Figure 8-11. Shadowing and Blocking Diagram for Noon
on March 21 With Zones A and B of the CRTF
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Proiection orihogonal to sun rays.
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Figure 8-12, Shadowing and Blocking Diagram
for 10 a.m. on March 21 With
Zones A and B of the CRTF
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8,3 NOS Routines

The NOS is a large scale time-sharing facility that supports many users. At Sandia Labo-

ratories the system is accessed via a standard telephone system, It allows the user access fo a

CONTROL DATA 6600 Central Processor.

Because of its convenience for many tasks, several

computer codes associated with HELIOS have been created for NOS.
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8,3.1 NOQS Version of HELIOS

Computer cogts are often proportional to the amount of computer core storage required
to run & computer code. This prompted effort to make HELIOS core requirements as small as
possible, To date the core requirements of HELIOS have been reduced to 103 k octal words, The
NOS at Sandia Laboratories imposes a limit of 107 k octal words on any job {(during prime time),

The complete HELIOS code is now available on this interactive system.

The computer core requirements needed to numerically convolve a sunshape with an error
cone used up most of the storage space allotted to the earlier versions of HELIOS. This capability
has been altered by reduction of the matrix dimensions required for fast Fourier transforms.
Comparisons with earlier calculations of effective sunshape under the most trying conditions (very
small dispersion for the error cone) indicate less than 1% variation in the effective sunshape.

Special printing options have also been developed for the greater convenience of the NOS users.

8,3,2 NOS Input

The HELIOS users manuals' 2 gives considerable detail concerning how to structure an
input deck for HELIOS., An alternative to punched card input is the interactive response on NOS fo
a series of guestions posed by the DGENH (Data GENeration for Helios) code. The file generated
on Tape 5 may then be punched for later use or may be directly inserted into the NOS version of

HELIOS.

8.3.3 NOS Plotting

A series of plotting codes have been developed to accomplish most of the tasks earlier
agsigned to the PLO plotting package. Use with NOS has the advantage that plots are available

in just a few minutes. In some applications this will allow better interaction with the code and

faster construction of the desired graphs.

8.4 Shadowing and Blocking Within a Parabolic Dish

Requirements in several HELIOS applications have prompted an extension of the treatment of
parabolic reflectors. In some applicatidns the dishes are rather deep. This in itgelf poses no
problem, for usually {with deep parabolas) the optical axis is aligned toward the sun and no shadow-
ing or blocking is caused by the parabola itself, Iowever, in safety calculations the reflector
may be oriented so that the reflected rays are nearly horizontal. These steps are taken to study
possible hazards to personnel or machinery. Neglect of this shadowing and blocking will give a
worst-case estimate. However, in some applications better estimates are desired. One example
is the problem of maximizing in a limifed space the power collected by a small central receiver,
which will offer no hazard to a nearby inhabited area. The PHI subroutine of HELIOS (that is a

portion of overlay 3) utilizes this treatment of parabolic-dish reflectors.
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8.4,1 The Shadowing Effect

The sun-concentrator coordinate system was introduced in Figure 3-14. In the present
application we require slightly more detail than given earlier. In Figure 8-15 the sun~-concentrator
system is shown with its origin at the reflector center. The incoming central ray from the sun

that strikes the origin is in the y - z plane (z is normal to the reflector surface at its center).

Figure 8-15. The Sun-Concentrator System. The system indicates the incident
central solar ray Vip , the local reflector normal Vy, and the
vector Tij from the reflection point, P, to the target point, P

( The reflection point, Pr , is at El with respect to the origin, and has a local unit normal
Vn » The unit vector along the incoming central solar ray that strikes the origin is designated by
V., . In this coordinate system, Vinx = 0. At a general reflection point, Pr’ the angle between
the incoming central ray and the line through Pr parallel to z is designated by £ . When Pr is
at the origin Vin =sinf , Vinz = - cos { . For a general position of Pr , the € differs very
slightly because the incoming central ray may not be in the y - z plane. Since the reflector
dimensions are so small compared to the earth-sun distance, this variation of £ is ignored. Then

in this coordinaie system the tangent of the sclar elevation angle (Ce =7f{2 ~ £} is given by

= -V -
tan ¢ xinz/vmy (8. 4-1)

If the dish radius is R, the projection of a portion of the vectors in Figure 8-15 onto the

X -y plane would be that given in Figure 8-16,

e
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Figure 8-16. Projection Onto x - y Plane for Self-Shadowing

In Figure §-16,

1/2 :
2 2
= + l - -
£ R,@y R Rﬁ,x B (8. 4-2)

At the edge of the dish, the central incoming ray that strikes the reflection point, P , will have
r

a height

= + . .4~

Zin £ tan Ee Rﬂ,z (8.4-3)

The Z value for the edge of the dish (Zedge) is obtained from the reflector shape routine

(VALRL3)., Self-shadowing then occurs if Zedge > Z.in for the central solar ray,

Use of such a simple test does not consider the sun's shape. Shadowing of the central ray
does not necesgarily require that the entire sun be shadowed at the reflection point, Pr' However,
if a large number of integration sections are chosen on the reflection surface, rejection of portions
not shadowed should be compensated for by the addition of portions that are shadowed. Typically,

when such effects are studied, the parabolic dish has been divided into from 527 up to 839 inte-

gration sections.
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8.4.2 The Blocking Effect

