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ABSTRACT 

A detailed, s tep-by-step development of the Tr icycl ic  Flight Dynamics Theory  originally 
derived by Dr.  John Nicolaides is presented.  Examples of application of the theory  a r e  included. 
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SUMMARY 

The Tricyclic Theory was f i rs t  derived in 1953 by Dr. John D. PJicolaides,la2 and has been 

republished in different fo rms  and extended by  other^.^ The Tricyclic Theory is a powerful 

flight dynamics tool; however, i t  is by necessity complicated and difficult to understand in detail. 

The use of complex variables in the theory makes i t  particularly difficult to interpret  on a physi- 

cal  basis. In attempting to apply the theory the author has rederived i t  for his own use and added 

some detail that is normally not presented in  a formal document. This approach may help other 

ballisticians and flight dynamicists reach a more  complete understanding of the theory. 



SYMBOLS 

- Imaginary (z) component of K, rad 

- Real (8) component of K, rad 

- Yaw moment coefficient due to 8 ,  per rad 

- Pitch moment coefficient due to a, per rad 

- Yaw moment coefficient due to rate of change of p, 

- Pitch moment coefficient due to rate of change of a, 

r a c  1 - Yaw moment coefficient due to r, ] per rad 

f ac 1 - Pitch moment coefficient due to q ,  

- Magnus moment coefficient due to 

- Magnus moment coefficient due to 

- Body diameter, feet 

- Angular momentum 

- Unit vectors 

- Roll moment of inertia about body x axis (also I ), slug-ft 2 
XX 

- Moment of inertia about body y axis (also I 1, slug-ft 2 
YY 

- ' Moment of inertia about body z axis (also I ), slug-ft 2 
ZZ 

- Lateral moment of inertia when Iy = IZ, slug-ft 2 

I Ixy' IXZ' yx - Products of inertia, slug-ft 2 
IYZ8 IZX* Izy 

K1 - Nutation a rm,  rad 

2 
- Precession arm,  rad 

K3 
- Trim arm,  rad 

L - Roll moment, ft -1b 

M - Pitch moment, ft-lb 

N - Yaw moment, ft-lb 



SYMBOLS (cont) 

Mx, M MZ - Total moments about x, y, and z axes, ft-lb 
Y' 

M8 
- Moment due to control deflection 6, ft-lb/rad 

M 
ft-lb - Magnus moment due to p, (Equation 461, 

PP rad / sec 

- Magnus moment due to cr (Equation 47). 
ft-lb 
2 

rad / sec  

ft-lb 
M a  - Pitch moment due to 0 (Equation 48). - r ad 

ft-lb 
N~ - Yaw moment due to p (Equation 49), - rad 

ft-lb - Pitch moment due to q (Equation 50), radlsec 

ft-lb - Yaw moment due to r (Equation 51), radlsec 

- Pitch moment due to C (Equation 52). ft-lb 
rad/ sec 

ft-lb - Yaw moment due to (Equation 53), rad/sec 

N1, N2, N3 - Constants in differential equati0.n 

m - Two roots of differential equation 
1 ,2  

P - Roll angular velocity, radlsec 

q - Pitch angular velocity, rad/ sec 

r - Yaw angular velocity, rad/sec 

9' - Dynamic pressure, psf 

4 

r - Vector distance from origin of axis to elemental mass, ft 

S - Body cross sectional area, ft 2 

s - Gyroscopic stability factor 

t -Time, sec 

A v - Vector velocity of elementary particle m, ft/sec 

V - Total free stream velocity, ft/sec 



x - Body roll  axis 
- 
x - Aeroballistic body roll axis 

Y - Body pitch axis - 
Y - Aeroballistic body pitch axis 

z - Body yaw axis - 
z - Aeroballistic body yaw axis 

X, Y, Z - Inertial reference axis system 

GREEK SYMBOLS 

- Body fixed axis angle of attack 

- Aeroballistic angle of attack 

- Aeroballistic angle of attack in 6 DOF axis system 

- Body fixed axis angle of sideslip 

- Aeroballistic angle of sideslip 

- Aeroballistic angle of sideslip in 6 DOF axis system 

- Control deflection angle 

-   am ping exponent; real  part of m 
1,2 

- Complex total angle of attack 

- Defined by Equation 103 

- Angle of oscillatory plane in the 5 - p plane 

- Angle of the K a rm in complex plane with respect to E axis 

- Nutation and precession frequencies; imaginary parts of m 
1,2 

- Total angular velocity 



A DETAILED DEVELOPMENT OF THE TRICYCLIC THEORY 

Introduction 

The Tricyclic Theory is a solution to the aeroballistic equations of motion which makes use 

of complex variables. It i s  the only theory that describes the free-flight motion of a rolling 

vehicle in a relatively complete manner. It has the unique ability to predict the motion of a vehicle 

quantitatively as  planar, elliptical, epicyclical or tricyclical, depending on the physical and aero- 

dynamic characteristics of the vehicle. Consequently, it i s  important that flight dynamicists be 

able to apply the theory in predicting and analyzing the motion of free flight vehicles. It i s  

equally important that flight dynamicists realize the restrictions inherent in the theory, most of 

which stem from the fact that the theory is based on a solution to a linear differential equation, 

which inherently has the assumptions of constant coefficients and small angles. However, 

properly applied, the theory is a very useful tool in analyzing flight dynamics problems. 

