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TRANSIENT RESPONSE OF THREE-LAYERED RINGS 

Introduction 

With the increased use of laminated structural elements, several authors have developed 

theories for the dynamic analysis of laminated rings and shells. 1-11 Howeve"r, the large number 

of parameters that appear in the theories, together with the wide range of values these parameters 

cal;l assume, makes a thorough treatment of this topic extremely difficult. The scope of this report 

is limited to three-layered composite rings, with particular emphasis on rings whose middle or 

core layer is very soft in comparison with the other layers. 

Most previous work on three-layered shell dynamics has resulted in a series of dispersion 

curves rather than the solution to any specific transient response problem. The difficulty with a 

dispersion-type analysis is that some inadequacies in the theory can easily be overlooked. As an 

example, consider a three-layered shell having a thick, soft core layer, If an impulse of magni

tude 10 is applied to an element of the outer shell layer, the kinetic energy that goes into structural

type modes depends on the core radial displacement assumption. If the core is radially rigid, the 

energy is 12/ 2(m + m. + m ), but if the core can strain radially, the energy is 12/ 2m. Here the o 0 1 C ":0" '0 

mt s are the masses of the different layers of the shell element and i, 0, and c stand for the inner, 

outer, and core layers, respectively. This discrepancy in energies can lead to significant differ

ences in calculated strains. As another example, consider the limiting case of rigid iriner and 

outer layers and a nonaxisymmetric radial impl,llse applied to the outer layer. The ring translates 

as a rigid body, but a vibration is superimposed on the translation because the rigid layers are 

connected by an elastic core. Any theory that does not allow both shear and radial strain in the 

core does not account for this vibration and cannot accurately give the ring displacements or ac

celerations. 

Unfortunately, most previous work on three-layered rings and shells has not included experi

mental data. Since the range of validity for many of the assumptions used in the theories is not well 

established, such data are valuable. To help fill this need, strain-time response data for impulse 

loaded three-layered rings is included in this report and comparison with predictions is presented. 
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Theory 

Equations of Motion 

The three-layered ring shown in Figure 1 is referred to the modified set of polar coordinates, 

z and 9. where z is measured radially outward from the interface between the outer and core layers. 

Subscripts i, 0, and c are used to designate properties belonging to inner, outer, and core layers, 

respectively. Young's modulus, shear modulus, density, and thickness are denoted by E, G, p, and 

h; and, for example, G. is the shear modulus of the inner layer. Time is denoted by t and R is the 
1 

radius to the reference surface where z = O. A linear elastic stress-strain relation is used for the 

ollter and inner layers, 

i,o 

where a 9 and (9 are the circumferential stress and strain; whereas T z9 and y z9 are the shear 

stress and strain. The core layer is assumed to obey the orthotropic stress-strain law 

where O"Z and (z are radial stress and strain. As implied by the above stress-strain relations, 

the effects of radial strain are induded only in the core layer. 

The theory formulated herein is a structural-type theory, and the displacements in the cross 

section are piecewise linear functions of z. Eight displacement functions are used to specify the 

position of a cross section; w , w., and ware the radially outward displacements of the outer and 
o 1 c 

inner layers and at the center of the core layer; ¢ 0 and ¢i are the angles of rotation of normalfl for 

the outer and inner layers and v 0' vi' and v c are a measure of circumferential displacements. It 

should be noted, as shown in Figure 2, that v 0 and vi are not the circumferential displacements at 

the middle of their respective layers. In terms of these displacement functions, the strains in the 

outer and inner layers are 

w 

(2) 

1 ('V o. ) a + a + a (9 R(l + z/R) R(1 + z/R) aa z ii'"e (3) 

a i,o 

1 [ow. _ - , •. J Yz9 v 
R(l + z/R) a9 a 

(4) 



Figure 1. Geometry 
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and with)" = Z + h 12, the core strains are 
"! 'e 