Once it is clear that the incoming ray will reach the reflection point, the outgoing ray to
the target point of interest is then tested to see if it will pass over the lip of the reflector. The

-
base vector, Rb , in Figure 8-15 ig from the origin to the target point, P Projection of several

.
vectors onto the x -y plane now results in Figure 8-17., The primes denote vector projections

onto the x - y plane,

X

Figure 8-17. Projection Onto x - y Plane for Self-Blocking

The angle )\ is available from the law of cosines -

2 2 2
r3 = rl + J:'2 -+ 21‘11'2 cos A, (8. 4-4a)
where
2 2 2
+
rl Rlx + Rly
rz = r.2. + 2
2 iz ijy
2 2 2
- . 8.4~4b
rS be * Rby ( )
9 1/2
Since 0 <A < 7, sini = + 1-cos X , while the gsign of cos A is obtained directly from the

law of cosines, If ro < R, no seli-blocking is possible (this would likely be the case if the para-

bolic dish is tracking the sun).

-
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The digtance along the reflected ray projected info the x - y plane from the reflection

point to intersection with the projection of the edge of the reflector is

2 2 172
d = -1, cCOS A T [R - r, sin )\:I . (8. 4~5)

re 1 1

>
where ry = |RI l . The tangent of the elevation angle for the outgoing ray is

“ijz ” Rlz

tan ¢, = =22 (8., 4-6)

1 r

2
>
with r, = |17'i'j J . At the edge of the parabolic dish, the outgoing ray has attained the height

= + . .

Z‘out dre tan {1 Rlz (8.4-17)

Blocking of the ray toward the target point then occurs if Zedge > Zoat * As before, division of
the reflector into a large number of integration segments allows neglect of the sunshape, and

allows shadowing to be estimated from calculation of only the central ray to the target point.

8.4.3 Receiver Shadowing

In one application HELIOS was used for a situation where the receiver was mounted along
the digh axis at some distance above the parabolic dish. The dish tracked the sun; hence, the
receiver itself cast a shadow upon the reflecting surface, In a similar situation the parabelic
dish had a hole cut from its center. The hole was utilized by a porticn of the structure supporting
the receiver. In both cases HELIOS adjusted the radius of the central integration-mesh element
to be that of the ineffective area. Receiver shadowing or the effect of the hole is then included by

neglecting the contribution from this central element,
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CHAPTER 9

COMPARISON OF DATA WITH HELIOS PREDICTIONS

During the evolution of the HELIOS program, there have been some comparisons of mea-
surements with the corresponding computer calculations, Some comparisons have also been made
between HEIIOS results and the results from the MIRVAIL code of J. D. Hankins. 9.1 The MIRVAL
code uses a Monte Carlo method of treating statistical variations, whereas HEILIOS is an analyt-
ical approach., Resulis from the two codes were in agreement, The agreement between calcula-

tions and measurements has been within the error tolerances of measurements.
The following list summarizes checks of the validity of HELIOS predictions.

Check Points for HELIOS

1. Scale model experiments for one heliostat by E, A, Igel,

G. F. Bott, and R. L. Hughes, April 1977,

2, MIRVAL computer code for one heliostat by J. D. Hankins,
January 1977,

3. Comparisons with shape of hole in a steel plate by John

Holmes, May 1977.

4. Shape comparisons with image formed by 80-in, focal

length gpherical mirror by Larryl Matthews, April 1976,

5. Comparisons with Martin-Marietta data for one facet by

W. Hart and C. N. Vittitoe, April 1977,

6. Single heliostat comparisons by D. E. Arvizu, September

1978.

Several verifications of the shape of the flux dengity pattern for a single spherical mirror
were made by Larryl Mathews of Sandia Laboratories (Item 4 in the above list). Flux-density
patterns were checked near the sagittal and tangential focal planes at several off-axis angles of
reflection, In a demonstration, the Zone A field of 78 heliostats at the CRTF was used to melt a
hole in a steel plate, The shape of the hole agreed with the shape of the flux-density contours froem
HELIOS (Item 3 in the check point list). 2ore details of Items 1, 5, and 6 of the list will be given

below.
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9,1 Scale-Model Experiments for One Heliostat

In April of 1977, E, A, Igel and R. L. Hughes of Sandia IL.aboratories used a laboratory-
scale model experiment to investigate the image performance of a spherical heliostat operating

at large angles of incidence. Certain results of this experiment were recorded photographically.
HELIOS was used to model this experiment and the calculations were compared with the measure-

ments,

A heliostat was modeled on an optical bench using a collimator to simulate the 1/2-degree
angle subtended by the solar disk. A spherical mirror was selectively masked to study the energy
distribution in a focal plane when the angle of incidence wasg large (i.e,, 40 and 50°), Figure 9-1

shows the facet pattern used and the corresponding images,

This experiment was simulated using HELIOS. The same facet pattern and incident angles
were used as input and the resulting flux-density pattern on a plane normal to the principal ray
from the heliostat to the target was computed. A 3-D plot of these results is shown in Figure 9-2.

Corresponding contour plots are given in Figure 9-3.

The agreement between the flux-density pattern calculated by HELIOS and the experiment is
excellent. The geparation of the energy into individual peaks for each facet in the pattern and the
relative separation and orientation of the patiern in the computer plots of Figure 9-3 is identical
to the experimental photographs in Figure 9-1. The reason that some of the peaks are truncated
more than others in the computer~drawn graphs of Figure 9-2 is that the mesh points used to
evaluate the flux-densgity patterns fall at different heights on each peak. The mesh points are

located at the intersection of the grid of lines on the base of each drawing.