The f i rs t  step in deriving the Tricyclic Theory i s  to derive the aeroballistic equations of 

motion. 

Aeroballistic Equations of Motion 

The Tricyclic Theory is based on the aeroballistic axis system and the resulting equations 

of motion. Since there may be some confusion involved in the differences between some of the 

various axis systems (i.e., body fixed, aeroballistic and precessing aeroballistic) the aeroballis- 

tic set of moment equations i s  derived and discussed in detail. 

The equations of motion are based on Newton's statement that the time rate of change of 

linear momentum must equal the sum of applied forces 

where m i s  the elemental mass and7 i s  the elemental force. The moment can be obtained by 

simply multiplying by the distance 7 to the elemental mass and summing elemental moments 



but the vector velocity i i o f  the elementary particle m is also the angular velocity times 7. 
Consequently 

Substituting 

which from vector analysis can be written 

At this point i t  is tempting to take a giant step forward by simply noting t h a t x m r Z  is the moment 

of inertia and that x m ~ ( ~ - t )  is equivalent to the product of inertia times the angular velocity. 

However, the derivation will be done in detail. Similar developments a r e  found in References 4 .  

5 ,  6 and many others. To accomplish this we will resor t  to the Cartesian coordinate system 

shown in Figure 1. Since 7 i s  a vector i t  can be written a s  

and 

- & - 
where i ,  j, and k a re  unit vectors and the angular velocity vector if, which i s  not necessarily 

coincident with F, is 

If we substitute (7). (8) and (9)  into (6) we have 



Figure 1. Inertial Axis System 



and 

The scalar moments about the three inertial axes X, Y, and 2 ,  which a r e  fixed in space are - 4 -  

obtained by taking the i ,  j, k components, which a r e  

2 2 2 2 Now i t  can be seen that the te rms  involving Z m ( y  + z ). p ( x 2  + z2), Z m ( x  + y ) are 

moments of inertia I about the X, the Y ,  and the Z axis respectively and that the remaining terms 

involve product of inertia. Fo r  instance E m x y  is the product of inertia about the Z axis and i s  

denoted as  I Therefore 
XY' 

This set of equations, which a r e  the moments about the X, Y ,  and Z axes when they a r e  fixed in 

space, a r e  often written a s  simply 

where I includes all the moments of inertia and products of inertia and Li includes all the angular 

velocities of the body (o x, oy, uz). Also IOis the angular momentum i?; consequently 



where 

Equation 19 is important since i t  says that the applied moments a re  equal to the time rate of 

change of moment of momentum, which is the angular momentum. Unfortunately, Equation 19 

re fe rs  to an axis system fixed in space where an axis system free to move in a specified manner 

with respect to an axis system fixed in space i s  needed to describe the motion of a body. This 

extension was done by Euler. Referring to Figure 2 we have a moving axis system x, y, z 

referred to an inertially fixed axis system X Y Z, and 6 and 5 denote the total moment of momen- 

tum vector and i; the total angular velocity vector of the body. Therefore 

-.A& 

where i j k are  unit vectors, which a re  regarded as  position vectors indicating the position of the 

xyz axes. Then from Equation 19 the moment for the moving axis system 

since T, 3 and change in the moving axis system. From vector analysis 

Substituting these derivatives in Equation 2 3  yields 



Figure 2. Axis System 



Since 

the moments about the x, y and z axes are 

where H H and HZ are obtained from (15), (161, and (17)  x' y' 



Equations 29 through 34  a re  the complete equations for a body in a moving axis system. However, 

they a re  in an inconvenient form which i s  difficult to use. A better form can be obtained by noting 

from (23),  (24),  (25)  and (26) that the total moment vector can be expressed a s  

where 6 is the total angular velocity of the moving axes x, y, z. And recalling (19) and (20),  

d -L M = ;ii- (1;) + R x 1; 

Completing the differentiation 

which i s  the complete general equation. Expressed in matrix form this equation becomes 

Now the symbols a r e  replaced with symbols normally used in aerodynamics 



where L, M, and N are  roll, pitch, and yaw moments, and p, q, and r a r e  roll, pitch, and yaw 

angular velocities (see Figure 3). 

