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A simple constitutive description of cellular concrete is
presented. It is a non-thermodynamic first approximation and
is certainly not meant to be all-inclusive. An elastic-plastic
descr‘iption is used with a yield surface which is a surface of
revol\tltion with a planar end cap. The plane cap, normal to the
hydrostat in principal stress space, is movable due to volu-
metric work hardening. Plasticity is handled in two parts;
a volumetric part and a deviatoric part. The deviatoric plastic

strain rate vector is taken to be normal to the hydrostat in

principal stress space.



Introduction

Soils and rocks are common civil engineering materials and
are becoming more important as earthquake engineering becomes
more important in the eyes of the public, Elastic-plastic models
are being applied to these materials. Drucker([l] applied plas-
ticity theory to rocks in 1952. Coon{2] used a hyperelastic model
with a yield surface similar to that presented here. Nelson,
et al,[3] discusses several methods of modeling concrete and rocks.
Among other models, an elastic-plastic model is presented which
has a yield or loading surface composed of a paraboloid-like sur-
face of revolution capped by an ellipsoid of revolution which moves.
In the present work, the same type of approach is used with some
modifications for ease in implementation in a computer program.

This report is in three parts. The first part is a description
of the plasticity model used. The second part is a detailed de-
scription of how the plasticity equations are solved. The third
part is a description of cellular concrete and the application of
the present model to the data.

The appendices contain derivations of various pieces of infor-
mation needed in the model as well as a FORTRAN subroutine for imple-

menting the model in the computer program GOLLY [4], a version of
the program by Farhoomand, et al [5].

Plasticity Model

For small strains, both tensile and compressive, cellular con-
crete is linear elastic but as the strains become larger, nonlinear

stress-strain behavior is noted and permanent set occurs. This



permanent set is associated with collapse of the cells. The fail-
ure of the cells in compression, however, is accompanied by develop-
ment of cohesive strength so that a finite shear strength remains
while cells are being crushed and this shear strength grows as the
pressure increases.

This behavior can be modeled with a yield surface in principal
stress space which is a surface of revolution centered on the hy-
drostat and increasing in radius with increasing pressure. With
the meager data available, the approximation of the yield surface
can be taken to be a paraboloid*with a planar cap on the normally
open end. For generality, a quadratic pressure variation is used.

The yield surface can be expressed as
¢ = (p-£)[J, - (agta;ptasp®)] = 0 (1)

where p is pressure, a and h are constants, f is a function of
the mean total strain, and J, is the second invariant of the

stress deviator.*i

Jy =78 8 (2)
If the stress vector g is written as [011,022,033,012,013,023,021,
031103,1" and a vector g is defined as {1,1,1,0,0,0,0,0,017 then
the stress deviator is defined as

g2+ (3a)

I ‘
A general quadratic surface of revolution is actually used in
the development although a paraboloid (a, = 0) fits the data

very well and will be used to describe tﬁe surface in the text.

* % {
If the stress andstrain vectors are expressed in nine-

dimensional stress #pace, then difficulties expressed by Shield
and Ziegler (6] areﬁskiréed. P ¢

1
{
\



where the pressure is related to the stress thru the relation:
p=-n- g/3 (3b)

The yield function can be kept in the form stated in Eq. (1),

however the theory is easier to explain and solve if two functions

are defined, one describing the paraboloid and the other describing

a plane which is normal to the hydrostat,

oy = Jp - (ao + a;p + azpz)

(4)
¢y * P - f
The strain rate is now decomposed into the mean strain rate,
QT’ and deviatoric strain rate, iT‘
Yo = &1 * R/3
(5)

£1= &1 - YT R

3

plasticity theories for the volumetric and deviatoric parts
are now taken to be compleiely independent. The volumetric part
is very straightforward and treated first.

The first requirement to insure that the stress state is

inside the yield surface is that tensile fracture has not occurred.

pzh (5)

Now the next step is to find g 1f
- do = 6
®, = 0 and o, = 0 (6)

then volumetric plasticity is occurring.