This experiment not only provides a valuable check for the simulation code HELIOS, but is
also an excellent illustration of astigmatic aberrations caused by off-axis effects. At a zero
angle of incidence, the images from all five faceis coalesce into a single peak as shown in Fig-
ure 9-3. At large angles of incidence, the image from the center "reference facet' is held fixed
on the center of the target but the contributions from the other facets spread out as indicated in

Figures 9-1 through 9-3.

9.2 A Single-Facet Experiment

HELIOS calculations were performed for comparison with Martin-Marietta's measurements
of the flux-densgity pattern produced by a single facet. The sunshape at the time of the measure-
ment is not known, the exact time of the measurement is not available, and the distribution of
slope errors is also not known. TUsing a sunshape measured in Albuguerque, NM (see Section
5.2.5) and a circular normal error cone of dispersion ¢ = 2.83 mrad, HELIOS predicted the

dashed curves in Figure 9-4, The squares and solid curve indicate the experimental data,

-
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- HELIOSTAT MASK
1 2

LIGHT SQUARES ARE IRRADIATED FACETS

Figure 9-1. Location of Simulated Sun Images és:Produced
by Specified Facets of Lab-Heliostat
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Figure 9-3. Flux-Density Contours. These contours were calculated by HELIOS corresponding to the measurements shown in Figure 9-1,
The contour levels are 0. 15, 0.05, 0,01, and 0,001 W/ecm2. Smoother contours would be expected if the target mesh had more

than 121 points in the grid
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Target is 106.68 m along a line 34° to the east of south of the facet.
Insolation is normalized to 0.08 W/em2, Latitude is 39.8° N as for
Denver, Colorado. Target and facet heights are identical, The hori-
zontal distance is across the target center. The planar target faces

the facet,

Figure 9-4., Energy Flux Comparison With Martin-Marietta Data
Collected on September 28, 1978

There was no attempt to adjust the insolation, the error cone, or the sunshape to improve
the agreement. Of courge, the agreement could be made arbitrarily close by properly choosing

these quantities. We conclude that the agreement is within the tolerance bounds of the input infor-

mation in the calculation.

9.3 A Single-Heliostat Experiment

A recent comparison of measurements with HELIOS was performed on single heliostats at
the CRTF in Albuguerque, NM. Some preliminary results from these experiments were reported

by D. E. Arvizu.g' 3 A typical set of these measurements is given here.

This experiment was performed by using a stationary vertical bar with radiation gages
gpaced at intervals along the bar. The solar image produced by one Martin-Marietta heliostat
was swept horizontally acrogs the bar. This heliostat consists of a 5 x 5 array of 1.2- by 1.2-m

facets, Each gage recorded a flux density versus time. Thus the reading from each gage



represented a different slice across the flux-density pattern, The insolation was measured sepa-
rately and used together with a measured heliostat reflectivity of 0.81 as input to the HELIOS code

to calculate the corresponding flux-density pattern. The results are compared in Figure 9-5.
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Figure 9-5. Measured vs Predicted Beam Shape

9.4 Remaining Verification

Although HELIOS has given results consistent with each of the checkpoints noted earlier,
there are several features of the code that have not been subjected to test. Other than the pattern-
shape test by John Holmes, each comparison was for a single mirror or a single heliostat, These
give no check of shadowing and blocking features. A consistency check is possible by comparing
results with MIRVAL calculations for a large array of heliostats. Such a comparison is planned.
More detailed flux-pattern measurements are planned for the CRTTF using large heliostat arrays,
Then accurate intensity measurements with concurrent sunshape data will offer a definitive test

of shadowing and blocking features.

The reconcentrator features have not been tested experimentally. However, reconcentraior

experiments should be completed by the spring of 1879 giving additional data for comparison.

Thus far, the various uncertainties that contribute to the error cone in experimental tests
have been freated as not well defined. In some cases the error cone was adjusted to improve

agreement with data, The resultant error cone was then only examined for consistency with

199



200

readily available information about errors associated with the heliostat and the sunshape, Typi-
cally the resultant c¢ylindrically symmetric error cone has a dispersion near 2 rmnrad, consistent
with estimates for heliostats at the CRTF. Tests would be still more definitive if this degree of
freedom were removed. In other gituations it may be possible to use HELIOS results to estimate
one contribution to the error provided the other contributions are known. These capabilities of

HELIOS will be tested in the future.

Other possibilities for testing HELIOS are expected at several solar facilities now being
developed. The authors are interested in any comparisons of HELIOS with measurements. In
addition, if experimental data and heliostat field, receiver, and sun definition can be provided,

the authors would welcome the opportunity for additional validation.
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APPENDIX A

GLOSSARY OF TERMS

In this Appendix definitions are provided for terms and expressions. Some of these are
defined for special use in expressing ideas in the Helios model, Others, although they are fairly
standard terms, take on a special connotation when applied to Helios concepts. Certain terms are

defined in the text where they first appear, but they are consolidated here for easy reference.