Equa t i~n  39 is the complete set  of moment equations for three degrees of angular freedom 

(4, 8, and $1 in matrix form; when the matrix algebra is completed, this equation can provide the 

three moment equations for a body fixed axis system. Equation 39 can be used to derive the 

moment equations for any type of axis system depending on the angular ra tes  substituted for p, q, 

and r in the matrix marked with an asterisk since this matrix controls the rate  a t  which the axis 

system moves. For  the aeroballistic system, p is made zero in this matrix since it i s  a non- 

rolling axis system. Furthermore, the tricyclic theory assumes that products of inertia and 

rates of change of inertia a r e  zero. This results in the following version of (39) 

which is manipulated in this manner: 

and substituting by virtue of symmetry 

L 

M 

N 

1=l; 0  0  

O I c i O  
YY 

0  0  I ~ ~ ' :  

0  

+ q x  

r 

IXXp 0 0  

O I q O  
YY 

0  0  Izzr 



Figure 3. Aeroballistic System 



The equations for the sum of inertial moments about the x, y, and z axes result: 

which are  the aeroballistic equations. It should be emphasized that, while the body is rolling at the 

rate of p, the axis system i s  not rolling. 

Tricyclic Solution to Aerobdlistic Equations 

To obtain an analytic solution to the three aeroballistic equations it i s  necessary to decouple 

the roll  equation from the pitch and yaw equations, which is done by assuming the roll  rate p to be 

constant. The effects of this assumption, a s  well a s  others made during the course of this theo- 

retical development, on the accuracy of application of the theory i s  discussed in the section entitled 

Application. This assumption then leaves Equation 44 and 45 to be solved. The first step i s  to 

define the applied aerodynamic moments M and N and equate them to the inertial moments on the 

right side of the equations. Since this problem is complicated enough in i ts  simplest form we will 

consider only those moments due to q, r, &,  8, a, and 8, plus Magnus moment resulting from 

combined roll  rate and angle of attack (which i s  only one of the several complex moments that can 

be considered). 

Magnus moments 

Static stability moments 

Damping moments 



Aerodynamic lag moments 

In addition to these moments, which a r e  normally associated with a symmetrical vehicle, a 

moment due to control deflection o r  an aerodynamic asymmetry must be added. Since a moment 

associated with an aerodynamic asymmetry is fixed in the rolling body axis, we must break i t  up 

into components around the 9 and Z aeroballistic axes. This can be accomplished by realizing 

that the roll  orientation of the body is simply a function of pt since p i s  treated as  a constant. 

Consequently, we can represent the two components'of the moments due to asymmetries (or con- 

trol deflection) a s  

M6 6 cos pt and M8 6 sin pt . 
When all  of these applied moments a re  substituted in Equations 44 and 45, the complete pair of 

equations to be solved i s  

IF - qpIx - N b - Nr r - N,j - M6 6 sin pt - N pG = 0 , P p a  

where Equation 54  i s  the sum of the moments about the axis and Equation 55 i s  the sum of the 

moments about the E axis. The aeroballistic axis system is shown in Figure 3, where the various 

angles and their time derivatives a r e  pictorially demonstrated. Equations 54 and 55 are scalar 

equations, and the quantities in Figure 3 are  scalars  (although complex) even though their direc- 

tion i s  demonstrated by arrows. The complex angle of attack g is defined a s  a complex quantity 

composed of the two angles 6 and p 

where 6 is identical to E used in Nicolaidesl original treatment. The symbol is changed in an 

effort to avoid confusion. The i simply denotes that 6 is perpendicular to p. It should be noted 

that Z and 6 a re  positive when measured from the body 2 axis to the flight path, which i s  opposite 

in sense to the usual aeroballistic angle of attack 5 and p used later in the report and obtained 

from a 6 DOF calculation ( see  Figure 8). Notice that the position of the body 3E axis is defined by 



the two angles & and p and that angular r a t e s  of the y and 5 axes is defined by q and r.  The axis 

system does not rotate about the Z axis, but the body does roll  about the 2 axis with the constant 

ra te  p. The angular ra te  q is represented by an arrow perpendicular to the 7u plane, and r i s  

represented by an arrow perpendicular to P. From Figure 3 i t  is possible to  see  that 

All of the angular velocities in the figure a r e  vectors in  the sense that they can be represented by 

arrows with a direction perpendicular to the plane of the angle. It should a lso  be noted that 
& 

n(q in  Nicolaides' terminology) can be expressed in  complex fashion a s  

It i s  now becoming clear  that the complex plane has been chosen perpendicular to the f axis and 

in fact is coincident with 6, p, 6, &, p, i ,  q, r ,  a, and the 9 and L axes. This is a tremendous 

advantage in reducing the equations to a solvable form. A vertical view of this complex plane i s  

shown in Figure 4. Now we can easily see  the r e s t  of the relations: 

With these relations we a r e  ready to  manipulate Equations 54 and 55 s o  that they can be solved 

simultaneously. By multiplying one of the moment equations by i the problem is shifted into the 

complex plane. Then the two equations a r e  added to get the total moment equation in  the complex 

plane which can be solved in t e r m s  of a single complex angle c. Multiplying (55) by i 