EO z 

7' = ze, 

1 . [ 2C ( ) C ov 0 
R(1 + z/R) we + he w 0 - we + 2 he ~ 

1 [c ( C) C oVi 
R(1+z/R) -211""Wi + 1 + 211"" we -211"" as 
'e e e 

h 
2(W -W}/h {) < C < 2

e 
o e c 

-h 
2(W - w.)/h e < C < 0 

e 1 e "2 

0< C<h 12 
c 

-h 
-.£< 

2 
I;; < 0 

h 
c 

0< I;; <"2 

'1 [-2C oWi 
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-h 
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~2-<1;;< 0 
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Figure 2. Displacements 
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The potential energy U is 

(8) 

and the kinetic energy T is 

(9) 

" 
With expressions for the kinetic and potential energies established, Hamilton's principle 

(10) 
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can be used to derive the equations of motion. In Equation (10), L is the work done by applied loads 

and t1 and t2 are arbitrary times. Only tractions on the ring surfaces are considered and 

(11) 

oL x Rde 

where p and p. are radial tractions on the outer and inner surfaces and q and q. are circumferen-
o 1 01_ 

tial tractions. These loads are positive if they act in the positive z and e directions, respectively. 

The equations of motion are derived by first using Equations (3) through (8) to write U in 

terms of displacements and then substituting this expression along with Equations (9) and (11) for 

T and L into Equation (10). The resulting Euler-Lagrange equations, given below, are the equa

tions of motion for the three-layered ring. Because strain energy due to shear is included in the 

potential energy, the theory includes shear deformation effects, and the presence of velocity terms 

which are functions of z means rotatory inertia effects are included. 
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Despite the complexity of Equations (12), they can be used directly for transient response 

computations without resorting to finite-difference or finite-element approximations. The solution 

technique is based upon modal series expansions in 9 and a Laplace transform on time. The form 

of the solution differs from most modal solutions in that no algebraic expressions are derived for 

the characteristic equation and for modal coefficients. Instead, numerical values for the ring 

parameters are substituted into an algodthm which computes the ring frequencies, mode shapes, 

and modal coefficients for the transient response solution. To simplif;y the solution, the ring is 

assumed to be quiescent at t = D -, and only loads even in 9 are considered. Loads odd in 9 and 

initial velocity or initial deformation problems can be handled with only a slight modification of 

the procedure outlined below. 



Both the displacement vector and load vector are expanded in Fourier series 

wo a 1n 
cos ne .Qln cos ne 

Vo a
2n 

sin ne .Q2n sin ne 

¢O a
3n 

sin ne .Q3n sin ne 

w a
4n 

cos ne 

H 
.Q4n cos ne c co co L:. = L: v n=O a

5n 
sin ne n=O .Q5n sin ne c 

w. a
6n 1 

cos ne .Q6n cos ne 

v. a
7n 

sin ne .Q7n sin ne 
1 

CPi a 8n 
sin ne .Q8n sin ne 

Substituting these series into the equations of motion and taking a Laplace transform on t yields a 

set of linear algebraic equations with n and the transform variables as parameters. Orthogonality 

of the sine and cosine functions l,mcouples these equations so that they can be solved separately for 

each n. The equations have the form 

(13) 

(14) 

where the (-) notation is used to indicate Laplace-transformed quantities. For brevity, the expres

sion for [F (n, s)]. the coefficient matrix, is not written out here, but this can be very easily done 
2 2 

by making the following substitutions in Equations (12): Replace ~ by _n
2

; ~ by s2; ~e by 
oe ot 

n in columns 2, 3, 5, 7, and 8; and by -n in columns 1, 4, and 6. The solution for the Fourier co-

efficients can be written formally as 

or, using indicial notation but not the summation convention, 

a. 
m 

8 

L: 
j=1 

M .. ( 2) IJn s 
2 D (s ) 

n 

"i. (s) 
In 

Here M.. and D are the cofactor matrix and determinant of the transformed equations for a IJn n 
given n. 

(15) 

(16) 
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Obtaining algebraic expressions for M.. and B vyould be prohibitively difficult, but this is 
IJn n 

no impediment to their use in the solution. They are simply carried along and used formally during 

the analysis. When numerical solutions are required, these quantities need only be evaluated for 

specific numerical values of nand s2 via a suitable algorithm. 