The Glossary entries that occur within the definition or discussion of another eniry are
underlined to facilitate cross referencing., Several of the entries have one or more references to
the text, Some of these references are given because the Glossary definition is short and a more
complete one is provided in the report. In other cases, the reference simply means the entry is
used in the referenced section and provides an example of its use. Many entries contain no refer-
ence to the text. Most of these are of a general nature and are adequately defined in the Glossary.
A portion of the entries is clarified by listing their metric units, One purpose of this Glossary
is to facilitate the use of the report by providing a convenient reference to special terms., Another
purpose is to help establish terminology for use in communication among engineers interested in
the modeling of solar concentrators and related concepts. We welcome constructive criticism

on improving and extending this Glossary.

AIM POINT: A point in gpace usually on or near the receiver that is used as a reference for the

alignment of one or more heliostats or for the prealignment of facets. Central rays reflected

from the center of the reference surface are directed to the aim point.

AIM-POINT STRATEGY: Any strategy for specifying the alignment of heliostats on their re-
spective aim points. For example, a multiple aim-~point strategy may be used to shape the

flux-dengity pattern on a central receiver.

ALIASING (Undersampling): A condition caused by the sample spacing in which high frequencies
magquerade as low frequencies, A high-frequency component of a function can vanish at

every sample peint of an equally-spaced grid and, therefore, not be detectable without using

a finer sample spacing.
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BLOCKING: The act of intercepting sunlight reflected from a concenirator before it reaches the
receiver. For example, one helicstat may block some of the light reflected from another

heliostat and prevent it from reaching the receiver.
CENTRAIL RAY: A ray of light originating from the center of the solar disk.

CENTRAL RECEIVER: A sclar collector in which the maximum dimension of the receiver (or
maximurm distance between parts of the receiver subsystem) is small compared to the
maximum dimension of the concentrator (or maximum distance between parts of the con-

centrator subsystem) and the receiver is stationary with respect to the earth,

CIRCLE OF LEAST CONFUSION: The point along the principal ray of an astigmatic system
where the diameter of the reflected sagittal-ray fan is equal to that of the tangential-ray

fan when the incident light is a collimated beam.

CIRCULAR-NORMAL DISTRIBUTION: The special case of the elliptic-normal distribution that

has equal standard deviations along both of its principal axes (Section 5.2.4).

CONCENTRATOR: Any optical element that changes the direction of a ray of sunlight for the

purpose of intensifying the flux density over that of direct insolation., A heliostat is a part

of the concentrator system of a central-receiver solar collector.

CONCENTRATOR REFERENCE SYSTEM: A coordinate system defined with respect to the con-

centrator. In a heliostat, for example, it is defined with respect to the heliostat frame.

CONCENTRATION: The ratio of flux dengity at a point on the absorber to the incident normal

direct insolation.

CRTF: An acronym for the Central Receiver Test Facility at Sandia Laboratories in Ajbuquerque,

New Mexico, This test facility was formerly known asg the Solar Thermal Test Facility (STTF).

DISPERSION: A parameter used in the circular-normal distribution (Section 5.2, 4).

DISTRIBUTION: A statistical description of a cone or bundle of directions of quantities such as

light rays or surface normals.

DRIFT: The motion of the flux-density pattern as it moves off the receiver when the heliostats

experience a lock condition.
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EFFECTIVE SUNSHAPE: A distribution in the reflected-ray reference system obtained by

convolving the sunshape with the error cone. The effective sunshape includes the averaged
effect of nondeterministic factors, such as suntracking errors and reflecting-gurface

slope errors.

ELLIPTIC-NORMAL DISTRIBUTION: A two dimensional distribution for which random excursions

along two mutually perpendicular axes are normally distributed (Section 5. 2. 3).

ERROR CONE: A distribution that includes the effects of all the nondeterministic factors in-

fluencing the optical behavior of a concentrator system (Section 2, 5, 2).
FACET: An individual mirror on a heliostat.

FAST FOURIER TRANSFORM: A numerical procedure for calculating the discrete Fourier

transform. It is especially efficient for computer use in calculating convolutions (Section 7. 3).
FLUX (Radiant) (or Radiant Power): The time rate of radiant energy flow {watts).
PLUX DENSITY (Irradiance): Radiant flux incident per unit area (W/mz).
HELIOS: The designation given to the computer program that implements the Helios model.

Helios: The designation of a sirmulation model for the optical behavior of reflecting solar con-

centrators.

HELIOSTAT: A reflecting concentrator element which can utilize tracking axes to keep redirected

solar radiation fixed on the receiver.

HELIOSTAT RESPONSE FUNCTION: The response of an error-free heliostat to a collimated
incident beam of light. It is calculated by projecting the resulting flux-density pattern onto

a target grid when the shape of the reflecting surface is taken to be the reference surface of

the heliostat. It is normalized to correspond to unit ingsolation and unit reflectance,

205



206

INSOLATION (Solar Radiation): The solar energy incident on a unit surface in unit time (W/mz).

2

Circumsolar Radiation: When passing through a turbid atmosphere with a large
amount of aerosols, there is a broadening of the angular cone through which the
sun's rays arrive af the earth's surface. Under turbid sky conditions, a signifi-
cant amount of the direct insolation is scattered into a cone of roughly +£5°

about the central ray. This part of the diffuse insolation is referred to as cir-
cumsolar radiation. This component of solar insolation has similar general
angular time variations as the direct component. Although it is usable with
some types of concentrators, it is not usable by highly concentrating collectors

and may contribute to spillage radiation problems.

Direct Insolation: The insolation that comes from within the solid angle subtended

by the solar disk (a cone of approximately = 1/4° about the central ray).