~q + rpIx - M~ 1 - M q - M; i. - M* 6 cos pt - M pfi = o 
PP 

iIi- - iqpIx - iNg B - iNr r - iN-  B - iM 6 s in  pt -iN p6 = 0 , B 8 PU 

and adding the two equations and collecting t e r m s  yields 



Figure 4. Complex Plane 



- M& & - i N j  - M S (COS pt + i sin pt) - M - iNpo p& = 0 . 6 pp (65) 

Now if the vehicle is rotationally symmetrical ,  the static and dynamic stability derivatives about 

the 7 axis a r e  equal to  the stability derivatives about the Z axis. Consequently 

Using the normal symbols for moments about the y axis (i.e., Ma, M M&), Equation 65 becomes 
q' 

I(q + ii.1 - Ixp(iq - r )  - Ma(a - iP) - M (q + ir) 
q 

p Y" - M&(& - i$) - MS L (cos pt + i sin pt) - M p(io + 8 )  = 0 , 
PP 

(67) 

Since the equation must be in t e r m s  of e ,  the total angle of attack, Equations 56 through 62 can 

be used to substitute  for'^. p, i ,  j, q, r ,  4, and i- in ~ ~ u a t i o n . 6 7  a s  follows: 

4 + i ~  h = d  ' dt - 6 )  = - (from (58) and (59)] 

. . .  
iq - r = i & + p  = E [from (57) and (61)) 

2 - i  - - - 
= -i(i% +f l )  = - i E  [from (60)l 

i 

q + ir = R = - i t  [from (59) and (59)) 

. -  - 
a-  iii= - i i  [from (62)] . 

Equation 67 becomes 

I(- ig - rXp(i) - Ma(- i f )  - M ( -  it) - M&(- i i )  - Ma S(cos pt + i sin pt) - M pC = 0 . (69) q PP 

i Multiplying by 7 

I M i -  i p - q  - -  
I I Sti sin pt + cos pt) - ip C = 0 . 



Collecting t e rms  

- 2 8 (- sin pt + i cos pt) = O . 
I 

Now 

[ - i ( e i ~ t  ; e-ipt)] + (e - sin pt + i cos pt = - 2 

ipt - ie-ipt + ieipt + ie-ipt 
ie ipt - 

2 
= ie . 

Consequently Equation 71 becomes 

We can replace the coefficients with 

N N2 and N which a r e  constants: 
1' 3' 

This yields 

ipt [ + N ( + N  £ = N  e s 
1 2 3 

(76 )  

which is a linear, second o rder  differential equation with constant cocCficients u hic l i  can be sol\~cd. 

The homogenous par t  of the equation is 



The auxiliary equation of (77) i s  

m 2 + ~ m + ~ 2 = ~  1 . 

The two roots of the equation a re  obtained from the following algebraic manipulation: 

but since m i s  actually two separate quantities, m i s  replaced by m 
1,2: 

where ml  involves the positive radical, m2 involves the negative radical, and they a re  both 

complex values. The symbol m i s  identical to in Nicolaides' notation. It was changed to avoid 

confusion with the symbol for roll angle. The general solution to the homogeneous part of the 

equation is known to be 

To complete the solution the particular integral i s  evaluated: 



Integrating 

ipt 5 = K3e , 
P 

where 

N3 
K3 = (ip - rnl)(ip - m2) ' 

The complete solution i s  simply the sum of (79) and (82), which i s  

where K and K a r e  arbi t rary  constants that must be determined from the boundary conditions 
1 2 

(K3 i s  defined by (83)). The boundary conditions on this equation a r e  simply that 5 =  to and that 

< =  to at  t = 0. Substituting into Equation 79 and i t s  f i rs t  derivative yields 

and 

m t  m t  
ipt 

& = K l m ,  e + K  rn e + K  ipe 
2 2 3 



Equations (85) and (87) are  easily solved for K and K2: 1 

Unfortunately, these deceptively simple equations for K and K  are  highly complicated, 
1 2 

complex variable expressions. To use this solution we have to go back to Equation 73, 74, 

and 78 and obtain the complete expressions for m and m in aerodynamic terms. They a re  
1 2  

*. 

Completing the square under the radical, 

21 (91 )  

A t  this point an assumption is made that the term (M + M $ / ( ~ I ) ] ~  i s  small compared to the other 
1 9  

terms and may be neglected. This i s  often true and for many applications it is a legitimate 

assumption. If this term i s  deleted and the other terms regrouped the following equation results. 

If we let  



then 

where (I= can be approximated by the binomial expansion 

2 2 
If F << E the ser ies  converges rapidly and only the f i r s t  two te rms  are  required to approxi- 

mate the radical. Or. 

For most cases this should be an excellent approximation. Substituting (93) and (94) in (97) 

yields 

Now from (95) 

We can now separate real  and imaginary parts of m and we let  the rea l  part equal A and 
1,2 1,2 

the imaginary part equal o 
1,2' 



Separating this into rea l  and imaginary pa r t s  and labeling the r e a l  par t  A (which is often used 
1 ,2  

in connection with damping) and labeling the imaginary p a r t  w (a  symbol normally used for 
192 

frequency) was not accidental; i t  required considerable insight. A little rearrangement and 

algebraic manipulation of (100) provides 

Now we can le t  

which is called the stability factor. It is a useful expression in  determining whether o r  not a 

spin stabilized shell will be stable. It must be greater  than +1 for gyroscopic stability. 

