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ABSTRACT

General vector differential equations of motion are developed for

a system of rotating-translating, unbalanced, constant mass
bodies. Complete flexibility is provided in placement of the refer-
ence coordinates within the system of bodies and in placement of
body fixed axes within each body. Example cases are presented

to demonstrate the ease in reduction of these equations to the equa-
tions of motion for systems of interest,
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Summary

A set of general vector differential equations is developed, relative to arbitrarily placed ref-
erence axes, for a system of unbalanced, constant mass bodies. The bodies can rotate and trans-
late relative to each other as well as relative to the reference coordinates. Because of the complete
flexibility in placement of both the body fixed coordinates and the reference coordinates, these gen-
eral equations are more useful than those developed previously for multiple body free-flight systems.
Utilizing restraints and exploiting the flexibility in placement of coordinate'systems, these general
equations are easily reduced to the equations of motion for many dynamic systems of interest, Two
example cases are presented to demonstrate the ease of application and general utility of these equa-

tions.
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Nomenclature

Center of gravity

Derivative of () with respect to time

‘Total force (external + gravitational) acting on system of bodies [Eij‘ .

Ibor N

Total force {external + gravitational + interaction) acting on jth body

[2 F lborN

[hs ”
of the jth body [Eq. (1)]. bor N

Components of total external force along the X, Y, Z axes, respectively,
b or N

Components of gravitatio_nal acceleration along the X, Y, Z axes, respec-

tively, ftlse-cz or m)’sec2

Moment of momenturn of jthbody aboyt the origin of XijZj [Eq (10)] ,

ft-lb-sec or N-m-Bec

Momenta of inertia of jih body about the X YJ Z, gxes, respectively,

i
slug- ft or kg-m

Products of inertia of the jthbody relative to the XijZj axes, asslug—ft2 or

kg-m2

Total system mass[Eq. (17)}. slug or kg
Mass of jth body [Eq. (G).l, slug or kg
Mass of particle "p” in jth body, slug or kg

Moments of the forces F, Fj, FJP' respectively, about "o'' {origin of XYZ

axes), ft-1b or N-m

Components of the moment of external forces about ''o" (origin of XYZ
axes) relative to the X, ¥, Z axes, respectively, ft-lb or N-m

Radius vector from "o" {(origin of XYZ axes) to the cg of the system of

bodies, Figure 1, ffor m

Radius vector from "o {origin of XYZ axes) to the origin of the X Y. Zj

axes, Figure ], ft or m



Nomenclature
(cont)

ij Radius vector from origin of XiYiZi axes to particle "p'' in the jth body,
Figure 1, ftorm
R Radius vector from origin of XiYizi axes to ""o" (origin of XYZ axes),
Figure 1, ftorm
t Time, sec
v Velocity of "o (origin of XYZ axes) relative to inertial space, ft/sec or
m/sec
XYz - Reference coordinates for system of bodies (arbifrary location), Figure 1
XYz, " Inertially fixed coordinates, Figure 1
XJ.Yij Coordinétes fixed in jth body (arbitrary location in body), Figure 1
pjcgv Radijus vector from origin of XijZj axes to the cg of the jthbody,
Figure 1, ft or m
pjp Radius vector from origin of XijZj axes to the particle "p' in the jth
body, Figure 1
wj Angular velocity of the jth body, rad/sec
Q Angular velocity of the reference XYZ axes, rad/sec
), Y Denotes vectors resolved relative to the XiYizi, XYZ, and XJ,YjZJ, axes,
respectively
(), (**) First and second derivatives with respect to time
: Zp,zj Summations for all particles ''p" of the jth body, and for all j'bodies of

the system, respectively.