Symbolically the determinant can be expressed in product form 

is 
n 

where A is a constant and the wkn's are the natural frequencies of the system for a given n. For a 

specific set qf ring parameters, numerical values for the W
kn

'lO can be computed as described in 

Appendix A, Then, for each n, the known values for the Wkn'S are used to write partial fraction 

expansions for the transformed coefficients, 

a. 
In 

I. (J 
In J 

1 
2 2 

s + Wkn 

With the values of the Wkn's known, the numerical values for the minors, M
ijn 

(-w~J, are easily 

calculated. The Laplace inversion of Equation (18) can be written ~n terms of convolution integrals 

by using the fc,r;mula, 

,1 
1. (s) 

In 
2 2 

t 

s + W kn 
11. (or) sin w

k 
(t - or)/W

k 
dor • 

o In n n 

The result is 

a. (t) 
In 

8 8 

LL 
k=l j=l 

1. (or) sin w
k 

(t - T)/W
k 

dT, 
In n n 

Formally the solution is completed by sUbstituting this expression for the Fourier coefficients into 

the series expansions for displacements. To obtain strains, these displacement expansions are in 

turn substituted into the strain-displacement r~lations. 

Equation (20) shows that, for eacb n, eight differ!3nt modes of vibration can contribute to 

each displacement, but usually only a few (three or four) of the modes will make a significant con

tribution. The relative importance of the modes depends on the applied load, the displacement or 

strain component of interest, and the physical parameters of the ring. Because of the wide range 

of parameters for which this theory is applicable, it is best to treat each case individually. For 

(17) 

(18) 

(19) 

(20) 



example, when n = 0, the lowest frequency is 0 because it represents a rigid body motion. The 

lowest nonzero frequency can represent either a purely radial or purely circumferential (thickness 

shear) motion depe~ding on the ring parameters. 

The brief presentation of the analysis given here helps to avoid overloading the discussion 

with details. However, this approach provides little insight into the origin and possibly physical 

interpretation of the terms in Equation (20). An attempt to provide some interpretation of the solu

tion is presented in Appendix B. 

Solution for Cosine-Distributed Impulse 

As an example, the equations of motion and solution technique are used to calculate the 

transient response of a three-layered ring to a radial impulse. The impulse is applied to the 

outer ring surface and is distributed as a cosine over half the ring circumference, i. e. 

lal < Tf/2 £1 ={~o(R+ho)6(t)COSa 
o (21) 

£. 
J 

o f 1 

Expanding the load in a Fourier series gives 

I [1 £ = - (R + h ) 6 (t) -
1 E 0 Tf 

o 

co 

+~ 
2 

_ ~ (_1)~2 2 

n~,6 Tf(n - 1) 

£ 1 = .L(R + h ) 6 (t) ~ £ cos na • 
E 0 ~ 1n 

o n=O 

This particular load leads to a relatively simple form for the Fourier coefficients because only 

one element in the load vector is nonzero and the 6 (t) behavior simplifies evaluation of the con

volution integrals. The Fourier coefficients are 

(22) 

8 

a. (t) = '"' 
In ~ 

(23) 

k=1 

A computer program was written to evaluate these Fourier coefficients, sum the series expansions, 

and provide a prediction for strain-time. 
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Experiment 

Ring Specimens 

To obtain strain-time transient response data for comparison with theoretical predictions, 

three different three-layered rings were assembled. Each ring had a relatively thick, soft core 

layer because the theory was especially formulated to handle this case. Inner and outer layers of 

all the specimens were 1/8-inch-thick 6061-T6 aluminum and the outside diameter was 12.5 inches 

for each case. The core layers were (1) 0.5 inch thick, 12lb/ft
3

, CPR 2038 urethane foam (Ref. 

12, 13); (2) 0.25 inch thick, 20 Ib/ft
3

, CPR 2038 urethane foam; and (3) 0.25 inch thick Sylgard® 

184. The resiliant urethane foam cores were cut from a flat sheet and glued to the aluminum 

layers with contact adhesive. Sylgard 184 is a low-modulus, clear potting compound manufactured 

by the Dow Corning Company. The Sylgard core was poured in place. 