The volumetric plasticity can now be handled with either incre-
mental or deformation theory plasticity. In either case, the
response is elastic if Eqs. (6) are not satisfied so that Eqn. (7)

is written as
P = - 3Kpvp (7
If Eqs. (6) are satisfied, then Eqn. (4)2 is differentiated to

give:

p = f QT for oy © 0, p>0

- - 3K0§T for @y < 0 (8)

or ®y = 0, p<O ?

=0 forp=h, p<O }

Time integration of p gives the pressure for this incremental
theory.
Deformation theory plasticity can also be stated and is

exactly equivalent to the above incremental theory.

p = f(yT) for 5 = 0, Y € 0 )
t 1
- p(tu) - BKO_/.YTdt for ®p <0 5 (9)
ty
= h for p=h, yp > 0 J

where ty 1s the most recent time that the conditions of Eqn.

(9) were met., 1Initially, t, is zero. Condition (9)2 is identical
to Eqn. (7).



The equivalence of Eqs. (8) and (9) is shown by differentiation
of Egqs. (9). The equivalence of incremental and deformation theories
for proportional loading is also discussed by Budiansky[4]. 1In a
practical sense, the deformation theory requires time integration
of QT’ while the incremental theory requires time integration of
f’QT. Since raw data for a user is in the form of f(yT), the in-
cremental theory will also require differentiation of this experi-
mental data in order to find f'.

The deviatoric part uses almost conventional plasticity
theory. 1If o < 0 or v, = 0 and p < O, then the material is

assumed to behave elastically in the deviatoric mode, i.e.,
£= 2 g

I1f however the yield surface is reached and loading is taking

place, i.e., if

oy = 0
(10)
dug
and s s 20
then a deviatoric plasticity process must be described.
The elastic deviatoric strainrate vector is defined as
£e = 5/2G (11)
The plastic deviatoric strainrate vector is defined as
/é;p- /é.«T - réae (12)

The plastic strainrate vector is now assumed to lie in a direction

normal to the yield surface vg in the eight dimensional deviatoric



stress space, a subspace of the nine-dimensional stress space.

This is stated in equation form as

. 30
g‘)\sg— (13)

where )\ is a constant to be determined using the loading con-

dition of Eqn. (10)2 where Eqn. (4) is used.

v 1)
D om S -3 =
s " 38 £+ P 0
Equation (2) is used to give
3 3J
s 2 .
55 55 S, (14)

This result is used together with Eqn. (4)1 to give:
£+ &= (ay + 2a,p)p (15)
An expression for § is now found from Eqns. (11), (12), and

(13) as
§ = 26(gp - Ag) (16)

This is substituted into Eqn. (15) and the result solved for .

g & - (ay + 2290) 57

+
8 8
~ ~

A= (17)

Equation (17) can be substituted into Eqn. (16) to find the de-

viatoric stress rate.

. . G g iT - (ay + 232?)&
£ =26 ip - £.21 s (18)




Discussion

One rather disturbing aspect of Eqs. (17) and (18) is that

the deviatoric stress rate depends not only upon the deviatoric

strainrate iT but also on the pressure rate, This, however,

can be explained geometrically as follows. The stress state is

initially at some point A on the yield surface and remote from

the end cap. This is illustrated in Figure 1. The stress rate

might be such as to move the state to point B. This requires

Figure 1. Yield surface in
principal stress space.

a change in pressure -(4p)n
and a change in deviatoric
stress As. The yield surface
has a larger radius at B
(measured on a pi plane thru
B) than at A and, hence, the
deviatoric process is par-
tially elastic in order to
allow for the expanding de-
viatoric yield suriace. Con-
versely, a decreasing pressure

will result in more deviatoric

plasticity than ordinarily encountered.

This movement along the deviatoric yield surface is not accom-

panied by permanent volume change.

This is shown in Appendix I.

Permanent voiume change only occurs during the volumetric plasticity.

This behavior is accomplished by making the deviatoric plastic strain-

rate vector normal to the yield surface in the deviatoric subspace.



If it were taken to be normal to the yield surface in the full
stress space, then permanent volumetric change would occur and
would always be such as to increase in volume no matter which
direction the loading is taking place. This is also shown in
Appendix I.

Thus, Eqns. (17) and (18) appear to be reasonable and not

inconsistent with physical behavior.