Diffusion Insolation: Any contribution to the insolation that is not direct, ex~-

cluding specular reflections from other objects.

Horizontal Insolation: The inzolation on a surface parallel to the surface of the

earth.

Normal Insolation: The insolation on a surface perpendicular to a central ray

from the sun.

Total Insolation: The total radiant power per unit area. It includes direct,

diffusé, and background radiation.

Background Radiation: The contribution to the total insolation that is reflected

from objects on the earth.

These terms can be used in combinations such as direct-normal insolation,

IRRADIANCE (Flux Density): The radiant flux incident per unit area (W/mg).

LINE-FOCUS COLLECTOR: A solar collector in which the receiver is located along a

focal line of its concentrator.

LOCK: A condition where the heliostats stop tracking the sun and remain fixzed,

X
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OPTICAL ELEMENT: Any element that alters the direction or magnitude of an incident ray
of sunlight.

PLANE OF INCIDENCE: A plane defined by the incident central ray and the normal to the sur-

face at the point of reflection. It also containg the reflected central ray,

PREALIGNMENT: The relative orientation of the facets with respect to the heliogtat frame.

Prealignment can be executed for any sun-heliostat-receiver geometry specified by a date

and time of day. An "on-axis'' prealignment is one in which parallel rays of light incident
parallel to the optical axis of a heliostat will reflect from the center of each facet to inter-

gect at the aim point specified on the optical axis,

PRINCIPAL RAY: A central ray from the sun that strikes the center of a heliostat or the center

of the aperture stop of any optical element,

RADIANT FLUX: See Radiant Power.

RADIANT POWER (also Radiant Flux or Flux): The time rate of radiant energy flow {watts).

RECEIVER: That element of a collector system to which the solar radiation is directed and

where it is converted to another form of energy.

RECEIVER APERTURE: A surface, usually a plane, that defines the opening of a cavity receiver

or the periphery of an external receiver,

RECONCENTRATOR: Reflectors used near the receiver for the purpose of increasing the con-

centration of sunlight on the receiver.

REFERENCE FACET: A facet that is kept alighed by the sun-tracking mechanism so that the

central ray from the sun will reflect from the center of it to intercept the aim point.

REFLECTED-RAY REFERENCE SYSTEM: A coordinate system defined with respect to the
reflected ray (Section 5.4.1).

REFERENCE PLANE: A plane perpendicular to and intercepting some reference direction at
unit distance from the origin., (This reference direction may be, for example, the z-
direction of a coordinate system.) The reference plane is useful for specifying two-

dimensional distributions (Section 5. 2. 1),
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REFERENCE SURFACE: A surface used as a reference for specifying slope errors for a

concentrator.

ROOT-MEAN-SQUARE (RMS) WIDTH: For a two-dimensional digtribution F(x, y) with axes
of symmetry along x and y, the corresponding RMS widths are v {xz) and V (y2)

where
-] -]

(xz) =ff x2 F(x, yydx dy _

Lo e

and yz is calculated in the same way with y2 used in place of x2 (Appendix B).

ROOT-MEAN-SQUARE (RMS) RADIUS: A two-dimensional distribution F(p) that has azimuthal
gymmetry is a function of one radial variable and has a RMS radius of d(’pz) where

o«

(P2> = 211[ p3 F(p) dp .
o

A distribution F(x, y) that is a function of two variables has an average RMS radius of

V (pz) where

(% - ff 2 +y%) Fx, y) dx dy.

- —m

These distributions are normalized to unit value when integrated over their reference planes

(Appendix B).
SAGITTAL FOCUS: A line formed by the intersection of rays in the sagittal-ray fan.

SAGITTAL-~RAY FAN: The sagittal-ray fan is the plane that confains the principal ray and is per-

pendicular to the tangential-ray fan (Section 4. 3.2).
SHADOWING: The act of casting a shadow across any portion of a concentrator.

SLANT PATH: A line between the center of a heliostat and a reference point, This reference

point may be an aim point or some point on the receiver.

Lf]



SLANT RANGE: The length of the slant path,

SLOPE ERROR: The angle between the normal to the reflecting surface and the normal to the

reference surface at a point on a concentrator, For a more complete specification of a

slope error, a reference surface is used (Section 5. 1).

SOLAR CCLLECTOR: A structure which collects and converts solar energy into an alternate

form.

SOLAR TIME: The time as reckoned by the apparent position of the sun. Solar noon is the

instant at which the sun reaches its largest elevation angle.

SPILLAGE: Radiation eminating from the concentrator system, but which misses the receiver

aperture,

SUN-CONCENTRATOR SYSTEM: A coordinate system where the plane of incidence defines the
y - 2 plane; the x - y plane is fangent to the concentrator surface at the point of reflection

(Section 3. 4).

SUN POSITION: The azimuth and elevation angles for specifying the direction anti-parallel to

the ceniral ray from the sun (Section 3. 1. 2).

SUNSHAPE: A distribution describing the angular distribution of light rays from the sun (Sections
2.5, 1 and 5. 2.3).

SUPER-SMART FACET: An idealization in which the facet shape varies as the sun-alignment

geometry changes to maintain a correct focus (Section 7. 2).

TANGENTIAL-RAY FAN: A fan of light rays reflected from a spherical reflector. The fan lies in
a plane containing the incoming principal ray and the central normal of the reflector

(Section 4. 3. 1).