EQUATIONS OF MOTION FOR FREE~FLIGHT
. SYSTEMS OF ROTATING-TRANSLATING BODIES

Introduction

Often when dealing with the flight dynamics and control problems associated with aircraft,
missiles, reentry vehicles, spacecraft, bombs, and shells the need arises for describing the mo-
tion of systems of bodies rather than the motion of single bodies for which the equations are well

. defined.(l’ 2 ). Examples of dynamic multiple bo‘dy systems are aircraft, missiles, etc., with mov-
ing control surfaces and/or with moving internal components. Vector differential equations are
developed herein which descfibe the motion of a system of rotating-translating, constant mass
bodies. The angular velocities of the individual bodies and the angular velocity of the reference
coordinate system are all assumed to differ, These general equations of motion differ from pre~
vious developments, notablyrRefere.nce 3, in that.the axis system in each body is not fixed at the
cg, and the reference coordinate frame for the system is not fixed in any body. This flexibility in
placement. of the referénce codfdinate system and each of the body fixed coordinate systems can
be of great advantage in simplifying the equations for specifié applications. For example, the re-
quirement for nonrolling reference axes is easily implemented, as is the simulation of unbalanced

bodies.

By introducing restraints (e; g., limiting the_ number of bodies, limiting their degrees of
freedom, defining the dynamic coupling lof the bodies, efc. ), the general equations presented here-
in can be reduced in form to describe the equations of motion for many multiple body or single body
dynamic systems of interest,. To demonstrate the flexibility and usefulness of these equations, two
simplified example cases are considered. For the first, equations of motion for a spinning body
- with niassﬁs‘ymmét‘riés are developed relative to nonrolling coordinates. The second example in-
volves the 'dei;’elbpment of equations of motion for a spinning body with an internal flexible~vibrating
member. The equations resulting from these example cases are useful for describing the free-

flight motions of both aerodynamically stabilized and gyroscopically stabilized spinning vehicles.

Theoretical Analysis

In Figure 1 the positions of the j rigid bodies (j =1, 2, ..., n), which make up the system of
interest, are desc?ibed relative to both inertial space (XiYiZi) and the reference coordinate system
(XYZ). The center of mass or center of gravity (cg) for the system of bodies is not required to be
coincident with the origin ''o" of the reference coordinates. These bodies translate and rotate rela-

tive to one another as well as relative to the rotating reference frame (XYZ), The body fixed
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coordinate system XijZj can be located arbitrarily in the jth body. As shown in Figure 1, the j

bodies can have cg offsets.

For the following devélopment, the symbol appearing above a vector quantity denotes the co-
ordinate frame that the vector is resolved relative to and also the coordinate frame that derivatives
of the vector are taken with respect to. Examples are rj and f"j, ?‘3 ‘and ";-'j, or 9j and ?J These
respective groups indicate vectors resolved relative to, and derivatives taken with respect to, the

XiYiZi inertial coordinates, the XYZ reference coordinates, and the XijZj body fixed coordinates,

Particle Dynamics

The force acting on the constant mass particle "p" (part of the jthbody, Figure 1) and the

H 1"

moment of that force about the origin of the reference XYZ coordinate frame are given as

= m, R, (1)

ip B) |

The radius vector from the origin of the inertial reference system (XiYiZi) to the particle ''p'' of

the jth body (Figure 1) can be written as

—_ —

R. =R _+7T1. +p. .
ip o T " Pip (3

Differentiating Eq. (3) and substituting it into Eq. (1),
=m (R +T +P ). (4)

Since the jth body is rigid (no relative motion of particles) the magnitude of p is a constant;

however, the derivatives of p ip are nonzero because its direction is variable.

Substituting Eq. (4) into Eq. (2),

—-— — (13 (18 13
=(r, +p,)Xm, (R +r +p.) .
J pJP p o ] pJP

ip,,

Recalling that

d{— — N = - — 22 2=
—(r, + p. )X(r. + p. =(r, +p. )X, +p.),
n (J pJp (J pJp)} (;l pJp) (rJ pJp

the previous equation can be written as

(‘ +p XF, . (2)
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M 7. d"'"+ )FXm 'L+f5) +(—+5)Xm R . (5)
| £ r. . , r, . . .
jp, dt (rJ ®ip .'ip(J - dp i i/ jpo

jth. Body Dynamics

Surnming for all of the particles ''p"

of the jth body, the mass of the body is obtained as

%mjp = mj . | (6)