Details of Implementation in a Code

The mathematical model which has been presented must be
implemented to be useful. There are many details in the imple-
mentation which are almost as important as the model itself. In
this section an attempt is made to cover some of these details.
A listing of a FORTRAN subroutine is given in Appendix II which

contains the suggestions outlined here. It is for the program

GOLLYﬂMSthere él3 = é23 = 0 and engineering shear strain is used.

Assume that some stress state og and a strainrate gT exist at

some time together with the value of 4t. The new stress state

i5 to be found at the time tl - tO + At,

‘g
~

The first step is to decompose the stress and strainrate into

deviatoric and spherical parts using Eqs. (3b) and (3a) and Eqn.
(5).

% = =(%0qy + %0y, + %033)/3

o .0 o 0, 20, o0 )
813 ™ 911t P 5 T8yp = TSy = 0y,
o - © o ) - O - ©

B2 = 022t P 7 7813 % 83 % 013 )
0 o o, i o - )

833 ® O33+ P ' TBpg ™ "B3py ™ "0y4 |

(19a)

(19b)




Ypom (&g + &y + €33) (20a)

¢ =e. - v./3 ¢ - ¢ - e

T 11 1 Ty T Ti2

¢ = c - v./3 ¢ - ¢ - e (20b)
Toy Ty T Ty3  T3p  Typ3 ?

é = e - v/3 ¢ - ¢ - e

Ty3 T33 T Tog T3y Tp3

The volumetric part is handled first. A time integration

of the volumetric strainrate 1is made using a sicple integrator.

!
=

YT OYT + %r At (21)

The volumetric process is assumed to be elastic which would give,
using Egqn. (7):

P =% - Kyt (22)

A check is first made to find whether Eqn. (5) has been violated.

' ]
If p2h then p=nh (23a)
The stress state is then at the tip of the surface of revolution

*
and the deviatoric stress must be zero.

’

sij =0 , all i,j=1, 2, 3 (23b)
For this case the stiffness matrix is defined as:
o [
Eyp = Eyp = Ey3 = Eyy = Epp = Eg3 = B3y = Egp = B33 = ‘Evgzig

(23c)

¥

This simple fracture model certainly leaves much to be desired.
In a gross sense it models the stress release and subsequent
healing which are thought to exist in the real material.



and all other Eij = 0,

This is taken from Eqn. (11.6) of Appendix II.
1f the inequality of Eqn. (23a) is not satisfied, then a
test is made to find whether the stress state is on the planar
end cap.
If v- 2 v, . (24a)
where v is the total mean strain value at the time when the end
cap was last reached, then the volumetric process is elastic.

The new pressure state and volumetric part of the stiffness matrix

are found using Eqs. (22) and (II.6).

o = '3 (24b)

v v v v v v v

v v
Ey; = Eyp = Ey3 = Egp = Epp = Eg3 = B3y = Egp = Eg3 = K, (24¢)

v
E.. = 0, all other ij

1)

The deviatoric stress is then found.

1f the inequality of Eqn. (24a) is violated, then volumetric

plasticity is occurring and the value of Yy is updated.

Yy = VT (25a)

The pressure state is found using Eqn. (9), and the volumetric

stiffness from Eqn. (I11.6).

‘o= £('vp) (25b)



v v v v v v v v v S ,
Ejy = Fyp = Ey3 = Epp = Epy = Ep3 = Egp = Eyp = Eyy = gmgg (23¢)

v
and Eij = 0 , all other {ij

The deviatoric stress is found next.
A trial elastic deviatoric stress vector is found using Eqn. (11)

*
and the yield function 55 evaluated using Eqs. (4) and (2).

