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ABSTRACT

Two codes have been written to generate surface and field
pressure distributions about finite length vibrating cylindrical
bodies. The theoretical basis for the programs, the surface
Helmholtz integral formulation of the acoustic radiation problem,
is briefly described along with the details of the numercial
methods used, The codes are verified by using a class of exact
solutions, and sample results are given for the radiation pres-
gures from a simple finite cylinder with rigid end caps.
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ACOUSTIC RADIATION FROM CYLINDRICAL BODIES

1. INTRODUCTION

Usé of cylindrical low-frequency acoustic sources at Sandia Laboratories has led to a number
of questions regarding the nature of acoustic. fields generated by such devices. Of particular
interest to sonar applications is the far field radiation pattern characteristic of a source. Field
patterns can be obtained experimentally for given operating conditions through acoustic field
surveys. However, a lack of generality and considerable tedium is associated with this approach,
especially since practical limitations necessifate use of a small number of hydrophones. These

experimeﬁtal difficulties provided the major motivation for pursuit of analytical solutions,

The surface Helmholtz integral formulation of the field equations is the basig for numerical
solutions of the acoustic radiation problem for a surface whose normal velocity is specified. A
method, described in detail by Schenck [1], has been developed and applied in recent years by -
several authors [2, 3, 4]. The radiation analysis consists of two basic parts. First, the surface
pressure distribution corresponding to a prescribed surface velocity distribution is generated,
Second, by using the surface pressure and velocity functions as boundary conditions, near and far

field pressure distributions are determined.

Anglyses presented here are for finite length cylindrical geometries with characteristic
cylinder dimensions as parameters. More general, nonaxisymmetric geometries can be considered

by similar methods, but with additional expense in complexity and computation time.

An incidental outcome from the solution is the go-called impedance matrix, characteristic
of the system geometry and frequency. This matrix, once found, permits rapid generation of
surface pressures resulting from an arbitrary distribution of velocities on the radiating body.
These surface pressures can be readily coupled with numerical [5] or analytical structural solu-

tions for study of vibrating elastic structures in acoustic media.



I, THEORY

Helmholtz Integral Formulation

Consider a closed surface which iz harmonicaily vibrating and radiating sound {o an un-
"bounded acoustic medium. Pressure at a field point P, external to the surface S, is given by the
Helmbholtz integral formula [1]

OSSP | RS U | NP N - ctiiuid IR o
P - 47 D(P, s} a7 P dn(s) D(P, s)
S

S

where D(P,s) is distance between field point P and the surface point s at dS, u(g) is a given

normal velocity distribution, p(s) is the pressure distribution, g is the density of the acoustic _
medium, w is frequency and k is the wave number, The partial derivative is taken with respect
to the outward normal to the surface at point s. The harmonic time dependence e~iwt has been

suppressed for clarity.

The surface pressure distribution p(s) is not arbitrary; rather, it must satisfy the integral

Equation (1) resgulting from letting P - s, some point on S,

s ikD(s’, s) ikD(s’, s}
. Cipw e 1 3 e !
p(s’) = o ]f D’ 5 u(s) ds + o J] pis) ) Dis7.5) ds . (2)

S

The new factor 1/2r is introduced to account for digcontinuities which occur in the integrals as
P - g’., These are improper integrals since D vanishes at s = s/, It is implicitly assumed in

Equation (2) that principal values of the integrals be used.

Integral Equations (1) and (2) are the basic tools used here to determine the radiation fields
about a body with a prescribed normal surface velecity distribution. Equation (2) is solved first
to determine the surface pressure distribution, This distribution is then available for Equation (1)

to calculate pressure at field points of interest.



Solution Techniques

Equation (2) is solved by reducing the integral equation to a discrete set of linear algebraic
equations. Following the method suggested by Schenck [1] and described in [5], the body is

assiéned N nodes denoted by subscript j. Surface pressures and velocities are approximated by

N
p¥(s) m Z v (s)p%
j=1

ufs) = i q/j(s)uj S )

=1

where p*  is pressure normalized by pw. In Equation (3), p*j and m:j are nodal pressures and
velocities, respectively, and \Pj are interpolation functions, usually taken to be linear. Note that

\I!.(sk) = ij » the Kronecker delta, where s _ are position coordinates of node k. Utilizing the

k
above approximations in Equation (2) and generating N equations by satisfying Equation.( 2) at each

point s’ = Sj‘ it follows that
Ap# = Bu

where p* and u are vectors of the nodal pressures and velocities, The matrices A and B have

elements given hy

ikD(sj,s)
Ajg 7 By, - 2111 ﬂ’ ¥, (s) an(s) eD(sl,s) ds
S J
and
1kD(sJ,s)
Bjﬂ, = J‘f (s) D(s 5 ds . (4)

The impedance matrix Z is defined as A lB. Thusf
= pwZu . (5)

For a given geometry, Z is a function only of frequency. Once the matrix is found for a range of
frequencies, surface pressure distributions can be rapidly determined by simple matrix multi-

plication,

11t has been shown [1] that the matrix A can be singular for certain frequencies, These
characteristic frequencies are relatively high for the applications considered here and, therefore,
methods for circumventing the problem will not be discussed,