Since the jth body is rigid and its center of gravity {cg) is displaced from the origin of the X.Y.Z
system, summing mass moments about the origin yields

% 2P~ P Picg *

(7
The force acting on the jth body and the momeént of that force about "o are obtained by
summing Eqs. (4) and {5) for all particles "p" of the jth body.
——e E — { “.'..! 28 -
F o= LF. =( m, )(R + r) + % m, P,
d p I % ipi 3 ] J‘Pﬁﬂp
. — d -t =] 2
M, = 2, M == ( m, )r.Xr. + rX( m..p. }
io Zp: jp, dt { % b1/ I B % °ip
— ER —_— = : 2
+ 4 Xr, + ( . Xp. m, ) + ( m, )r.XR
., (% Jppap) it % Ppepmpl 2 ) R0
+ m. p. JXR .
(%: J‘PpJP) °
Substituting Eq.. (6) along with Eq.' (7) and its derivatives irto the -above equations, the force and
moment reduce to
¥ (ﬁ + n) + mp (8)
=miR + mp,
J J\ o J JJcg
M, =H, +mir, + Xr., + .r.Xm; m(r + P, )XR 9)
PR PR ) J( J chg) 3 J Jchg JA 3 P,ch o
where the moment of momentum of the 'jth body about the origin of the X.Y.Z .coordinate system
HJ is defmed as DR ‘ : J
H =2 {p, X pam (10)
] %“ (pJP Pip JP) ./_JP P

jth body

11
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As shown later, H. is defined in terms of the moments and products of inertia of the jthbody,
Because it is natural to measure these quantities together with the ¢g offset (ﬁjcg) relative to a co-
ordinate system fixed in the‘ jthbody, it is assumed that Hj and Bng willAboth be initially determined
as vectors resolved relative to the XijZ' coordinates; i.e., as Hj and pjcg' In order to resolve
these vector quantities relative to the reference coordinates, it then becomes necessary to estab-

lish coordinate transformations between the XijZj systems and the XYZ reference system.
Assuming that all vectors have been resolved relative to the XYZ reference coordinates,

fi.= H + OxH,
i i j

(11)
T, = ¥, + OXF
) J 3
T, =T, + 0Xr, + 20x7 + ﬁx(ﬁxi) (12)
] J ] J ]
[Y) L9 2.
. =P+ 0xp,  + 20Xp, +n(ﬁx‘f) 13
pJCg pJCg pJCg pJCg pJCg (13)
R, =V.
Resolving the velocity V (velocity of ""o") relative to the XYZ reference coordinate directions,
a - - =3
Ry=V + v (14)
where § (Figure 1) is the angular velocity of the XYZ reference system.
Transforming f‘j and Mjo and substituting Eqs. (11) through (14) into Eqs, (8) and (9),
By = m# ¢ B ) ¢+ Wx(7 0 5 )+ x(F 4 5,,)
J VI cg 3 cg AN Jeg/
\ (15)
+ ﬁx[ﬁx(f' + 7. )] + (_\7 + (_)'XV) .
j ieg/] ;
M, =H + 0Oxd + m.(?, + P )X(V + ﬁ'XV)
o J ] KARN jcg
+m 7+ X[E + OxE o+ 28xE, + X(ﬁx")
J( ] plcg) [ J J I‘J d rJ (16)

+ m?X[TJ’ + Oxp"
3] ]

+ 20Xp" +§x(ﬁx5’. )]
cg jeg

jcg



System Dynamics

H "

The total mass of the system and the cg location for the system relative to the origin of

the reference coordinates (Figure 1) are obtained by summing the masses of the j bodies and their

mass moments about "o as follows,
Xm =m an
i 3
Y m, ( + 7 ) = mP . : (18)
3 i " Pice cg
The total force acting on the system and the moment of that force about "o'" are obtained by

summing Eqs. (15) and (16) for all j bodies and using Eq. (17) together with Eq. (18) and its deri-

vatives.