Ig’ij = osij + Asij 5 i’j = 1, 2, 3 (26)
where:

Asll = ZGcllbt A812 = Gclzac

Aszz - 2Gc22At Asl3 = Gcl3bt

AS33 = 2G€33£t A823 - G623At

J, = % [(’gll)z + (Epp 4 ('gés)z + 205
+2('51) % + 2('§é3)2] (27)
g, =T, - 5i2 (28a)
where
v ' N2
RS = 2(aO +a;’'p+ az( ) (28b)

A test is made to determine whether the trial stress state lies

inside the yield surface,

Engineering shear strains are used h~re., If tensor strains

were used, then all stress deviator increment cowponents
would be

b8,y = ZGéijAt



1f '},s <0 (29a)

then the process was elastic,

' - ' ' a 'g U = 's
811 ™ 'S11 » 812 ™ 'Syp s «ev s 833 ™ Sa3 (29b)
*
The deviatoric stiffness matrix 1is taken from Appendix Il
to be
2 2 4
R % 0 0 0
(E) = (29¢)
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G
L -

If the inequality expressed by Eqn. (29a) is violated then
the deviatoric process was at least partially plastic. The pro-
cess 1s assumed to be partially elastic and partially plastic.
The portion (kat) of the time step required tc move back to the

yield surface along the assumed elastic path is found to be:

¥
If tensor shear strains are used rather than engineering shear

strains, the lower diagonal terms become 2G rather than G.



£ 085 - YOE - 08)-20,48 ¢ 48

kT RN

(30a)

where:

— A — - by s

(30b)
+ 2’5230523
Ls ¢ LS = (:.sll)2 + (A522)2 + (As33)2 + 2(5512)2
2 2 (30c¢)
+ Z(le3) + 2(Asz3)
The ''contact' stress at the yield surface* is given as:
c —
54y = 'sij - k.ﬁsij
(30d)

1, 5=1, 2, 3

The plasticity requires some explanation here. The stress

state at time t, is shown plotted at point 0 in Figure 2.
During th~ time interval At, the preusure state is moved to
position A. The elastic deviatoric increment 4§ would tend to
locate the stress state 's shown at point B, but the 'contact"
stress Cg 1s found instead at point C. The stress state then
moves circumferentially around the paraboloid during the devia-

toric plastvicity process. This last stress ''change' is independent

¥
Actually Csij need not be found. It is simply expressed for
clarity.



Lines HCP and ODP
are 4n the planc of
Zie fina/ pressurc.
Slatca. Line O s
paralie! Zo Hhe
Aydrostal.

Final Stale

Figure 2. Stress states during the plasticity process. Initial
stress state at 0, elastic pressure process to point
A, contact stress at C, pseudo stress state at P and

final stress state back at the plane through ‘p.

of any pressure changes required to arrive at prcssure ’‘p.
'Equation (18) for the deviatoric stress rate iucludes a pressure
rate term. The purpose of this term is to account for the decrecas-
ing radius of the cross section in the above problem. Since this
radius change has already bean taken into account by the sequen-
tial spherical-deviatoric process, it must be dropped here. It
must be included in the material stiffness matrix evaluation if

it {8 required.



The plasticity process is now carried out over the remaining
time (kat) from the contact stress state csij. In Appendix III
the plasticity equations are integrated exactly using a constant

éT over a time increment At starting from the yield surface.
The required parameters are:

c

£+ kis
| Cc

s| lkasl

cosS | =

's - 45 -k AS - LS (31a)

Vas - 48 R

where Eqn. (30d) has been used and

R (31b)

( k Vas - 4@»)
¢ = expl- ————pm——o

The reduction factor is then found as

r = R [1-c2 + (1-c)2cos¢0] (31c)
2c k/As + As

*
The pseudo-stress state is then:

P = C + r AS
sij sij ij

= 'Eij + (r-k)Asij (314d)

¥
The pseudo-stress state Pg need never be calculated.



The final stress ctate is found by bringing the stress radially

back to the yield surtace.

m e —B (3le)

Equation (31d) is used to expand p£ to give
Ps . Py = T . F 4 2(r-k)gs ¢ 'R+ (xR s - gs (31£)
The final stress state is then:
Isij - m( Sgyt (r-k)bsij) (31g)

In summary, if the inequality of Eqn. (29a) is violated, then

evaluate the following quantities in the order stated.

'§ < bS from Eqn. (30b)
A4S+ 48 from Eqn. (30c)
k from Eqn. (30a)
cos ¥ from Eqn. (31a)
c from Eqn. (31b)
r from Eqn. (31lc)
Ps « Pg from Eqn. (31f)
m from Eqn. (3le)
"5 from Eqn. (31g).