TANGENTIAL FOCUS: A focal line for light rays in the tangential-ray fan.
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TARGET GRID: A grid of points on the receiver (or on an arbitrary gurface) where flux-density

calculations are to be performed.

TARGET PLANE: A plane surface (real or imagined) on which a target-grid is to be defined.

TEST AREA: An area that distinguishes between "small-scale" and "medium-scale'’ surface
irregularities. Medium-scale measurements average over the test area, whereas small-~

scale measurements apply within it (Section 5. 1),
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APPENDIX B

THE COMPOSITION OF MEAN-SQUARE VALUES UNDER
TWO-DIMENSIONAL CONVOLUTION

The two-dimensional convolution of functions f and g is defined by

f*g =[ f fx-n, y-¢& g, ghdpdg . (B-1)

— o

The general properties of convolution can be found in most books on Fourier analysis such as the

one by Bracewell. B.1 In this appendix we investigate the manner in which mean-square values

of variables add up under convolution of two-dimensional distributions.

Since the integration limits for all the integrals used in this appendix run from minus infinity
to plus infinity, we will leave off the notation for brevity in writiﬁg and leave thig information asg
understood, The equations developed here form definitions for any digtribution so we will use h

with the understanding that f, g, or any other distribution can be used in place of h.

Recall that the distributions of interest to us are normalized so that

f/ hix, y) dx dy = 1 . (B-2)

The mean-square value of x with respect to distribution h iz defined by

=, f[ 2 hix, y) dx dy . (B-3)

The mean~square value of ¥ with respect to the distribution h is calculated by replacing xz by

2
y in Eq. (B-3).
It is convenient to use Fourier analysis to calculate mean-square values with respect to the

distribution f*g , The two-dimensional Fourier transform H(u, v} of the function h(x, y) is

defined by

H(u, v} :ffh(x, ¥) exp[- 2mi(ux +vy)] dx dy (B-4)

213



214

where u and v are the transform variables and i = ¥-1 . Note that we are using the con-
vention that the capital leter H represents the transform of the function h. It is convenient to
use several properties of {two-dimensional Fourier transforms taken from Table 12,1 of Brace-

well. B.1

Jh(x, yydx dy = H(0,0) = 1 . (B-5)

We have used Eqg. (B-2) on the last part of this result. The mean value of x with respect to the

digtribution h ig

1 3H(0, 0)
Sy " " Fmi 3w (B-6)

and the corresponding mean value of y is

_ 1 _3H(0, 0) )
O 7 7 T 3w . (B-T)

The mean-square value of x with respect to the distribution h is

2
2 1 2710, 0
{x )h =ty Ty { ) (B-8)
47 du

and the corresponding mean-square value for y is

2
<y2>h o 12 3 1-21(0, 0) . (B-9)
in” av

Now using distribution f * g in place of h in Iqs. (B-3) and (B-8) gives

2
2 ~ 2., .1 9 -
{x >f*g = ffx frgdxdy = 4172 auz [FGJO,O . (B-10)

Nofe that the Fourier transform of the convolution f#*g is the product FG. The subscript notation
0,0 on the brackets indicates that after the indicated differentiation both u and v are set equal to

zero., Performing the differentiafions in Lg. (B3-10) gives

3G, 0)
A

2
2 o1 3" I7(0, 0) 2 ¥{(0,0) 2GO,0 .
<X > = ———i G(O, 0) 5 + 2 U 30 + T (0, 0)

g am 3u 3u

(B-11)



Using properties (B-5), (B-8}, and (B-8) in Eq. (B-11) gives

2 2 2
(E D g = XD 200 (0, + (XD, v (B-12)

A similar development gives the mean-gquare value of y with respect to the distribution

£ g as

In the important special case where either (x)f or (x)g or both equal zero, Eq. (B-12)

becomes
() g = D F (2D (B-14)
If either (y)f or {y)g or both equal zero, Eq. (B-13) becomes
<y2>f*g = <y2>f + (372>g . (B-15)
The polar radius p is related to the rectangular coordinates x and y by
p2 = xz + yz . (B-16)
We can apply the results of Egs. (B~-14) and (B-15) to Eq. (B-16) to get

2 2, 2
<p >f>:<g - (X >f*g + <y >f*g

2, .2 2 2
(D D F T H T,

1

2 2
(0 +{pdg - (B-17)

For distributions that have circular symmetry, the averages (x) and (y) vanish. Therefore,

Egs. (B-14) and (B-15) always apply for such distributions,

Reference

B.1 Ron Bracewell, The Fourier Transform and Its Applications, McGraw Hill, 1965,
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APPENDIX C

THE CONVOLUTION OF ELLIPTIC-NORMAL DISTRIBUTIONS

In combining the effects of sun-tracking errors, surface slope errors, and reflectance errors,

it is necessary to convolve the corresponding error distributions. In general, the two-dimensional

fast Fourier transform is used in HELIOS to numerically convolve these distributions., Some or

all of these distributions are often elliptic normal and can be convolved analytically, thereby

saving on computing time and memory requirements. In this appendix we develop the analytical

form for the convolution of two elliptic-normal distributions.

The distributions to be convolved are

n n 1 il & 32

F(u: V) = exp -5t (C_l)
2170uﬂ'v 2 0_2 0_2
u v

and
Y
T T N I S -

Glx: ) = 5 0.0 exp 2| 2tz ' (C-2)

y LA

The l'i - ?r and

and by Egs. (C-3).

