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ABSTRACT 

A procedure is presented for the acceptance sampling of continuously produced 
product where the response taken from the product is a variables measurement fol­
lowing a normal distribution with unknown mean and variance. The procedure. which 
is of the type originally proposed by Beattie. and which is amenable to destructive 
testing, is essentially a cumulative sum chart with acceptance and rejection zones. 
The criterion of effectiveness is the discrimination between two qualities. The 
probability of acceptance for a given quality is 

L(O) 
P A ::: L(O) + L>:«O) 

where L(O) is the Average Run Length (ARL) in the accept zone and L*(O) is the ARL 
in the reject zone. The equations for L(O) and L*(O) are derived and the numerical 
technique used for solving these equations is described. Figures from which values 
of L(O) and L*(O) can be obtained are given, and a group of procedur~s is presented 
for various levels of quality and sample size. 
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A CONTINUOUS ACCEPTANCE SAMPLING PROCEDURE 
FOR VARIABLES BASED ON CUMULATIVE SUMS 

Introduction 

Consider the situation where it is desired to accept or reject continuously 

produced product based on the proportion of the product that yields a response beyond 

a one-sided specification limit. The response taken from the product is a variables 

measurement following a riormal distribution with unknown mean and variance and is 

perhaps determined by means of a destructive test. 

For example, thermal batteries are produced at, say, a rate of 50 per day. 

The test to assess the quality of the battery is a destructive test with a principal out­

put being rise time. It is desired to discriminate between two qualities, where quality 

is measured by the proportion of rise times above a specification limit of 1. 5 seconds. 

and to accept or reject that day's product by means of a small sample taken daily. It 

can be reasonably assumed that the rise time of a thermal battery follows a normal 

distribution. The usual continuous sampling plans cannot be used because the test is 

destructive and because the desire to discriminate between two qualities exists. The 

majorify of the continuous plans control the Average Outgoing Quality Limit and do so 

by requiring that the defective items be replaced by assured nondefective items, which 

is not possible with destructive testing. In addition, continuous plans generally entail 

variable inspection rates, which is often undesirable. A continuous plan that does 

allow destructive testing has been proposed by Hillier. 1 His procedure is designed 

to minimize the total expected cost. However, the plan has disadvantages such as 

requiring a priori information and rather complex calculations to implement the plan. 

Another procedure that has been used in this situation is to choose arbitrarily 

a number of days, say 20, and call the group of batteries produced during that period 

a lot. After the batteries from these days have been accumulated, a random sample 
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is selected and a decision made to accept or reject the lot. There are several objec­

tions to this type of procedure: 

1. The time delay in making a decision on the product is too long 

2. Several bad days of production could cause a large quantity of 

good product from other days to be rejected 

3, The definition of a lot is arbitrary. 

Procedures are given in this paper which can be applied where: 

1. The responses follow a normal distribution with unknown mean 

and variance 

2. The proportion of the product exceeding a one-sided specifica­

tion limit determines quality 

3. The testing is destructive. 

These procedures have the following properties: 

1. They permit the product to be accepted or rejected on a continu­

ing basis 

2. They require only simple calculations 

3, They permit a fixed sampling rate 

4. They discriminate between qualities with a given power. 

The Procedure 

The procedure given here is based on cumulative sums and is a type proposed 
2 

by Beattie. This type of procedure has many advantages in this situation. A small 

sample is chosen regularly from the product, and the acceptance or rejection deci­

sion is also made regularly on the basis of this sample and preceding ones. The 
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overall cumulative sum chart allows changes in quality to be detected easily, and the 

bound for which rejection takes place controls the quality of the output. 

Beattie's procedure is to set up a cumulative sum chart which has an accept 

zone and a reject zone, and to accept or reject product appropriately. When the 

sampling rate is the same in both zones, the probability of acceptance (P A) for a 

given quality is: 

L(O) (1) 
L(O) + L*(O) 

where L(O) is the average run length (ARL) for that quality of product, that is, the 

average number of samples in the accept zone, and L*(O) is the ARL for that quality 

of product in the reject zone. Using an equation for L(O) and nomograms for its 

solutions given by Evan and Kemp, 3 Beattie gives procedures in the case where the 

assumption of a normal distribution with known variance is made. 