Once the vector of nodal pressures is known, pressure ai an external field point P is found
by applying the ‘approximatioris in E(juation (3) to the Helmholtz integral Equation (1), Making this

substitution yields a simple result for the field pressure p* (P},

N .
PHEP) = ) (a.p¥ + b ‘ (6)
=1 |

where vectors a and b are givén by

1kD(P s
: 41rﬂ‘1" ) 550 U Brm ey ) 9

— e'1kD(P,.‘as)
j-rnﬂ‘l’j‘s’—nrﬁm‘ds° 0

S

o
n

and

[=n
'

‘Two computer codes, IMPED-and RADIAT , have been written to effect the discrete inte-
gration of the impedance and radiation formulas, respectively. The programs in their present
form are restricted to axially symmetric bodies made up of any connected combination of disc
and cylindrical surfaces., Furthermore, the surface velocity distribution must be axisymmetric,
Section IIT contains an outline of the numerical methods used and numerical results for a few

selected problems. Appendix A contains a description of input/output information,



I, NUMERICAIL METHODS

Source Geometry ‘and Nomenclature

The class of geometries which will be considered consists of axisymmetric bodies made up
of any connected combination of discs and cylinders. In generai, a surface begins and ends with

a disc, while the component surfaces alternate between disc and cylinder, An arbitrary number of

nodes is assigned to each component surface. Each corner is assigned two nodes with the co-

ordinates of the corner in order to avoid any ambiguity in the normal derivative, To familiarize

the reader, Figure 1 pregents an example consisting of seven component surfaces to which 27 nodes

are assigned,

Figure 1, Example Source Geometry

Table I describes the relevant nomenclature together with values for the example of Fig-

ure i,
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TABLE !

Nomenclature for Surface

Parameter ) B Description Value for Example
N ‘ Number of nodes 27
NSUR Number of component surfaces 7
ISUR Index of component surface 1,2,3,4,5,8,7
(1 is always assigned to lowest
disc)
N, (ISUR)/N,, (ISUR) Node beginning/ending’ compo- ISUR N N
1 2 1 2
nent surface ISUR
1 1 4
2 5 T
3 8 11
4 12 15
5 16 18
6 19 24
i 25 27
NCOR ' Number of corners (always 6
NSUR-1)
ICOR(I} First node of corner1 4,7,11,15,18,24
z0 z coordinate value for Node 1 -6
DRZ(ISUR) Change in z or r coordinate for +3,+4,+3,+3, -2, +5, -4

component surface ISUR (nodes
- for a given component surface
are equally spaced)
A gurface is completely specified by the following information:

N, NCOR, {ICOR(I),1=1, NCOR), ZO, (DRZ(ISUR), ISUR=1, NSUR)

Ceomputation of the External Pressure Field

The integration of Equation (1) is relatively simple owing to the regularity of the integrands. .
A cylindrical coordinate system (r,8,z) is used for points s on the surface of the body while a
spherical coordinate system (R, ¢,8’) is used for points P in the field. Because of the prescribed
symmetry of the surface and surface velocity distribution, the nodal pressures and velocities are
independent of 8 . Also, 8’ is taken to be zero without loss of generality. Utilizing the nomen-

clature of the previous section, Equation (1} is discretized to give



Ny-1 j+1 _
' i - (- w) kD
px(P) = - rlu, + 4 {r -~ r.) dedr
4n J (r].+1 - rj) bl D
ISUR j=N
Odd . r. m
J
i+l L
(p*,, - p*) ( ikD
1 1 T P > fe )
Ll r| p*x + - (r-r) — dedr
47 i (rj+1 r.) h] dZ D
r. : ‘ -1
3
N,-1 Z. m
' 2 1. i+ (- u) kD
+ i w, + —E 4 (z - 2.) dedz
Z Z 47 i (z.+1 - Z.) j D
ISUR j-N, J J _
even 2, -
, T
. j+l. (p'd'=;i+1 - p) 5 eikD
+ == pr, + —I—d (7 - z) 2 dgdz : (8)
47 i (zj+1 zj) hi 3r \ D
z -7

where distance D between the surface point (r, 8, z) and the field point (R, ¢) is given by
2 2 g 1/2
D= [(R 8ing - r cos@) + (r sing)” + (R cos¢ - z) :| .

On a disc (i.e., ISUR odd), z is constant; on a cylinder (i.e., ISUR even), r is constant. It
should be noted that the only approximation contained in Equation (8) is the agsumed linear inter-

polation formula based on nodal values of pressure and velocity,

The computer code RADIAT utilizes an adaptive 7-point Newton-Cotes algorithm to perform
integration in 8, Integration in r and z is performed from user specification by either a trape-
zoidal rule algorithm with functional evaluations at the nodes or an adaptive Simpson's rule
algorithm on each component surface. The Newton-Cotes algorithm and the Simpson's algorithm
are QNC7 and QNC3, respectively, in the Sandia Mathematical Library [6]. Computational time

and accuracy will be discussed in a subsequent section,

11
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The so-called far field pressure pattern is obtained by neglecting terms in the near field
solution Equation (8) which are of higher order than 1/R. Thus, the following limits are intro-

duced’

KD eik(R- rcosfging-zcose)
-

- D R

(elkD) _, -ik cos¢ _ik(R-rcos@sing-zcosg)

e
2z \ D R

ikD\ e :
) (e )_) -ik cos b sing elk(R rcos@sing-zcosg) (9)