Impulse Loading Techniques 

Two radial impulse load distributions were applied to the outer surface of each ring, axisym

metric and varying as cos 9 for -1T /2 < 9 < 1T / 2. Figure 3a is a schematic of the loading setup for 

the axisymmetric impulse case (Reference 14). The ring is first wrapped with a layer of insulating 

Mylar. A 2-inch-wide strip of thin aluminum is wrapped on and its ends shorted together. Another 

insulation layer is added; another wrap of aluminum follows, with its ends connected to the capaci

tor bank terminals. At switch closure, bank discharge current flows in the outer conductor and 

induces an opposing current in the inner conductor. Repulsion between the two current-carrying 

conductors blows away the outer conductor and drives the other radially inward against the sample 

ring, thus applying uniform radial impulse. The junction that shorts the inner conductor is formed 

to permit outward radial rebound of the ring under minimum restraint by the aluminum layer. 

The loading technique used to obtain a cosine impulse over half the circumference is shown 

in Figure 3b (Reference 15). A single conductor, insulated and folded back on itself, carries the 

bank discharge current. The outer part of the conductor is blown away and the inner part is 

driven against the sample ring which is allowed to fly freely upward. Conductor width is varied 

as the appropriate function of angle 9 in order to produce the required spatial load profile 

(Reference 16). 

The pressure time history for both types of load distributions is governed by the parameters 

of the electrical circuit. For these tests the load was delivered in less than 10 J.Lsec with most of 

the impulse delivered within the first 4 J.L sec. This load duration is short enough to be considered 

impulsive. 



I 
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I 

Ring Specimen 3a. Axisymmetric 

Lead Lead 

3b. Half Cosine 

Figure 3. Experimental Setups 
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Instrumentation 

Strain gages were used to monitor the transient ring response. For the cosine impulse loads, 

the gages were located on the inner ring surface at 9 = 0, 'fT/2, and 'fT. Additional gages at 'fT were 

located on the aluminum layers at their interfaces with the core and on the outside surface of the 

outer layer. The gage locations were the 'same for axisymmetric loads except that no gage was 

used on the outer surface. Strain data were recorded on magnetic tape, digitized, and plotted. A 

camera and multiflash light source were used to obtain time-lapse photographs of the ring for the 

cosine impulse loads. From these pictures, rigid body velocity and net impulse delivered to the 

ring were determined. 

Core Material Properties 

Modulus properties for the urethane foams were obtained by extrapolating from data published 

in References 12 and 13. Since these foams have strain-rate-sensitive moduli, the extrapolations 

were made from the highest strain-rate information given. No modulus data were available for 

Sylgard 184, but some simple static tests, along with ultrasonic wave transit time measurements, 

were used to estimate material properties. The ultrasonic tests showed a wave transit time 

through a1/4-inch-thick Sylgard core of 5.8 Ilsec. This is an order of magnitude less than the 

transit time that would have been anticipated based on the modulus obtained from a simple tension 

test of a Sylgard bar. Apparently the confinement of the Sylgard core between aluminum layers 

effectively stiffens the material due to a relatively high bulk modulus. Values that correlated with 

the ultrasonic wave speed data were chosen for the c
1

, c
2

, and c
3 

core moduli (see Equation 2). 

Since confinement has no effect on shear stiffness, the value chosen for the shear modulus, c 4' 

was close to the statically determined value. 

Comparison of Predictions with Measurements 

The core materials used in the ring specimens contribute substantial damping to the system. 

Since the theory was formulated for elastic materials, some sort of loss factor must be introduced 

into the calculations to have any hope of achieving good experimental-theoretical correlation at 

other than very early times. This was accomplished by multiplying the contribution of each mode 

by a damping function, exp (-6t/T), where 6 is a logarithmic decrement and T is the period of the 

mode. Satisfactory convergence for the cosine impulse load was obtained by truncating all series 

expressions for the transient ring response at n = 12. Since there are eight modes of vibration for 

each n, there are many log decrements to be specified. To simplify this situation, the log decre

ment for the lowest frequency mode was assumed to be the same for all n. Similarly, this assump

tion was extended to each of the other seven modes so only eight log decrements need be specified. 