,. 
In the situation of interest here, it is necessary to control the process mean 

and variance simultaneously. That is, the responses are assumed to be normally 

independently distributed V-t, (]"2) with the unknown mean J.J. and the unknown variance 

(]"2. and a sampling procedure is desired where P A = (1 - a) when p, the proportion 

of the product beyond a specification limit A is P1' and P A = (3 when p is P2. Under 

these assumptions and assuming an upper limit A, 

where 

y = fo(~ - X) ~ Non- central t (parameter 0 = m(A(]" - J.J.) ) 

1 
X= 

n 
~ X. 

n i= 1 1 

and s = 

If the statistic 

In (A - X.) 
1 

D = k - Y. = k -
i 1 s . 

1 

(2 ) 
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is accumulated from samples of n items taken at regular intervals, and K is chosen 

such that E Di decreases if p = PI and increases if p = P2' the decision lines on the 

accept and reject zones can be horizontal. The procedure is as follows: 

1. Start the cumulation at O. 

2. Accept product as long as ED. < h. (When ED. < 0, return 
1 1 

cumulation to O. ) 

3. Reject product when ED. > h; restart cumulation at h + h* and 
1 

continue rejecting product until ED. < h. (When ED. > h + h*, 
1 1 

return cumulation to h + h*. ) 

4. When h is crossed from above, accept product and restart cumu­

lation at O. 

Values of n, h, h*, and k can be found such that product will be accepted 100(1 - (1)% 

of the time when p = PI [p A (PI) = 1 - a] and rejected 100(1 - .8)% of the time when 

p = P2 [p A (P2) = .8 ] • 

It might be noted that if there is no restriction that the sampling rate be held 

constant, then it might be reasonable to increase the sampling rate in the reject 

zone. However, this decision should be based on the economics and time restrictions 

involved in sampling and a consideration of the usefulness of setting aside this mate­

rial for later 100-percent inspection or using it to determine causes of deterioration 

of quality. In some cases, the rejected product could more economically be reused 

as raw material or reworked. 

To obtain L(O) and L*(O) and thus P A' for values of p, n, h, h*, and k, con­

sider L(z), the ARL in the accept zone of the procedure for which the first cumulation 

starts at a point z units from the 0 boundary. L(z) can be written recursively in 

terms of .a weighted average of one plus the ARL from u for all u where the weights 

are the probabilities of moving from z to u on the next cumulation; that is, 

L(z) =.foo [1 + L(U)] f (k + z - u)du • 
-00 y , 
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Under the restrictions on the cumulations made by the procedure, this becomes 

L(z) = 1 + L(O) [1 - Fy<k + Z)] + foh L(u)fy(k + z - u)du, (3) 

where f and F are the non-central t density and distribution functions, respectively. 
y y 

The ARL in the reject zone, V~(O), that is, the ARL necessary for E Di to 

move from h + h* to h, is thus equivalent to the ARL necessary for ( - E Di ) to move 

from 0 to h*. Then L*(z) can be written: 

L*(z) = Loo [1 + L*(U)] .f (u + k - z)du 
-00 Y 

and under the restrictions on the cumulations, this becomes 

* L*(z) = 1 + L*(O)F (k - z) + rh L*(u)f (u + k - z)du. 
y JO y 

(4) 

Using the results of setting z = 0 in Equations (3) and (4), solving for L(O) and L*(O), 

and substituting back into (3) and (4), respectively, one can now write these equations 

as 

1 - F (k + z) h { 1 - F (k + z) } 
L(z) = 1 + FY(k) + In L(u) f (k + z - u) + FY(k) f (k - u) du (5) 

y 0 Y y Y 

and 

F (k - z) h* { F (k - z) } 
L*(z) = 1 + /_ F(k) +fo L(u) f/u + k - z) + 1 ~ F/k) fy(u + k) duo 

Equations (5) and (6) are now seen to be Fredholm integral equations of the 

second kind in which the kernel is a function of the non-central t density and distribu­

tion functions. These equations must be solved for L(O) and L*(O) in order to yield 

the desired procedures. 