3r \ D R '

For the far field approximation Equation (9), integration with regpect to 8 may be done analyti-

cally, reducing Equation (8) to an integral on the body perimeter of expregsions involving ordinary

‘Bessel functions of order zero and one, An adaptive 7-point Newton-Cotes algorithm (QNC7) is

used to complete the integration in r and z. FARFLD, a subroutine in RADIAT, carries out the

far field computation,

Computation of the Impedance Matrix

Pressure at any point on the vibrating surface can be found by utilizing Equation (2). If, in
particular, Eqﬁation (2) is satisfied exactly at the nodes, a set of algebraic equations is formed

relating nodal pressures to nodal velocities,

T, T
. - +
N2 1 ) i+l (p,g+1 - pf.a) 5 eikD
p¥_ - 2 : — r|p% + ————=—(r-r) — dedr
m 2n i (r;i +1 rj) i dz D
ISUR J=N1
odd r -7
] /
N,-1 %41 T A
(P*. - P*-) ikD
- E: = pr o+ —L LT (7 ) 3_(= dgdz \ =
2n i Az,,4-2Z) Jr D
ISUR j=N, R
even z:‘| -
(cont)



. No-1 ! i+l
24 ) ) (=0 ikD
= i a4 d (p-p) £ dédr
: 2r . j (r.+1 -r) J D
ISUR J°N; . J
odd rj -7
N.-1 Zi+1 L
2 (w,, - u) (KD
or u + L (z - 2 dedz (10)
i {z,, , ~z) j D
' R S
ISUR J"N
even ZJ. -

where m = 1, 2, ..., N and the distance D between node m and a point {(r, §, 2) on the body is
given by

L/2

2 +{r s;ine)2 + (zm - z)z:l .

D = [(r - rcose)
m
Pressure and velocity at surface points between nodes are found from linear interpolation.

Equation (10) may be expressed in the form

Ap* = Bu
where p* and u are column vectors of the surface pressures and velocities and the matrices A

and B consist of terms involving surface integrals between nodes. The impedance matrix Z is

defined by

allowing one to find the surface pressures at the nodes given any distribution of nodal velocities.

As in the case of the external pressure field computation, surface integrals must be evalu-
ated. Integration with respect to @ is performed by an adaptive 7-point Newton-Cotes algorithm.
Integration in r and 2 is performed from user specification by either a trapezoidal rule with
functions evaluated at the nodes or an adaptive Simpson's rule algorithm. Unlike the external
pressure field computation, singularities in the integrands exist at nodal points where the distance
D can be zero., The trapezoidal rule option antomatically breaks the interval about such a
singular point into six subintervals and ignores the contribution of the subinterval containing the

singularity. For the adaptive Simpson's rule, the integrand is set equal to zero at a small

13
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distance from the singularity, in this case 10-6. The legitimacy of this procedure requires that
integration on & dise surrounding the singularity yields nco contribution in the limit as the disc size
vanishes, It can be shown that, for an isolated singularity, this is the case for the integrals

enéountered in this program.

In the case of the corners, the situation is more complex, Two nodes are assigned at each
corner to avoid ambiguity in the definition of the normal derivative at a corner, For example,
for a node j corresponding to the end node of a disc, the normal derivative is taken with respect
to z while node j+1 is on a cylinder with a radial normal. This assignment is actually a limit-
ing case of two separate nodes collapsed to the same coordinates. For the case of integrating
singularitiés at node j (or j+1) about node j {or j+1), the integration around the small dise
centered about node j {(or j+1) yields the same result as for an isolated singularity. However,
integration about node j (or j+1) with the singularity at node j+1 (or j) does require care, as
the integrations must be considered in the limit as these nodes approach each other. To be more
specific, the case when node j is on a disc surface, the normal derivative integral about a small

disc ds centered about node j with the singularity at node j+1 is

L. -1 (r - rj—l) 3 elkD o
20| (r.-r. 1) oz D
d J J-

€

= - 2 1 2 -
where D {(r cos @ rj+1) + (r sing)“ + (z zj+1

2 }1 /2
To examine the limiting case of two nodes at the corner, node j+1 is displaced away from
the corner a small distance A. Converting to a cylindrical coordinate system (e, 8) centered

at node j, the integral is given by

€ .m/2 ] )
. ;Té"' J -2 i:o:B ikD - 1) kD g,
0 0 i Tit1 b

1/2
with D = (Az +a ) and ¢ is the radius of the small disc. Since D is small, the approxima-

tions sinkD = kD and coskD =1 are applied, giving

2.2 2
+ ALtk A) )[% 02+A2 - A—En(a+qa2+A2)]

11(.1:'j A- rj-l) 2

(cont)



2 ‘ 2 '
+ Bk _{a2+A2+—“—A~—-—-—3-A2£n(a+{a2+A2) .
alr, - r, 4} 77 .3 2
i Ti-t 2T A ‘ o

[\C1RN

By allowing A to apprﬁach zero, the value of I as ¢ approaches zerois -1/2, This non-
zero result requires that the aumerical integration of this type of surface integral (which assimes
no contribution from the disc de) be adjusted by the additive factor -1/2, A similar result is
found for the integration about node j+1 with the singularity at node j. The above analysis applies
for a convex corner. It may'be shown by similar methods that for concave corners the additive
factor is +1/2, Finally, integration of the singular velocity integrals shows no additional contri-

bution on the corners, and so no adjustment is made in the numerical scheme.