X - Sr coordinate systems are related by a rotation as shown in Figure C-1

A

xXxcos@g + 5:‘ sin 6 (C-3a)

"
u

~X sing + ¥ cos @ (C-3b)

<
u

In Figure C-1, one quarter of an ellipse is shown on each set of axes; these graphs repre-
sent equationg cobtained by equaiing the bracketed terms of Eqs. (C-1) and C-2) to unit values.
The 4 and v intercepts are given by o, and o, and the % and ?Y intercepts are equal to 0,

and ¢_ as indicated in the figure. These ellipses are contours of equal probability density for

the respective distributions.
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Figure C-1, Contours of Equal Probability Density
for the Elliptic-Normal Distributions
of Eqs. (C-1) and (C-2}

In order to simplify the subsequent development, we use the dimensionless variables

u=o.u (C-4a)
v = (rvv (C-4b)
k=g x (C-4c)
=0, c
v =0y . (C-44
¥ yY )
In terms of these variables the probability-densgity functions become
1 1 2 2
Flu, v) = e exp{- 3 [u + v ]} (C-5)
and
1 17 2 2
Glx, ¥) = 55 eXP{— 3 [x oy ]} . (C-86)
We have used the Jacobians
3(%, ¥)
—_— = O g C_T
3, ¥y oxy (C-Ta)
and
alu, v) - (C-7b)

3(u, v) uv



in order to adjust the normalization constants that multiply the distributions. In terms of the new

variables in Eq. (C-4}, the transformation (C-3) becomes

u=-ex+fy
v = -gx + hy
>rv
where

Ox

e =U—cose
u
o

f=-L sing
o
u
Ux

g =5 sin 6
v

o.
h=E-z-cose.
v

Using Eqgs., (C-8) to change the variables in I to x and y pgives

2
F = 21—“_ exp{— % _[:::2(e2 +g2) + 2xy(ef - gh) + yz(f +h2)]} .

The convolution of G and F is

G*F =j [G(x-u,y—v)F(u, v) dudv .
{ee] b= - .

Substituting from Egs., (C-6) and (C-10) for G and F in Eq. (C-11) gives

[X]1ISY

G*F = 5

2 2

exp{—é(x +y)} {

exp § -
am

(C-8a)

(C-8b}

{C-93)

(C-8b)

(C-9¢)

(C-9d)

(C-10)

(C-11)

[Au2 + 2Cuv + sz - 2xu - Zvy] } du dv,

(C-12)
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where we define

A= 1+ e2 + g2 (C-13a)

B =1+ f:2 + h2 (C-13b)

C = ef - gh {C-13c)
2

D= AB - C° , (C-13a)

The parameter D is not used in Eq.(C-12) but will be useful later.

In order o "complete the squares' with respect to the integration variables, we make the

change of variables

u=w+eo (C-14a)

v=t+8 (C-14b)

Substituting Eqs. (C-14) into (C-12) and equating the coefficients of the new integration

variables t and w to zero gives the system of equations
aA + BC = x _ (C-15g)
aC+ BB =y . (C-15b)
Solving this system of equations for o« and B gives

_Bx - Cy _
== {C-163a)

and

Ay - Cx
B=u . _ (C-16b)

The convolution integral Eq. (C-12), before elimination of the parameters « and 53, becomes

o]

exp{- [x2+y2+Aa2+2a'BC+BzB-2afx-23y]}
GHF = 5 — 1 (C-17)
. 4m




where I is the integral

[

- o

[sz + 2Cwt + Btz] } dw dt (C-18)

t\J]»—-

which is a constant (i.e., not a function of x or y). Now we use Egs. (C-16) to eliminate the

parameters o« and 8 in Eq. (C-17) and obtain

G*F = const exp j— %[XZ (D];B) + 2xy % +y2 (D]_DA)] f . (C-19)

In terms of the original variables, Eq. (C-19) becomes (using Eqs. (C-4))

G*F = const exp {- —% [a;{Z + 2k§(§ + b;rz]} s (C-20)

where we define

a = _:D’—z—B (C_zla)
Do
b= _zA (C-21b)
Do
Mg
C
k = oo - {C-21c)
xy

The guadratic form in Eq. (C-20) is
~2 ~a a2
Q@ = ax + 2kxy + by . (C-22)

We can eliminate the cross term in @ by the proper selection of 7 in the coordinate trans-

formation (rotation).

)

cosn -sinn t
= (C-23)

sinn +cos p W

>
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which is shown in Figure C-2,

-~

oW ¢ t

n ~
X

Figure C-2. The Principal-Axis System t- w
for the Quadratic Form of Eq. (C-20)

The t - w coordinate axes are the principal axes of the quadratic form Q. We will use

results from Chapter 12 of Noblec' ! to egtablish that the quadratic form is elliptic, to solve for

the standard deviations corresponding to the principal axes of this quadratic form, and to find the
angle of rotation n.