9 

(6) 



Computation of the Average Run Length 

In order to solve (5) for L(O) as a function of p, n, k, and h, and (6) for L*(O) 

as a function of p, n, k, and h'~, it was decided to replace the integral equation by a 

finite system of linear algebraic equations. (See Reference 4, Chapter II, paragraph 1. ) 

Thus, a formula for approximate integration is used and Equation (5) becomes: 

1 - F (k + z) 
L (z) = 1 + --F--,,-y~(k-:-)-­

y 

N 
+1: 

i=1 
+ p(z) (7) 

where p(z) is the error. In particular, successively setting z = 0, u
1

' •.. , uN in 

Equation (7), results in a system of equations which, if p(z) is ignored, can be solved 

for L(O). 

It is obvious that the accuracy of the result obtained by replacing (5) by the sys­

tem of linear equations will be higher if less error is made in replacing the integral 

by the sum. Since enlarging the number of ordinates of the function to be applied in­

creases the difficulty of solving the system of equations, it is generally desirable to 

use the most exact of the quadrature formulas; therefore, the method of Gaussian 

quadrature with constant weight function was used. Thus, in the system of Equa-

tion (7) for z = 0, u 1' u2' ••• , uN: 

where A. and x. are given in Krylov. 5 A similar approximation can be made to L*(z). 
1 1 

The solution of (7) for L(O) requires the evaluation of the non-central t density 

and distribution functions. For the distribution function F (t; 0, d), where 0 is the non­
y 

centrality parameter and d is the degrees of freedom, a program was used that was 

based on formula (9) in Reference 6. For the density function f (t; 0, d), different 
y 

methods, depending upon the degrees of freedom, were used. For d ~ 20, the 
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polynomials given by Resnikoff and Lieberman on page 26 of Reference 7, were used. 

For d > 20, the following expression (also found in Reference 7) was used: 

where 

and 

d! f (t;c5, d) 
y d - 1 . 

2-2- r (~) Fd 

b ::: -a + -J a2 
+ 4d 

2 

Using these methods, the accuracy of the density is adjudged to be at least five 

'decimal places. By checking results for L(O) at different values of p, n, k, and h 

using different numbers of intervals in the quadrature, it is believed that the results 

given are accurate to within ±O. 1 for values of L(O) < 1000. 

Results 

Figures 1 through 21 present L(O) and L*(O) as functions of hand h*, respec ­

tively, for various values of p, n, and k. The p values are 0.005, 0.01, 0.02, 0.03, 

0.05, 0.07, and 0.10, and the n values are 5, 10, and 20. The combinations of these 

values made up the 21 figures, each of which contains an L(O) figure and an L*(O) 

figure. Each figure contains six curves, corresponding to six different k values. 

Each k value on a given figure corresponds exactly to a k value on another figure 

with the same sample size but a different p. In this case the k value is 
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k = 

where 0Pl is the parameter of the non-central t distribution with a proportion PI 

beyond a specification limit A. and 0P2 is defined similarly. Other k values may be 

approximately matched for two p values. but there are indications that 

k 

is optimum. 

On some of the figures there are curves which are starred. This is done when 

the curve for a specific k value cannot be plotted on its proper graph becal,lse of the 

scale on the ordinate. i. e •• L(O} must be plotted on the L*(O} graph and U~(O} must 

be plotted on the L(O} graph. For this reason it was necessary to represent these 

curvel3 on the opposite figures; thus. the starred curve on the L(O} and h figure is 

actually giving values of U:'(O} and h*. and the starred curve on the L*(O} and h* 

figure is giving values of L(O} and h. 