Two of these eight quantities were obtained experimentally. One was determined by using the techni

que described in Reference 14 in conjunction with the axisymmetric impulse tests. The other was 

found by observing the long-time strain response from the half-cosine impulse tests. In this case 



the high-frequency modes damp quickly, and only the fundamental bending mode vibration remains 

at late times (see Figure 4). Thus the log decrement for the fundamental bending mode was easily 

found from the late-time strain data. With the two experimentally determined values for log decre

ment as guides, values for the remaining six modes were chosen. It should be noted that the modes 

for which the log decrements were determined experimentally are responsible for a large part of 

the total transient response. 
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Each of the rings was loaded twice with the cosine impulse. Both experiments were performed 

at about the same impulse magnitude and, for comparison purposes, the results were scaled to a 

common reference impulse level. The scaled results along with theoretical predictions are shown 

in Figures 5 through 7 for the ring with 12-lb/ft
3 

urethane foam, Figures 8 through 10 for the ring 

with 20-lb/ft;J urethane foam, and Figures 11 through 13 for the ring with a Sylgard 184 core. The 

material parameters used in the calculations for each of the rings are shown in Table I. The 6 
1 

notation is used for the log decrement of the lowest frequency mode, 6
2 

is the log decrement for 

the 'second lowest frequency mode, etc. 
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12 lb/ft
3 

20lb/ft
3 

Sylgard 

E (Pa) 
o 

6.9 X 10
10 

C
1 
(Pa) C

2
(Pa) 

1. 9 X 10 
6 

1. 9 X 10 
6 

4. 14 x 10 
6 

4. 14 x 10 

1. 38 x 10 
9 

1. 38 x 10 

6 

9 

E.(Pa) 
1 

6.9 X 10
10 

C
3
(Pa) 

0.52 X 10 

1.0 x 10
6 

3.4 E 9 

6 

TABLE I 

Material Properties 

G (Pa) 
o 

C
4

(Pa) 

. 6 
0.9 X 10 

1. 65 x 10 
6 

1.0 x 10 
6 

G.(Pa) 
1 

2.9 X 10
10 

3 
°1 p (g/mm ) 

c 

0.19 x 10 
-3 

0.095 

0.32 X 10 
-3 

0.16 

1.0 x 10 
-3 

0.095 

°2 

0.095 

0.16 

0.095 

3 
P (g/mm ) 

o 

-3 
2.7 X 10 

°3 

0.095 

0.16 

0.13 

° _4_ 

O. 13 

0.16 

0.13 

3 
p.(g/mm ) 

1 

-3 2.7 X 10 

°5 °6 

0.13 O. 13 

O. 16 0.16 

O. 13 0.13 

°7 ° _8_ 

0.13 0.13 

0.16 0.16 
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The theoretical-experimental correlation shown in Figures 5 through 10 for the foam core rings 

is quite good, but th~s agreement is partly due to adjusting core material properties used in the cal

culations. The modulus properties chosen are all well within a reasonable range based upon the 

limited data available, but the l~mited amount of data resulted in a fairly wide range of reasonable 

values. The logarithmic decrements were based upon some limited experimental data and several 

assumptions. If no experimental data were available for the rings, approximate values for log 

decrements could have been computed from specific loss (Reference 17) properties of the core ma

terials. This is done by computing the ring frequencies and mode shapes and then calculating the 

fraction of the strain energy for each mode due to shear and direct strains in the core. The log 

decrement ~s then determined using this fraction and the specific loss factor for the core material. 

Theoretical-experimental correlation for the Sylgard ring was not as close as for the foam 

core rings. The short-duration load produced some high-frequency, high-strain rate pulses 

directly underneath the load. The transit time of these pulses through the Sylgard core was SO 

short that relief waves propagating inwarr from the eclges of the ring could have little effect. 

