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A Darrieus type vertical-axis wind turbine with a "troposkien" blade shape has 

been proposed by Sandia Laboratories as an alternate to conventional horizontal 

axis, propeller-type machines. The troposkien (Greek for turning rope) shape elim­

inates blade bending and thereby results in a more efficient. minimum material 

blade design. Manufacturing considerations have resulted in a prototype blade 

shape t hat deviates slightly from the troposkien shape. The effect on the stress 

distr ibution of this alternate blade shape is investigated. Analytical models of . 

the blades were constructed using a general purpose, nonlinear, dynamic finite 

element structural code. This code accounts for the large deflection effects of 

the various blade shapes through incremental applications of angular velocity. 
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Introduction 

In fiscal year 74, Sandia Laboratories commenced a study of the Darrieus type 

vertical-axis wind turbine. This type of wind turbine is proposed as an alter­

native to conventional horizontal axis, propeller-type machines. An advantage is 

that the blades, if properly designed, will be primarily in tension, thus tending 

toward more efficient structural behavior. In connection with its vertical-axis 

wind turbine program, Sandia Laboratories has developed the troposkien shape for 

the blade design. This shape, shown in Fig. 1 by the dashed line, is derived in 

Ref. 1 assuming a perfectly flexible blade under the action of centrifugal forces 

only. In order to facilitate the fabrication of a prototype and in order to reduce 

costs, the blade is in fact made of two straight members pinned to a center circular 

member. All members represent symmetric airfoils in cross sections. The straight 

members are airfoils composed of low carbon steel bent to the desired shape. The 

circular arc has a low-carbon steel strip for a backbone encased in foam. Its 

cross-sectional shape is that of a NACA 0012 airfoil. The prototype, presently 

being tested at Sandia Laboratories, has three blades of the type described above. 

This is shown in Figure 2. 

The effect on the stress distribution of an alternate blade shape to that of 

the troposkien is investigated. Primary concern is with the variation in stress 

from the pure tensile state. As with all problems involving rotating machinery, 

the system natural frequencies are also of importance. The ability of this type 

of flexible structure to support acceleration loads depends upon nonlinear geomet­

rical adjustments as the angular velocity is increased. An analytical model of 

this behavior was constructed using a general purpose, nonlinear, dynamic finite 

element structural code. This code accounts for the large deflection effects 

through incremental applications of angular velocity. A beam-type solution "is also 

obtained for the stresses in the straight section, which can be used to validate 

the finite element analyses or as an additional, less expensive, design tool. 

Analytical Methods 

Reference analyses of the turbine blades were carried out with a general 

purpose, nonlinear finite element program. The basic element chosen from the 

element library of this program was a two-node, isoparametric, curved beam element 

with bending in one plane only. The geometric description for each element 
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fiGURE 2. Sandia Vertical­
Axis Wind Turbine. 
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requires five coordinates for each nodal point: the x and y coordinates; the dis­

tance, s, measured along the reference surface of the beam, with respect to an 

arbitrary starting point; and the derivatives dx/ds and dy/ds. 

Both the in-plane and transverse displacement fields, u and w, are expanded 

into cubic polynomials in s; the unknown coefficients are the nodal point displace­

ments and the derivatives du/ds and dw/ds at the nodes. Element mass and stiffness 

matrices are calculated through approximate (Gaussian) volume integration of 

inertial and strain energy exp'ressions, with five Gauss points used along the 

length of each beam element. Eleven integration points are specified through the 

thickness. 

The element is discussed in more detail in [2]. Its principal attribute 

appears to be a high rate of convergence, even for geometrically nonlinear problems, 

due to an ability to "represent exactly all of the rigid body modes of the inter­

polated surface" [3]. 

Geometrically nonlinear effects are treated as in [4]. The loading, in this 

case, is centrifugal acceleration and, theoretically, such loads would be nonconser­

vative (large rotations will affect the distribution of mass in the structure). A 

Lagrangian reference frame is employed here, however, and since the rotations are 

limited to about one degree at angular velocities of 40 rad/sec maximum, the conser-
, 

vative treatment of the loads is not felt to be seriously in error. 

An incremental application of these acceleration loads gives the structure 

(through the tangent stiffness matrix, which is recomputed after each load step) 

an opportunity to adjust its shape for better load-carrying capacity. Within each 

load step, a modified Newton-Raphson procedure is adopted--the solution is iterated, 

with the tangent stiffness matrix remaining as computed at the beginning of the 

step, until the incremental displacements converge to some specified tolerance. 

Occasionally, within a series of load steps, the first few natural frequencies 

of the deformed structure may be of interest. When such information is needed, the 

incremental loading is halted temporarily and the tangent stiffness associated with 

the current deflected shape is computed; the consistent mass matrix is also com~ 

puted; and a specified number of the lower mode shapes and frequencies are found 

through inverse .iteration [5]. 

The idealization of the structure for the finite element code is as follows. 