Using these figures. it is possible to obtain procedures for discriminating 

between any two of the given p values. The probabilities of acceptance for the two 

qualities, that is. p values. can be restricted by appropriate choices from the L(O} 

and L)~(O} values. Examples of procedures for various levels of quality and various 

sample sizes are given in Table I. The procedures may be obtained from the fig­

ures by choosing an h and an h>:< which give L(O} and U~(O} at the acceptable quality, 

Pl' such that 

L(O} 
P A = L(O) + L>,~(O} 1 - a 

and then checking the P A at the rejectable quality. P2' The values hand h* can then 

be adjusted until 

as required. 
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Qualities 

P1 P2 

0.005 0.05 

0.01 0.07 

0.01 O. 10 

0.02 0.10 

0.005 00 03] 
0.005 0.03 

0.01 00 05] 
0.01 0.05 

0.01 O. 10 

0.02 0.05 

0.02 0.07 

0.03 0.07 

0.005 0.02 

0,005 0.03 

0.01 
0

0 031 
0.01 0.03 

** This value of k, 

TABLE I 

Procedul;'es for Given Levels of Quality 
(c¥ = O. 1, (3 = O. 1) 

.. ' 

Chart Average Run Lengthe in 
Sample Size Boundaries Undesirable Situ.ations 

n h h .... k L*(O) at P1 L(O) at P2 

5 2.25 9.80 4.72 5.40 3.65 

5 2.15 9.00 4.25 5.25 3.72 

5 1. 40 4.60 4.03 3. 10 2.28 

5 2.05 8.00 3.73 5.30 3.78 

10 2.35 5.88 7.05** 4.30 3.38 

10 1. 70 7.90 .... 6.66 4.40 3.45 

10 1. 90 4.30 6.28 ):< * 3.55 2.82 

10 2.72 3.80 ""6.66 3.80 3.20 . 
10 0.60 1. 30 5.70 1.55 1,40 

10 3.53 10.50 5.85 9.40 7.60 . 

10 2. 10 5.21 5.60 4.50 3.50 

10 3.21 8.80 5.31 8.50 7.05 

20 2.40 4.45 10.35 3.70 3.11 

20 1. 18 2.10 9.97 2.00 1. 75 

20 2.51 4.62 9.41** 4 , 20 3.60 

20 1. 81 8.55 ""8.84 5.30 4.18 

that is 

op + op 
k = 1 . 2 

2 
, 

is the recommended value. 

In computi:p.g the example procedures, three examples were computed with the 

designed k and also with another approximate k which could be obtained from the fig .. 

ures. In each case, it appears-that the designed k is better iq the sense that it Pl;'O­

vides a procedure with the sam'e protection as the procedure based on the seco:p.d k 
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value but with smaller expected run lengths in undesirable situations, that is, L*(O) 

at P1 and L(O) at P2. 

As an example of the use of the procedures, . consider the following ~ituation. 

An item is produced at the rate of 200 a day and a sample of size n = 10 per day is 

to be selected. It is important that the proportion of the responses from the items 

above an upper specification limit, A, be kept small. As long as this proportion is 

less than or equal to 0.01, the items should be accepted with a high probability, say 

O. 90. If the proportion of the responses above A becomes as large as 0.05, then the 

items should be rejected with a high probability, also say O. 90. 

Hence P1 = 0.01, P2 = 0.05, O! ~ O. 10, and {3 ~ O. 10. If k is selected so that 

k = (oP1 + 0P2 )/2, then k = 6.28. For n = 10, P1 = 0.01, Figure 9 is used. For 

n = 10, P2 = 0.05, Figure 12 is used. With some trial and error it is found, for 

h = 1. 9 and h* = 4.3, that L(O) = 33, Ui«O) = 3.5 at P1 and L(O) = 2.9 and L>:«O) = 24 

atp2· Therefore, at P1' 

33 
P A = 33 + 3. 5 ~ O. 9 

and at P2' 

2.9 0 
P A = 2.9 + 24 ~ . 1 

Hence, if a cumulative sum chart with boundaries 0 and 1. 90 for the accept 

zone and 1.90 and 6.20 for the reject zone is used, and the statistic 

jlO(A - X.> 
D. = 6.28 ______ 1 

1 s. 
1 

is accumulated, then such a procedure will have P A ~ 0.90 at p = 0.01 and P ,A ~ O. 10 

at p = 0.05. 
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