This sequence of nine easy steps gives an exact final stress
state for the elastic-plastic deviatoric process under the assump-
tion of constant g, over the time increment at. If a deviatoric
stiffness matrix at the end of the time step is needed, then

8 ’
Eqn. (11.8b) is used to evaluate [E] where the stress state §

is used in evaluation of the terms.

The final stress state at time ty is found from equations

similar to Eqn. (19).

! ’ ! ’ ’ \

911 < 511 - P %12 ¥ %12

!/ '] 7 ’ '

920 % S22 - P 913 = 513 } (32)
! '] 1 ] ]

°33 % %33 ° P 923 % %23 |

The final material stiffness matrix is given by
v s
[E] = [E] + [E] (33)

For codes which require the matrix [E], the stress may be

found at time t through an equation of the form
/' On .

If this is the case, then the false stress state‘if must be found.

This is given as:



8A —1 ! .
11 °11 €11
OA !
922 922 €22
A ’ .
- -[E] .
A 4 .
12 912 €12
QA ! .
913 %13 €13
A !/ .
| ©23 | | %23 | ©23

Conclusion

An elastic plastic model for cellular concrete has been pre-
sented together with details of implementation in a computer pro-
gram. The yield surface is a surface of revolution centered on
the hydrostat with the large end facing in the direction of in-
creasing pressure. The large end i{s capped with a plane which is
normal to the hydrostat and moves outward only. The spherical and
deviatoric parts are handled separately, the pressure part with a
deformation theory and the deviatoric part with an incremental
theory. In the section on code implementation suggestions, the
stress state can pass from an elastic to a plastic state during
a time increment; the mixed process is handled exactly in both
spherical and deviatoric parts. The process of deviatoric plas-
ticity suggested for code implementation is an exact integration
of the equations and has not appeared elsewhere. It is a consid-

erable simplification over the usual methods in use today.



APPENDIX I

Volume Change Due to Surface Normality
Condition

The plastic deviatoric strainrate vector was taken to
be normal to tle yield surface in the eight dimensional sub-
space of the deviatoric stress space rather than in the full
nine dimensional space. In the eight space, no plastic volume
change takes place. This is shown in this appendix and con-
trasted to the nine space result.

Equation (13) for plastic strainrate is written using

Eqn. (17) for ) to give

where n = ay + 2a2p.

The volumetric part of this strainrate is

£pc 2=|—%

But from Eqn. (3a) we find
grr=g-ntp
-z n-(a- 2/3)3

= 0



where Eqn. (4) is used and g + p = 3. Thus we have the result
that

£p* R=0
or there is no permanent volume change due to the plastic

shearing process.

The full nine space analysis would have the following

expression for Ep.

where Eqns. (4)1, (14), (3)1 and (3)2 are used to find the
vector direction and Eqn. (15) is used as the starting point

to find .

As before, the volumetric part of this strainrate is

n e (L) (e




Except for the case where the plastic deviatoric strainrate
vector Ep is identically zero (X = 0) then there would always
be a permanent volume change. It is also a peculiar “olume
change since it shows up in what was supposed to be a devia-
toric component. This forces Ee to also have a volumetric
part (which is recoverable) so that the volumetric part of é

T
is zero as defined.

A permanent volume increase due to shear is certainly
not inconceivable. A densely packed granular material under
finite shear might increase in volume since particle packing
is disturbed. The above normality condition falls far short
of explaining volume changes due to packing efficiency,
however, since packing efficiency must remain within bounds.
The normality condition produces no such bounds.

Since this type of volume change in cellular concrete
is small compared to cell crushing, it is made zero in the

mathematical model presented here.



APPENDIX I1

Forms of Decomposed Stiifness Matrices

It is

sometimes necessary to form a material stiffness

matrix, E, such that

g=Eegq

Due to the method of decomposition into volumetric and

deviatoric parts, it is convenient to decompose E also as
e

where

s
The matrix E Is found from the deviatoric material calculation

+

<
b {2 lY))

E =
[

Sl
‘:E*Q/I‘

v

PR =

dm<

B Yp

(1I1.1)

(11.2)

(11.3)

(1I1.4)

and Eqn. (II1.3) and the volumetric part is
v
E =k n@®n (11.5)
where k is a constant which is found from‘the volumetric
material calculation and Eqn. (II.4).
Note the following decomposition using Eqns. (II1.1l), (11.2),

and (5)2.