15
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IV. COMPUTER CODE CHECKOUT

Verification Method

The complexity of the integral evaluations ceontained in the numerical solutions suggests that
the legitimacy of the calculations bé carefully checked out. This need is emphasized by noting the
conflicting: regults shown in the literature., For example, the finite cylinder problem (with radius a
and half-length 2a) has at least three independent solutions described in the literature[1, 3, 7] .

All three of these solutions disagree quantitatively.

To provide a means for code checkout, a technique of generating exact solutions was used [1].
This method consists of placing a simple point source within the body of interest. From this source,
exact normal velocity and pressure vectors may be generated, Inputting these vectors into the
RADIAT code should yield a simple source field pressure distribution. The IMPED code is
checked by comparing the exact pressure vector with one obtained by multiplying the impedance

matrix with the exact velocity distribution.

Both RADIAT and IMPED contain user selected options to generate the simple source

solutions so that correct operation of the codes may be periodically checked.

Computation Time and Error for RADIAT

The surface used for the checkout is a simple right cylinder with a length to diameter ratio
of 2. Near field points are selected on the sphere located three cylinder radii from the source
center, Figures 2 and 3 present near field pressures, amplitudes and phases, expressed as
percent error from the known exact solution, for various azimuthal angles ¢, Figures 2 and 3 are

for 17 and 33 node grids, respectively.

The first observation is that an assignment of 17 nodes is sufficient for accuracies within
5 percent. The use of 33 nodes improves the error to less than 1 percent, In generzl, the use
of the adapti#e Simpson's rule achieves significantly higher accuracy relative to the trapezoidal
rule, although this improvement costs computer time. For example, computing time per field
point for Simpson's rule is greater by factors of 6 and 3 over the trapezoidal rule for the 17 and
33 node grids, respectively. It is interesting to note that the time for the Simpson's rule is
essentially constant for the 17 and 33 node cases, the reason being that computing time for this
technique is inainly dependent on the number of component surfaces rather than on the number of
nodes, The trapezoidai rule technique always evaluates functions at the nodes and therefore

doubling the number of nodes, esgentialty doubles the computing time,



PERCENT ERROR

20 z.i;L
, &t
Ly L
Lé L6
s SOLID - ERROR IN PRESSURE AMPLITUDE L4
- DASHED - ERRCR IN PRESSURE PHASE . SOLID - MAGNITUDE ERROR
12} LIGHT - TRAPEZO!DAL RULE - 0. 143 SECIFIELD POINT L2 DASHED - PHASE ERROR
HEAVY - ADAPTIVE SIMPSON'S RULE - 0,811 SEC/FIELD POINT LIGHT - TRAPEZO DAL RULE - 0.276 SEC / FIELD POINT
Lo D 1.0[— HEAVY - ADAPTIVE SIMPSON'S RULE - 0,808 SEC/FIELD POINT
0.8) o.s#
0.6 0.6
04 - 0.4
(=3
0.2 0.2
L 3
a0 & B z
50 0 #ideq) ] 10 20 30 40 50 6 70 8 90
0.2 I wi-0, 21— / é
/ Y,
0.4 ! ¢ 0.4 / y,
sk | 0.6 /s CYLINDER EXAMPLE
! CYLINDER EXAMPL / NN oAt
E . - " | 5 NODES ON EACH DISC
A8 . /| 17 noes roTaL- 0.8~ LIt Liza=2
L0 |- L 3 NODES ON EACH DISC 10 ka=1
- I L/2a=2 T U " Rfa=3
ka =1
Lok POINT SOURCE
1.2 | Rfa=3 ~a- AT BODY CENTER
L4l ! POINT SOURCE
: =3 AT BODY CENTER
-L6 II
-8 ’
2.0 i
Figure 2. Near Field Pressure Calculation Figure 3. Near Field Pressure Calculation

Accuracy, 17-Node Grid Accuracy, 33-Node Grid
Integration tolerance decreased beldw some value does not appear to improve accuracy
significantly, while computing time can grow radically. Experience indicates that a tolerance of
10"2 is sufficient when using QNC3 and QNC7 and that a tolerance of 10-4 is suificient when using
the trapezoidal rule and QNC7. In any case, the user must examine the tradeoff between time and

accuracy for each specific problem,

Computation Time and Error for IMPED

The simple finite cylinder of the previous section is used for checkout of the impedance-
matrix code IMPED.

in pressure amplitude with point sources at two different axial positions. The Simpson's rule

Figure 4 shows resulis for a 17-node grid, expressed as the percent error

clearly yields the greater accuracy,

Computation time for the impedance matrix calculation is significant for both calculational
schemes, For the 17-node grid, the trapezoidal rule requires 35 seconds versus 165 seconds
for the adaptive Simpson's rule. As in the case for the RADIAT code, the use of either method

depends on the desired tradeoff between computation time and accuracy.