If we define T a s  

then Equation 101 becomes 



It should be recognized a t  this point that 7 is real ly  an indicator of the magnitude of the contribu- 

tion of gyroscopic stability. 

Equations 88, 89, 100 and i04  can be used to obtain usable equations for the two constants 

of integration, K1 and K2, in t e r m s  of A and w which a r e  defined by the aerodynamic 
1 ,2  1.2' 

coefficients and moments of inertia. Substituting 

into Equations 88 and 89 yields 

Substituting 

4 = ia+ from Equation 60 
. . 

5 = i z + p  from Equation 61 

K = iA + B from Equation 118 
3 3 3  

and rearranging the denominators of (106) and (107) provides 

i f  + - (A2 + iw2) ( i B  + B0) - (ip - A 2  - i ~ )  (iA3 + B3) 
0 0 K = 

1 i (wl - w2) + (Al - A2) 

Multiplying and collecting imaginary and real  pa r t s  



These equations a r e  of the form 

and they can be separated into r e a l  and imaginary par ts  by 

Consequently, 



A similar procedure i s  required to separate the r e a l  and imaginary par ts  of K From Equation 83 3' 

Completing the multiplication and separating the denominator into rea l  and imaginary par ts  

This equation is of the form 

and can be separated into r e a l  and imaginary pa r t s  by 

N 
3 (-if + R) - N 3  (-if + g) 

"' 

K =- 
3 (if + g) (-if + g) 

- = 

(f2 + g2) 

Consequently, 



Since we now have equations for the three K's in terms of h and w, we a re  ready to break up the 

exponentials part of the solution into rea l  and imaginary parts. Then i t  will be possible to obtain 

real  expressions for ii and 6. Recalling Equation 84 

m t  m t  ipt 5 = K l e  1 + K e  2 +K3e  , 
2 

and since 

(Al  + icul)t (h2 + ico2)t 
ig+p= K e ipt 

1 + K2e + K3e . 

Referring to (112), (113) and (116). i t  can be seen that the K's a re  complex and are  of the form 

K = i A + B  (118) 

and that the absolute value of K is 

Hence 

Now 

icut 
e = c o s w t + i s i n w t .  

Consequently Equation 119 can be separated into real  and imaginary parts by 



iZ+E = e A l t  [i (A cos w1t + Bl sinw1t) + ( B  c o s i  t - Al s in  wit) 
1 1 1 I 

i (A3 cos pt + B3 s in  pt) + ( B  cos  pt - A3 s in  pt) . 3 I 
- 

Equating iz to the imaginary par t  and /3 to the r e a l  par t  of (120) yields the complete expressions 

for and which a re  

ti = (A1 cos w t + Bl sin i t)e + (A cos  w t + B sin w2t)e 
A2t 

1 1 2 2 2 

+ (A cos pt + B sin pt) 
3 3 

A l t  B = (Bl COS w t - A sin  w t)e + (B cos  w2t - A sin t)e 
A2t  

1 1 1 2 2 2 

+ (B cos pt - A3 sin pt) , 
3 

where the A ' s  and B's  a r e  obtained from (112). (113), (116), and (118). They a r e  



where ii h0, Bo and p are  the initial angle and angular ra te  conditions, and A and u 
0' 0 1 , 2  1.2 

(which have been defined in Equations 101 and 104 ) a r e  



where the subscript 1 r e f e r s  to the + signs and the subscript 2 to  the - signs. The equations for 

E and ,8 a r e  obviously complicated and require the computation of ten constants before a! and p can 

be calculated a s  a function of time. Fortunately they can be simplified to some extent for many 

applications, which a r e  considered in the next section. 

Application 

Assuming that the problem meets  the linearity and small  angle restrictions,  that the physi- 

cal  and aerodynamic characterist ics a r e  known, and that the initial angle conditions a re  known, 

the motion of a vehicle can be calculated directly from the complete Equations 1 2 1  through 130. 

These equations a r e  complicated and would normally require machine computation. Fortunately 

i t  i s  possible to greatly simplify the equations for most applications. 