The properties n « p and n éT = 0 have been used. Now
s
if En = Q then the result using Eqns. (II1.3), and (II.5) is

g =5 -

The values of the entries in the matrices are found as

follows. Egns. (11.4) and (I1.5) are used to give

- 0oY
v .
- - —L .
E i 1®n (11.6)

This expression can be applied for either the elastic or
plastic case.
The deviatoric stiffness matrix is not as straightforward.

In the elastic case, the deviatoric stress rate is given as

£

s
so that E
For the case where Eqn. (18) is used to find the deviatoric

stressrate, the stiffness matrix is more involved. Equation (18)

is rewritten as:

-26( - 30@n (11.7) ‘

\



g = [2(;(}, - %R@Q) .26 5@s 4 ?EQg )]g,r

g8 GBepE £
T T

By inspection, an acceptable form of the stiffness matrix is

then:

ap s X ¢
Eooo(p-bnnn) - K s@et — 205 (11.8)
™~ R R ('g . 2)(‘€"T . QT)

For the case of a body of revolution where two of the shear
strains are always zero, then the stiffness matrix need only

be a 4 x 4 matrix and Eqns. (I1.7) and (I11.8) reduce to the

following. - -
2 _1 _1 0
3 3 3
5 1 2 1
1 1 2
-3 °3 3 0
0 0 0 1
— -

A . 2 ) Am—
-b + - 2 . ¢ ¢
30 58 + ¢sy¢y KG bsls2 + cs)¢, '36 b5153 + s ¢y -bslsé + s €,

- - 2 A . . .
g?las 30 bszsl + Chycy 3C - bszs2 + csy¢, —%G - b52‘3 + S PLEY -bszg“ + cs,.¢,

'2/“

. 2 .
56 - b5351 + c53c1 'EG - bs3s2 + cs3c2 gc - bs3s3 + cs3c3 -hs334 + cs3c4

-bs,8, + cs,éy ~bs; 5, + cnbé2 -bs, 85 + ca“£3 -bg,s, + csaia

-

(1I.9b)




where

-1

2 2 2 2
b = ZG(sl + 55 + $% + 254)

2 "1

c = ab(s% + s% + s3 + 252) (é% + é% + é§ + 262)

The volumetric part is:

—
—
-

Feo 2|1 1

~ v

(11.10)

Pt
—
(o S

lOOOOJ

L?
Equation (I1.2) is used to combine Eqns. (I1.10) and efther
(I1.9a) or (I11.9b). An observation which is useful here {is

s s
“that E can be expressed as the sum of E and a matrix

~plas ~elastic
with entries:
s

Eij = - bS8, + csiéj (11.11)

This observation i{s used in the programmed version.

Each of the two terms of each entry in Eqn. (II.1ll) will
require two multiplications. 1In the six space this will be 2
total of 42 multiplications involvin, b,and 72 multiplications
involving ¢ (where symmetry has been used). For the limited
case where an approximate stiffness matrix is acceptable, the
ratio of the relative sizes of the two terms can be calculated
as:

size of b terms _ 26(8 * 1)
size of ¢ terms ap




If this ratio were large, then terms involving ¢ would be
dropped. If it were small, then all terms involving b would

be dropped instead.



APPENDIX III

Integration of the Plastic Deviatoric Stress Rate

Equation (16, gives the deviatoric stress rate for a

plastic process as
$ = 20(5' 1§.) (I111.1)

where )\ is given by Eqn. (17). In the section on details of
code implementation, the pressure is handled first and the
deviatoric process is independent of the pressure. The pres-
sure is only used to establish the radius of the hypersphere

of the deviatoric von Mises surface. The value of )\ of concern
here does not involve the rate of pressure change so that the

relevant form of Egqn. (17) is

&M
-3

(111.2)
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In a code, Eqns. (I1I.1) and (III1.2) must be integrated
over a8 single time step At during which the strainrate is kept
fixed. The purpose here is to perform that integration in
closed form.