F=F =m|V+0x7 +%  + 8xr + ofx® +ﬁx(nx?). (19)
7 1 cg cg cg cg

- zJ:ﬁ . ZJ:‘I:I' + 0% (zj:ﬁj) +m?ch(€f + ﬁXV) + ZJ:'mj(?j + T)'jcg)xdlr’j
+‘J'Z i (?J +>F:icg)x(ﬁx’*3) * zzm (rJ re ch) (ﬁxig)
' ?m( JCg)X[ﬁX@X?j)] ' ?mi?ixﬂjc " ImE, (ﬁ ch)

2 x\Bxp PX(x(8xp )|,
rREmE ( ch>+§‘-:m3j [nx(n ch)]

j

(20)

Motions of the j individual bodies are described by Eqs. (15 and (16), while Eqs. (19) and (20)
describe the motion of the isystem of bodies. The forces and moments acting on the j individual
bodies include those resulting from interaction of bodies, external forces, and body forces. Forces
and moments resulting from body interactions occur in equal but opposite pairs; therefore, in the
summation to obtain Eqs. (19) and (20) these pairs cancel, leaving only the summations of the exter-

nal forces and moments and body forces and moments which are represented by ¥ and T\7IO.

.Example Cases

In order to demonstrate the usefulness of these general equations of motion, two examples will
be givén. For the first example, equations of motion will be developed relative to nonrolling coordi-
nates (aeroballistic axes) for a single spinning body having mass asymmetries (principal axis misalign-
ment and center of gravity offset). The equations of motion for a spinning body containing an internal

vibrating member (multiple body problem) will be developed as the second eéxample, As mentioned

13
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earlier, the equations developed for these example cases are useful for describing the free-flight

motions of both aerodynamically stabilized and gyroscopicglly stabilized spinning vehicles.

Spinning Asymmetrical Body

The single rigid body considered here (Figure 2) is not required to have an axis of mass or

aerodynamic symmetry. For this example, the X Z . body fixed axis system (Figure 2) has its

Y
origin fixed at the dg of the body (f‘)\lcg = 0)., The XlYZ1 nt)nrolling reference coordinate system
(Figure 2) is placed inthe body such that its X axis is directed out the nose and its origin is offset
cg’ zcg)' The‘ X 1 and X axes remain parall.el while the positions of
Y1 relative to Y and Z1 relative to Z are described by the roll angle ¢, Therefore, the reference

laterally from the cg ?1 =(o, ¥

system pitches and yaws with the vehicle but does not roll with it. For a single body with the ar-

rangement of axis systems shown in Figure 2, Egs. (19) and (20) reduce to

F = ml}.}" + OXV + ?1 + OXF + 20XF + ﬁX(ﬁXF;)J

Of the available options, the arrangement of coordinate systems shown in Figure 2 was
chosen because the resulting vector equations require fewer algebraic manipulations to reduce
them to scalar differential equation form, This approach does require that the moments and
products of inertia be obtained relative to the offset lelzl axis system; however, because of

the simplicity of the transfer equations, this is not a disadvantage.

With the exception of ﬁl’ the vector quantities contained in Eqs. (21) and (22) are defined

in terms of their components relative to the XYZ nonrolling reference system as
F - (FX T omgys Fy tmey, Tyt mgz) '
1\710 = (MX +m_ng - ngY, My + ngX, MZ - mygx)
?1 =j (x, v, z) = [0, (ycg cos ¢ - Zeg sin ¢), (ycg sin ¢ + Zog 008 ¢)]
7 - (ﬁ’, 7, a;)

Q= (5, q, F) = [(p -6), (q cos ¢ - r sin ¢), (q sin ¢ + r cos ¢)]

where p, q, r are the components of angular velocity relative to the body fixed Xllel axis sys-

tem,

A —
by o).