Therefore, at early times, the Sylgard core behaved as if it were completely confined (i. e., in 

plane strain). At later times (greater than 50 IJ. sec) the transient ring response is dominated by 

oscillations whose periods are sufficiently long that the relief waves from the ril1g edges can have 

a significant effect. In this case the appropriate core stiffness parameters are dramatically re

duced and approach those appropriate for an unconfined or plaqe stress condition. The large-value 

stiffness parameters used for the Sylgard computations give reasonably good agreement with the 

experimental data but tend to underestimate the strains at e = 180
0

• 

A further complication in the Sylgard ring analysis arises from the fact that Sylgard does not 

bond well to many materials and specifically to aluminum. The extent of core debonding is un

doubtedly not confltant from experiment to experiment and probably is the major factor in the dif

ferences in the data presented in Figures 11, 12, and 13. Despite these difficulties, the Sylgard ring 

data are included in this report for two reasons. First, to point out some pitfalls to be avoided in 

any future experimental studies, and second, to show that, in some cases, strain time response is 

sufficiently insensitive to core material parameters that reasonable results can be obtained, even 

though the core Properties are not well known or are effectively changing with time. 

For the rings used in this study, it was found that the numerical results are insensitive to 

the core extensional stiffness in the circumferential direction. This is the result of the very high 

stiffness of the aluminum layers in comparison with the core. The radial core stiffness is very 

important since it determines the extent of the coupling between the radial motion of the aluminum 

layers. The shear parameter c
4 

(see Equation 2) has an i:(nportant effect on the lowest frequency 

bending-type modes since it determines the degree of cOl1pling between the flexural behavior of the 

aluminum layers. It was observed that inclusion of the core inertia had little effect on the overall 

ring inertia, frequencies, and peak strains (especially for the light foam cores). However, with

out core inertia, the theory could not represent the delay time between application of the impulse 

and initial strain in the inner ring, This delay time corresponds to a wave transit time through the 

core, and, in the case of the 12-lb/ft
3 

urethane foam core, amounts to almost 100 IJ.sec or about 

half a period of the dominant axisymmetric extensional vibration. 
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APPENDIX A 

The key to computing the ring modal solution is the ability to calculate natural frequencies 

of vibration. This is done by assuming displacements of the form 

w Q!1 cos n9 
0 

v Q!2 sin n9 
0 

¢o Q!3 sin n9 

w Q!4 cos n9 
iwt c 

e 
v Q!5 sin n9 

c 

w. Q!6 cos n9 
1 

v. Q!7 
1 

sin n9 

¢i Q!8 sin n9 

Substituting this expression into the equations of m9tion, Equation (12), and setting the load vector 

to 0 yields a set of linear, homogeneous algebraic equations of the form 

For a nontrivial solution, the determinant must vanish. The eight equations of motion require 

that the determinant of K bean eighth-order polynomial in w2, i. e., 

det K 
16 14 12 10 8 6 4 2 

Aw + Bw + Cw + Dw + Ew + Fw + Gw + Hw + I o 

The coefficients, A to I, are complicated functions of the ring parameters and mode number n. 

It is not feasible to derive algebraic expressions for the coefficients but, for a given ring and a 

specific n, their numerical value can be computed. This is done by first evaluating the determi

nant of K for w = O. Substituting this value into Equation (A3) gives I = det K(n, 0). Then eight 
2 

other values of ware chosen, and the determinant of K is computed for each. Substitution of 

these values into Equation (A3) results in eight simultaneous linear algebraic equations for the 

eight unknown coefficients A through H. Solution of the equations yields numerical v&.lues for the 

coefficients of the characteristic polynomial, and standard algorithms can be used to find its roots. 

These roots are the natural frequencies. Amplitude ratios for each frequency are computed in the 

usual way by eliminating one equation from Equation (A2) and solving the resulting nonsingular set 

of equations. 