17
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Figure 4. Surface Pressure Calculation
Accuracy, 17-Node Grid

It should be noted that if the far field pressures are of interest, surface pressure errors
tend tc become unimportant., Figure 5 shows a comparison of far field pressure errors based on
the two impedance integration options. There is apparently no sacrifice in aceuracy from use of
the faster trapezoidal scheme. Thus, it is concluded that unless high accuracy is desired for

near field points, the adaptive Simpson's rule is not recommended,

TRAPEZO1DAL RULE

.
o

1 1 1 )| ) R | 1 L |
= 14 ADAPTIVE SIMPSON'S RULE
[ ] o
= LY
g 1.2 .
o Lol CYLINDER EXAMPLE -
3 17 NODES TOTAL -
A3 3NODESON EACH DISC L |
] r Li2a=2

=y 06k ka=1 .
3
Y| POTNT SOLRCE AT 0.9 i
=] -
= .
“ ook i

I R U I E— 1 L

Figure 5. Par Field Pressure Based on Computed Surface
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17-Node Grid
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V. ALTERNATIVE METHOD FOR COMPUTING IMPEDANCE MATRIX

In an attempt to reduce the computation time in calculating impedance matrices, a simpler

calculational method based on the spherical checkout was considered. The use of this method was

not successful, but the basic idea and the shortcomings are presented as a guide to others attempt-

ing this approach.

Ag indicated in Figure 4, the impedance matrix quite accurately predicts the surface pres-
sure distribution for a velocity distribution due to a point source at the center of the body. This
observatiqn is the basis for an alternative method of finding the impedance matf‘ix. Suppose N
(the number of nodes) locations are selected for point sources on the axis of the body. Since the
solution for a point source is known exactly, one might attempt to find the impedance matrix from

the N x N matrix eguation

1 1 1 Lot 1 ! - :
PPt ead! ]=Z[u'u '...'u:l (11}
[._1'22| I_pN =1,—2, 1 -

where Ej and Bj are the surface pressure and velocity distributions due to the point source at

position j. Then Z may be determined by a simple matrix inversion,

i

T i 1 ' -
Z-= [-Pl:“':EN][EI:"':EN] . : (12)

Such a method has been tried but appears to fail for the following reasons. The point sources
cannot be located near the surface, since, as indicated in Figure 4, the impedance matrix does not
predict surface pressures near the source location very well. Another possibility to locate zl1 the
point sources near the ''center" of the body away from the boundary. In this casethe Nx N
matrix of velocities becomes nearly singular giving rise to inaccuracies in the matrix inversion
as required in Equation (12), What iz required is to have sources for which solutions are known,
closely spaced near the body center but with dissimilar velocity distributions. Solutions are
known for the point source, dipole, quadrapole, etc, Thua, one could use sources having one pole
up to N poles. Although not tried, it is felt that such a computation would not succeed, The
higher order sources become very dependent on the azimuthal angle 8§ requiring a fine node
structure to account for the velocity distribution, However, the more nodes selected impliea the
generation of even higher order sources, and an accurate velocity distribution can never be’

achieved,
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VI, RESULTS FOR THE CYLINDER WITH RIGID END CAPS

The radiation field for the finite cylinder (b/a = -2) with rigid end caps and uniform radial
velocity elsewhere has been calculated for modérate and low frequencies, In all the figures
shown in this gection, the suffi;fes 1 and 2 are used in describing the codes used (such as IMPEDI
or RADIAT2)., The suffix 1 denotes the use of the trapezoidal rule in integration, while 2 is for

the adaptive Simpson's rule.

Moderate Frequency (ka = 1; ka = 2)

Figure 6 is a summary of results (normalized with respect to the pressure at ¢ = 90°) of

far and near field pressures with ka = 1, Also shown are the published integral method far field

-solutions of Schenck [1] and Copely [3] and the eigenfunction expansion results of

William et al . [7] The far field calculatmns given here evidently agree with Schenck. The near
field pressure amphtudes expressed as the ratio {P /PF) of near to far field pressures differ
only by a few percent from the far field results at R/a = 3. Figure 7 demonstrates the convergence
of the near field to the far field at ¢ = 0° with increasing R/a. Convergence to within a few per-
cent is rapid, but improvement beyond this level is surprisingly slow. Qualitatively similar re-

sults were obtained for oth_er values of ¢,

The radiation field for the relatively high frequency case of ka = 2 is given in Figure 8, This
solution demonstrates an interference pattern, typical of radiators which produce wavelengths
shorter than their characteristic length, Mest of the acoustic energy in this case is directed into
the main lobe centered about ¢ = 90°, The near field pattern at R = 3a is similar qualitatively,

although the actual pressure magnitudes differ somewhat from the far field.

Figure 9 shows the surface pressure amplitudes for ka = 1 and ka = 2, As is the case with
the far field radiation pattern, the character of the pressure distribution changes considerably

with increasing frequency.
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Figure 6. Near and Far Field Results, Uniform Radial Velocity on Cylinder
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Figure 7. Convergence to Far Field, b/a = 2, ka = 1;Cylinder,
Uniform Velocity Digtribution, ¢ = 0°
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Figure 8, RADIAT1 Pressure Fields, ka =2, bfa - 2;
Uniform Radial Velocity Rigid End Caps
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Figure 8, Uniform Velocity Pressure Distribution From IMPED Codes



Very Low Frequency (ka = 0,025)

The examination of sources which are very small relative to the radiated wavelength is of
particular interest because Sandia Laboratories constructed a number of these sources. For this

reason, the simple cylinder ‘(b/a = 2) operating at ka = 0,025 has been considered,