(21)

(22)

(23)

(24)

{(25)

(26)

(27)

(28)



The mass properties that define the moment of momentum vector are measured relative to
the X Y Z 1 body fixed coordinate system. Therefore, ﬁ must be evaluated in order to obtain I—I
Recallmg that pl is a constant relative to the body fixed coordmates,

. (29)

Substituting Eq. (29) into Eq. (10) and integrating over the body (see Ref. 4),

A ' ' -/
H=[( p-J q~J r), <—J p + q - J r‘),
(e R A AR A AR v, vz,

' (30)
Jo o p-J a+ 1 r} .
( XIZL lel ZI)]
Transforming ﬁl from the X 1Y 1Z L system to the XYZ nonrolling system,
= p - J qg - J ri, (J p + q-J cos ¢
k[ 1 XlYly XIZI] [ XlY I‘Y lel 3
-f-J p-Jd, ,a+1l r)sin¢},[(-J p~J g+ ¥ r)cos¢ - (31)
( X1Z1 lel zll i y Xlzl lel Zl ’
+ - p+IL. q-J )sin¢]1.
( %1 IY lel }
Substituting Eqs. (23) through (27) and Eq. (31) into Eqs. (21) and (22), the vector equations
reduce to
FX + mgy = m{u + §% - ¥ - ycg(r - qp) + z (q + rp)} (32)
F, + mg, = m{¥ + ¥ - 3% - z(p - ¥} - ylp” + F (33)
P A 2 2\l
FZ+ng=m.w+‘§v-‘vqu+y,+qF-zp +§° (34)

- _ . s e ’ 3 2 2\ _ ,
MX lep + (IZ1 IYl)qr JXIYI(Q pr). JX Z (f' + pq) + JYIZI(r - g ) + F,y FYZ (35)

MY=IY1<'1cos¢-I1rsin¢-p(Iqum¢+Ircos¢)+IXpr

11 11 11

2 2 - "
+Jxlzl(p-r)cos¢+JYZ(q+pr)sm YZ

11 11

JXY(p+qr)cos¢+JXY(p-q)sin¢+JXZ(-qr smq) (36)
- x

pq) cos ¢+F_ =z

15
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M, * Izlr cos ¢ + Iqu sin ¢ +p(Iqu cos ¢ - Izlr sin ¢) - IXlp 4

(. , 2 2 o . t
- JX1Y1(p + qr) gin ¢ - JX1Y1(p -q )cos ¢ - Jxlzl(p qr) cos ¢ (37)

+JXZ(p2 - r2)sin¢ -JYZ(Q+pr) cos ¢ -JYZ(f‘-pq) sin ¢ - Fiy s
171 11 171

Possibly the most classic of the many applications of equations of this type (relative to non-
rolling coordinates) is in the description of artillery shell motion. The presence of products of
inertia, cg offsets, and unequal lateral moments of inertia in Eqs. (32) thf-ough (37) make them
different from the equations of motion relative to nonrolling coordinates often found in the litera-
ture. These additional terms can have important effects on the flight dynamic behavior of all

flight vehicles.

Internal Vibrating Member

The two body system considered herein consists of an outer rigid body (Body 1, Figure 3)
that has a small rigid body (Body 2, Figure 3) suspended within it by massless springs. Motion of

Body 2 is constrained to translation in a plane parallel to the Y -plane; i.e,, it can only move

Z
171
laterally. The motion of Body 1 is unrestrained. The Xllel body fixed axes (Body 1, Figure 3)

and the XYZ reference system are coincident, with their origins fixed at the cg of Body 1. These
systems and the X2Y222 system remain mutually parallel; therefore, both bodies have identical
angular velocity. The XzYzzz system has its origin placed at the cg of Body 2 (Figure 3). As a

T =0

result of the constraints imposed and the placement of coordinate systems, ‘T)’lcg. = _p’zcg =7

The vector equations which describe the motion of this system, Eqs. (15), (18), (19), and
(20), then reduce to

F, = my [V 87 + ¥, + Gixry + oty + x| o)
m,¥, = m?cg (39)

M =" + ﬁz + ﬁX(ﬁ1’+ f-fz) + T.XF (41)

where from Eq. (17), m =m_ + m,.