Simplified Equations 

The basic Equations 1 2 1  and 122  for Zand pcannot be simplified; however, most of the 

complication is in the expressions for the A's  and B's,  which can be simplified. In many flight 

systems the static stability is much greater than the dynamic stability, so  that X1, << wl, 2. 
This i s  usually, but not always, true for fin stabilized rockets and bombs, and is often true for 

re-entry  vehicles. This condition provides the basis  for eliminating all  t e r m s  involving A 
1 , 2  

in the equations for A and B: 



The percentage e r r o r  involved in this simplification is approximately G(A / w  ) 100%. 
1.2 1 , 2  

For  two-arm o r  epicyclic motion (ze ro  t r im) ,  the equations for  the A's and B1s reduce further to 

Example Problem 

To demonstrate the accuracy of the simplified approach, two sample problems were calcu- 

lated using the Tricyclic Theory and a Six-Degree-of-Freedom computer program, and the 

resul ts  were compared. The example was deliberately chosen to be a s  l inear a s  possible, yet i t  

i s  representative of a supersonic fin stabilized rocket. The rocket was launched a t  an angle of 
0 

1 above the horizontal and zero drag was assumed to  maintain a constant dynamic pressure .  

The vehicle characterist ics a r e  listed in Table I. The static moment derivative i s  calculated from 

Equation 48: 

The frequencies a r e  obtained from Equation 130: 



TABLE I 

Vehicle Characterist ics and Flight Conditions 
(Sample Problem) 

q '  = 400.35 psf 

= 3.37 slug-ft 
2 

IX 

= 101 slug-ft 
2 

I 

P = 37.7 rad  per sec 

'ma 
= -30 per radian 

'mq + 'miw 
= -1400 per rad / sec  

' m ~  
= +30 per radian 

S = 2 degrees 

The damping moment derivative is calculated from Equations 50 and 52: 

M + M;, = -13.93 ft-poundslrad per sec 
q 

The A's a re  obtained from Equation 129: 

where r is 

PIY 

Both example problems a r e  identical, except that the f i rs t  calculation has a tr im angle ( 6  = +2") 

and i s  tricyclic (all three a r m s  a re  present) and in the second example the motion is epicyclic. 



The initial conditions a r e  the same for both examples, that i s ,  

The A's and B's  a r e  computed f rom Equations 131 through 136. 

Tricyclic Case 



Since 

K = d~~ + B' 

J K ~ J  = 4.705' 

IK2( = 
5.354O 

1 ~ ~ 1  = 
0 . 0 5 9 1 ~  

Epicyclic Case 

Note that r a the r  smal l  K a r m  (0.059') has a large  effect on the s i ze  of the K and K a r m s ,  
3 1 2 

which causes  a much l a r g e r  effect on the motion than might be expected, and usually should 

not be ignored. Also notice that initially both the K and K 2  a r m s  a r e  pointed upward nlorig thc 
1 



- 
+ f f  axis and the K a r m  is pointed downward along the ';; axis." The calculations for  both the 3 
tricyclic and epicyclic examples a r e  shown in  Appendix A and a r e  plotted on Figures  5 and 6 in 

comparison with the 6 DOF computer calculation. The agreement is excellent, a s  can be seen 

on the plots and by comparing columns 21 and 22 with columns 23 and 24 in  Appendix A fo r  the 

tricyclic example and comparing columns 31 and 32 with columns 33 and 34 fo r  the epicyclic 

case.  

The e r r o r  is approximately 1.570, which is sufficiently accurate fo r  most flight dynamics 

purposes. 

Discussion 

The Tricyclic Theory is the only existing theory that is capable of predicting the motion of 

a flight vehicle in considerable detail by means of a closed form solution. Other flight dynamics 

techniques involve the numerical integration of the equations of motion. The most complete form 

of numerical integration, the 6 DOF computer codes, provide complete nonlinear and time variant 

solutions; however, i t  is often difficult to obtain a thorough understanding of the motion required 

to diagnose flight dynamics problems. Conversely, the Tricyclic Theory provides the basic 

underlying principles of the motion but is restricted in  application to l inear o r  quasi-linear and 

time invariant o r  quasi-time invariant problems. F o r  these reasons i t  is important that the 

Tricyclic Theory be applied to  flight dynamics problems and that i t s  restrictions be understood. 

Constant Coefficient Restriction 

Constant coefficients (N1, N2 and N ) a r e  assumed in solving Equation 76. Unfortunately, 
3 

this occurs in  few flight dynamics problems, because Ma and(M + M.) almost always vary with 
'4 ff 

time and often change with angle of attack (nonlinear). Aeroelasticity is an often overlooked but 

serious contributor to  nonlinearity. T o  further complicate the situation, there  a r e  no simple 

established specifications on the e r r o r  involved in  applying the theory to problems where the 

coefficients vary with time o r  a r e  nonlinear. However, two comments can be made in this 

regard. F i r s t ,  a nonconstant coefficient problem can often be reduced to a quasi-constant 

coefficient problem by dividing the problem into small  time increments,  s o  that the coefficients 

do not change significantly during the time increments. Second, w appears to have the 
1,2 

largest  effect on the magnitude of K and K2; consequently, variations in MCy probably cause the 
1 

largest  nonlinear effects. While indiscriminate application of this theory is inadvisable, appli- 

cation with caution can often solve a flight dynamics problem that otherwise would not be possible 

to solve. 