The field pressure results are shown in Figure 10. The upper portion of the figure includes
near and far field pressures for a uniform radial velocity distribution, The far field pattern is
essentially spherical, a well-known characteristic of low-frequency systems. At R/a = 3, the

near field shows a measurable but small deviation from the spherical radiation pattern.

o- COARSE GRID PyiPg

©- COARSE GRID,
UNIFORM VELOCITY

FAR FIELD

NEAR FIELD,
B Rfa=3,0 -
4« COARSE GRID, ‘ 0- COARSE GRID, Py /P,

FAR FIELD

Fipgure 10. Low-Frequency Near and Far Field Results, (ka = 0.025);
Surface Pressure Distribution From IMPEDI1

The influence of the surface velocity distribution on the pressure fields is examined briefly
in the lower portion of Figure 10, An "oscillating" velocity distribution is used. This profile is
qualitatively similar to what sometimes occurs with vibrating acoustic membranes. The influence
of this motion on the near field is considerable, while the far field pattern remains spherical. It
is apparent that at these low frequencies the details of the membrane motion cannot be transmitted

into the far field.
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Figure 11 shews the convergence of the near to far field pressures. The convergence is
quite rapid for the uniform surface velocity; the oscillating profile requires considerably more

distance for convergence, It is concluded that if a far field hydrophone placement is desired,

'soﬁle estimate of the velocity distribution is réquired. For experiments conducted at Sandia

with a similar geometry, a hydrophone location at 15 radii has been used, The preliminary
results of this study indicate that this placement should be well into the far field even for non-

uniform velocity distributions.

A-COARSE GRID, RADIAT 1, ¢=(°
OSCILLATING VELOCITY PROFILE

x- COARSE GRID, RADIAT 1, ¢=0°
UNIFORM VELOCITY PROFILE

1.0 —r Y T
& 0.5 -
&
| | L L L 1 g
2 345 10 2 40 100 200 400

Figure 11. Convergence to Far Field; b/a = 2, ka = 0,025



VI, SUMMARY AND CONCLUSIONS

Two computer codes are presented for determining the near field, far field, and surface
pressure distributions on vibrating cylindrical bodies. The codes have been tested through the
generation of exact, simple source solutions. The numerical results generally deviate from the
exact solution by less than 5 percent; improvement on that percent is possible with additional

computer time,

Calculation of near and far field pressures, given the body surface pressure distribution,
requires little computer time (generally less than 1 second per field pointlh However, the body
surface pressure distribution is costly to generate. This cost is partially alleviated by construct-
ing impedance matrices in a separatecode, With the separate code, impedance matrices for a
given geomeiry may be generated once and for all for the repeated use in the radiation code or

in strucfural programs.

The codes applied to the simple cylinder with rigid end caps and uniform, moderate fre~
quency, radial velocity elsewhere produced far field pressures in agreement with Schenck's
results [1], The very low frequency vibration of a similar cylinder indicates that the far field
pattern is, as expected, spherical, The convergence to this spherical field wilth radial distance
from the source is rapid, occurring within a few source radii. The specific rate of convergence

was found to be affected by the nature of the velocity distribution on the cylinder,

The current codes apply only for connected cylinder disc combinations with axially sym-
metric velocity distributions, The generalization to other geometrics is possible but would re-
guire new, more complicated coding, In view of Sandia's interest in cylindrical sources, the

more general coding was not considered appropriate for this report.

25-26



(1]

(2]

[3].

(4]

[5]

LN

(7]

REFERENCES

Schenck, H. A., "Impruved Integral Formulation for Acoustic Radiation Problems, "
J. Acoust. Soc, Am., 44, 1968, pp'41-58.

Chertock, G., ''Sound Radiation from Vibrating Surfaces,' J. Acoust. Soc, Am., 36, 1964,

pp 1305-1313,

Copley, L. G., "Integral Equation Method for Radiation from Vibrating Bodies, J. Acoust.
Soc. Am., 41, 1967, pp 807-8186. _

Jau, H., K. and Martenson, A. J., "A Numerical Technique for Solving Acoustic Radiation

Problems," Rpt. No.N70-35075, G. F. Mechanical Engineering Lab, Schenectady, New York,

October 1969,

Smith, R. R., Hunt, J. T., and Barach, D., ""Finite Element Analysis of Acoustically
Radiating Structures with Applications to Sonar Transducers,' J. Acoust. Soc. Am., 54,
1973, pp 1277-1288,

Bailey, C. B. and Jones, R. E., "Brief Instructions for Using the Sandia Numerical
Mathematical Subroutine Library on the CDC 6600, " SILA-74-0095, Sandia Laboratories,
Albuguerque, NM, April 1974,

Williams, W., Parke, N, G., Moran, D. A., and Sherman, C. H., "Acoustic Radiation
from a Finite Cylinder," J. Acoust. Soc. Am., 36, 1964, pp 2316-2322,