Like the previous example, the mags pfoperties that define the moment of momentum of the
bodies will be given relative to the XijZ j =1, 2 body fixed coordinate systems, Therefore,
H {(j =1, 2) can be obtained Because the X Y. ZJ gygtems and the XYZ reference gystem are
mutually parallel, ﬁ = H i, e., for this case, no angular transformation is required to obtain the
moment of momerntum relJatlve to the reference coordinates, Using the development of Eq. (30) as
a model, the moments of momentum for the bodies relative to the reference coordinate system

XYZ are given as

Hy = [(Lx.p " Ixy 2t Jx.z.r)' (JX_Y prlyq- Y.Z_r)' ('Jx.z_p iy zat Iz.r)] .
i 1 i i ¥; i i i j

The remaining vector guantities contained in Eqgs. (38) through (41) are defined relative to

the XY Z reference system as

F = (FX + mg., FY + mg.. FZ + mgz)

e’
[}
———
Ly
&
S

2 (Figure 3) describe the reat {(unaccelerated) position of Body 2, and K is the
o

where ®o's ¥g o T

spring stiffness.

By combining and expanding Eqs, (38) through (48), the secalar differential equations of
motion for the two-body system (Figure 3) can be written as

. 2 2\ Mo\ & R
Pa () 0 ) (R v

(42}

(43)

(44)

(45)

(46}

(47)

(48)

(49

17



18

Fx

m

+(y2 +
o

1
e

=W+ pv - qu - —=

S —

. 2 2 My
Z, - |z + z P +q)+ (1+—-—)
2 (20 2)( . r_nl

+ (yz + yz) (qr + p) + %, (pr -4
o o

K
m, 22 T 2PYy
2
F ;
+2-9

=

s m, [f-
-_—-+gX=1‘,1+qw-rv+—-rﬁ-|:(z2 +zz)(€1+rp)
o

R 2+ 2 : )
¥y ) ap - £) - xzoq r )+ Zqiz - 2!‘5’2

Ky2

+ru - pw - —

my

Kz2

my

(50)

(51)

(52)

(53)

"(54)



m2m1 : 2 rnzrn1
M, =z "= (yzo + yz) £+ 2 (yzo * yz)yzr

m_m 2 m,m i
R 271 271 2 2
+ IY - IX - = (yzo + yz) pa + o xzo(yzo + yz) (q +r )

+ I lar - B) -3 pz-z-J +m2m1y + z, +z,)|la + pr
XZ XY 1 YZ m 2, Yo 2~ “2

(56)

My " Mo
i (yz * yz)zzq Ky Yyt (yz * yz)Fx
[o] [o] [
=1 [
where]_X < +IX, JXY JXY-+JXY , ete.

1 2. 171 272

Equations (49) through (56) are ugeful for problems in which motion induced resonances of
internal viﬁlfating inembers are of concern. They are also useful for studying the effects on sys-

tem motioh which result from the motion of the internal components.,

Conclusion

A set of general ’ve'ctorf differential equations has been developed that describes the motion
of a system of rotating-translating bodies relative to a rotating reference coordinate system.
These equations allow for: (1) complete flexibility in placement of the reference frame; (2) rela-
tive rotation and translation between the reference frame and each body; (3) relative rotation and
trépslation between the respective bodies of the system; and (4) the existence of mass asymmetries
in each of the bodies. Through the use of simple 'restraints these general equations are easily
reduced to the governing equatidns for many dynamic systems of interest, Two examples are given
to illustrate this flexibility.

19
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Particle ''p"

of Mass m
p \

Figure 1.

Coordinate Systems

cg of jth Body

jth Body

Or‘igin HOH Of
Reference System

System cg



Origin "o"

Parallel to Y-Axig

Origin "o"

- Y

Parallel to Z=-Axis

Parallel to Z~Axis

Figure 2, Spinning Asymmetrical Body
(Nonrolling Coordinates)
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Origin "o" and cg
of Body 1

Figure 3. Internal Vibrating Member
(Body Fixed Coordinates)

cg of Body 2

Y, Y
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