96 
In the 6 DOF Aeroballistic System. See section entitled Physical Interpretation. 
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Figure 5. Comparison of Tricyclic Theory with 6 DOF Calculation 
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Figure 6. Comparison of Epicyclic Theory with 6 DOF Calculation 



Small Angle Restriction 

Inherent in the definition of the applied aerodynamic moments in the aeroballistic equations 

i s  a small angle of attack restriction that i s  not immediately apparent. This results because the 

total velocity vector (V) cannot remain perpendicular to both the and Faxes when both Z and 

a r e  present. The distortion in the angles i s  demonstrated in Figure 7,  where both 7 and z have 

been rotated so that 141 90° and a! = p .  It can be shown from trigonometry that 

From this geometry it is possible to see that the true angle of attack and the sideslip (; 
- 

t '  P,) 
that would normally be associated with the aerodynamic coefficients a r e  

The e r ro r  caused by this assumption can be approximated as  follows for circular coning motion. 

The frequency w i s  approximately 
1 

so that the e r ro r  in o i s  approximately 
1 

which for a l o 0  total angle of attack i s  

*" =A 
1 - 1 cos 10 .99237 

Or, the maximum e r r o r  in frequency would be 0.76% and the average e r r o r  would be roughly 

0.48%. Therefore this restriction i s  not too significant a s  long a s  the angles a r e  small. 

Physical Interpretation 

A physical interpretation of the Tricyclic solution i s  somewhat complicated by the conlples 

algebra that i s  involved. An attempt i s  made in Figure 8 to provide a graphical description of 

the solution. The first  thing to be recognized i s  that the equations of motion that a re  solvrd 



Figure 7. Effect of Large Angle on 5 and ? 
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Figure 8. Physical Interpretation of Tricyclic Theory 



constitute the sums of the moments about the body and Z axes. Consequently, w l  and w must 
2 

be about the body axes. The solution, repeated below from Equation 84, indicates that 
wl' 'U2' 

and p must all be about the same axis. 

( X 1  + iul)t  ( I 2  + iw ) t 
ipt 5 =  K1 e + K2 e + ~ ~ e  , 

and since p i s  about the body 2 axis,  w and w must a lso  be about the j7 axis. Consequently, the 
2 

three K ' s  rotate about the 2 axis a t  their respective frequencies and describe the motion of the 

flight path with respect to the body j7 axis. This i s  opposite to  the normal convention used in the 

aeroballistic option of 6 DOF programs. However, the whole thing can be inverted without any 
1 

sign reversals  resulting (iZ and p are  interchangeable with ZC and ). This i s  shown in  an - 6 
plot in Figure 9, where ZC and a r e  the aeroballistic angles measured from the flight path to the 

body x axis. It should be noted from the solution that the order  of addition of the K's  i s  unimpor- 

tant and consequently the order  of the K a r m s  in Figure 9 is unimportant. Equation 119 shows 

the complete solution where the K ' s  a r e  shown in complex form: 

( k l  + iwl)t ( k 2  + iw2)t 
i z +  8 = (iA + Bl) e 

ipt 
1 + (iA2 + B2) e + (iA 3 + R3) e . 

If we let  t = o in this equation, 

and 

Therefore, the A ' s  and B ' s  a re  simply the 6 and 6 components under initial conditions. It also 

follows that the 6 angles shown in Figure 9 can be calculated from 

and similarly for 4 and 
2 3' 
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Figure 9. B - Plot 



The three K's or  a rms  and the three associated frequencies have been previously defined 

as follo\vs: 

K1 - nutation arm 

K - precession a rm 
2 

K - t r im arm 3 

w - nutation frequency (high frequency) 
1 

W 2  - precession frequency (low frequency) 

p - roll  frequency 

While these particular definitions may be in conflict with gyroscopic terminology it  is important 

that they be maintained; otherwise confusion may result. The fact that the nutation a rm (K ) 1 
always rotates in the same direction a s  the roll  rate (p) and that the precession a rm (K ) always 

2 
rotates opposite to p, for an aerodynamically statically stable body i s  important. This i s  easily 

seen from Equation 130, which i s  repeated below. 

Ma . 
For a statically stable body 7 1s always negative; consequently the radical i s  always greater 

than (p Ix)/(21), and wl will be positive and w2 negative for a positive p. Also if M a / I  i s  small 

(corresponding to exoatmospheric flight), w become one frequency 
1,2 

which i s  the gyroscopic frequency. Conversely, if Ma/I i s  large compared to (pI )/(21), \vhich 
X 

corresponds to normal aerodynamically stable flight at high dynamic pressures, then 

which i s  a well known approximation of the nutation frequency. The gyroscopic frequency i s  

usually 5 to l O q "  of the aerodynamic frequency on a fin stabilized rocket vehicle flying at high 

dynamic pressure. 

Characteristic Motion 

While an infinite variety of motion patterns can be generated by the Tricyclic Theory, a 

few types tend to predominate. Some of these have been generated by a mechanical devicc to 

illustrate epicyclical motion. 