27-28



" APPENDIX A

_ INPUT/OUTPUT INFORMATION FOR RADIAT AND IMPED

Program RADIAT

Input
Card Parameter Format Columnsg Description
1 M 12 1-2  M=0 Read impedance matrix, read velocities
M=1 Read impedance matrix, point source
velocities
M=2 Point source pressures and velocities
1 INTGR 12 3-4 INTGR=1 Trapeéoidal rule integration
INTGR=2 Adaptive Simpson's rule integration
2 N 12 1-2 Number of nodes
2 NCQR 12 3-4 Number of corners
2 (ICOR(I),I1=1, 512 5-14 First node at each corner
NCOR)
3. Z0o . 710.0 1-10 z coordinate value for Node 1
3 {DRZ(I),I=1, 5F10.0 11-60 Change in z or r coordinate for each
NSUR) component
4 FK F10,0 1-10 Wave nmimber
if M=0 or 1 ((ZI(I, J), ZR({1,J), BE13,8 Imaginary, real part of impedance matrix
5 J=1,N),1=1, N}
if M=0 NQDE 14 1-4 Node at which velocity is to be given
6
8 U1 F8§, 2 5-12 Real part of velocity
6 U2 F8.2 13-20 Imaginary part of velocity
if M=1 1
if M= 26 ZPNT F10.0 1-10 z coordinate of point source location
S
(cont)
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Program RADIAT (cont)

Card Parameter Format Columns Description

4f M=0 or 1

7 RF - . F10,0 1-10  Radial distance to field point
if M=2 '
6

if M=O0or1l

7 PHI F1i0.0 11-20 Angle (degrees) to field point

if M=2 :
6

Note; Card 8 is read until NQDE=0 is encountered,
RF, PHI cards can be stacked, end-of-file causes program stop.

Sample Input

M=2

INTGR=1.

N=17

NC@R=2

{ICQR(I),1=-1, NCOR)=3, 14
Z0=-1,

(DRZ(I),1=1, NSUR)=+,5,+2.,-.5
FK=2.

ZPNT=0.

RF=3,

PHI=0. , 10, 20, 30, 40, 50, 60, 70, 80, 90



Program RABIAT (cont)

S a.mEle Output

'AQQOHSTTF RAHIAI[DN CALCUL ATTON.

TONDITIONS - K=

2.0y OPTION =

2, INTEGRATION
~POINT SOURCE AT

WALL PRESSURE

S ’ QPECIFII-.D VELOCITY .
RADTAL AX1AL REAL - 1MAG - L REAL IMAG _ AMPLITUDE
0,00 “em] 400 1.00 - 1,264 . «6aB3BE+G0 296 73E+00 T1304E g0 7
- 25 =100 .88 1.21 2 531011E+00 A2602F 00 6Q1FHE N
+50 ~1.,00 .58 111 +S501TGE+00  .3936TE+0(Q WBITTHE+DD
oS0 =100 +25. 55 W« S0176E+0Q w39367F 00 L63776E+40
«50 .80 .63 S .65 «T1B40E+00  «23488E+00  +75%582E+00
#5850 =60 118 i 16 . Q1292E+00 =, THE40F=2 -9 1295E Um;
T TS o Bl . e &l 2405 .80 «10670E+01 =.31861E+00 . <11i36E+01°
NI : KPS | .20 3;25__7,_,..&&-”‘_'- ﬂléafzial;'.:-ﬂul__;wﬂigrbmi L A3PG1EGL,.
«50 . 0.00 34‘_9‘9 T '66-, 012000E+01 ¢77051F+00 qlq"ﬁlE"Ol -
S 50 220 A.25 TN | . 2 11BD9E 0] = BPTS4EL00 4 13241F+0}
Lk - eB0, 40 2405 80 A 2106706401 =,31861E+00 C11136E+01
. <50 60 1.18 Th 7%912926+00 = F9R4IE=0 190%1?_(mf
‘.Sngﬁ;uMm, .80 . +63 . a65 oTI1BGOE+0D  ,23488FE+00 JTSE82F 4604
. } I T T WO s i1 55 —50178E+Q0 MAHRLTELDO CRITZLE((
.50 e 1.00. B -1: SR PO § «S01T6E+00 o 39367E+00  +63776E+Q0D
.25 1,00 88 1.21 61011E+00 326026400 69 TRE+(Q
fi. 0,00 C1.00 1.00 S R-U T " W64B36E+00  L29673E+00°  L71304E+00
mn pstqupF VAL UES= - — FAR _FIFLD A L M NEAL FIFLD
RADIAL 4t ANGLE - -REAL IM_AG»,. _ AMPLITUDE . REAL

1.50

«658564E-01 . -

1;456346E000

MAG .

[ 10400 L4T146BE+00 LTOS055E«00 +995439E +00 <99U558E+00,

i ARG~ + W0 . . A% . . - N

| kSO - 30,00, | L659843g-01 L 46TTI4E D0 W4T2366E00 <99781BE*0C L100732E+01 L10U713E+0T

: .50, 60,00 U SARDORNE=01- . L 46B2B3E«00 _aaT2925E 400 S olO0G6QLE+O} 1001258 +0] PO ASE D]
L1.507 7 50,00 s wB62359E=01 .aea737g+ao o $GT3394E 400 - 4101096£+01 c99TT2EE+00

. 1.50 70,00

L 665173€-01

...9692035+0h e

$4T3BI4E+00

. «103836E+01

L9GTARGE + Dy

#HI3TGRTE+ VO

LGS TRADE +00,

it

- REE+00 ok iy
CGITHTIE+ (1) W GONS 1AL U0

1.50 90,00 66641BE=01 © L469272E400 ©  J47T39ROE+00 . 104863F+01
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Pfogram IMPED

Input
Card Parameter . Format Columns Description
1 IPRNT 12 1-2 =z 1 Print impedance matrix
< 1 Don't print
1 IPNCH 12 3-4 > 1 Punch impedance matrix
((Z1(1, J), ZR(1=J), J=1, N},I=1, N)
under 6E13.6
< 1 Don't punch
1 - INTGR 12 5-6 INTGR=1 Trapezoidal rule integration
INTGR=2 Adaptive Simpson's rule integration
2 N
2 NC@R
2 . (ICQR(),I=1,
NC@R)
3 ZO See program RADIAT
3 (DRZ(D),1-1,
NSUR)
4 FK
5 ZPNT
Note: ZPNT cards can be stacked, end-of-file causes program stop.