(AI) 

(A2) 

(A3) 
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While this procedure is a bit indirect, theoretically it should work. Unfortunately, in 

practice, difficulties do arise. For one thing, the si:rp.ultaneous equations used to solve for the 

characteristic polynomial coefficients are usually poorly conditioned and sometimes several sets 

of trial w's must be chosen before the computation for the coefficients is successful. Once the 

roots of the charaGteristic equation are found, they should be substituted back into K and the 

determinant evaluated. Newton's method can then be used to refine the frequencies to the ac

curacy desired. 

f , 
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APPENDIX B 

Some basic background discussion is helpful in understanding the character of a solution 

that results from a higher order structural theory such as the theory derived in this report. 

Structural-type theories are developed to characterize the behavior of solids having at least one 

characteristic dimension much smaller than their other dimensions. These theories include time 

and the spatial variables whose axes lie along the larger dimensions of the structure as indepen

dent variables. The remaining spatial variables, whose axes are oriented along the smaller dimen

sions, do not appear as independent variables because of the theory's assumptions about the varia

tion of displacement components with respect to these variables. It is the nature of these assump

tions that determines how many dependent variables are included in the theory. For example, 

beam theory equations have the distance along the beam axis and time for independent variables. 

Elementary beam theory requires that plane sections remain plane and that normals to the neutral 

axis remain normal. With these assumptions the displacement of a cross section is characterized 

completely by one dependent variable w, the transverse displacement. Timoshenko beam theory 

relaxes the restriction on normals to the neutral axis remaining normal, with the result that an 

extra dependent variable ¢, the rotation angle of a cross section, is needed to specify completely 

the displacement. Note that the number of independent variables in a theory depends on the type of 

structure, but the number of dependent variables depends on the nature of the theory's assumptions. 

Thus, all beam and ring theories have one independent spatial variable and all plate and shell 

theories have two. 

Fre.e vibrations of structures can be characterized by their mode shapes, amplitude ratios, 

and frequencies. Here, mode shapes are understood to define the variation of displacements with 

respect to the independent spatial variables. For example, the set {Sin nTTx/.Q} specifies the mode 

shapes of a simply supported beam. Amplitude ratios refer to the ratios of the amplitudes of dif

ferent dependent variables for a particular frequency of vibration. Elementary ring theory has 

two dependent variables, the radial wand circumferential v displacements; and the amplitude 

ratio is vi w. In elementary shell theory, there is an additional (axial) displacement u and two 

amplitude ratios, u/w and vlw. For a given mode shape, a structural theory will yield as many 

frequencies of vibration as it has dependent variables. Each frequency corresponds to a different 

set of amplitude ratios. Thus, one mode shape can include several modes of vibration. The 

membrane and bending mode vibrations of elementary ring theory are an example. The mode 

shapes of the ring theory j~{sin nS and cos nS}. For a given mode shape, the membrane fre

quency is proportional to n + 1, and its amplitude ratio vlw ~ n. The bending mode frequency 

is proportional to n ~ R+1, and its corresponding amplitude ratio is v I w ~ -1 I n. 
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In general, the transient response of a linear structure to applied loads can be written in 

terms of a summation of its modes of vibration. To compute the solution, all that is required is 

to determine the extent to which each of the modes of vibration is excited (i. e., determine the 

modal coefficients) and the phase relationships of the modes. The degree of excitation for a parti

cular mode depends upon how well the load distribution matches its mode shape and on how well 

the time variation of the load is tuned to the natural frequency; i. e., how well the mode and load 

are matched in the time domain. 

For the case at hand, Equation (20) of the text is a general expression for the modal coeffi

cients of the three-layered ring solution. The summation from 1 to 8 on the index k is the result 

of the fact that the theory contains 8 dependent variables and therefore each mode shape allows 8 

different modes of vibration. The magnitude of P.. is a measure of how well the jth component of 
In 

the load vector matches the nth mode shape. Similarly, the convolution integral is a measure of 

how well this particular component of the load is tuned to the W
kn 

frequency. Finally, the coeffi

cient M.. (-W
k

) contains information about the amplitude ratios of the ith component of displace-
lJn n 

ment when the system is vibrating with the nth mode shape in the mode whose frequency is W
kn

• 
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