The straight sections contained 10 elements and the circular arc section contained 

20 elements. The pin between the straight and circular section was represented 
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by an element of low bending stiffness. The circular arc section is designed so 

that the steel backbone carries all the load. The other pertinent parameters used 

in the analysis' are: 

p m 7.332 x 10-4 2 
1b+sec (7834 

1n4 
3 kg/m ) - mass density 

d ~ 5.5" (.1397 m) - radius of shaft about which blade rotates 

R - 57.6318" (1.4638 m) . - radius of circular section 

L ~ 73.07335" (1.8561 m) - length of straight section 

e = 57.250 
a angle subtended by straight section and shaft 

E - 30 x 106 psi (2.07 x 1011 Pa) - Young's modulus 

I m .05836 in4 (2.4291 x 10-8 m4) - bending moment of inertia 
s 

= .0004883 4 -8 4 bending moment of inertia I in (.02032 x 10 m) -c 

A - .765 in2 (4.935 x 10-4 m2) a cross-sectional area s 

A - .375 in2 (2.419 x 10-4 m2) ~ cross-sectional area c 

The subscripts sand c pertain to the straight and circular sections, 

respectively. The rotational velocity of the wind turbine, n, was varied to 

an upper limit of 40 rad/sec since this was approximately the highest expected 

and observed during operation. A weight of 5 1b (2.268 k~) was added to the 

elements between straight and circular sections to account for knuckles at these 

locations. For similar reasons, 3 1b (1.3608 kg) was added adjacent to the pins 

at the shaft. 

Results 

Figure 3 shows the deflected shape of the blade when spun at 40 rad/sec. The 

original configuration is to scale and the deflections are magnified by a factor 

of 10. The straight sections can be seen to swing out and bend; This, combined 

with the ·high centrifugal forces on the center section, induces significant bending 

within the circular section. 

In Figure 4, the bending stresses at the inner and outer fibers of the blade 

are plotted versus the ratio of s to S, the half-blade length. The highest 

stresses occur in the straight member at sIs ~.37. This outer fiber stress is 

plotted versus turbine speed in Figure 5. The highest stresses of approximately 
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· 8 40000 psi (2.7579 x 10 Pa) are higher than the yield stress of the low-carbon steel 
8 used, 35000 psi (2.4132 x 10 Pa), indic~ting that a small amount of yielding should. 

take place. Upon examination of the straight sections in the prototype, this was 

verified. There was a small permanent deflection in the beam with a maximum at 

s/L ~ .7. 

In order to verify the results of the finite element code and to provide a 

design tool for those without access to large structural codes, the following beam 

analysis is provided. Since, in general, the maximum stress occurs in the straight 

sections, the analysis will focus on these members. The blade is assumed to be 

under a constant tension. For the purposes of the numerical example to follow, this 

is specified to be equal to the average of the tension predicted by the finite 

element code. The results obtained by a troposkien analysis (Ref. 1) could also 

be used to calculate this tension. The results are very nearly identical. If the 

deflections are assumed to be small and linear elasticity with no shearing deforma­

tions is adopted, the equilibrium equation is [6] 

where M m bending moment, 

EI 
s 

M a bending moment due to a distributed load per unit length q q 

T = tensile force 

w • deflection normal to straight member 

(1) 

The loading, q, is the component of the centrifugal loading per unit length perpen­

dicular to the beam axis 

(2) 

The boundary conditions for a pinned beam are: 

@ s - O,L 

The meridional s~ress, 0, at the outer and inner fibers of the beam can then be 

found to be 

L sin e 
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,. 

2 where a a T/El 
s 

h = effective thickness of straight member 
s 

Figure 6 shows the maximum resultant stress in the straight section as cal­

culated by the simple beam and finite element solutions. The small differences can 

be attributed to two points: (1) the tension, in fact, varies along the length 

and (2) large deflection effects were neglected in the simple beam analysis. 

It should be noted that, when the blade was modeled as a troposkien, the 

finite element code confirmed the results of Ref. 1. The blade was essentially 

in pure tension with a maximum tensile stress of approximately 10000 psi 

(.6895 x 108 Fa) at n = 40 rad/sec. 

The possibility of forced resonance due to a congruence of turbine blade 

angular velocity and blade natural frequency was also investigated. A typical 

result is shown in Fig. 7, where the first two natural frequencies and their 

associated mode shapes are given for a blade angular velocity of 40 rad/sec. By 

contrasting the. mode shapes with the undeformed shape, the first mode (~65 rad/sec) 

is seen to be antisymmetric with respect to the y-axis; the second mode (-110 

rad!sec), on the other hand, is symmetric. To the designer, a more telling point 

can be made with Fig. 8, where the natural frequencies for these two modes are 

plotted against blade angular velocity. The line of congruence is shown by a 

solid line; should either of the two frequency curves cross this line, the corres­

ponding n would represent an angular velocity to be scrupulously avoided during 

turbine operation. From Fig. 8, there would appear to be no such design limitation 

for this structure. 
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Conclusions 

The vertical-axis wind turbine has found favor throughout the United States 

and Canada as an alternative to conventional power sources. A method has been 

proposed here which should aid the designers of these vertical-axis systems , as 

well as designers of highly flexible, load-carrying structures, in general. The 

incremental loading procedure allows such flexible structures an opportunity to 

adjust their geometry to more efficiently resist subsequent loads. Although such 

procedures are difficult to apply to true tensile structures (e.g. , cables and 

membranes), the modest bending stiffness of the turbine blades was sufficient to 

make them successful here. In addition, the ability to scan a portion of the nat­

ural frequency spectrum of flexible structures, at intervals during the application 

of load, should prove to be useful. 

The results of both the nonlinear finite element analysis and the simplified 

beam analysis show that turbine blade stresses are significantly different between 

a troposkien shape and an alternate, more easily fabricated shape . These differ­

ences are manifested in slight amounts of inelastic deformation in regions of high 

bending stress intensity. 

A logical and necessary extension of this work would be to include coupling 

effects between the wind-turbine tower and the rotating shaft. 
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