Sample Input

IPRNT=0
IPNCH=0
INTGR=1

N=17

NC@R=2

(ICQR(D),I=1, NCOR)=3, 14

Z0=~1,
(DRZ(1),1=1, NSUR)=+, 5, +2.,~.5

FK=2,

ZPNT=0.,.4,.8



Program TMPED (cont)

Sample Output

7.

e COUSTIC b DeNtE

e evtiern TT0ONE)

CALC L eTTOy

_ S PO ) ngRCk L BEualr Ve e e
NODE “Tai] A axla_ CorPuTEDY SUXE Ok bweSSURE 72051 SUHsGE e Shu-r
1 Uil =} 00 RN TN | O —
? alo =1.00 Il ) RGE ]
[ S, - § E =] o L0 - PO o
4 50 -1 .00 e N PHE + )
[ .. 1 = ik QYL aRk «un [ _
& 50 -6 L10O053E+ ]
2 250 —aifl QR ARAE () —
A Pe-11] =20 a QU3GO0 S0
G 50 .00 T e B S A e - I ~
10 =1 1] 2N LN IOURF L0
R I DY | 1 1 4 a B AAMAE F1 _ I
1z 20 ey LU0 0A3F 0]
13 Fibe11] o210 290G ) ank + 50
14 30 1ot LGRN0 2R 00
15 a9 1.6 WHalO 260k < {1 [ _
16 P-g 1.40 RN I R A
17 0,060 1.00 LKL SN
POTNT SJUu~CE AT 2=zija/= LG40 UOUE LD
NODE Failal AxIal COVMPUTED SUREACE PRESSILEARGT]Y SOURCE SibeSliee
] Oeul =1.,00 W 1ULTOLF+0O1 .
rd a5 _=1.00 wldtal s en]
3 «S50 =100 W FTIGRPE +910
& S0 =-1.00 299 B L .51 —
5 50 —aH0 JIQANARLE £
6 e D0 -6 L LUO257E+01
7 P=11] -4 » 10021 mF v}
a1 250 —e0 21002208 #0011
9 .50 0.00 L 9G96EIE N :
10 «5¢ 20 23923 0k +00
11 ol A W IRELYTF 010
12 ot 0 o600 e FH59Y)E (10
13 a0 L8N +F819m1F +0N
14 o0 1.00 L A W AT N AN ) |
15 1] 1.00 L HTAPTEF ()
16 25 1aisd) 101317k +31 _
17 0G0 1.00 L GURUYLE +
_ POTINT SOURCE AT 2=zfie/= EAUOOUF vy
NODE RADIBL AXTA: CAMPUTED Stikk ACF PRESSURC/PITINT SOURCE PrESSURE
[ | GeG0 =1.00 2101354 F (] e —
2 «2h =1.00 LU0 02F ]
3 Y] =100 2 9aNA3RE 300
4 50 ~1,00 «ILOBIAE N
5 S0 o g i) ST B SN
6 =14 -6 $HAS03E+
7 PeAT) =i Sa0403F ey
R «50 ~el) WGaNapal 00
Q Dfi Q.00 Q41265 +00 R
10 «50 2N P G3RAILF +00)
11 S 4.0 GeMH ] SF #0110 .
12 +50 60 P FUTALBF 5N
13 50 o) BRAqaTOEF DY) _ _
14 «50 1.00 » Y1327 00
15 a5 1.0 CR1i32F+01)
15 W2 1.00 L112207H -0
17 Q.40 .60 gl 3G 2 )
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Program RADIAT {(or IMPED) -~ Control Cards

Jobcérd, 100-K CM required

. Account card

ATTACH, @LDPL, RADIAT{OR IMPED}, CY=1,
UPDATE, F. '

FTN,I=C¢MPILE.

CQPLLECT,LG®, FTNLIB, FXMATH.

LGO.

7/8/9

7/8/9

Data

6/7/8/9



DISTRIBUTION:

1500
1540
1541
1543

1544

1544
4700
4730
4731
4734
4734
5700
5710
5712
5712
9414
9414
8266
3141
3151

R+ L. Peurifoy -

T. B, Lane

S. W. Key

H, C, Hardee

R. T. Othmer

W. N. Sullivan {5)

D. B. Shuster

R. G. Clem

W. F. Roherty

V., L. Dugan

J., F, Banas (5) .

J., H. Scoft

G. E. Brandvold

R. H. Braasch

E. G. Kadlec

V. M. Brewster

M. T. Mattison

E. A, Aas (2)

L. 3. Ostrander (5)

W. L. Garner (3}
For ERDA/TIC (Unlimited Release)
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