The motion shown in I'igure 10 i s  for the case of zero roll rate (1, = 0) whcn the nutation 

and precession Frequencies are  equal (wl = w 2 ) .  Il'igure 10 shows t h e  charnrtcristic types of 

motion with different initial conditions. In Figure 10 (a) planar motion i s  gcncratcd \ ~ I I L > I I  I C l  ;1n(1 

K. are  equal, which i s  the case w h e n  fi i s  zero. As a progrcssivcly 1ar.gc.r negntivo v:tltrc, ol' 2 0 



Figure  10. Charac te r i s t ic  Motion with Ze ro  Roll Rate 



i s  introduced, the K a r m  will reduce (see Equations 137 through 140) and K i s  maintained 
p3 2 1 
the same  length, resulting in an elliptical motion (Figures 10 (b) and 10 (c)). Finally a s  

0 

becomes equal to w 
- 

the K a r m  becomes zero and c i rcular  motion resul ts  with only the 
1,2 "0' 2 

K a r m  remaining. If the negative value for p is increased further so  that i t  is greater  than 
1 0 

W 
1, 2Eo' 

elliptical motion resul ts  with the major axis being along the axis. In this se t  of 

sketches K is kept constant, and E var ies  and is simply equal to  the sum of K1 and K2. This  
1 0 

condition is inherent in the mechanical device used to generate the sketches. 

Figure 11 is a similar set  of motion patterns for a rolling vehicle. In this case  the nutation 

frequency is greater  than the precessional frequency (wl = -1.083~~1, which i s  typical of fin 

stabilized vehicles. The unequal frequencies cause the oscillatory plane to  rotate in  the direc- 

tion of w and p, since u is la rger  than u2. The angular ra te  of this precessing motion ( i  ) is 1 1 0 

Consequently the magnitude of 4 depends only on the rol l  ra te  and moment of inertia ratio of the 
0 

vehicle. Also, i t  can be shown that JI depends only on w /U : 
0 1 2  

Figure 11 (a) demonstrates a pointed cusp pattern that resul ts  from 8 being zero. A5 co 
0 

increases  in a negative direction, the loops a re  formed which change into ell ipses in Figures 11 

(c) and (d). As before, K i s  constant and K gradually decreases  a s  fi0 i s  increased in a nega- 
1 2 

tive direction. This reduction of K with respect to K a s  - 6 i s  increased can be seen in 
2 1 0 

Equations 137 and 139. 

Aerodynamic damping was ignored in generating the motion patterns. Normally, damping 

would gradually decrease the magnitude of K1 and K if the vehicle i s  dynamically stable. 
2 

Magnus Moment 

The magnus moment, which resul ts  from combined angle of attack and rol l  r a te ,  was 

included in the theory, since i t  can be important when the body is rolling at a high frequency. 

Magnus moment is usually important on a spin stabilized shell and i s  normally consiticrc.d 

unimportant on a fin stabilized vehicle. This  can he qualitatively demons1r;ltcd by examining thr 

h equation for a 6-inch-diameter spin stabilized shell and a high fincncss ratio fin si;~bilizc-d 
1 , 2  

roc:kct. 
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Figure 11. Characteristic Motion of Rolling Body 



For a typical 6-inch spin stabilized shell, r is approximately 2; therefore from 

Equation 129: 

Now I is about 0.1 and I about 1.5 for the shell. 
X 

From this i t  can be seen that, on a spin stabilized shell, M can overwhelm (M + M&) even if 
pi3 4 

i t  is numerically much smaller;  in fact, M can provide a major par t  of the damping on a spin 
PP 

stabilized shell. Now if we substitute the numbers for a high fineness ratio fin stabilized rocket 

with an I of 2 and an 1 of 300 we have 
X 

Converting the moments to coefficient form, 

Wind tunnel t e s t s  have shown a value of 2500/rad for (Cmq + Cmdr) and 50/rad for C on the 
mPP 

Nike ~ o m a h a w k , ~  a high-fineness-ratio.fin-stabilized rocket. While these data indicate that 

M has a relatively small  effect on the motion of this type of vehicle, one should not make a 
PP 

conclusive judgment on the relative significance of M in all cases  on the basis  of a single wind 
PP 

tunnel test. 

Conclusions 

A highly detailed development of the Tricyclic Theory has been prcscnted allti i t s  r c s t r i c -  

tions discussed. A simplified version of the theory was obtained and Iwo esaml)lc cnlrulations 

compared with 6 DOF calculations. This work leads to thc following cnnclusions. 



1. Properly applied, the linear Tricyclic Theory provides an excellent means 

of predicting the motion of rigid bodies. 

2. The simplified method of evaluating the K a rms  will be adequate for many 

i f  not most flight dynamics situations. 

3.  The contribution of the K3 arm to the magnitude of the K1 and K2 arms, which 

has often been neglected, i s  significant. 

4. The Tricyclic Theory provides a means for understanding flight dynamics prob- 

lems  that a r e  often otherwise incomprehensible. 
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