When the axes t and w correspond to the principal axes of the quadratic form, @ becomes

2 2
= + -
Q Att AWW (C~24)
where }Lt and )\W are the eigenvalues of the matrix

a k

M = . (C-25)
k b

~ The axes t and w lie along the eigenvectors of M.
The curve
2 2
Q=1-= Att A (C-26)

is an ellipse provided that At and )\W are positive. The eigenvalues of M are

)\=%{a+bi4(a+b)2-4(ab—k2) } {(C-27a)

224



which can also be written

A:-zl-{a+bj:4(a-b)2+4kz} . {(C-27b)

In terms of the parameters of Eq. {C-13), these eigenvalues are

9 1/21
' 2
1 )b-B_D-A D-B _D-A 2c
" 2D z Tz * 2 T T 2 +(OU) j (C-27c)
o Xy
x ¥

We now proceed to establish that both of these eigenvalues are positive. In order to fix the signs

of a and b, we examine Eq, (C-21). From Egq. (C~13) we get

D-B-BA-1-C2-e4g2+(gten’>o (C-28a)
and
2 2 2 2
D-A=AB-1-C"=1"+h" +Ug+en)” >0 . (C-28b)
From Egs. (C-28a} and (C~-28b)
D>B {C-29a)
D>A (C-29b)

and from the definition Eq, (C-13b), B > 0, Hence

D>0. (C-30)
Therefore

a>0 (C-31a)
and

b>0. (C-31b)

SJ;.nce the eigenvalues of a real symmetric matrix are real, the quantity under the square root of
Eq. (C-2Ta) must not be negative. The eigenvalue corresponding to the plus sign in Eq. (C-27a})
is obviously positive. If we can show that ab - kz > 0, this will be sufficient to prove that the
other eigenvalue is positive. In this case we would be subtracting from the positive quantity

(a + b) another positive quantity that ig less than (a + b). Now note that
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ab-k2=de’cM=hA . {C-32)
tw e

The last form of this eguation, which will be useful later, is true because of the invariance of the

determinant of M under the rotation of coordinates used to transform @ f{rom its form in (C-22)
to that of Eq. (C-24). Substituting from Eqg. (C-21) into Eq. (C-32) gives

D4+1-A -
A B

thw 2 2 . (C-33)
Dcrxcry

The numerator of this becomes, using Eq, (C-13)

D+1-A-B=(eh+fg)2>0 (C-34)

Since the denominator of Eq, (C-33) is posgitive because D > 0 (Eq. C-30), the ratio is also
- 2 5 .
positive establishing both that ab - k© > 0 and that the eigenvalues are positive.

An alternative way to establish that the eigenvalues are positive is to prove that the matrix

M is positive definite. .1 This ig frue if a> 0 and if det M > ¢ which we showed in the above
development.

Equation (C-26) ig, therefore, an ellipge; it is convenient to write it as

2 2
-1 = 2 w -
Q—l—ktt+xw—2+2, (C-358)
o o
t w
where
. L (C-~36a)
9% T X
t
and
02 - . {C-36Db)
WA
w
Here

: and O are standard deviations of the resultant elliptic-normal distribution.

In terms of the coordinates t and w, Eq, (C-20) takes its standard form (such as the form
of Bgqs. (C-1) and (C-2))

2 2
E T = 1 S A -
G*F = —— exp 5 ) + 5 (C-37)
o] o

t w
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It is also useful to use Egs, (C~36) and (C-33) in (C-37) to identify the constant for Egq. (C-20) to
get

4
e oo 1 !D+1-A-B 1| a2 an a2 i
G*F = Z'WXUy 5 exp{ 5 [ax + 2kxy + by ]} . (C-38)

Since the axis t in Figure C-2 lies along the eigenvector of M that corresponds to the

eigenvalue lt » the angle 5 is given by

=3
n

k

or

=2
1

arctan | —>—
A - b '

These results are used in Section 5. 3. 2.

In the important special case where @ = 0, the convolution of elliptic-normal distributions

simplifies somewhat, Equations {C-9) give

UX
e = -~— (C"403.)
Ty
£f=20 (C-40b)
g=0 {C-40¢)
Gy
h =— , (C-40d)
o]
v
Using these in Eqs,. (C-13) give
7t o
A= ——2— (C"413.)
o)
u
2 2
o, +o
B = ___Z_X (C-41b)
g
v
c=20 (C-41c)

At -a
arctan ( (C-39)
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(e )2
v _J (C-414d)

From the fact that C = 0 we can already see in Eqs. (C-16) that with the change in integration vari-
ables Egs. (C-14) will simplify so that a gimple product of integrals, one for each dimension, is
readily obtained., This is what one would expect physically in this case, the problem decouples so
that a one-dimensional convolution can be done along each axis separately to effect the two-
dimensional convolution. Rather than go back to the integral, we shall interpret this as a special

cage of the two-dimengional results.

Using Egs. (C-41) in Egs. (C-21) gives, with a little algebra,

A= —r (C-422)
2. 2
u Uy
1
b= ——s (C-42b)
o +a
v
k=0. (C-42¢)

The matrix M of Eq. (C-25) is diagonal with k = 0 which makes one of the eigenvalues equal to
a and the other one equal to b . The case X = a corresponds to the % direction as is evident
from Eq, {C-22) with k = 0 and the other eigenvalue )\ = b corresponds to the § direction.

The t and w directions are the same as the x and :;I directions (Figure C-2) because 5 = 0.

Now using Eq.(C-36), we get

2
« (C-43a)

Q
"
o
1
qQ
+
a

2 (C-43b)

Q
1
T =
1
q
+
q

In the case 8§ = 90°, the results also simplify in a similar way. It becomes the same as

above with 8 = 0 simply by interchanging o, and 0'V .

Reference
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