An important observatlion is that the stress path from 20
at the beginning of the time increment to §1 at the end is a
geodesic path in the direction of the local projection of gT
on the hypersphere of the deviatoric yield surface. This ob-
servation will allow the necessary generalization at the end

of this development.



For simplicity, picture a biaxial deviatoric stress and
strainrate where no shears are developed. Then the inner
product of the coplanar vectors 8 and é& is

s« &x = lggl sl cosy

o~

where ¥ is the angle between them and where the magnitude of

the stress vector is constant if the stress state always lies

on the von Mises surface. From Eqns. (4)1 and (2), the radius

of the circle is taken as

c- 1
|s| = Vs - :s: = 42(80+81‘p+82p2) = R

Since ¢ is considered to be a constant vector over the
time span of interest here, the time derivative of g may be
~found using Eqn. (II1.3) and equated to the inner product of

Eqn. (III.1) with éT'

§ « gz = -l&rIRi sin = 26 g1« £ -

Equation (III1.3) and a trigonometric identity are used, both

sides are divided by -IéTleinw and the result is given as:

This equation is restated in integral form as:

(111.3)

(111.4)

(I11.5)



¥ tO+At

./‘1 a_ 26l de
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The integrals are evaluated and the result reduced to

¢'1 <'2Gl,é,T|At> *0

tan ) = exp R tan 7

If an elastic stress increment 1is defined as

4S = 2G goat (I11.6)

then the result can be restated as

¢y IANS, ¥,
tan - = exp(- ‘£O| tan - (111.7)

The angle between £1 and g is exponentially approaching zero
with time. This 1is observed in the plots by Barr(8] of the
. plasticlity process.

Equation (I11.7) can now be used to find the final stress
state. A simple method of finding a final stress state is the

method whereby a pseudo stress state is found as

0>

1 = 8o + fhe

and the final state is simply a radial movement back to the

yield surface, i.e.,

20|

L - Clél where |E;| = R

Since the radial motion is such a simple operation, a solution

is sought of the form

B1L = a(Ro+ B4sS) (III.8)



Two scalar equations which allow evaluation of g and B are:

glo§1=R2=a2(R2+28'gooq§+524§-Qs)
and

g1+ bs = Rlgsl cost) = a(go . A5 + BAS - qg) (111.9)

The first equation is solved for aB and substituted into the

2 2

second equation. The trigonometric identity sin“¢ = l-cos®y

is applied for both ¥y and ¢ and the equation solved for a.

sin¢1
e = SIn\"O
This is now substituted back into Eqn. (II1.9) to give the

result:
R sin? 0
B = (es] tan¥, - cos¥

¢
The trigonometric identity for tanvl in terms of tanj% is
applied and then Eqn. (I11.7) used to express 8 in terms of
sinwo, cos¥ and tantOIZ. The double angle formula for tanto/Z

in terms of cos¥y is then applied and the result simplified to:

R 2 2 !
g = ETZ;T[l -c + (1-c) cosvo] "E: (111.10)
where:
c = exp(— ";{” ) (III.11)

The entire process is pictured on the von Mises surface in

principal stress space in Figure III.1. An initial stress state

4
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$pand an elastic stress increment As are shown with some angle

wo between them. The scalar g8 is determined from Eqn. (111.10)
and the pseudo stress state S0 * BLS found. This state is brought
radially back to the yield surface at £1-

Now to return back to the original problem where 8y is some
general state and A$s some general increment. Since this cannot
be visualized in a simple two-dimensional picturel, the angle
y becomes somewhat hazy. This is only a difficulty with our
imagination but not with the mathematics. Equation (III.3) can
still be used in the eight dimensional Cartesian subspace. The
remaining development follows directly and can be considered ab-
stractly with no recourse to geometrical visualization.

In particular, the pseudo stress state Soteas and the sub-
sequent radial path back to the yield surface are only crutches
. to simplify calculations. The true stress path was actually
along the yield surface. The answers determined are exact under

the assumption of a constant éT over the time increment At.

L. A picture of a moving stress state in a principal
stress space 1is diff%cult to illustrate, since the
changing orientation of the axes must somehow be
included,
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